Cygwin: mmap: allow remapping part of an existing anonymous mapping
[newlib-cygwin.git] / newlib / libm / common / s_remquo.c
blob468b566307baa14c36d06b7cdb93f0e6e0e7a5e6
1 /* Adapted for Newlib, 2009. (Allow for int < 32 bits; return *quo=0 during
2 * errors to make test scripts easier.) */
3 /* @(#)e_fmod.c 1.3 95/01/18 */
4 /*-
5 * ====================================================
6 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8 * Developed at SunSoft, a Sun Microsystems, Inc. business.
9 * Permission to use, copy, modify, and distribute this
10 * software is freely granted, provided that this notice
11 * is preserved.
12 * ====================================================
15 FUNCTION
16 <<remquo>>, <<remquof>>---remainder and part of quotient
17 INDEX
18 remquo
19 INDEX
20 remquof
22 SYNOPSIS
23 #include <math.h>
24 double remquo(double <[x]>, double <[y]>, int *<[quo]>);
25 float remquof(float <[x]>, float <[y]>, int *<[quo]>);
27 DESCRIPTION
28 The <<remquo>> functions compute the same remainder as the <<remainder>>
29 functions; this value is in the range -<[y]>/2 ... +<[y]>/2. In the object
30 pointed to by <<quo>> they store a value whose sign is the sign of <<x>>/<<y>>
31 and whose magnitude is congruent modulo 2**n to the magnitude of the integral
32 quotient of <<x>>/<<y>>. (That is, <<quo>> is given the n lsbs of the
33 quotient, not counting the sign.) This implementation uses n=31 if int is 32
34 bits or more, otherwise, n is 1 less than the width of int.
36 For example:
37 . remquo(-29.0, 3.0, &<[quo]>)
38 returns -1.0 and sets <[quo]>=10, and
39 . remquo(-98307.0, 3.0, &<[quo]>)
40 returns -0.0 and sets <[quo]>=-32769, although for 16-bit int, <[quo]>=-1. In
41 the latter case, the actual quotient of -(32769=0x8001) is reduced to -1
42 because of the 15-bit limitation for the quotient.
44 RETURNS
45 When either argument is NaN, NaN is returned. If <[y]> is 0 or <[x]> is
46 infinite (and neither is NaN), a domain error occurs (i.e. the "invalid"
47 floating point exception is raised or errno is set to EDOM), and NaN is
48 returned.
49 Otherwise, the <<remquo>> functions return <[x]> REM <[y]>.
51 BUGS
52 IEEE754-2008 calls for <<remquo>>(subnormal, inf) to cause the "underflow"
53 floating-point exception. This implementation does not.
55 PORTABILITY
56 C99, POSIX.
60 #include <limits.h>
61 #include <math.h>
62 #include "fdlibm.h"
64 /* For quotient, return either all 31 bits that can from calculation (using
65 * int32_t), or as many as can fit into an int that is smaller than 32 bits. */
66 #if INT_MAX > 0x7FFFFFFFL
67 #define QUO_MASK 0x7FFFFFFF
68 # else
69 #define QUO_MASK INT_MAX
70 #endif
72 static const double Zero[] = {0.0, -0.0,};
75 * Return the IEEE remainder and set *quo to the last n bits of the
76 * quotient, rounded to the nearest integer. We choose n=31--if that many fit--
77 * because we wind up computing all the integer bits of the quotient anyway as
78 * a side-effect of computing the remainder by the shift and subtract
79 * method. In practice, this is far more bits than are needed to use
80 * remquo in reduction algorithms.
82 double
83 remquo(double x, double y, int *quo)
85 __int32_t n,hx,hy,hz,ix,iy,sx,i;
86 __uint32_t lx,ly,lz,q,sxy;
88 EXTRACT_WORDS(hx,lx,x);
89 EXTRACT_WORDS(hy,ly,y);
90 sxy = (hx ^ hy) & 0x80000000;
91 sx = hx&0x80000000; /* sign of x */
92 hx ^=sx; /* |x| */
93 hy &= 0x7fffffff; /* |y| */
95 /* purge off exception values */
96 if((hy|ly)==0||(hx>=0x7ff00000)|| /* y=0,or x not finite */
97 ((hy|((ly|-ly)>>31))>0x7ff00000)) { /* or y is NaN */
98 *quo = 0; /* Not necessary, but return consistent value */
99 return (x*y)/(x*y);
101 if(hx<=hy) {
102 if((hx<hy)||(lx<ly)) {
103 q = 0;
104 goto fixup; /* |x|<|y| return x or x-y */
106 if(lx==ly) {
107 *quo = (sxy ? -1 : 1);
108 return Zero[(__uint32_t)sx>>31]; /* |x|=|y| return x*0 */
112 /* determine ix = ilogb(x) */
113 if(hx<0x00100000) { /* subnormal x */
114 if(hx==0) {
115 for (ix = -1043, i=lx; i>0; i<<=1) ix -=1;
116 } else {
117 for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1;
119 } else ix = (hx>>20)-1023;
121 /* determine iy = ilogb(y) */
122 if(hy<0x00100000) { /* subnormal y */
123 if(hy==0) {
124 for (iy = -1043, i=ly; i>0; i<<=1) iy -=1;
125 } else {
126 for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1;
128 } else iy = (hy>>20)-1023;
130 /* set up {hx,lx}, {hy,ly} and align y to x */
131 if(ix >= -1022)
132 hx = 0x00100000|(0x000fffff&hx);
133 else { /* subnormal x, shift x to normal */
134 n = -1022-ix;
135 if(n<=31) {
136 hx = (hx<<n)|(lx>>(32-n));
137 lx <<= n;
138 } else {
139 hx = lx<<(n-32);
140 lx = 0;
143 if(iy >= -1022)
144 hy = 0x00100000|(0x000fffff&hy);
145 else { /* subnormal y, shift y to normal */
146 n = -1022-iy;
147 if(n<=31) {
148 hy = (hy<<n)|(ly>>(32-n));
149 ly <<= n;
150 } else {
151 hy = ly<<(n-32);
152 ly = 0;
156 /* fix point fmod */
157 n = ix - iy;
158 q = 0;
159 while(n--) {
160 hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
161 if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;}
162 else {hx = hz+hz+(lz>>31); lx = lz+lz; q++;}
163 q <<= 1;
165 hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
166 if(hz>=0) {hx=hz;lx=lz;q++;}
168 /* convert back to floating value and restore the sign */
169 if((hx|lx)==0) { /* return sign(x)*0 */
170 q &= QUO_MASK;
171 *quo = (sxy ? -q : q);
172 return Zero[(__uint32_t)sx>>31];
174 while(hx<0x00100000) { /* normalize x */
175 hx = hx+hx+(lx>>31); lx = lx+lx;
176 iy -= 1;
178 if(iy>= -1022) { /* normalize output */
179 hx = ((hx-0x00100000)|((iy+1023)<<20));
180 } else { /* subnormal output */
181 n = -1022 - iy;
182 if(n<=20) {
183 lx = (lx>>n)|((__uint32_t)hx<<(32-n));
184 hx >>= n;
185 } else if (n<=31) {
186 lx = (hx<<(32-n))|(lx>>n); hx = sx;
187 } else {
188 lx = hx>>(n-32); hx = sx;
191 fixup:
192 INSERT_WORDS(x,hx,lx);
193 y = fabs(y);
194 if (y < 0x1p-1021) {
195 if (x+x>y || (x+x==y && (q & 1))) {
196 q++;
197 x-=y;
199 } else if (x>0.5*y || (x==0.5*y && (q & 1))) {
200 q++;
201 x-=y;
203 GET_HIGH_WORD(hx,x);
204 SET_HIGH_WORD(x,hx^sx);
205 q &= QUO_MASK;
206 *quo = (sxy ? -q : q);
207 return x;