Cygwin: mmap: allow remapping part of an existing anonymous mapping
[newlib-cygwin.git] / newlib / libm / complex / cephes_subrf.c
blob4a325811f2c3afb456a2cc7d28df9d232d9fdd43
1 /* $NetBSD: cephes_subrf.c,v 1.1 2007/08/20 16:01:34 drochner Exp $ */
3 /*-
4 * Copyright (c) 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software written by Stephen L. Moshier.
8 * It is redistributed by the NetBSD Foundation by permission of the author.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
31 * imported and modified include for newlib 2010/10/03
32 * Marco Atzeri <marco_atzeri@yahoo.it>
35 #include <complex.h>
36 #include <math.h>
37 #include "cephes_subrf.h"
39 /* calculate cosh and sinh */
41 void
42 _cchshf(float x, float *c, float *s)
44 float e, ei;
46 if (fabsf(x) <= 0.5f) {
47 *c = coshf(x);
48 *s = sinhf(x);
49 } else {
50 e = expf(x);
51 ei = 0.5f / e;
52 e = 0.5f * e;
53 *s = e - ei;
54 *c = e + ei;
58 /* Program to subtract nearest integer multiple of PI */
60 /* extended precision value of PI: */
61 static const double DP1 = 3.140625;
62 static const double DP2 = 9.67502593994140625E-4;
63 static const double DP3 = 1.509957990978376432E-7;
64 #define MACHEPF 3.0e-8
66 float
67 _redupif(float x)
69 float t;
70 long i;
72 t = x / (float)M_PI;
73 if (t >= 0.0f)
74 t += 0.5f;
75 else
76 t -= 0.5f;
78 i = t; /* the multiple */
79 t = i;
80 t = ((x - t * DP1) - t * DP2) - t * DP3;
81 return t;
84 /* Taylor series expansion for cosh(2y) - cos(2x) */
86 float
87 _ctansf(float complex z)
89 float f, x, x2, y, y2, rn, t, d;
91 x = fabsf(2.0f * crealf(z));
92 y = fabsf(2.0f * cimagf(z));
94 x = _redupif(x);
96 x = x * x;
97 y = y * y;
98 x2 = 1.0f;
99 y2 = 1.0f;
100 f = 1.0f;
101 rn = 0.0f;
102 d = 0.0f;
103 do {
104 rn += 1.0f;
105 f *= rn;
106 rn += 1.0f;
107 f *= rn;
108 x2 *= x;
109 y2 *= y;
110 t = y2 + x2;
111 t /= f;
112 d += t;
114 rn += 1.0f;
115 f *= rn;
116 rn += 1.0f;
117 f *= rn;
118 x2 *= x;
119 y2 *= y;
120 t = y2 - x2;
121 t /= f;
122 d += t;
123 } while (fabsf(t/d) > MACHEPF);
124 return d;