2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
4 * Copyright (c) 2005-2008 David Schultz <das@FreeBSD.ORG>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
35 #include "../ld/fpmath.h"
39 #define TBLSIZE (1 << TBLBITS)
41 #define BIAS (LDBL_MAX_EXP - 1)
42 #define EXPMASK (BIAS + LDBL_MAX_EXP)
44 static volatile long double
46 twom10000
= 0x1p
-10000L;
48 static const long double
49 P1
= 0x1.62e42fefa39ef35793c7673007e6p
-1L,
50 P2
= 0x1.ebfbdff82c58ea86f16b06ec9736p
-3L,
51 P3
= 0x1.c6b08d704a0bf8b33a762bad3459p
-5L,
52 P4
= 0x1.3b2ab6fba4e7729ccbbe0b4f3fc2p
-7L,
53 P5
= 0x1.5d87fe78a67311071dee13fd11d9p
-10L,
54 P6
= 0x1.430912f86c7876f4b663b23c5fe5p
-13L;
57 P7
= 0x1.ffcbfc588b041p
-17,
58 P8
= 0x1.62c0223a5c7c7p
-20,
59 P9
= 0x1.b52541ff59713p
-24,
60 P10
= 0x1.e4cf56a391e22p
-28,
61 redux
= 0x1.8p112
/ TBLSIZE
;
63 static const long double tbl
[TBLSIZE
] = {
64 0x1.6a09e667f3bcc908b2fb1366dfeap
-1L,
65 0x1.6c012750bdabeed76a99800f4edep
-1L,
66 0x1.6dfb23c651a2ef220e2cbe1bc0d4p
-1L,
67 0x1.6ff7df9519483cf87e1b4f3e1e98p
-1L,
68 0x1.71f75e8ec5f73dd2370f2ef0b148p
-1L,
69 0x1.73f9a48a58173bd5c9a4e68ab074p
-1L,
70 0x1.75feb564267c8bf6e9aa33a489a8p
-1L,
71 0x1.780694fde5d3f619ae02808592a4p
-1L,
72 0x1.7a11473eb0186d7d51023f6ccb1ap
-1L,
73 0x1.7c1ed0130c1327c49334459378dep
-1L,
74 0x1.7e2f336cf4e62105d02ba1579756p
-1L,
75 0x1.80427543e1a11b60de67649a3842p
-1L,
76 0x1.82589994cce128acf88afab34928p
-1L,
77 0x1.8471a4623c7acce52f6b97c6444cp
-1L,
78 0x1.868d99b4492ec80e41d90ac2556ap
-1L,
79 0x1.88ac7d98a669966530bcdf2d4cc0p
-1L,
80 0x1.8ace5422aa0db5ba7c55a192c648p
-1L,
81 0x1.8cf3216b5448bef2aa1cd161c57ap
-1L,
82 0x1.8f1ae991577362b982745c72eddap
-1L,
83 0x1.9145b0b91ffc588a61b469f6b6a0p
-1L,
84 0x1.93737b0cdc5e4f4501c3f2540ae8p
-1L,
85 0x1.95a44cbc8520ee9b483695a0e7fep
-1L,
86 0x1.97d829fde4e4f8b9e920f91e8eb6p
-1L,
87 0x1.9a0f170ca07b9ba3109b8c467844p
-1L,
88 0x1.9c49182a3f0901c7c46b071f28dep
-1L,
89 0x1.9e86319e323231824ca78e64c462p
-1L,
90 0x1.a0c667b5de564b29ada8b8cabbacp
-1L,
91 0x1.a309bec4a2d3358c171f770db1f4p
-1L,
92 0x1.a5503b23e255c8b424491caf88ccp
-1L,
93 0x1.a799e1330b3586f2dfb2b158f31ep
-1L,
94 0x1.a9e6b5579fdbf43eb243bdff53a2p
-1L,
95 0x1.ac36bbfd3f379c0db966a3126988p
-1L,
96 0x1.ae89f995ad3ad5e8734d17731c80p
-1L,
97 0x1.b0e07298db66590842acdfc6fb4ep
-1L,
98 0x1.b33a2b84f15faf6bfd0e7bd941b0p
-1L,
99 0x1.b59728de559398e3881111648738p
-1L,
100 0x1.b7f76f2fb5e46eaa7b081ab53ff6p
-1L,
101 0x1.ba5b030a10649840cb3c6af5b74cp
-1L,
102 0x1.bcc1e904bc1d2247ba0f45b3d06cp
-1L,
103 0x1.bf2c25bd71e088408d7025190cd0p
-1L,
104 0x1.c199bdd85529c2220cb12a0916bap
-1L,
105 0x1.c40ab5fffd07a6d14df820f17deap
-1L,
106 0x1.c67f12e57d14b4a2137fd20f2a26p
-1L,
107 0x1.c8f6d9406e7b511acbc48805c3f6p
-1L,
108 0x1.cb720dcef90691503cbd1e949d0ap
-1L,
109 0x1.cdf0b555dc3f9c44f8958fac4f12p
-1L,
110 0x1.d072d4a07897b8d0f22f21a13792p
-1L,
111 0x1.d2f87080d89f18ade123989ea50ep
-1L,
112 0x1.d5818dcfba48725da05aeb66dff8p
-1L,
113 0x1.d80e316c98397bb84f9d048807a0p
-1L,
114 0x1.da9e603db3285708c01a5b6d480cp
-1L,
115 0x1.dd321f301b4604b695de3c0630c0p
-1L,
116 0x1.dfc97337b9b5eb968cac39ed284cp
-1L,
117 0x1.e264614f5a128a12761fa17adc74p
-1L,
118 0x1.e502ee78b3ff6273d130153992d0p
-1L,
119 0x1.e7a51fbc74c834b548b2832378a4p
-1L,
120 0x1.ea4afa2a490d9858f73a18f5dab4p
-1L,
121 0x1.ecf482d8e67f08db0312fb949d50p
-1L,
122 0x1.efa1bee615a27771fd21a92dabb6p
-1L,
123 0x1.f252b376bba974e8696fc3638f24p
-1L,
124 0x1.f50765b6e4540674f84b762861a6p
-1L,
125 0x1.f7bfdad9cbe138913b4bfe72bd78p
-1L,
126 0x1.fa7c1819e90d82e90a7e74b26360p
-1L,
127 0x1.fd3c22b8f71f10975ba4b32bd006p
-1L,
128 0x1.0000000000000000000000000000p
+0L,
129 0x1.0163da9fb33356d84a66ae336e98p
+0L,
130 0x1.02c9a3e778060ee6f7caca4f7a18p
+0L,
131 0x1.04315e86e7f84bd738f9a20da442p
+0L,
132 0x1.059b0d31585743ae7c548eb68c6ap
+0L,
133 0x1.0706b29ddf6ddc6dc403a9d87b1ep
+0L,
134 0x1.0874518759bc808c35f25d942856p
+0L,
135 0x1.09e3ecac6f3834521e060c584d5cp
+0L,
136 0x1.0b5586cf9890f6298b92b7184200p
+0L,
137 0x1.0cc922b7247f7407b705b893dbdep
+0L,
138 0x1.0e3ec32d3d1a2020742e4f8af794p
+0L,
139 0x1.0fb66affed31af232091dd8a169ep
+0L,
140 0x1.11301d0125b50a4ebbf1aed9321cp
+0L,
141 0x1.12abdc06c31cbfb92bad324d6f84p
+0L,
142 0x1.1429aaea92ddfb34101943b2588ep
+0L,
143 0x1.15a98c8a58e512480d573dd562aep
+0L,
144 0x1.172b83c7d517adcdf7c8c50eb162p
+0L,
145 0x1.18af9388c8de9bbbf70b9a3c269cp
+0L,
146 0x1.1a35beb6fcb753cb698f692d2038p
+0L,
147 0x1.1bbe084045cd39ab1e72b442810ep
+0L,
148 0x1.1d4873168b9aa7805b8028990be8p
+0L,
149 0x1.1ed5022fcd91cb8819ff61121fbep
+0L,
150 0x1.2063b88628cd63b8eeb0295093f6p
+0L,
151 0x1.21f49917ddc962552fd29294bc20p
+0L,
152 0x1.2387a6e75623866c1fadb1c159c0p
+0L,
153 0x1.251ce4fb2a63f3582ab7de9e9562p
+0L,
154 0x1.26b4565e27cdd257a673281d3068p
+0L,
155 0x1.284dfe1f5638096cf15cf03c9fa0p
+0L,
156 0x1.29e9df51fdee12c25d15f5a25022p
+0L,
157 0x1.2b87fd0dad98ffddea46538fca24p
+0L,
158 0x1.2d285a6e4030b40091d536d0733ep
+0L,
159 0x1.2ecafa93e2f5611ca0f45d5239a4p
+0L,
160 0x1.306fe0a31b7152de8d5a463063bep
+0L,
161 0x1.32170fc4cd8313539cf1c3009330p
+0L,
162 0x1.33c08b26416ff4c9c8610d96680ep
+0L,
163 0x1.356c55f929ff0c94623476373be4p
+0L,
164 0x1.371a7373aa9caa7145502f45452ap
+0L,
165 0x1.38cae6d05d86585a9cb0d9bed530p
+0L,
166 0x1.3a7db34e59ff6ea1bc9299e0a1fep
+0L,
167 0x1.3c32dc313a8e484001f228b58cf0p
+0L,
168 0x1.3dea64c12342235b41223e13d7eep
+0L,
169 0x1.3fa4504ac801ba0bf701aa417b9cp
+0L,
170 0x1.4160a21f72e29f84325b8f3dbacap
+0L,
171 0x1.431f5d950a896dc704439410b628p
+0L,
172 0x1.44e086061892d03136f409df0724p
+0L,
173 0x1.46a41ed1d005772512f459229f0ap
+0L,
174 0x1.486a2b5c13cd013c1a3b69062f26p
+0L,
175 0x1.4a32af0d7d3de672d8bcf46f99b4p
+0L,
176 0x1.4bfdad5362a271d4397afec42e36p
+0L,
177 0x1.4dcb299fddd0d63b36ef1a9e19dep
+0L,
178 0x1.4f9b2769d2ca6ad33d8b69aa0b8cp
+0L,
179 0x1.516daa2cf6641c112f52c84d6066p
+0L,
180 0x1.5342b569d4f81df0a83c49d86bf4p
+0L,
181 0x1.551a4ca5d920ec52ec620243540cp
+0L,
182 0x1.56f4736b527da66ecb004764e61ep
+0L,
183 0x1.58d12d497c7fd252bc2b7343d554p
+0L,
184 0x1.5ab07dd48542958c93015191e9a8p
+0L,
185 0x1.5c9268a5946b701c4b1b81697ed4p
+0L,
186 0x1.5e76f15ad21486e9be4c20399d12p
+0L,
187 0x1.605e1b976dc08b076f592a487066p
+0L,
188 0x1.6247eb03a5584b1f0fa06fd2d9eap
+0L,
189 0x1.6434634ccc31fc76f8714c4ee122p
+0L,
190 0x1.66238825522249127d9e29b92ea2p
+0L,
191 0x1.68155d44ca973081c57227b9f69ep
+0L,
194 static const float eps
[TBLSIZE
] = {
326 * exp2l(x): compute the base 2 exponential of x
328 * Accuracy: Peak error < 0.502 ulp.
330 * Method: (accurate tables)
333 * x = 2**k + y, for integer k and |y| <= 1/2.
334 * Thus we have exp2(x) = 2**k * exp2(y).
337 * y = i/TBLSIZE + z - eps[i] for integer i near y * TBLSIZE.
338 * Thus we have exp2(y) = exp2(i/TBLSIZE) * exp2(z - eps[i]),
339 * with |z - eps[i]| <= 2**-8 + 2**-98 for the table used.
341 * We compute exp2(i/TBLSIZE) via table lookup and exp2(z - eps[i]) via
342 * a degree-10 minimax polynomial with maximum error under 2**-120.
343 * The values in exp2t[] and eps[] are chosen such that
344 * exp2t[i] = exp2(i/TBLSIZE + eps[i]), and eps[i] is a small offset such
345 * that exp2t[i] is accurate to 2**-122.
347 * Note that the range of i is +-TBLSIZE/2, so we actually index the tables
348 * by i0 = i + TBLSIZE/2.
350 * This method is due to Gal, with many details due to Gal and Bachelis:
352 * Gal, S. and Bachelis, B. An Accurate Elementary Mathematical Library
353 * for the IEEE Floating Point Standard. TOMS 17(1), 26-46 (1991).
358 union IEEEl2bits u
, v
;
359 long double r
, t
, twopk
, twopkp10000
, z
;
365 /* Filter out exceptional cases. */
366 hx
= u
.xbits
.expsign
;
368 if (ix
>= BIAS
+ 14) { /* |x| >= 16384 */
369 if (ix
== BIAS
+ LDBL_MAX_EXP
) {
370 if (u
.xbits
.manh
!= 0
372 || (hx
& 0x8000) == 0)
373 return (x
+ x
); /* x is NaN or +Inf */
375 return (0.0); /* x is -Inf */
378 return (huge
* huge
); /* overflow */
380 return (twom10000
* twom10000
); /* underflow */
381 } else if (ix
<= BIAS
- 115) { /* |x| < 0x1p-115 */
386 * Reduce x, computing z, i0, and k. The low bits of x + redux
387 * contain the 16-bit integer part of the exponent (k) followed by
388 * TBLBITS fractional bits (i0). We use bit tricks to extract these
389 * as integers, then set z to the remainder.
391 * Example: Suppose x is 0xabc.123456p0 and TBLBITS is 8.
392 * Then the low-order word of x + redux is 0x000abc12,
393 * We split this into k = 0xabc and i0 = 0x12 (adjusted to
394 * index into the table), then we compute z = 0x0.003456p0.
396 * XXX If the exponent is negative, the computation of k depends on
397 * '>>' doing sign extension.
400 i0
= (u
.bits
.manl
& 0xffffffff) + TBLSIZE
/ 2;
401 k
= (int)i0
>> TBLBITS
;
402 i0
= i0
& (TBLSIZE
- 1);
407 if (k
>= LDBL_MIN_EXP
) {
408 v
.xbits
.expsign
= LDBL_MAX_EXP
- 1 + k
;
411 v
.xbits
.expsign
= LDBL_MAX_EXP
- 1 + k
+ 10000;
415 /* Compute r = exp2(y) = exp2t[i0] * p(z - eps[i]). */
416 t
= tbl
[i0
]; /* exp2t[i0] */
417 z
-= eps
[i0
]; /* eps[i0] */
418 r
= t
+ t
* z
* (P1
+ z
* (P2
+ z
* (P3
+ z
* (P4
+ z
* (P5
+ z
* (P6
419 + z
* (P7
+ z
* (P8
+ z
* (P9
+ z
* P10
)))))))));
422 if(k
>= LDBL_MIN_EXP
) {
423 if (k
== LDBL_MAX_EXP
)
424 return (r
* 2.0 * 0x1p
16383L);
427 return (r
* twopkp10000
* twom10000
);