2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
4 * Copyright (c) 2009-2013 Steven G. Kargl
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 * Optimized by Bruce D. Evans.
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
35 * ld128 version of s_expl.c. See ../ld80/s_expl.c for most comments.
40 #include "../ld/fpmath.h"
42 #include "../ld/math_private.h"
45 /* XXX Prevent compilers from erroneously constant folding these: */
46 static const volatile long double
50 static const long double
51 twom10000
= 0x1p
-10000L;
53 static const long double
54 /* log(2**16384 - 0.5) rounded towards zero: */
55 /* log(2**16384 - 0.5 + 1) rounded towards zero for expm1l() is the same: */
56 o_threshold
= 11356.523406294143949491931077970763428L,
57 /* log(2**(-16381-64-1)) rounded towards zero: */
58 u_threshold
= -11433.462743336297878837243843452621503L;
64 long double hi
, lo
, t
, twopk
;
70 /* Filter out exceptional cases. */
74 if (ix
>= BIAS
+ 13) { /* |x| >= 8192 or x is NaN */
75 if (ix
== BIAS
+ LDBL_MAX_EXP
) {
76 if (hx
& 0x8000) /* x is -Inf or -NaN */
78 RETURNP(x
+ x
); /* x is +Inf or +NaN */
84 } else if (ix
< BIAS
- 114) { /* |x| < 0x1p-114 */
85 RETURN2P(1, x
); /* 1 with inexact iff x != 0 */
91 __k_expl(x
, &hi
, &lo
, &k
);
96 * XXX sparc64 multiplication was so slow that scalbnl() is faster,
97 * but performance on aarch64 and riscv hasn't yet been quantified.
99 if (k
>= LDBL_MIN_EXP
) {
100 if (k
== LDBL_MAX_EXP
)
101 RETURNI(t
* 2 * 0x1p
16383L);
102 SET_LDBL_EXPSIGN(twopk
, BIAS
+ k
);
105 SET_LDBL_EXPSIGN(twopk
, BIAS
+ k
+ 10000);
106 RETURNI(t
* twopk
* twom10000
);
111 * Our T1 and T2 are chosen to be approximately the points where method
112 * A and method B have the same accuracy. Tang's T1 and T2 are the
113 * points where method A's accuracy changes by a full bit. For Tang,
114 * this drop in accuracy makes method A immediately less accurate than
115 * method B, but our larger INTERVALS makes method A 2 bits more
116 * accurate so it remains the most accurate method significantly
117 * closer to the origin despite losing the full bit in our extended
120 * Split the interval [T1, T2] into two intervals [T1, T3] and [T3, T2].
121 * Setting T3 to 0 would require the |x| < 0x1p-113 condition to appear
122 * in both subintervals, so set T3 = 2**-5, which places the condition
123 * into the [T1, T3] interval.
125 * XXX we now do this more to (partially) balance the number of terms
126 * in the C and D polys than to avoid checking the condition in both
129 * XXX these micro-optimizations are excessive.
132 T1
= -0.1659, /* ~-30.625/128 * log(2) */
133 T2
= 0.1659, /* ~30.625/128 * log(2) */
137 * Domain [-0.1659, 0.03125], range ~[2.9134e-44, 1.8404e-37]:
138 * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-122.03
140 * XXX none of the long double C or D coeffs except C10 is correctly printed.
141 * If you re-print their values in %.35Le format, the result is always
142 * different. For example, the last 2 digits in C3 should be 59, not 67.
143 * 67 is apparently from rounding an extra-precision value to 36 decimal
146 static const long double
147 C3
= 1.66666666666666666666666666666666667e-1L,
148 C4
= 4.16666666666666666666666666666666645e-2L,
149 C5
= 8.33333333333333333333333333333371638e-3L,
150 C6
= 1.38888888888888888888888888891188658e-3L,
151 C7
= 1.98412698412698412698412697235950394e-4L,
152 C8
= 2.48015873015873015873015112487849040e-5L,
153 C9
= 2.75573192239858906525606685484412005e-6L,
154 C10
= 2.75573192239858906612966093057020362e-7L,
155 C11
= 2.50521083854417203619031960151253944e-8L,
156 C12
= 2.08767569878679576457272282566520649e-9L,
157 C13
= 1.60590438367252471783548748824255707e-10L;
160 * XXX this has 1 more coeff than needed.
161 * XXX can start the double coeffs but not the double mults at C10.
162 * With my coeffs (C10-C17 double; s = best_s):
163 * Domain [-0.1659, 0.03125], range ~[-1.1976e-37, 1.1976e-37]:
164 * |(exp(x)-1-x-x**2/2)/x - p(x)| ~< 2**-122.65
167 C14
= 1.1470745580491932e-11, /* 0x1.93974a81dae30p-37 */
168 C15
= 7.6471620181090468e-13, /* 0x1.ae7f3820adab1p-41 */
169 C16
= 4.7793721460260450e-14, /* 0x1.ae7cd18a18eacp-45 */
170 C17
= 2.8074757356658877e-15, /* 0x1.949992a1937d9p-49 */
171 C18
= 1.4760610323699476e-16; /* 0x1.545b43aabfbcdp-53 */
174 * Domain [0.03125, 0.1659], range ~[-2.7676e-37, -1.0367e-38]:
175 * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-121.44
177 static const long double
178 D3
= 1.66666666666666666666666666666682245e-1L,
179 D4
= 4.16666666666666666666666666634228324e-2L,
180 D5
= 8.33333333333333333333333364022244481e-3L,
181 D6
= 1.38888888888888888888887138722762072e-3L,
182 D7
= 1.98412698412698412699085805424661471e-4L,
183 D8
= 2.48015873015873015687993712101479612e-5L,
184 D9
= 2.75573192239858944101036288338208042e-6L,
185 D10
= 2.75573192239853161148064676533754048e-7L,
186 D11
= 2.50521083855084570046480450935267433e-8L,
187 D12
= 2.08767569819738524488686318024854942e-9L,
188 D13
= 1.60590442297008495301927448122499313e-10L;
191 * XXX this has 1 more coeff than needed.
192 * XXX can start the double coeffs but not the double mults at D11.
193 * With my coeffs (D11-D16 double):
194 * Domain [0.03125, 0.1659], range ~[-1.1980e-37, 1.1980e-37]:
195 * |(exp(x)-1-x-x**2/2)/x - p(x)| ~< 2**-122.65
198 D14
= 1.1470726176204336e-11, /* 0x1.93971dc395d9ep-37 */
199 D15
= 7.6478532249581686e-13, /* 0x1.ae892e3D16fcep-41 */
200 D16
= 4.7628892832607741e-14, /* 0x1.ad00Dfe41feccp-45 */
201 D17
= 3.0524857220358650e-15; /* 0x1.D7e8d886Df921p-49 */
204 expm1l(long double x
)
206 union IEEEl2bits u
, v
;
207 long double hx2_hi
, hx2_lo
, q
, r
, r1
, t
, twomk
, twopk
, x_hi
;
208 long double x_lo
, x2
;
209 double dr
, dx
, fn
, r2
;
215 /* Filter out exceptional cases. */
217 hx
= u
.xbits
.expsign
;
219 if (ix
>= BIAS
+ 7) { /* |x| >= 128 or x is NaN */
220 if (ix
== BIAS
+ LDBL_MAX_EXP
) {
221 if (hx
& 0x8000) /* x is -Inf or -NaN */
223 RETURNP(x
+ x
); /* x is +Inf or +NaN */
226 RETURNP(huge
* huge
);
228 * expm1l() never underflows, but it must avoid
229 * unrepresentable large negative exponents. We used a
230 * much smaller threshold for large |x| above than in
231 * expl() so as to handle not so large negative exponents
232 * in the same way as large ones here.
234 if (hx
& 0x8000) /* x <= -128 */
235 RETURN2P(tiny
, -1); /* good for x < -114ln2 - eps */
240 if (T1
< x
&& x
< T2
) {
245 if (ix
< BIAS
- 113) { /* |x| < 0x1p-113 */
246 /* x (rounded) with inexact if x != 0: */
247 RETURNPI(x
== 0 ? x
:
248 (0x1p
200 * x
+ fabsl(x
)) * 0x1p
-200);
250 q
= x
* x2
* C3
+ x2
* x2
* (C4
+ x
* (C5
+ x
* (C6
+
251 x
* (C7
+ x
* (C8
+ x
* (C9
+ x
* (C10
+
252 x
* (C11
+ x
* (C12
+ x
* (C13
+
253 dx
* (C14
+ dx
* (C15
+ dx
* (C16
+
254 dx
* (C17
+ dx
* C18
))))))))))))));
256 q
= x
* x2
* D3
+ x2
* x2
* (D4
+ x
* (D5
+ x
* (D6
+
257 x
* (D7
+ x
* (D8
+ x
* (D9
+ x
* (D10
+
258 x
* (D11
+ x
* (D12
+ x
* (D13
+
259 dx
* (D14
+ dx
* (D15
+ dx
* (D16
+
260 dx
* D17
)))))))))))));
265 hx2_hi
= x_hi
* x_hi
/ 2;
266 hx2_lo
= x_lo
* (x
+ x_hi
) / 2;
268 RETURN2PI(hx2_hi
+ x_hi
, hx2_lo
+ x_lo
+ q
);
270 RETURN2PI(x
, hx2_lo
+ q
+ hx2_hi
);
273 /* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
274 fn
= rnint((double)x
* INV_L
);
276 n2
= (unsigned)n
% INTERVALS
;
277 k
= n
>> LOG2_INTERVALS
;
282 /* Prepare scale factor. */
284 v
.xbits
.expsign
= BIAS
+ k
;
288 * Evaluate lower terms of
289 * expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2).
292 q
= r2
+ r
* r
* (A2
+ r
* (A3
+ r
* (A4
+ r
* (A5
+ r
* (A6
+
293 dr
* (A7
+ dr
* (A8
+ dr
* (A9
+ dr
* A10
))))))));
295 t
= tbl
[n2
].lo
+ tbl
[n2
].hi
;
298 t
= SUM2P(tbl
[n2
].hi
- 1, tbl
[n2
].lo
* (r1
+ 1) + t
* q
+
303 t
= SUM2P(tbl
[n2
].hi
- 2, tbl
[n2
].lo
* (r1
+ 1) + t
* q
+
308 t
= SUM2P(tbl
[n2
].hi
, tbl
[n2
].lo
+ t
* (q
+ r1
));
309 RETURNI(t
* twopk
- 1);
311 if (k
> 2 * LDBL_MANT_DIG
- 1) {
312 t
= SUM2P(tbl
[n2
].hi
, tbl
[n2
].lo
+ t
* (q
+ r1
));
313 if (k
== LDBL_MAX_EXP
)
314 RETURNI(t
* 2 * 0x1p
16383L - 1);
315 RETURNI(t
* twopk
- 1);
318 v
.xbits
.expsign
= BIAS
- k
;
321 if (k
> LDBL_MANT_DIG
- 1)
322 t
= SUM2P(tbl
[n2
].hi
, tbl
[n2
].lo
- twomk
+ t
* (q
+ r1
));
324 t
= SUM2P(tbl
[n2
].hi
- twomk
, tbl
[n2
].lo
+ t
* (q
+ r1
));