2 * SPDX-License-Identifier: BSD-3-Clause
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * See bsdsrc/b_log.c for implementation details.
35 * bsdrc/b_log.c converted to long double by Steven G. Kargl.
41 * Coefficients in the polynomial approximation of log(1+f/F).
42 * Domain of x is [0,1./256] with 2**(-84.48) precision.
44 static const union IEEEl2bits
45 a1u
= LD80C(0xaaaaaaaaaaaaaaab, -4, 8.33333333333333333356e-02L),
46 a2u
= LD80C(0xcccccccccccccd29, -7, 1.25000000000000000781e-02L),
47 a3u
= LD80C(0x9249249241ed3764, -9, 2.23214285711721994134e-03L),
48 a4u
= LD80C(0xe38e959e1e7e01cf, -12, 4.34030476540000360640e-04L);
55 * Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
56 * Used for generation of extend precision logarithms.
57 * The constant 35184372088832 is 2^45, so the divide is exact.
58 * It ensures correct reading of logF_head, even for inaccurate
59 * decimal-to-binary conversion routines. (Everybody gets the
60 * right answer for integers less than 2^53.)
61 * Values for log(F) were generated using error < 10^-57 absolute
62 * with the bc -l package.
65 static double logF_head
[N
+1] = {
67 .007782140442060381246,
68 .015504186535963526694,
69 .023167059281547608406,
70 .030771658666765233647,
71 .038318864302141264488,
72 .045809536031242714670,
73 .053244514518837604555,
74 .060624621816486978786,
75 .067950661908525944454,
76 .075223421237524235039,
77 .082443669210988446138,
78 .089612158689760690322,
79 .096729626458454731618,
80 .103796793681567578460,
81 .110814366340264314203,
82 .117783035656430001836,
83 .124703478501032805070,
84 .131576357788617315236,
85 .138402322859292326029,
86 .145182009844575077295,
87 .151916042025732167530,
88 .158605030176659056451,
89 .165249572895390883786,
90 .171850256926518341060,
91 .178407657472689606947,
92 .184922338493834104156,
93 .191394852999565046047,
94 .197825743329758552135,
95 .204215541428766300668,
96 .210564769107350002741,
97 .216873938300523150246,
98 .223143551314024080056,
99 .229374101064877322642,
100 .235566071312860003672,
101 .241719936886966024758,
102 .247836163904594286577,
103 .253915209980732470285,
104 .259957524436686071567,
105 .265963548496984003577,
106 .271933715484010463114,
107 .277868451003087102435,
108 .283768173130738432519,
109 .289633292582948342896,
110 .295464212893421063199,
111 .301261330578199704177,
112 .307025035294827830512,
113 .312755710004239517729,
114 .318453731118097493890,
115 .324119468654316733591,
116 .329753286372579168528,
117 .335355541920762334484,
118 .340926586970454081892,
119 .346466767346100823488,
120 .351976423156884266063,
121 .357455888922231679316,
122 .362905493689140712376,
123 .368325561158599157352,
124 .373716409793814818840,
125 .379078352934811846353,
126 .384411698910298582632,
127 .389716751140440464951,
128 .394993808240542421117,
129 .400243164127459749579,
130 .405465108107819105498,
131 .410659924985338875558,
132 .415827895143593195825,
133 .420969294644237379543,
134 .426084395310681429691,
135 .431173464818130014464,
136 .436236766774527495726,
137 .441274560805140936281,
138 .446287102628048160113,
139 .451274644139630254358,
140 .456237433481874177232,
141 .461175715122408291790,
142 .466089729924533457960,
143 .470979715219073113985,
144 .475845904869856894947,
145 .480688529345570714212,
146 .485507815781602403149,
147 .490303988045525329653,
148 .495077266798034543171,
149 .499827869556611403822,
150 .504556010751912253908,
151 .509261901790523552335,
152 .513945751101346104405,
153 .518607764208354637958,
154 .523248143765158602036,
155 .527867089620485785417,
156 .532464798869114019908,
157 .537041465897345915436,
158 .541597282432121573947,
159 .546132437597407260909,
160 .550647117952394182793,
161 .555141507540611200965,
162 .559615787935399566777,
163 .564070138285387656651,
164 .568504735352689749561,
165 .572919753562018740922,
166 .577315365035246941260,
167 .581691739635061821900,
168 .586049045003164792433,
169 .590387446602107957005,
170 .594707107746216934174,
171 .599008189645246602594,
172 .603290851438941899687,
173 .607555250224322662688,
174 .611801541106615331955,
175 .616029877215623855590,
176 .620240409751204424537,
177 .624433288012369303032,
178 .628608659422752680256,
179 .632766669570628437213,
180 .636907462236194987781,
181 .641031179420679109171,
182 .645137961373620782978,
183 .649227946625615004450,
184 .653301272011958644725,
185 .657358072709030238911,
186 .661398482245203922502,
187 .665422632544505177065,
188 .669430653942981734871,
189 .673422675212350441142,
190 .677398823590920073911,
191 .681359224807238206267,
192 .685304003098281100392,
193 .689233281238557538017,
194 .693147180560117703862
197 static double logF_tail
[N
+1] = {
199 -.00000000000000543229938420049,
200 .00000000000000172745674997061,
201 -.00000000000001323017818229233,
202 -.00000000000001154527628289872,
203 -.00000000000000466529469958300,
204 .00000000000005148849572685810,
205 -.00000000000002532168943117445,
206 -.00000000000005213620639136504,
207 -.00000000000001819506003016881,
208 .00000000000006329065958724544,
209 .00000000000008614512936087814,
210 -.00000000000007355770219435028,
211 .00000000000009638067658552277,
212 .00000000000007598636597194141,
213 .00000000000002579999128306990,
214 -.00000000000004654729747598444,
215 -.00000000000007556920687451336,
216 .00000000000010195735223708472,
217 -.00000000000017319034406422306,
218 -.00000000000007718001336828098,
219 .00000000000010980754099855238,
220 -.00000000000002047235780046195,
221 -.00000000000008372091099235912,
222 .00000000000014088127937111135,
223 .00000000000012869017157588257,
224 .00000000000017788850778198106,
225 .00000000000006440856150696891,
226 .00000000000016132822667240822,
227 -.00000000000007540916511956188,
228 -.00000000000000036507188831790,
229 .00000000000009120937249914984,
230 .00000000000018567570959796010,
231 -.00000000000003149265065191483,
232 -.00000000000009309459495196889,
233 .00000000000017914338601329117,
234 -.00000000000001302979717330866,
235 .00000000000023097385217586939,
236 .00000000000023999540484211737,
237 .00000000000015393776174455408,
238 -.00000000000036870428315837678,
239 .00000000000036920375082080089,
240 -.00000000000009383417223663699,
241 .00000000000009433398189512690,
242 .00000000000041481318704258568,
243 -.00000000000003792316480209314,
244 .00000000000008403156304792424,
245 -.00000000000034262934348285429,
246 .00000000000043712191957429145,
247 -.00000000000010475750058776541,
248 -.00000000000011118671389559323,
249 .00000000000037549577257259853,
250 .00000000000013912841212197565,
251 .00000000000010775743037572640,
252 .00000000000029391859187648000,
253 -.00000000000042790509060060774,
254 .00000000000022774076114039555,
255 .00000000000010849569622967912,
256 -.00000000000023073801945705758,
257 .00000000000015761203773969435,
258 .00000000000003345710269544082,
259 -.00000000000041525158063436123,
260 .00000000000032655698896907146,
261 -.00000000000044704265010452446,
262 .00000000000034527647952039772,
263 -.00000000000007048962392109746,
264 .00000000000011776978751369214,
265 -.00000000000010774341461609578,
266 .00000000000021863343293215910,
267 .00000000000024132639491333131,
268 .00000000000039057462209830700,
269 -.00000000000026570679203560751,
270 .00000000000037135141919592021,
271 -.00000000000017166921336082431,
272 -.00000000000028658285157914353,
273 -.00000000000023812542263446809,
274 .00000000000006576659768580062,
275 -.00000000000028210143846181267,
276 .00000000000010701931762114254,
277 .00000000000018119346366441110,
278 .00000000000009840465278232627,
279 -.00000000000033149150282752542,
280 -.00000000000018302857356041668,
281 -.00000000000016207400156744949,
282 .00000000000048303314949553201,
283 -.00000000000071560553172382115,
284 .00000000000088821239518571855,
285 -.00000000000030900580513238244,
286 -.00000000000061076551972851496,
287 .00000000000035659969663347830,
288 .00000000000035782396591276383,
289 -.00000000000046226087001544578,
290 .00000000000062279762917225156,
291 .00000000000072838947272065741,
292 .00000000000026809646615211673,
293 -.00000000000010960825046059278,
294 .00000000000002311949383800537,
295 -.00000000000058469058005299247,
296 -.00000000000002103748251144494,
297 -.00000000000023323182945587408,
298 -.00000000000042333694288141916,
299 -.00000000000043933937969737844,
300 .00000000000041341647073835565,
301 .00000000000006841763641591466,
302 .00000000000047585534004430641,
303 .00000000000083679678674757695,
304 -.00000000000085763734646658640,
305 .00000000000021913281229340092,
306 -.00000000000062242842536431148,
307 -.00000000000010983594325438430,
308 .00000000000065310431377633651,
309 -.00000000000047580199021710769,
310 -.00000000000037854251265457040,
311 .00000000000040939233218678664,
312 .00000000000087424383914858291,
313 .00000000000025218188456842882,
314 -.00000000000003608131360422557,
315 -.00000000000050518555924280902,
316 .00000000000078699403323355317,
317 -.00000000000067020876961949060,
318 .00000000000016108575753932458,
319 .00000000000058527188436251509,
320 -.00000000000035246757297904791,
321 -.00000000000018372084495629058,
322 .00000000000088606689813494916,
323 .00000000000066486268071468700,
324 .00000000000063831615170646519,
325 .00000000000025144230728376072,
326 -.00000000000017239444525614834
329 * Extra precision variant, returning struct {double a, b;};
330 * log(x) = a + b to 63 bits, with 'a' rounded to 24 bits.
333 __log__D(long double x
)
336 long double F
, f
, g
, q
, u
, v
, u1
, u2
;
340 * Argument reduction: 1 <= g < 2; x/2^m = g;
341 * y = F*(1 + f/F) for |f| <= 2^-8
346 if (m
== DBL_MIN_EXP
- 1) {
351 j
= N
* (g
- 1) + 0.5L;
352 F
= (1.L
/ N
) * j
+ 1;
358 q
= u
* v
* (A1
+ v
* (A2
+ v
* (A3
+ v
* A4
)));
365 u2
= (2 * (f
- F
* u1
) - u1
* f
) * g
;
367 u1
+= m
* (long double)logF_head
[N
] + logF_head
[j
];
371 u2
+= logF_tail
[N
] * m
;
372 r
.a
= (float)(u1
+ u2
); /* Only difference is here. */
373 r
.b
= (u1
- r
.a
) + u2
;