2 * SPDX-License-Identifier: BSD-3-Clause
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * The original code, FreeBSD's old svn r93211, contain the following
36 * This code by P. McIlroy, Oct 1992;
38 * The financial support of UUNET Communications Services is greatfully
41 * bsdrc/b_tgamma.c converted to long double by Steven G. Kargl.
45 * See bsdsrc/t_tgamma.c for implementation details.
50 #if LDBL_MAX_EXP != 0x4000
51 #error "Unsupported long double format"
58 #include "../ld/fpmath.h"
60 #include "../ld/math_private.h"
62 long double sinpil(long double x
);
63 long double cospil(long double x
);
65 /* Used in b_log.c and below. */
74 static const double zero
= 0.;
75 static const volatile double tiny
= 1e-300;
79 * Use the asymptotic approximation (Stirling's formula) adjusted for
82 * log(G(x)) ~= (x-0.5)*(log(x)-1) + 0.5(log(2*pi)-1) + 1/x*P(1/(x*x))
84 * Keep extra precision in multiplying (x-.5)(log(x)-1), to avoid
85 * premature round-off.
87 * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
91 * The following is a decomposition of 0.5 * (log(2*pi) - 1) into the
92 * first 12 bits in ln2pi_hi and the trailing 64 bits in ln2pi_lo. The
93 * variables are clearly misnamed.
95 static const union IEEEl2bits
96 ln2pi_hiu
= LD80C(0xd680000000000000, -2, 4.18945312500000000000e-01L),
97 ln2pi_lou
= LD80C(0xe379b414b596d687, -18, -6.77929532725821967032e-06L);
98 #define ln2pi_hi (ln2pi_hiu.e)
99 #define ln2pi_lo (ln2pi_lou.e)
101 static const union IEEEl2bits
102 Pa0u
= LD80C(0xaaaaaaaaaaaaaaaa, -4, 8.33333333333333333288e-02L),
103 Pa1u
= LD80C(0xb60b60b60b5fcd59, -9, -2.77777777777776516326e-03L),
104 Pa2u
= LD80C(0xd00d00cffbb47014, -11, 7.93650793635429639018e-04L),
105 Pa3u
= LD80C(0x9c09c07c0805343e, -11, -5.95238087960599252215e-04L),
106 Pa4u
= LD80C(0xdca8d31f8e6e5e8f, -11, 8.41749082509607342883e-04L),
107 Pa5u
= LD80C(0xfb4d4289632f1638, -10, -1.91728055205541624556e-03L),
108 Pa6u
= LD80C(0xd15a4ba04078d3f8, -8, 6.38893788027752396194e-03L),
109 Pa7u
= LD80C(0xe877283110bcad95, -6, -2.83771309846297590312e-02L),
110 Pa8u
= LD80C(0x8da97eed13717af8, -3, 1.38341887683837576925e-01L),
111 Pa9u
= LD80C(0xf093b1c1584e30ce, -2, -4.69876818515470146031e-01L);
124 large_gam(long double x
)
126 long double p
, z
, thi
, tlo
, xhi
, xlo
;
131 p
= Pa0
+ z
* (Pa1
+ z
* (Pa2
+ z
* (Pa3
+ z
* (Pa4
+ z
* (Pa5
+
132 z
* (Pa6
+ z
* (Pa7
+ z
* (Pa8
+ z
* Pa9
))))))));
138 /* Split (x - 0.5) in high and low parts. */
143 /* Compute t = (x-.5)*(log(x)-1) in extra precision. */
145 tlo
= xlo
* u
.a
+ x
* u
.b
;
147 /* Compute thi + tlo + ln2pi_hi + ln2pi_lo + p. */
150 u
.a
= ln2pi_hi
+ tlo
;
158 * Rational approximation, A0 + x * x * P(x) / Q(x), on the interval
159 * [1.066.., 2.066..] accurate to 4.25e-19.
161 * Returns r.a + r.b = a0 + (z + c)^2 * p / q, with r.a truncated.
163 static const union IEEEl2bits
164 a0_hiu
= LD80C(0xe2b6e4153a57746c, -1, 8.85603194410888700265e-01L),
165 a0_lou
= LD80C(0x851566d40f32c76d, -66, 1.40907742727049706207e-20L);
166 #define a0_hi (a0_hiu.e)
167 #define a0_lo (a0_lou.e)
169 static const union IEEEl2bits
170 P0u
= LD80C(0xdb629fb9bbdc1c1d, -2, 4.28486815855585429733e-01L),
171 P1u
= LD80C(0xe6f4f9f5641aa6be, -3, 2.25543885805587730552e-01L),
172 P2u
= LD80C(0xead1bd99fdaf7cc1, -6, 2.86644652514293482381e-02L),
173 P3u
= LD80C(0x9ccc8b25838ab1e0, -8, 4.78512567772456362048e-03L),
174 P4u
= LD80C(0x8f0c4383ef9ce72a, -9, 2.18273781132301146458e-03L),
175 P5u
= LD80C(0xe732ab2c0a2778da, -13, 2.20487522485636008928e-04L),
176 P6u
= LD80C(0xce70b27ca822b297, -16, 2.46095923774929264284e-05L),
177 P7u
= LD80C(0xa309e2e16fb63663, -19, 2.42946473022376182921e-06L),
178 P8u
= LD80C(0xaf9c110efb2c633d, -23, 1.63549217667765869987e-07L),
179 Q1u
= LD80C(0xd4d7422719f48f15, -1, 8.31409582658993993626e-01L),
180 Q2u
= LD80C(0xe13138ea404f1268, -5, -5.49785826915643198508e-02L),
181 Q3u
= LD80C(0xd1c6cc91989352c0, -4, -1.02429960435139887683e-01L),
182 Q4u
= LD80C(0xa7e9435a84445579, -7, 1.02484853505908820524e-02L),
183 Q5u
= LD80C(0x83c7c34db89b7bda, -8, 4.02161632832052872697e-03L),
184 Q6u
= LD80C(0xbed06bf6e1c14e5b, -11, -7.27898206351223022157e-04L),
185 Q7u
= LD80C(0xef05bf841d4504c0, -18, 7.12342421869453515194e-06L),
186 Q8u
= LD80C(0xf348d08a1ff53cb1, -19, 3.62522053809474067060e-06L);
206 ratfun_gam(long double z
, long double c
)
208 long double p
, q
, thi
, tlo
;
211 q
= 1 + z
* (Q1
+ z
* (Q2
+ z
* (Q3
+ z
* (Q4
+ z
* (Q5
+
212 z
* (Q6
+ z
* (Q7
+ z
* Q8
)))))));
213 p
= P0
+ z
* (P1
+ z
* (P2
+ z
* (P3
+ z
* (P4
+ z
* (P5
+
214 z
* (P6
+ z
* (P7
+ z
* P8
)))))));
217 /* Split z into high and low parts. */
222 /* Split (z+c)^2 into high and low parts. */
228 /* Split p/q into high and low parts. */
232 tlo
= tlo
* p
+ thi
* r
.b
+ a0_lo
;
233 thi
*= r
.a
; /* t = (z+c)^2*(P/Q) */
234 r
.a
= (float)(thi
+ a0_hi
);
235 r
.b
= ((a0_hi
- r
.a
) + thi
) + tlo
;
236 return (r
); /* r = a0 + t */
241 * Use argument reduction G(x+1) = xG(x) to reach the range [1.066124,
242 * 2.066124]. Use a rational approximation centered at the minimum
243 * (x0+1) to ensure monotonicity.
245 * Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.)
246 * It also has correct monotonicity.
248 static const union IEEEl2bits
249 xm1u
= LD80C(0xec5b0c6ad7c7edc3, -2, 4.61632144968362341254e-01L);
253 left
= -0.3955078125; /* left boundary for rat. approx */
256 small_gam(long double x
)
258 long double t
, y
, ym1
;
263 if (y
<= 1 + (left
+ x0
)) {
264 yy
= ratfun_gam(y
- x0
, 0);
265 return (yy
.a
+ yy
.b
);
271 r
.b
= yy
.b
= y
- yy
.a
;
273 /* Argument reduction: G(x+1) = x*G(x) */
274 for (ym1
= y
- 1; ym1
> left
+ x0
; y
= ym1
--, yy
.a
--) {
276 r
.b
= r
.a
* yy
.b
+ y
* r
.b
;
281 /* Return r*tgamma(y). */
282 yy
= ratfun_gam(y
- x0
, 0);
283 y
= r
.b
* (yy
.a
+ yy
.b
) + r
.a
* yy
.b
;
288 * Good on (0, 1+x0+left]. Accurate to 1 ulp.
291 smaller_gam(long double x
)
293 long double d
, rhi
, rlo
, t
, xhi
, xlo
;
298 d
= (t
+ x
) * (x
- t
);
300 xhi
= (float)(t
+ x
);
318 r
= ratfun_gam(t
, d
);
319 d
= (float)(r
.a
/ x
);
324 return (d
+ r
.a
/ x
);
329 * Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x)).
330 * At negative integers, return NaN and raise invalid.
332 static const union IEEEl2bits
333 piu
= LD80C(0xc90fdaa22168c235, 1, 3.14159265358979323851e+00L);
337 neg_gam(long double x
)
340 struct Double lg
, lsine
;
344 if (y
== x
) /* Negative integer. */
345 return ((x
- x
) / zero
);
360 /* Special case: G(1-x) = Inf; G(x) may be nonzero. */
364 return (sgn
* tiny
* tiny
);
365 y
= expl(lgammal(x
) / 2);
367 return (sgn
< 0 ? -y
: y
);
374 else /* 1-x is inexact */
375 y
= - x
* tgammal(-x
);
378 return (pi
/ (y
* z
));
381 * xmax comes from lgamma(xmax) - emax * log(2) = 0.
382 * static const float xmax = 35.040095f
383 * static const double xmax = 171.624376956302725;
384 * ld80: LD80C(0xdb718c066b352e20, 10, 1.75554834290446291689e+03L),
385 * ld128: 1.75554834290446291700388921607020320e+03L,
387 * iota is a sloppy threshold to isolate x = 0.
389 static const double xmax
= 1755.54834290446291689;
390 static const double iota
= 0x1p
-116;
393 tgammal(long double x
)
403 RETURNI(__exp__D(u
.a
, u
.b
));
406 if (x
>= 1 + left
+ x0
)
407 RETURNI(small_gam(x
));
410 RETURNI(smaller_gam(x
));
414 u
.a
= 1 - tiny
; /* raise inexact */
419 RETURNI(x
- x
); /* x is NaN or -Inf */