Cygwin: mmap: allow remapping part of an existing anonymous mapping
[newlib-cygwin.git] / newlib / libm / ld80 / b_tgammal.c
blobefc0e24345d18c630cab30b4da3d18f02cda2651
1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
33 * The original code, FreeBSD's old svn r93211, contain the following
34 * attribution:
36 * This code by P. McIlroy, Oct 1992;
38 * The financial support of UUNET Communications Services is greatfully
39 * acknowledged.
41 * bsdrc/b_tgamma.c converted to long double by Steven G. Kargl.
45 * See bsdsrc/t_tgamma.c for implementation details.
48 #include <float.h>
50 #if LDBL_MAX_EXP != 0x4000
51 #error "Unsupported long double format"
52 #endif
54 #ifdef __i386__
55 #include <ieeefp.h>
56 #endif
58 #include "../ld/fpmath.h"
59 #include "math.h"
60 #include "../ld/math_private.h"
62 long double sinpil(long double x);
63 long double cospil(long double x);
65 /* Used in b_log.c and below. */
66 struct Double {
67 long double a;
68 long double b;
71 #include "b_logl.c"
72 #include "b_expl.c"
74 static const double zero = 0.;
75 static const volatile double tiny = 1e-300;
77 * x >= 6
79 * Use the asymptotic approximation (Stirling's formula) adjusted for
80 * equal-ripples:
82 * log(G(x)) ~= (x-0.5)*(log(x)-1) + 0.5(log(2*pi)-1) + 1/x*P(1/(x*x))
84 * Keep extra precision in multiplying (x-.5)(log(x)-1), to avoid
85 * premature round-off.
87 * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
91 * The following is a decomposition of 0.5 * (log(2*pi) - 1) into the
92 * first 12 bits in ln2pi_hi and the trailing 64 bits in ln2pi_lo. The
93 * variables are clearly misnamed.
95 static const union IEEEl2bits
96 ln2pi_hiu = LD80C(0xd680000000000000, -2, 4.18945312500000000000e-01L),
97 ln2pi_lou = LD80C(0xe379b414b596d687, -18, -6.77929532725821967032e-06L);
98 #define ln2pi_hi (ln2pi_hiu.e)
99 #define ln2pi_lo (ln2pi_lou.e)
101 static const union IEEEl2bits
102 Pa0u = LD80C(0xaaaaaaaaaaaaaaaa, -4, 8.33333333333333333288e-02L),
103 Pa1u = LD80C(0xb60b60b60b5fcd59, -9, -2.77777777777776516326e-03L),
104 Pa2u = LD80C(0xd00d00cffbb47014, -11, 7.93650793635429639018e-04L),
105 Pa3u = LD80C(0x9c09c07c0805343e, -11, -5.95238087960599252215e-04L),
106 Pa4u = LD80C(0xdca8d31f8e6e5e8f, -11, 8.41749082509607342883e-04L),
107 Pa5u = LD80C(0xfb4d4289632f1638, -10, -1.91728055205541624556e-03L),
108 Pa6u = LD80C(0xd15a4ba04078d3f8, -8, 6.38893788027752396194e-03L),
109 Pa7u = LD80C(0xe877283110bcad95, -6, -2.83771309846297590312e-02L),
110 Pa8u = LD80C(0x8da97eed13717af8, -3, 1.38341887683837576925e-01L),
111 Pa9u = LD80C(0xf093b1c1584e30ce, -2, -4.69876818515470146031e-01L);
112 #define Pa0 (Pa0u.e)
113 #define Pa1 (Pa1u.e)
114 #define Pa2 (Pa2u.e)
115 #define Pa3 (Pa3u.e)
116 #define Pa4 (Pa4u.e)
117 #define Pa5 (Pa5u.e)
118 #define Pa6 (Pa6u.e)
119 #define Pa7 (Pa7u.e)
120 #define Pa8 (Pa8u.e)
121 #define Pa9 (Pa9u.e)
123 static struct Double
124 large_gam(long double x)
126 long double p, z, thi, tlo, xhi, xlo;
127 long double logx;
128 struct Double u;
130 z = 1 / (x * x);
131 p = Pa0 + z * (Pa1 + z * (Pa2 + z * (Pa3 + z * (Pa4 + z * (Pa5 +
132 z * (Pa6 + z * (Pa7 + z * (Pa8 + z * Pa9))))))));
133 p = p / x;
135 u = __log__D(x);
136 u.a -= 1;
138 /* Split (x - 0.5) in high and low parts. */
139 x -= 0.5L;
140 xhi = (float)x;
141 xlo = x - xhi;
143 /* Compute t = (x-.5)*(log(x)-1) in extra precision. */
144 thi = xhi * u.a;
145 tlo = xlo * u.a + x * u.b;
147 /* Compute thi + tlo + ln2pi_hi + ln2pi_lo + p. */
148 tlo += ln2pi_lo;
149 tlo += p;
150 u.a = ln2pi_hi + tlo;
151 u.a += thi;
152 u.b = thi - u.a;
153 u.b += ln2pi_hi;
154 u.b += tlo;
155 return (u);
158 * Rational approximation, A0 + x * x * P(x) / Q(x), on the interval
159 * [1.066.., 2.066..] accurate to 4.25e-19.
161 * Returns r.a + r.b = a0 + (z + c)^2 * p / q, with r.a truncated.
163 static const union IEEEl2bits
164 a0_hiu = LD80C(0xe2b6e4153a57746c, -1, 8.85603194410888700265e-01L),
165 a0_lou = LD80C(0x851566d40f32c76d, -66, 1.40907742727049706207e-20L);
166 #define a0_hi (a0_hiu.e)
167 #define a0_lo (a0_lou.e)
169 static const union IEEEl2bits
170 P0u = LD80C(0xdb629fb9bbdc1c1d, -2, 4.28486815855585429733e-01L),
171 P1u = LD80C(0xe6f4f9f5641aa6be, -3, 2.25543885805587730552e-01L),
172 P2u = LD80C(0xead1bd99fdaf7cc1, -6, 2.86644652514293482381e-02L),
173 P3u = LD80C(0x9ccc8b25838ab1e0, -8, 4.78512567772456362048e-03L),
174 P4u = LD80C(0x8f0c4383ef9ce72a, -9, 2.18273781132301146458e-03L),
175 P5u = LD80C(0xe732ab2c0a2778da, -13, 2.20487522485636008928e-04L),
176 P6u = LD80C(0xce70b27ca822b297, -16, 2.46095923774929264284e-05L),
177 P7u = LD80C(0xa309e2e16fb63663, -19, 2.42946473022376182921e-06L),
178 P8u = LD80C(0xaf9c110efb2c633d, -23, 1.63549217667765869987e-07L),
179 Q1u = LD80C(0xd4d7422719f48f15, -1, 8.31409582658993993626e-01L),
180 Q2u = LD80C(0xe13138ea404f1268, -5, -5.49785826915643198508e-02L),
181 Q3u = LD80C(0xd1c6cc91989352c0, -4, -1.02429960435139887683e-01L),
182 Q4u = LD80C(0xa7e9435a84445579, -7, 1.02484853505908820524e-02L),
183 Q5u = LD80C(0x83c7c34db89b7bda, -8, 4.02161632832052872697e-03L),
184 Q6u = LD80C(0xbed06bf6e1c14e5b, -11, -7.27898206351223022157e-04L),
185 Q7u = LD80C(0xef05bf841d4504c0, -18, 7.12342421869453515194e-06L),
186 Q8u = LD80C(0xf348d08a1ff53cb1, -19, 3.62522053809474067060e-06L);
187 #define P0 (P0u.e)
188 #define P1 (P1u.e)
189 #define P2 (P2u.e)
190 #define P3 (P3u.e)
191 #define P4 (P4u.e)
192 #define P5 (P5u.e)
193 #define P6 (P6u.e)
194 #define P7 (P7u.e)
195 #define P8 (P8u.e)
196 #define Q1 (Q1u.e)
197 #define Q2 (Q2u.e)
198 #define Q3 (Q3u.e)
199 #define Q4 (Q4u.e)
200 #define Q5 (Q5u.e)
201 #define Q6 (Q6u.e)
202 #define Q7 (Q7u.e)
203 #define Q8 (Q8u.e)
205 static struct Double
206 ratfun_gam(long double z, long double c)
208 long double p, q, thi, tlo;
209 struct Double r;
211 q = 1 + z * (Q1 + z * (Q2 + z * (Q3 + z * (Q4 + z * (Q5 +
212 z * (Q6 + z * (Q7 + z * Q8)))))));
213 p = P0 + z * (P1 + z * (P2 + z * (P3 + z * (P4 + z * (P5 +
214 z * (P6 + z * (P7 + z * P8)))))));
215 p = p / q;
217 /* Split z into high and low parts. */
218 thi = (float)z;
219 tlo = (z - thi) + c;
220 tlo *= (thi + z);
222 /* Split (z+c)^2 into high and low parts. */
223 thi *= thi;
224 q = thi;
225 thi = (float)thi;
226 tlo += (q - thi);
228 /* Split p/q into high and low parts. */
229 r.a = (float)p;
230 r.b = p - r.a;
232 tlo = tlo * p + thi * r.b + a0_lo;
233 thi *= r.a; /* t = (z+c)^2*(P/Q) */
234 r.a = (float)(thi + a0_hi);
235 r.b = ((a0_hi - r.a) + thi) + tlo;
236 return (r); /* r = a0 + t */
239 * x < 6
241 * Use argument reduction G(x+1) = xG(x) to reach the range [1.066124,
242 * 2.066124]. Use a rational approximation centered at the minimum
243 * (x0+1) to ensure monotonicity.
245 * Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.)
246 * It also has correct monotonicity.
248 static const union IEEEl2bits
249 xm1u = LD80C(0xec5b0c6ad7c7edc3, -2, 4.61632144968362341254e-01L);
250 #define x0 (xm1u.e)
252 static const double
253 left = -0.3955078125; /* left boundary for rat. approx */
255 static long double
256 small_gam(long double x)
258 long double t, y, ym1;
259 struct Double yy, r;
261 y = x - 1;
263 if (y <= 1 + (left + x0)) {
264 yy = ratfun_gam(y - x0, 0);
265 return (yy.a + yy.b);
268 r.a = (float)y;
269 yy.a = r.a - 1;
270 y = y - 1 ;
271 r.b = yy.b = y - yy.a;
273 /* Argument reduction: G(x+1) = x*G(x) */
274 for (ym1 = y - 1; ym1 > left + x0; y = ym1--, yy.a--) {
275 t = r.a * yy.a;
276 r.b = r.a * yy.b + y * r.b;
277 r.a = (float)t;
278 r.b += (t - r.a);
281 /* Return r*tgamma(y). */
282 yy = ratfun_gam(y - x0, 0);
283 y = r.b * (yy.a + yy.b) + r.a * yy.b;
284 y += yy.a * r.a;
285 return (y);
288 * Good on (0, 1+x0+left]. Accurate to 1 ulp.
290 static long double
291 smaller_gam(long double x)
293 long double d, rhi, rlo, t, xhi, xlo;
294 struct Double r;
296 if (x < x0 + left) {
297 t = (float)x;
298 d = (t + x) * (x - t);
299 t *= t;
300 xhi = (float)(t + x);
301 xlo = x - xhi;
302 xlo += t;
303 xlo += d;
304 t = 1 - x0;
305 t += x;
306 d = 1 - x0;
307 d -= t;
308 d += x;
309 x = xhi + xlo;
310 } else {
311 xhi = (float)x;
312 xlo = x - xhi;
313 t = x - x0;
314 d = - x0 - t;
315 d += x;
318 r = ratfun_gam(t, d);
319 d = (float)(r.a / x);
320 r.a -= d * xhi;
321 r.a -= d * xlo;
322 r.a += r.b;
324 return (d + r.a / x);
327 * x < 0
329 * Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x)).
330 * At negative integers, return NaN and raise invalid.
332 static const union IEEEl2bits
333 piu = LD80C(0xc90fdaa22168c235, 1, 3.14159265358979323851e+00L);
334 #define pi (piu.e)
336 static long double
337 neg_gam(long double x)
339 int sgn = 1;
340 struct Double lg, lsine;
341 long double y, z;
343 y = ceill(x);
344 if (y == x) /* Negative integer. */
345 return ((x - x) / zero);
347 z = y - x;
348 if (z > 0.5)
349 z = 1 - z;
351 y = y / 2;
352 if (y == ceill(y))
353 sgn = -1;
355 if (z < 0.25)
356 z = sinpil(z);
357 else
358 z = cospil(0.5 - z);
360 /* Special case: G(1-x) = Inf; G(x) may be nonzero. */
361 if (x < -1753) {
363 if (x < -1760)
364 return (sgn * tiny * tiny);
365 y = expl(lgammal(x) / 2);
366 y *= y;
367 return (sgn < 0 ? -y : y);
371 y = 1 - x;
372 if (1 - y == x)
373 y = tgammal(y);
374 else /* 1-x is inexact */
375 y = - x * tgammal(-x);
377 if (sgn < 0) y = -y;
378 return (pi / (y * z));
381 * xmax comes from lgamma(xmax) - emax * log(2) = 0.
382 * static const float xmax = 35.040095f
383 * static const double xmax = 171.624376956302725;
384 * ld80: LD80C(0xdb718c066b352e20, 10, 1.75554834290446291689e+03L),
385 * ld128: 1.75554834290446291700388921607020320e+03L,
387 * iota is a sloppy threshold to isolate x = 0.
389 static const double xmax = 1755.54834290446291689;
390 static const double iota = 0x1p-116;
392 long double
393 tgammal(long double x)
395 struct Double u;
397 ENTERI();
399 if (x >= 6) {
400 if (x > xmax)
401 RETURNI(x / zero);
402 u = large_gam(x);
403 RETURNI(__exp__D(u.a, u.b));
406 if (x >= 1 + left + x0)
407 RETURNI(small_gam(x));
409 if (x > iota)
410 RETURNI(smaller_gam(x));
412 if (x > -iota) {
413 if (x != 0)
414 u.a = 1 - tiny; /* raise inexact */
415 RETURNI(1 / x);
418 if (!isfinite(x))
419 RETURNI(x - x); /* x is NaN or -Inf */
421 RETURNI(neg_gam(x));