Cygwin: mmap: use 64K pages for bookkeeping, second attempt
[newlib-cygwin.git] / newlib / libm / ld80 / e_powl.c
blob6c11c73d0f0673987693c613e8d2ed1ea0fe0cc5
1 /*-
2 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
4 * Permission to use, copy, modify, and distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <sys/cdefs.h>
18 __FBSDID("$FreeBSD$");
20 #include <math.h>
22 #include "../ld/math_private.h"
25 * Polynomial evaluator:
26 * P[0] x^n + P[1] x^(n-1) + ... + P[n]
28 static inline long double
29 __polevll(long double x, long double *PP, int n)
31 long double y;
32 long double *P;
34 P = PP;
35 y = *P++;
36 do {
37 y = y * x + *P++;
38 } while (--n);
40 return (y);
44 * Polynomial evaluator:
45 * x^n + P[0] x^(n-1) + P[1] x^(n-2) + ... + P[n]
47 static inline long double
48 __p1evll(long double x, long double *PP, int n)
50 long double y;
51 long double *P;
53 P = PP;
54 n -= 1;
55 y = x + *P++;
56 do {
57 y = y * x + *P++;
58 } while (--n);
60 return (y);
63 /* powl.c
65 * Power function, long double precision
69 * SYNOPSIS:
71 * long double x, y, z, powl();
73 * z = powl( x, y );
77 * DESCRIPTION:
79 * Computes x raised to the yth power. Analytically,
81 * x**y = exp( y log(x) ).
83 * Following Cody and Waite, this program uses a lookup table
84 * of 2**-i/32 and pseudo extended precision arithmetic to
85 * obtain several extra bits of accuracy in both the logarithm
86 * and the exponential.
90 * ACCURACY:
92 * The relative error of pow(x,y) can be estimated
93 * by y dl ln(2), where dl is the absolute error of
94 * the internally computed base 2 logarithm. At the ends
95 * of the approximation interval the logarithm equal 1/32
96 * and its relative error is about 1 lsb = 1.1e-19. Hence
97 * the predicted relative error in the result is 2.3e-21 y .
99 * Relative error:
100 * arithmetic domain # trials peak rms
102 * IEEE +-1000 40000 2.8e-18 3.7e-19
103 * .001 < x < 1000, with log(x) uniformly distributed.
104 * -1000 < y < 1000, y uniformly distributed.
106 * IEEE 0,8700 60000 6.5e-18 1.0e-18
107 * 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed.
110 * ERROR MESSAGES:
112 * message condition value returned
113 * pow overflow x**y > MAXNUM INFINITY
114 * pow underflow x**y < 1/MAXNUM 0.0
115 * pow domain x<0 and y noninteger 0.0
119 #include <sys/cdefs.h>
120 __FBSDID("$FreeBSD$");
122 #include <float.h>
123 #include <math.h>
125 #include "../ld/math_private.h"
127 /* Table size */
128 #define NXT 32
129 /* log2(Table size) */
130 #define LNXT 5
132 /* log(1+x) = x - .5x^2 + x^3 * P(z)/Q(z)
133 * on the domain 2^(-1/32) - 1 <= x <= 2^(1/32) - 1
135 static long double P[] = {
136 8.3319510773868690346226E-4L,
137 4.9000050881978028599627E-1L,
138 1.7500123722550302671919E0L,
139 1.4000100839971580279335E0L,
141 static long double Q[] = {
142 /* 1.0000000000000000000000E0L,*/
143 5.2500282295834889175431E0L,
144 8.4000598057587009834666E0L,
145 4.2000302519914740834728E0L,
147 /* A[i] = 2^(-i/32), rounded to IEEE long double precision.
148 * If i is even, A[i] + B[i/2] gives additional accuracy.
150 static long double A[33] = {
151 1.0000000000000000000000E0L,
152 9.7857206208770013448287E-1L,
153 9.5760328069857364691013E-1L,
154 9.3708381705514995065011E-1L,
155 9.1700404320467123175367E-1L,
156 8.9735453750155359320742E-1L,
157 8.7812608018664974155474E-1L,
158 8.5930964906123895780165E-1L,
159 8.4089641525371454301892E-1L,
160 8.2287773907698242225554E-1L,
161 8.0524516597462715409607E-1L,
162 7.8799042255394324325455E-1L,
163 7.7110541270397041179298E-1L,
164 7.5458221379671136985669E-1L,
165 7.3841307296974965571198E-1L,
166 7.2259040348852331001267E-1L,
167 7.0710678118654752438189E-1L,
168 6.9195494098191597746178E-1L,
169 6.7712777346844636413344E-1L,
170 6.6261832157987064729696E-1L,
171 6.4841977732550483296079E-1L,
172 6.3452547859586661129850E-1L,
173 6.2092890603674202431705E-1L,
174 6.0762367999023443907803E-1L,
175 5.9460355750136053334378E-1L,
176 5.8186242938878875689693E-1L,
177 5.6939431737834582684856E-1L,
178 5.5719337129794626814472E-1L,
179 5.4525386633262882960438E-1L,
180 5.3357020033841180906486E-1L,
181 5.2213689121370692017331E-1L,
182 5.1094857432705833910408E-1L,
183 5.0000000000000000000000E-1L,
185 static long double B[17] = {
186 0.0000000000000000000000E0L,
187 2.6176170809902549338711E-20L,
188 -1.0126791927256478897086E-20L,
189 1.3438228172316276937655E-21L,
190 1.2207982955417546912101E-20L,
191 -6.3084814358060867200133E-21L,
192 1.3164426894366316434230E-20L,
193 -1.8527916071632873716786E-20L,
194 1.8950325588932570796551E-20L,
195 1.5564775779538780478155E-20L,
196 6.0859793637556860974380E-21L,
197 -2.0208749253662532228949E-20L,
198 1.4966292219224761844552E-20L,
199 3.3540909728056476875639E-21L,
200 -8.6987564101742849540743E-22L,
201 -1.2327176863327626135542E-20L,
202 0.0000000000000000000000E0L,
205 /* 2^x = 1 + x P(x),
206 * on the interval -1/32 <= x <= 0
208 static long double R[] = {
209 1.5089970579127659901157E-5L,
210 1.5402715328927013076125E-4L,
211 1.3333556028915671091390E-3L,
212 9.6181291046036762031786E-3L,
213 5.5504108664798463044015E-2L,
214 2.4022650695910062854352E-1L,
215 6.9314718055994530931447E-1L,
218 #define douba(k) A[k]
219 #define doubb(k) B[k]
220 #define MEXP (NXT*16384.0L)
221 /* The following if denormal numbers are supported, else -MEXP: */
222 #define MNEXP (-NXT*(16384.0L+64.0L))
223 /* log2(e) - 1 */
224 #define LOG2EA 0.44269504088896340735992L
226 #define F W
227 #define Fa Wa
228 #define Fb Wb
229 #define G W
230 #define Ga Wa
231 #define Gb u
232 #define H W
233 #define Ha Wb
234 #define Hb Wb
236 static const long double MAXLOGL = 1.1356523406294143949492E4L;
237 static const long double MINLOGL = -1.13994985314888605586758E4L;
238 static const long double LOGE2L = 6.9314718055994530941723E-1L;
239 static volatile long double z;
240 static long double w, W, Wa, Wb, ya, yb, u;
241 static const long double huge = 0x1p10000L;
242 #if 0 /* XXX Prevent gcc from erroneously constant folding this. */
243 static const long double twom10000 = 0x1p-10000L;
244 #else
245 static volatile long double twom10000 = 0x1p-10000L;
246 #endif
248 static long double reducl( long double );
249 static long double powil ( long double, int );
251 long double
252 powl(long double x, long double y)
254 /* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */
255 int i, nflg, iyflg, yoddint;
256 long e;
258 if( y == 0.0L )
259 return( 1.0L );
261 if( x == 1.0L )
262 return( 1.0L );
264 if( isnan(x) )
265 return ( nan_mix(x, y) );
266 if( isnan(y) )
267 return ( nan_mix(x, y) );
269 if( y == 1.0L )
270 return( x );
272 if( !isfinite(y) && x == -1.0L )
273 return( 1.0L );
275 if( y >= LDBL_MAX )
277 if( x > 1.0L )
278 return( INFINITY );
279 if( x > 0.0L && x < 1.0L )
280 return( 0.0L );
281 if( x < -1.0L )
282 return( INFINITY );
283 if( x > -1.0L && x < 0.0L )
284 return( 0.0L );
286 if( y <= -LDBL_MAX )
288 if( x > 1.0L )
289 return( 0.0L );
290 if( x > 0.0L && x < 1.0L )
291 return( INFINITY );
292 if( x < -1.0L )
293 return( 0.0L );
294 if( x > -1.0L && x < 0.0L )
295 return( INFINITY );
297 if( x >= LDBL_MAX )
299 if( y > 0.0L )
300 return( INFINITY );
301 return( 0.0L );
304 w = floorl(y);
305 /* Set iyflg to 1 if y is an integer. */
306 iyflg = 0;
307 if( w == y )
308 iyflg = 1;
310 /* Test for odd integer y. */
311 yoddint = 0;
312 if( iyflg )
314 ya = fabsl(y);
315 ya = floorl(0.5L * ya);
316 yb = 0.5L * fabsl(w);
317 if( ya != yb )
318 yoddint = 1;
321 if( x <= -LDBL_MAX )
323 if( y > 0.0L )
325 if( yoddint )
326 return( -INFINITY );
327 return( INFINITY );
329 if( y < 0.0L )
331 if( yoddint )
332 return( -0.0L );
333 return( 0.0 );
338 nflg = 0; /* flag = 1 if x<0 raised to integer power */
339 if( x <= 0.0L )
341 if( x == 0.0L )
343 if( y < 0.0 )
345 if( signbit(x) && yoddint )
346 return( -INFINITY );
347 return( INFINITY );
349 if( y > 0.0 )
351 if( signbit(x) && yoddint )
352 return( -0.0L );
353 return( 0.0 );
355 if( y == 0.0L )
356 return( 1.0L ); /* 0**0 */
357 else
358 return( 0.0L ); /* 0**y */
360 else
362 if( iyflg == 0 )
363 return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */
364 nflg = 1;
368 /* Integer power of an integer. */
370 if( iyflg )
372 i = w;
373 w = floorl(x);
374 if( (w == x) && (fabsl(y) < 32768.0) )
376 w = powil( x, (int) y );
377 return( w );
382 if( nflg )
383 x = fabsl(x);
385 /* separate significand from exponent */
386 x = frexpl( x, &i );
387 e = i;
389 /* find significand in antilog table A[] */
390 i = 1;
391 if( x <= douba(17) )
392 i = 17;
393 if( x <= douba(i+8) )
394 i += 8;
395 if( x <= douba(i+4) )
396 i += 4;
397 if( x <= douba(i+2) )
398 i += 2;
399 if( x >= douba(1) )
400 i = -1;
401 i += 1;
404 /* Find (x - A[i])/A[i]
405 * in order to compute log(x/A[i]):
407 * log(x) = log( a x/a ) = log(a) + log(x/a)
409 * log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a
411 x -= douba(i);
412 x -= doubb(i/2);
413 x /= douba(i);
416 /* rational approximation for log(1+v):
418 * log(1+v) = v - v**2/2 + v**3 P(v) / Q(v)
420 z = x*x;
421 w = x * ( z * __polevll( x, P, 3 ) / __p1evll( x, Q, 3 ) );
422 w = w - ldexpl( z, -1 ); /* w - 0.5 * z */
424 /* Convert to base 2 logarithm:
425 * multiply by log2(e) = 1 + LOG2EA
427 z = LOG2EA * w;
428 z += w;
429 z += LOG2EA * x;
430 z += x;
432 /* Compute exponent term of the base 2 logarithm. */
433 w = -i;
434 w = ldexpl( w, -LNXT ); /* divide by NXT */
435 w += e;
436 /* Now base 2 log of x is w + z. */
438 /* Multiply base 2 log by y, in extended precision. */
440 /* separate y into large part ya
441 * and small part yb less than 1/NXT
443 ya = reducl(y);
444 yb = y - ya;
446 /* (w+z)(ya+yb)
447 * = w*ya + w*yb + z*y
449 F = z * y + w * yb;
450 Fa = reducl(F);
451 Fb = F - Fa;
453 G = Fa + w * ya;
454 Ga = reducl(G);
455 Gb = G - Ga;
457 H = Fb + Gb;
458 Ha = reducl(H);
459 w = ldexpl( Ga+Ha, LNXT );
461 /* Test the power of 2 for overflow */
462 if( w > MEXP )
463 return (huge * huge); /* overflow */
465 if( w < MNEXP )
466 return (twom10000 * twom10000); /* underflow */
468 e = w;
469 Hb = H - Ha;
471 if( Hb > 0.0L )
473 e += 1;
474 Hb -= (1.0L/NXT); /*0.0625L;*/
477 /* Now the product y * log2(x) = Hb + e/NXT.
479 * Compute base 2 exponential of Hb,
480 * where -0.0625 <= Hb <= 0.
482 z = Hb * __polevll( Hb, R, 6 ); /* z = 2**Hb - 1 */
484 /* Express e/NXT as an integer plus a negative number of (1/NXT)ths.
485 * Find lookup table entry for the fractional power of 2.
487 if( e < 0 )
488 i = 0;
489 else
490 i = 1;
491 i = e/NXT + i;
492 e = NXT*i - e;
493 w = douba( e );
494 z = w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */
495 z = z + w;
496 z = ldexpl( z, i ); /* multiply by integer power of 2 */
498 if( nflg )
500 /* For negative x,
501 * find out if the integer exponent
502 * is odd or even.
504 w = ldexpl( y, -1 );
505 w = floorl(w);
506 w = ldexpl( w, 1 );
507 if( w != y )
508 z = -z; /* odd exponent */
511 return( z );
515 /* Find a multiple of 1/NXT that is within 1/NXT of x. */
516 static inline long double
517 reducl(long double x)
519 long double t;
521 t = ldexpl( x, LNXT );
522 t = floorl( t );
523 t = ldexpl( t, -LNXT );
524 return(t);
527 /* powil.c
529 * Real raised to integer power, long double precision
533 * SYNOPSIS:
535 * long double x, y, powil();
536 * int n;
538 * y = powil( x, n );
542 * DESCRIPTION:
544 * Returns argument x raised to the nth power.
545 * The routine efficiently decomposes n as a sum of powers of
546 * two. The desired power is a product of two-to-the-kth
547 * powers of x. Thus to compute the 32767 power of x requires
548 * 28 multiplications instead of 32767 multiplications.
552 * ACCURACY:
555 * Relative error:
556 * arithmetic x domain n domain # trials peak rms
557 * IEEE .001,1000 -1022,1023 50000 4.3e-17 7.8e-18
558 * IEEE 1,2 -1022,1023 20000 3.9e-17 7.6e-18
559 * IEEE .99,1.01 0,8700 10000 3.6e-16 7.2e-17
561 * Returns MAXNUM on overflow, zero on underflow.
565 static long double
566 powil(long double x, int nn)
568 long double ww, y;
569 long double s;
570 int n, e, sign, asign, lx;
572 if( x == 0.0L )
574 if( nn == 0 )
575 return( 1.0L );
576 else if( nn < 0 )
577 return( LDBL_MAX );
578 else
579 return( 0.0L );
582 if( nn == 0 )
583 return( 1.0L );
586 if( x < 0.0L )
588 asign = -1;
589 x = -x;
591 else
592 asign = 0;
595 if( nn < 0 )
597 sign = -1;
598 n = -nn;
600 else
602 sign = 1;
603 n = nn;
606 /* Overflow detection */
608 /* Calculate approximate logarithm of answer */
609 s = x;
610 s = frexpl( s, &lx );
611 e = (lx - 1)*n;
612 if( (e == 0) || (e > 64) || (e < -64) )
614 s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L);
615 s = (2.9142135623730950L * s - 0.5L + lx) * nn * LOGE2L;
617 else
619 s = LOGE2L * e;
622 if( s > MAXLOGL )
623 return (huge * huge); /* overflow */
625 if( s < MINLOGL )
626 return (twom10000 * twom10000); /* underflow */
627 /* Handle tiny denormal answer, but with less accuracy
628 * since roundoff error in 1.0/x will be amplified.
629 * The precise demarcation should be the gradual underflow threshold.
631 if( s < (-MAXLOGL+2.0L) )
633 x = 1.0L/x;
634 sign = -sign;
637 /* First bit of the power */
638 if( n & 1 )
639 y = x;
641 else
643 y = 1.0L;
644 asign = 0;
647 ww = x;
648 n >>= 1;
649 while( n )
651 ww = ww * ww; /* arg to the 2-to-the-kth power */
652 if( n & 1 ) /* if that bit is set, then include in product */
653 y *= ww;
654 n >>= 1;
657 if( asign )
658 y = -y; /* odd power of negative number */
659 if( sign < 0 )
660 y = 1.0L/y;
661 return(y);