2 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
4 * Permission to use, copy, modify, and distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <sys/cdefs.h>
18 __FBSDID("$FreeBSD$");
22 #include "../ld/math_private.h"
25 * Polynomial evaluator:
26 * P[0] x^n + P[1] x^(n-1) + ... + P[n]
28 static inline long double
29 __polevll(long double x
, long double *PP
, int n
)
44 * Polynomial evaluator:
45 * x^n + P[0] x^(n-1) + P[1] x^(n-2) + ... + P[n]
47 static inline long double
48 __p1evll(long double x
, long double *PP
, int n
)
65 * Power function, long double precision
71 * long double x, y, z, powl();
79 * Computes x raised to the yth power. Analytically,
81 * x**y = exp( y log(x) ).
83 * Following Cody and Waite, this program uses a lookup table
84 * of 2**-i/32 and pseudo extended precision arithmetic to
85 * obtain several extra bits of accuracy in both the logarithm
86 * and the exponential.
92 * The relative error of pow(x,y) can be estimated
93 * by y dl ln(2), where dl is the absolute error of
94 * the internally computed base 2 logarithm. At the ends
95 * of the approximation interval the logarithm equal 1/32
96 * and its relative error is about 1 lsb = 1.1e-19. Hence
97 * the predicted relative error in the result is 2.3e-21 y .
100 * arithmetic domain # trials peak rms
102 * IEEE +-1000 40000 2.8e-18 3.7e-19
103 * .001 < x < 1000, with log(x) uniformly distributed.
104 * -1000 < y < 1000, y uniformly distributed.
106 * IEEE 0,8700 60000 6.5e-18 1.0e-18
107 * 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed.
112 * message condition value returned
113 * pow overflow x**y > MAXNUM INFINITY
114 * pow underflow x**y < 1/MAXNUM 0.0
115 * pow domain x<0 and y noninteger 0.0
119 #include <sys/cdefs.h>
120 __FBSDID("$FreeBSD$");
125 #include "../ld/math_private.h"
129 /* log2(Table size) */
132 /* log(1+x) = x - .5x^2 + x^3 * P(z)/Q(z)
133 * on the domain 2^(-1/32) - 1 <= x <= 2^(1/32) - 1
135 static long double P
[] = {
136 8.3319510773868690346226E-4L,
137 4.9000050881978028599627E-1L,
138 1.7500123722550302671919E0L
,
139 1.4000100839971580279335E0L
,
141 static long double Q
[] = {
142 /* 1.0000000000000000000000E0L,*/
143 5.2500282295834889175431E0L
,
144 8.4000598057587009834666E0L
,
145 4.2000302519914740834728E0L
,
147 /* A[i] = 2^(-i/32), rounded to IEEE long double precision.
148 * If i is even, A[i] + B[i/2] gives additional accuracy.
150 static long double A
[33] = {
151 1.0000000000000000000000E0L
,
152 9.7857206208770013448287E-1L,
153 9.5760328069857364691013E-1L,
154 9.3708381705514995065011E-1L,
155 9.1700404320467123175367E-1L,
156 8.9735453750155359320742E-1L,
157 8.7812608018664974155474E-1L,
158 8.5930964906123895780165E-1L,
159 8.4089641525371454301892E-1L,
160 8.2287773907698242225554E-1L,
161 8.0524516597462715409607E-1L,
162 7.8799042255394324325455E-1L,
163 7.7110541270397041179298E-1L,
164 7.5458221379671136985669E-1L,
165 7.3841307296974965571198E-1L,
166 7.2259040348852331001267E-1L,
167 7.0710678118654752438189E-1L,
168 6.9195494098191597746178E-1L,
169 6.7712777346844636413344E-1L,
170 6.6261832157987064729696E-1L,
171 6.4841977732550483296079E-1L,
172 6.3452547859586661129850E-1L,
173 6.2092890603674202431705E-1L,
174 6.0762367999023443907803E-1L,
175 5.9460355750136053334378E-1L,
176 5.8186242938878875689693E-1L,
177 5.6939431737834582684856E-1L,
178 5.5719337129794626814472E-1L,
179 5.4525386633262882960438E-1L,
180 5.3357020033841180906486E-1L,
181 5.2213689121370692017331E-1L,
182 5.1094857432705833910408E-1L,
183 5.0000000000000000000000E-1L,
185 static long double B
[17] = {
186 0.0000000000000000000000E0L
,
187 2.6176170809902549338711E-20L,
188 -1.0126791927256478897086E-20L,
189 1.3438228172316276937655E-21L,
190 1.2207982955417546912101E-20L,
191 -6.3084814358060867200133E-21L,
192 1.3164426894366316434230E-20L,
193 -1.8527916071632873716786E-20L,
194 1.8950325588932570796551E-20L,
195 1.5564775779538780478155E-20L,
196 6.0859793637556860974380E-21L,
197 -2.0208749253662532228949E-20L,
198 1.4966292219224761844552E-20L,
199 3.3540909728056476875639E-21L,
200 -8.6987564101742849540743E-22L,
201 -1.2327176863327626135542E-20L,
202 0.0000000000000000000000E0L
,
206 * on the interval -1/32 <= x <= 0
208 static long double R
[] = {
209 1.5089970579127659901157E-5L,
210 1.5402715328927013076125E-4L,
211 1.3333556028915671091390E-3L,
212 9.6181291046036762031786E-3L,
213 5.5504108664798463044015E-2L,
214 2.4022650695910062854352E-1L,
215 6.9314718055994530931447E-1L,
218 #define douba(k) A[k]
219 #define doubb(k) B[k]
220 #define MEXP (NXT*16384.0L)
221 /* The following if denormal numbers are supported, else -MEXP: */
222 #define MNEXP (-NXT*(16384.0L+64.0L))
224 #define LOG2EA 0.44269504088896340735992L
236 static const long double MAXLOGL
= 1.1356523406294143949492E4L
;
237 static const long double MINLOGL
= -1.13994985314888605586758E4L
;
238 static const long double LOGE2L
= 6.9314718055994530941723E-1L;
239 static volatile long double z
;
240 static long double w
, W
, Wa
, Wb
, ya
, yb
, u
;
241 static const long double huge
= 0x1p
10000L;
242 #if 0 /* XXX Prevent gcc from erroneously constant folding this. */
243 static const long double twom10000
= 0x1p
-10000L;
245 static volatile long double twom10000
= 0x1p
-10000L;
248 static long double reducl( long double );
249 static long double powil ( long double, int );
252 powl(long double x
, long double y
)
254 /* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */
255 int i
, nflg
, iyflg
, yoddint
;
265 return ( nan_mix(x
, y
) );
267 return ( nan_mix(x
, y
) );
272 if( !isfinite(y
) && x
== -1.0L )
279 if( x
> 0.0L && x
< 1.0L )
283 if( x
> -1.0L && x
< 0.0L )
290 if( x
> 0.0L && x
< 1.0L )
294 if( x
> -1.0L && x
< 0.0L )
305 /* Set iyflg to 1 if y is an integer. */
310 /* Test for odd integer y. */
315 ya
= floorl(0.5L * ya
);
316 yb
= 0.5L * fabsl(w
);
338 nflg
= 0; /* flag = 1 if x<0 raised to integer power */
345 if( signbit(x
) && yoddint
)
351 if( signbit(x
) && yoddint
)
356 return( 1.0L ); /* 0**0 */
358 return( 0.0L ); /* 0**y */
363 return (x
- x
) / (x
- x
); /* (x<0)**(non-int) is NaN */
368 /* Integer power of an integer. */
374 if( (w
== x
) && (fabsl(y
) < 32768.0) )
376 w
= powil( x
, (int) y
);
385 /* separate significand from exponent */
389 /* find significand in antilog table A[] */
393 if( x
<= douba(i
+8) )
395 if( x
<= douba(i
+4) )
397 if( x
<= douba(i
+2) )
404 /* Find (x - A[i])/A[i]
405 * in order to compute log(x/A[i]):
407 * log(x) = log( a x/a ) = log(a) + log(x/a)
409 * log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a
416 /* rational approximation for log(1+v):
418 * log(1+v) = v - v**2/2 + v**3 P(v) / Q(v)
421 w
= x
* ( z
* __polevll( x
, P
, 3 ) / __p1evll( x
, Q
, 3 ) );
422 w
= w
- ldexpl( z
, -1 ); /* w - 0.5 * z */
424 /* Convert to base 2 logarithm:
425 * multiply by log2(e) = 1 + LOG2EA
432 /* Compute exponent term of the base 2 logarithm. */
434 w
= ldexpl( w
, -LNXT
); /* divide by NXT */
436 /* Now base 2 log of x is w + z. */
438 /* Multiply base 2 log by y, in extended precision. */
440 /* separate y into large part ya
441 * and small part yb less than 1/NXT
447 * = w*ya + w*yb + z*y
459 w
= ldexpl( Ga
+Ha
, LNXT
);
461 /* Test the power of 2 for overflow */
463 return (huge
* huge
); /* overflow */
466 return (twom10000
* twom10000
); /* underflow */
474 Hb
-= (1.0L/NXT
); /*0.0625L;*/
477 /* Now the product y * log2(x) = Hb + e/NXT.
479 * Compute base 2 exponential of Hb,
480 * where -0.0625 <= Hb <= 0.
482 z
= Hb
* __polevll( Hb
, R
, 6 ); /* z = 2**Hb - 1 */
484 /* Express e/NXT as an integer plus a negative number of (1/NXT)ths.
485 * Find lookup table entry for the fractional power of 2.
494 z
= w
* z
; /* 2**-e * ( 1 + (2**Hb-1) ) */
496 z
= ldexpl( z
, i
); /* multiply by integer power of 2 */
501 * find out if the integer exponent
508 z
= -z
; /* odd exponent */
515 /* Find a multiple of 1/NXT that is within 1/NXT of x. */
516 static inline long double
517 reducl(long double x
)
521 t
= ldexpl( x
, LNXT
);
523 t
= ldexpl( t
, -LNXT
);
529 * Real raised to integer power, long double precision
535 * long double x, y, powil();
544 * Returns argument x raised to the nth power.
545 * The routine efficiently decomposes n as a sum of powers of
546 * two. The desired power is a product of two-to-the-kth
547 * powers of x. Thus to compute the 32767 power of x requires
548 * 28 multiplications instead of 32767 multiplications.
556 * arithmetic x domain n domain # trials peak rms
557 * IEEE .001,1000 -1022,1023 50000 4.3e-17 7.8e-18
558 * IEEE 1,2 -1022,1023 20000 3.9e-17 7.6e-18
559 * IEEE .99,1.01 0,8700 10000 3.6e-16 7.2e-17
561 * Returns MAXNUM on overflow, zero on underflow.
566 powil(long double x
, int nn
)
570 int n
, e
, sign
, asign
, lx
;
606 /* Overflow detection */
608 /* Calculate approximate logarithm of answer */
610 s
= frexpl( s
, &lx
);
612 if( (e
== 0) || (e
> 64) || (e
< -64) )
614 s
= (s
- 7.0710678118654752e-1L) / (s
+ 7.0710678118654752e-1L);
615 s
= (2.9142135623730950L * s
- 0.5L + lx
) * nn
* LOGE2L
;
623 return (huge
* huge
); /* overflow */
626 return (twom10000
* twom10000
); /* underflow */
627 /* Handle tiny denormal answer, but with less accuracy
628 * since roundoff error in 1.0/x will be amplified.
629 * The precise demarcation should be the gradual underflow threshold.
631 if( s
< (-MAXLOGL
+2.0L) )
637 /* First bit of the power */
651 ww
= ww
* ww
; /* arg to the 2-to-the-kth power */
652 if( n
& 1 ) /* if that bit is set, then include in product */
658 y
= -y
; /* odd power of negative number */