2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
4 * Copyright (c) 2009-2013 Steven G. Kargl
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 * Optimized by Bruce D. Evans.
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
35 * Compute the exponential of x for Intel 80-bit format. This is based on:
37 * PTP Tang, "Table-driven implementation of the exponential function
38 * in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 15,
41 * where the 32 table entries have been expanded to INTERVALS (see below).
50 #include "../ld/fpmath.h"
52 #include "../ld/math_private.h"
55 /* XXX Prevent compilers from erroneously constant folding these: */
56 static const volatile long double
60 static const long double
61 twom10000
= 0x1p
-10000L;
63 static const union IEEEl2bits
64 /* log(2**16384 - 0.5) rounded towards zero: */
65 /* log(2**16384 - 0.5 + 1) rounded towards zero for expm1l() is the same: */
66 o_thresholdu
= LD80C(0xb17217f7d1cf79ab, 13, 11356.5234062941439488L),
67 #define o_threshold (o_thresholdu.e)
68 /* log(2**(-16381-64-1)) rounded towards zero: */
69 u_thresholdu
= LD80C(0xb21dfe7f09e2baa9, 13, -11399.4985314888605581L);
70 #define u_threshold (u_thresholdu.e)
76 long double hi
, lo
, t
, twopk
;
82 /* Filter out exceptional cases. */
86 if (ix
>= BIAS
+ 13) { /* |x| >= 8192 or x is NaN */
87 if (ix
== BIAS
+ LDBL_MAX_EXP
) {
88 if (hx
& 0x8000) /* x is -Inf, -NaN or unsupported */
90 RETURNP(x
+ x
); /* x is +Inf, +NaN or unsupported */
96 } else if (ix
< BIAS
- 75) { /* |x| < 0x1p-75 (includes pseudos) */
97 RETURN2P(1, x
); /* 1 with inexact iff x != 0 */
103 __k_expl(x
, &hi
, &lo
, &k
);
107 if (k
>= LDBL_MIN_EXP
) {
108 if (k
== LDBL_MAX_EXP
)
109 RETURNI(t
* 2 * 0x1p
16383L);
110 SET_LDBL_EXPSIGN(twopk
, BIAS
+ k
);
113 SET_LDBL_EXPSIGN(twopk
, BIAS
+ k
+ 10000);
114 RETURNI(t
* twopk
* twom10000
);
119 * Compute expm1l(x) for Intel 80-bit format. This is based on:
121 * PTP Tang, "Table-driven implementation of the Expm1 function
122 * in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 18,
127 * Our T1 and T2 are chosen to be approximately the points where method
128 * A and method B have the same accuracy. Tang's T1 and T2 are the
129 * points where method A's accuracy changes by a full bit. For Tang,
130 * this drop in accuracy makes method A immediately less accurate than
131 * method B, but our larger INTERVALS makes method A 2 bits more
132 * accurate so it remains the most accurate method significantly
133 * closer to the origin despite losing the full bit in our extended
137 T1
= -0.1659, /* ~-30.625/128 * log(2) */
138 T2
= 0.1659; /* ~30.625/128 * log(2) */
141 * Domain [-0.1659, 0.1659], range ~[-2.6155e-22, 2.5507e-23]:
142 * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-71.6
144 * XXX the coeffs aren't very carefully rounded, and I get 2.8 more bits,
145 * but unlike for ld128 we can't drop any terms.
147 static const union IEEEl2bits
148 B3
= LD80C(0xaaaaaaaaaaaaaaab, -3, 1.66666666666666666671e-1L),
149 B4
= LD80C(0xaaaaaaaaaaaaaaac, -5, 4.16666666666666666712e-2L);
152 B5
= 8.3333333333333245e-3, /* 0x1.111111111110cp-7 */
153 B6
= 1.3888888888888861e-3, /* 0x1.6c16c16c16c0ap-10 */
154 B7
= 1.9841269841532042e-4, /* 0x1.a01a01a0319f9p-13 */
155 B8
= 2.4801587302069236e-5, /* 0x1.a01a01a03cbbcp-16 */
156 B9
= 2.7557316558468562e-6, /* 0x1.71de37fd33d67p-19 */
157 B10
= 2.7557315829785151e-7, /* 0x1.27e4f91418144p-22 */
158 B11
= 2.5063168199779829e-8, /* 0x1.ae94fabdc6b27p-26 */
159 B12
= 2.0887164654459567e-9; /* 0x1.1f122d6413fe1p-29 */
162 expm1l(long double x
)
164 union IEEEl2bits u
, v
;
165 long double fn
, hx2_hi
, hx2_lo
, q
, r
, r1
, r2
, t
, twomk
, twopk
, x_hi
;
166 long double x_lo
, x2
, z
;
173 /* Filter out exceptional cases. */
175 hx
= u
.xbits
.expsign
;
177 if (ix
>= BIAS
+ 6) { /* |x| >= 64 or x is NaN */
178 if (ix
== BIAS
+ LDBL_MAX_EXP
) {
179 if (hx
& 0x8000) /* x is -Inf, -NaN or unsupported */
181 RETURNP(x
+ x
); /* x is +Inf, +NaN or unsupported */
184 RETURNP(huge
* huge
);
186 * expm1l() never underflows, but it must avoid
187 * unrepresentable large negative exponents. We used a
188 * much smaller threshold for large |x| above than in
189 * expl() so as to handle not so large negative exponents
190 * in the same way as large ones here.
192 if (hx
& 0x8000) /* x <= -64 */
193 RETURN2P(tiny
, -1); /* good for x < -65ln2 - eps */
198 if (T1
< x
&& x
< T2
) {
199 if (ix
< BIAS
- 74) { /* |x| < 0x1p-74 (includes pseudos) */
200 /* x (rounded) with inexact if x != 0: */
201 RETURNPI(x
== 0 ? x
:
202 (0x1p
100 * x
+ fabsl(x
)) * 0x1p
-100);
209 * XXX the number of terms is no longer good for
210 * pairwise grouping of all except B3, and the
211 * grouping is no longer from highest down.
213 (x2
* B12
+ (x
* B11
+ B10
)) +
214 (x2
* (x
* B9
+ B8
) + (x
* B7
+ B6
))) +
215 (x
* B5
+ B4
.e
)) + x2
* x
* B3
.e
;
219 hx2_hi
= x_hi
* x_hi
/ 2;
220 hx2_lo
= x_lo
* (x
+ x_hi
) / 2;
222 RETURN2PI(hx2_hi
+ x_hi
, hx2_lo
+ x_lo
+ q
);
224 RETURN2PI(x
, hx2_lo
+ q
+ hx2_hi
);
227 /* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
228 fn
= rnintl(x
* INV_L
);
230 n2
= (unsigned)n
% INTERVALS
;
231 k
= n
>> LOG2_INTERVALS
;
236 /* Prepare scale factor. */
238 v
.xbits
.expsign
= BIAS
+ k
;
242 * Evaluate lower terms of
243 * expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2).
246 q
= r2
+ z
* (A2
+ r
* A3
) + z
* z
* (A4
+ r
* A5
) + z
* z
* z
* A6
;
248 t
= (long double)tbl
[n2
].lo
+ tbl
[n2
].hi
;
251 t
= SUM2P(tbl
[n2
].hi
- 1, tbl
[n2
].lo
* (r1
+ 1) + t
* q
+
256 t
= SUM2P(tbl
[n2
].hi
- 2, tbl
[n2
].lo
* (r1
+ 1) + t
* q
+
261 t
= SUM2P(tbl
[n2
].hi
, tbl
[n2
].lo
+ t
* (q
+ r1
));
262 RETURNI(t
* twopk
- 1);
264 if (k
> 2 * LDBL_MANT_DIG
- 1) {
265 t
= SUM2P(tbl
[n2
].hi
, tbl
[n2
].lo
+ t
* (q
+ r1
));
266 if (k
== LDBL_MAX_EXP
)
267 RETURNI(t
* 2 * 0x1p
16383L - 1);
268 RETURNI(t
* twopk
- 1);
271 v
.xbits
.expsign
= BIAS
- k
;
274 if (k
> LDBL_MANT_DIG
- 1)
275 t
= SUM2P(tbl
[n2
].hi
, tbl
[n2
].lo
- twomk
+ t
* (q
+ r1
));
277 t
= SUM2P(tbl
[n2
].hi
- twomk
, tbl
[n2
].lo
+ t
* (q
+ r1
));