devctl.h: update for POSIX-1.2024
[newlib-cygwin.git] / newlib / libm / machine / amdgcn / v64df_erf.c
blob518ac979ab7f7a671e25252ed7dd79f5df686845
1 /*
2 * Copyright 2023 Siemens
4 * The authors hereby grant permission to use, copy, modify, distribute,
5 * and license this software and its documentation for any purpose, provided
6 * that existing copyright notices are retained in all copies and that this
7 * notice is included verbatim in any distributions. No written agreement,
8 * license, or royalty fee is required for any of the authorized uses.
9 * Modifications to this software may be copyrighted by their authors
10 * and need not follow the licensing terms described here, provided that
11 * the new terms are clearly indicated on the first page of each file where
12 * they apply.
16 * ====================================================
17 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
19 * Developed at SunPro, a Sun Microsystems, Inc. business.
20 * Permission to use, copy, modify, and distribute this
21 * software is freely granted, provided that this notice
22 * is preserved.
23 * ====================================================
26 /* Based on newlib/libm/mathfp/s_erf.c in Newlib. */
28 #include "amdgcnmach.h"
30 v64df v64df_exp_aux (v64df, v64di);
32 static const double
33 tiny = 1e-300,
34 half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
35 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
36 two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
37 /* c = (float)0.84506291151 */
38 erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
40 * Coefficients for approximation to erf on [0,0.84375]
42 efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
43 efx8= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
44 pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
45 pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
46 pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
47 pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
48 pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
49 qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
50 qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
51 qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
52 qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
53 qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
55 * Coefficients for approximation to erf in [0.84375,1.25]
57 pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
58 pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
59 pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
60 pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
61 pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
62 pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
63 pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
64 qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
65 qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
66 qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
67 qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
68 qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
69 qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
71 * Coefficients for approximation to erfc in [1.25,1/0.35]
73 ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
74 ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
75 ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
76 ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
77 ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
78 ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
79 ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
80 ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
81 sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
82 sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
83 sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
84 sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
85 sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
86 sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
87 sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
88 sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
90 * Coefficients for approximation to erfc in [1/.35,28]
92 rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
93 rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
94 rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
95 rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
96 rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
97 rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
98 rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
99 sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
100 sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
101 sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
102 sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
103 sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
104 sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
105 sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
107 #if defined (__has_builtin) && __has_builtin (__builtin_gcn_fabsv)
109 DEF_VD_MATH_FUNC (v64df, erf, v64df x)
111 FUNCTION_INIT (v64df);
113 v64si hx;
114 GET_HIGH_WORD (hx, x, NO_COND);
115 v64si ix = hx & 0x7fffffff;
117 VECTOR_IF (ix >= 0x7ff00000, cond) /* erf(nan)=nan */
118 v64si i = (hx >> 31) << 1;
119 /* erf(+-inf)=+-1 */
120 VECTOR_RETURN (__builtin_convertvector (1 - i, v64df) + one / x, cond);
121 VECTOR_ENDIF
123 VECTOR_IF (ix < 0x3feb0000, cond) /* |x|<0.84375 */
124 VECTOR_IF2 (ix < 0x3e300000, cond2, cond) /* |x|<2**-28 */
125 VECTOR_IF2 (ix < 0x00800000, cond3, cond2) /* avoid underflow */
126 VECTOR_RETURN (0.125*(8.0*x + efx8*x), cond3);
127 VECTOR_ENDIF
128 VECTOR_RETURN (x + efx*x, cond2);
129 VECTOR_ENDIF
131 v64df z = x*x;
132 v64df r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
133 v64df s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
134 v64df y = r/s;
136 VECTOR_RETURN (x + x*y, cond);
137 VECTOR_ENDIF
139 VECTOR_IF (ix < 0x3ff40000, cond) /* 0.84375 <= |x| < 1.25 */
140 v64df s = __builtin_gcn_fabsv (x) - one;
141 v64df P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
142 v64df Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
143 VECTOR_IF2 (hx >= 0, cond2, cond)
144 VECTOR_RETURN (erx + P/Q, cond2);
145 VECTOR_ELSE2 (cond2, cond)
146 VECTOR_RETURN (-erx - P/Q, cond2);
147 VECTOR_ENDIF
148 VECTOR_ENDIF
150 VECTOR_IF (ix >= 0x40180000, cond) /* inf>|x|>=6 */
151 VECTOR_IF2 (hx >= 0, cond2, cond)
152 VECTOR_RETURN (VECTOR_INIT (1.0 - tiny), cond2);
153 VECTOR_ELSE2 (cond2, cond)
154 VECTOR_RETURN (VECTOR_INIT (tiny - 1.0), cond2);
155 VECTOR_ENDIF
156 VECTOR_ENDIF
158 x = __builtin_gcn_fabsv(x);
159 v64df s = 1.0 / (x*x);
160 v64df R, S;
161 VECTOR_IF (ix < 0x4006DB6E, cond) /* |x| < 1/0.35 */
162 VECTOR_COND_MOVE (R, ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
163 ra5+s*(ra6+s*ra7)))))), cond);
164 VECTOR_COND_MOVE (S, one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
165 sa5+s*(sa6+s*(sa7+s*sa8))))))), cond);
166 VECTOR_ELSE (cond) /* |x| >= 1/0.35 */
167 VECTOR_COND_MOVE (R, rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
168 rb5+s*rb6))))), cond);
169 VECTOR_COND_MOVE (S, one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
170 sb5+s*(sb6+s*sb7)))))), cond);
171 VECTOR_ENDIF
173 v64df z;
174 SET_LOW_WORD (z, VECTOR_INIT(0), NO_COND);
175 v64df r = v64df_exp_aux (-z*z - 0.5625, __mask)
176 * v64df_exp_aux ((z-x)*(z+x) + R/S, __mask);
177 VECTOR_RETURN (one - r/x, hx >= 0);
178 VECTOR_RETURN (r/x - one, hx < 0);
180 FUNCTION_RETURN;
183 DEF_VARIANTS (erf, df, df)
185 #endif