Cygwin: SetThreadName: avoid spurious debug message
[newlib-cygwin.git] / newlib / libm / math / k_tan.c
blob4be82d59946e031e613c9ab6284d0ed569ab6223
2 /* @(#)k_tan.c 5.1 93/09/24 */
3 /*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7 * Developed at SunPro, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
14 /* __kernel_tan( x, y, k )
15 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
16 * Input x is assumed to be bounded by ~pi/4 in magnitude.
17 * Input y is the tail of x.
18 * Input k indicates whether tan (if k=1) or
19 * -1/tan (if k= -1) is returned.
21 * Algorithm
22 * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
23 * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
24 * 3. tan(x) is approximated by a odd polynomial of degree 27 on
25 * [0,0.67434]
26 * 3 27
27 * tan(x) ~ x + T1*x + ... + T13*x
28 * where
30 * |tan(x) 2 4 26 | -59.2
31 * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
32 * | x |
34 * Note: tan(x+y) = tan(x) + tan'(x)*y
35 * ~ tan(x) + (1+x*x)*y
36 * Therefore, for better accuracy in computing tan(x+y), let
37 * 3 2 2 2 2
38 * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
39 * then
40 * 3 2
41 * tan(x+y) = x + (T1*x + (x *(r+y)+y))
43 * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
44 * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
45 * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
48 #include "fdlibm.h"
50 #ifndef _DOUBLE_IS_32BITS
52 #ifdef __STDC__
53 static const double
54 #else
55 static double
56 #endif
57 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
58 pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
59 pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
60 T[] = {
61 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
62 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
63 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
64 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
65 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
66 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
67 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
68 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
69 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
70 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
71 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
72 -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
73 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
76 #ifdef __STDC__
77 double __kernel_tan(double x, double y, int iy)
78 #else
79 double __kernel_tan(x, y, iy)
80 double x,y; int iy;
81 #endif
83 double z,r,v,w,s;
84 __int32_t ix,hx;
85 GET_HIGH_WORD(hx,x);
86 ix = hx&0x7fffffff; /* high word of |x| */
87 if(ix<0x3e300000) { /* x < 2**-28 */
88 if((int)x==0) { /* generate inexact */
89 __uint32_t low;
90 GET_LOW_WORD(low,x);
91 if(((ix|low)|(iy+1))==0) return one/fabs(x);
92 else {
93 if(iy==1)
94 return x;
95 else {
96 double a, t;
97 z = w = x + y;
98 SET_LOW_WORD(z,0);
99 v = y - (z - x);
100 t = a = -one / w;
101 SET_LOW_WORD(t,0);
102 s = one + t * z;
103 return t + a * (s + t * v);
108 if(ix>=0x3FE59428) { /* |x|>=0.6744 */
109 if(hx<0) {x = -x; y = -y;}
110 z = pio4-x;
111 w = pio4lo-y;
112 x = z+w; y = 0.0;
114 z = x*x;
115 w = z*z;
116 /* Break x^5*(T[1]+x^2*T[2]+...) into
117 * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
118 * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
120 r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
121 v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
122 s = z*x;
123 r = y + z*(s*(r+v)+y);
124 r += T[0]*s;
125 w = x+r;
126 if(ix>=0x3FE59428) {
127 v = (double)iy;
128 return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
130 if(iy==1) return w;
131 else { /* if allow error up to 2 ulp,
132 simply return -1.0/(x+r) here */
133 /* compute -1.0/(x+r) accurately */
134 double a,t;
135 z = w;
136 SET_LOW_WORD(z,0);
137 v = r-(z - x); /* z+v = r+x */
138 t = a = -1.0/w; /* a = -1.0/w */
139 SET_LOW_WORD(t,0);
140 s = 1.0+t*z;
141 return t+a*(s+t*v);
145 #endif /* defined(_DOUBLE_IS_32BITS) */