2 /* @(#)k_tan.c 5.1 93/09/24 */
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7 * Developed at SunPro, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
11 * ====================================================
14 /* __kernel_tan( x, y, k )
15 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
16 * Input x is assumed to be bounded by ~pi/4 in magnitude.
17 * Input y is the tail of x.
18 * Input k indicates whether tan (if k=1) or
19 * -1/tan (if k= -1) is returned.
22 * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
23 * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
24 * 3. tan(x) is approximated by a odd polynomial of degree 27 on
27 * tan(x) ~ x + T1*x + ... + T13*x
30 * |tan(x) 2 4 26 | -59.2
31 * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
34 * Note: tan(x+y) = tan(x) + tan'(x)*y
35 * ~ tan(x) + (1+x*x)*y
36 * Therefore, for better accuracy in computing tan(x+y), let
38 * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
41 * tan(x+y) = x + (T1*x + (x *(r+y)+y))
43 * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
44 * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
45 * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
50 #ifndef _DOUBLE_IS_32BITS
57 one
= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
58 pio4
= 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
59 pio4lo
= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
61 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
62 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
63 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
64 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
65 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
66 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
67 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
68 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
69 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
70 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
71 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
72 -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
73 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
77 double __kernel_tan(double x
, double y
, int iy
)
79 double __kernel_tan(x
, y
, iy
)
86 ix
= hx
&0x7fffffff; /* high word of |x| */
87 if(ix
<0x3e300000) { /* x < 2**-28 */
88 if((int)x
==0) { /* generate inexact */
91 if(((ix
|low
)|(iy
+1))==0) return one
/fabs(x
);
103 return t
+ a
* (s
+ t
* v
);
108 if(ix
>=0x3FE59428) { /* |x|>=0.6744 */
109 if(hx
<0) {x
= -x
; y
= -y
;}
116 /* Break x^5*(T[1]+x^2*T[2]+...) into
117 * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
118 * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
120 r
= T
[1]+w
*(T
[3]+w
*(T
[5]+w
*(T
[7]+w
*(T
[9]+w
*T
[11]))));
121 v
= z
*(T
[2]+w
*(T
[4]+w
*(T
[6]+w
*(T
[8]+w
*(T
[10]+w
*T
[12])))));
123 r
= y
+ z
*(s
*(r
+v
)+y
);
128 return (double)(1-((hx
>>30)&2))*(v
-2.0*(x
-(w
*w
/(w
+v
)-r
)));
131 else { /* if allow error up to 2 ulp,
132 simply return -1.0/(x+r) here */
133 /* compute -1.0/(x+r) accurately */
137 v
= r
-(z
- x
); /* z+v = r+x */
138 t
= a
= -1.0/w
; /* a = -1.0/w */
145 #endif /* defined(_DOUBLE_IS_32BITS) */