2 /* @(#)e_hypot.c 5.1 93/09/24 */
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7 * Developed at SunPro, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
11 * ====================================================
16 <<hypot>>, <<hypotf>>---distance from origin
24 double hypot(double <[x]>, double <[y]>);
25 float hypotf(float <[x]>, float <[y]>);
28 <<hypot>> calculates the Euclidean distance
33 <<sqrt(<[x]>*<[x]> + <[y]>*<[y]>)>>
35 between the origin (0,0) and a point represented by the
36 Cartesian coordinates (<[x]>,<[y]>). <<hypotf>> differs only
37 in the type of its arguments and result.
40 Normally, the distance value is returned. On overflow,
41 <<hypot>> returns <<HUGE_VAL>> and sets <<errno>> to
45 <<hypot>> and <<hypotf>> are not ANSI C. */
50 * If (assume round-to-nearest) z=x*x+y*y
51 * has error less than sqrt(2)/2 ulp, than
52 * sqrt(z) has error less than 1 ulp (exercise).
54 * So, compute sqrt(x*x+y*y) with some care as
55 * follows to get the error below 1 ulp:
58 * (if possible, set rounding to round-to-nearest)
60 * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
61 * where x1 = x with lower 32 bits cleared, x2 = x-x1; else
63 * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
64 * where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
65 * y1= y with lower 32 bits chopped, y2 = y-y1.
67 * NOTE: scaling may be necessary if some argument is too
71 * hypot(x,y) is INF if x or y is +INF or -INF; else
72 * hypot(x,y) is NAN if x or y is NAN.
75 * hypot(x,y) returns sqrt(x^2+y^2) with error less
76 * than 1 ulps (units in the last place)
81 #ifndef _DOUBLE_IS_32BITS
84 double hypot(double x
, double y
)
90 double a
=x
,b
=y
,t1
,t2
,y1
,y2
,w
;
97 if(hb
> ha
) {a
=y
;b
=x
;j
=ha
; ha
=hb
;hb
=j
;} else {a
=x
;b
=y
;}
98 SET_HIGH_WORD(a
,ha
); /* a <- |a| */
99 SET_HIGH_WORD(b
,hb
); /* b <- |b| */
100 if((ha
-hb
)>0x3c00000) {return a
+b
;} /* x/y > 2**60 */
102 if(ha
> 0x5f300000) { /* a>2**500 */
103 if(ha
>= 0x7ff00000) { /* Inf or NaN */
105 w
= a
+b
; /* for sNaN */
107 if(((ha
&0xfffff)|low
)==0) w
= a
;
109 if(((hb
^0x7ff00000)|low
)==0) w
= b
;
112 /* scale a and b by 2**-600 */
113 ha
-= 0x25800000; hb
-= 0x25800000; k
+= 600;
117 if(hb
< 0x20b00000) { /* b < 2**-500 */
118 if(hb
<= 0x000fffff) { /* subnormal b or 0 */
121 if((hb
|low
)==0) return a
;
123 SET_HIGH_WORD(t1
,0x7fd00000); /* t1=2^1022 */
127 } else { /* scale a and b by 2^600 */
128 ha
+= 0x25800000; /* a *= 2^600 */
129 hb
+= 0x25800000; /* b *= 2^600 */
135 /* medium size a and b */
139 SET_HIGH_WORD(t1
,ha
);
141 w
= sqrt(t1
*t1
-(b
*(-b
)-t2
*(a
+t1
)));
145 SET_HIGH_WORD(y1
,hb
);
148 SET_HIGH_WORD(t1
,ha
+0x00100000);
150 w
= sqrt(t1
*y1
-(w
*(-w
)-(t1
*y2
+t2
*b
)));
155 GET_HIGH_WORD(high
,t1
);
156 SET_HIGH_WORD(t1
,high
+(k
<<20));
161 #endif /* defined(_DOUBLE_IS_32BITS) */