Cygwin: mmap: allow remapping part of an existing anonymous mapping
[newlib-cygwin.git] / newlib / libm / mathfp / ef_j1.c
blob636a4c961b0954503dd2e9b80beaa1848d576470
1 /* ef_j1.c -- float version of e_j1.c.
2 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3 */
5 /*
6 * ====================================================
7 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
9 * Developed at SunPro, a Sun Microsystems, Inc. business.
10 * Permission to use, copy, modify, and distribute this
11 * software is freely granted, provided that this notice
12 * is preserved.
13 * ====================================================
16 #include "fdlibm.h"
18 #ifdef __STDC__
19 static float ponef(float), qonef(float);
20 #else
21 static float ponef(), qonef();
22 #endif
24 #ifdef __STDC__
25 static const float
26 #else
27 static float
28 #endif
29 huge = 1e30,
30 one = 1.0,
31 invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
32 tpi = 6.3661974669e-01, /* 0x3f22f983 */
33 /* R0/S0 on [0,2] */
34 r00 = -6.2500000000e-02, /* 0xbd800000 */
35 r01 = 1.4070566976e-03, /* 0x3ab86cfd */
36 r02 = -1.5995563444e-05, /* 0xb7862e36 */
37 r03 = 4.9672799207e-08, /* 0x335557d2 */
38 s01 = 1.9153760746e-02, /* 0x3c9ce859 */
39 s02 = 1.8594678841e-04, /* 0x3942fab6 */
40 s03 = 1.1771846857e-06, /* 0x359dffc2 */
41 s04 = 5.0463624390e-09, /* 0x31ad6446 */
42 s05 = 1.2354227016e-11; /* 0x2d59567e */
44 #ifdef __STDC__
45 static const float zero = 0.0;
46 #else
47 static float zero = 0.0;
48 #endif
50 #ifdef __STDC__
51 float j1f(float x)
52 #else
53 float j1f(x)
54 float x;
55 #endif
57 float z, s,c,ss,cc,r,u,v,y;
58 __int32_t hx,ix;
60 GET_FLOAT_WORD(hx,x);
61 ix = hx&0x7fffffff;
62 if(ix>=0x7f800000) return one/x;
63 y = fabsf(x);
64 if(ix >= 0x40000000) { /* |x| >= 2.0 */
65 s = sinf(y);
66 c = cosf(y);
67 ss = -s-c;
68 cc = s-c;
69 if(ix<0x7f000000) { /* make sure y+y not overflow */
70 z = cosf(y+y);
71 if ((s*c)>zero) cc = z/ss;
72 else ss = z/cc;
75 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
76 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
78 if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(y);
79 else {
80 u = ponef(y); v = qonef(y);
81 z = invsqrtpi*(u*cc-v*ss)/sqrtf(y);
83 if(hx<0) return -z;
84 else return z;
86 if(ix<0x32000000) { /* |x|<2**-27 */
87 if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */
89 z = x*x;
90 r = z*(r00+z*(r01+z*(r02+z*r03)));
91 s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
92 r *= x;
93 return(x*(float)0.5+r/s);
96 #ifdef __STDC__
97 static const float U0[5] = {
98 #else
99 static float U0[5] = {
100 #endif
101 -1.9605709612e-01, /* 0xbe48c331 */
102 5.0443872809e-02, /* 0x3d4e9e3c */
103 -1.9125689287e-03, /* 0xbafaaf2a */
104 2.3525259166e-05, /* 0x37c5581c */
105 -9.1909917899e-08, /* 0xb3c56003 */
107 #ifdef __STDC__
108 static const float V0[5] = {
109 #else
110 static float V0[5] = {
111 #endif
112 1.9916731864e-02, /* 0x3ca3286a */
113 2.0255257550e-04, /* 0x3954644b */
114 1.3560879779e-06, /* 0x35b602d4 */
115 6.2274145840e-09, /* 0x31d5f8eb */
116 1.6655924903e-11, /* 0x2d9281cf */
119 #ifdef __STDC__
120 float y1f(float x)
121 #else
122 float y1f(x)
123 float x;
124 #endif
126 float z, s,c,ss,cc,u,v;
127 __int32_t hx,ix;
129 GET_FLOAT_WORD(hx,x);
130 ix = 0x7fffffff&hx;
131 /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
132 if(ix>=0x7f800000) return one/(x+x*x);
133 if(ix==0) return -one/zero;
134 if(hx<0) return zero/zero;
135 if(ix >= 0x40000000) { /* |x| >= 2.0 */
136 s = sinf(x);
137 c = cosf(x);
138 ss = -s-c;
139 cc = s-c;
140 if(ix<0x7f000000) { /* make sure x+x not overflow */
141 z = cosf(x+x);
142 if ((s*c)>zero) cc = z/ss;
143 else ss = z/cc;
145 /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
146 * where x0 = x-3pi/4
147 * Better formula:
148 * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
149 * = 1/sqrt(2) * (sin(x) - cos(x))
150 * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
151 * = -1/sqrt(2) * (cos(x) + sin(x))
152 * To avoid cancellation, use
153 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
154 * to compute the worse one.
156 if(ix>0x48000000) z = (invsqrtpi*ss)/sqrtf(x);
157 else {
158 u = ponef(x); v = qonef(x);
159 z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
161 return z;
163 if(ix<=0x24800000) { /* x < 2**-54 */
164 return(-tpi/x);
166 z = x*x;
167 u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
168 v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
169 return(x*(u/v) + tpi*(j1f(x)*logf(x)-one/x));
172 /* For x >= 8, the asymptotic expansions of pone is
173 * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
174 * We approximate pone by
175 * pone(x) = 1 + (R/S)
176 * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
177 * S = 1 + ps0*s^2 + ... + ps4*s^10
178 * and
179 * | pone(x)-1-R/S | <= 2 ** ( -60.06)
182 #ifdef __STDC__
183 static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
184 #else
185 static float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
186 #endif
187 0.0000000000e+00, /* 0x00000000 */
188 1.1718750000e-01, /* 0x3df00000 */
189 1.3239480972e+01, /* 0x4153d4ea */
190 4.1205184937e+02, /* 0x43ce06a3 */
191 3.8747453613e+03, /* 0x45722bed */
192 7.9144794922e+03, /* 0x45f753d6 */
194 #ifdef __STDC__
195 static const float ps8[5] = {
196 #else
197 static float ps8[5] = {
198 #endif
199 1.1420736694e+02, /* 0x42e46a2c */
200 3.6509309082e+03, /* 0x45642ee5 */
201 3.6956207031e+04, /* 0x47105c35 */
202 9.7602796875e+04, /* 0x47bea166 */
203 3.0804271484e+04, /* 0x46f0a88b */
206 #ifdef __STDC__
207 static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
208 #else
209 static float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
210 #endif
211 1.3199052094e-11, /* 0x2d68333f */
212 1.1718749255e-01, /* 0x3defffff */
213 6.8027510643e+00, /* 0x40d9b023 */
214 1.0830818176e+02, /* 0x42d89dca */
215 5.1763616943e+02, /* 0x440168b7 */
216 5.2871520996e+02, /* 0x44042dc6 */
218 #ifdef __STDC__
219 static const float ps5[5] = {
220 #else
221 static float ps5[5] = {
222 #endif
223 5.9280597687e+01, /* 0x426d1f55 */
224 9.9140142822e+02, /* 0x4477d9b1 */
225 5.3532670898e+03, /* 0x45a74a23 */
226 7.8446904297e+03, /* 0x45f52586 */
227 1.5040468750e+03, /* 0x44bc0180 */
230 #ifdef __STDC__
231 static const float pr3[6] = {
232 #else
233 static float pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
234 #endif
235 3.0250391081e-09, /* 0x314fe10d */
236 1.1718686670e-01, /* 0x3defffab */
237 3.9329774380e+00, /* 0x407bb5e7 */
238 3.5119403839e+01, /* 0x420c7a45 */
239 9.1055007935e+01, /* 0x42b61c2a */
240 4.8559066772e+01, /* 0x42423c7c */
242 #ifdef __STDC__
243 static const float ps3[5] = {
244 #else
245 static float ps3[5] = {
246 #endif
247 3.4791309357e+01, /* 0x420b2a4d */
248 3.3676245117e+02, /* 0x43a86198 */
249 1.0468714600e+03, /* 0x4482dbe3 */
250 8.9081134033e+02, /* 0x445eb3ed */
251 1.0378793335e+02, /* 0x42cf936c */
254 #ifdef __STDC__
255 static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
256 #else
257 static float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
258 #endif
259 1.0771083225e-07, /* 0x33e74ea8 */
260 1.1717621982e-01, /* 0x3deffa16 */
261 2.3685150146e+00, /* 0x401795c0 */
262 1.2242610931e+01, /* 0x4143e1bc */
263 1.7693971634e+01, /* 0x418d8d41 */
264 5.0735230446e+00, /* 0x40a25a4d */
266 #ifdef __STDC__
267 static const float ps2[5] = {
268 #else
269 static float ps2[5] = {
270 #endif
271 2.1436485291e+01, /* 0x41ab7dec */
272 1.2529022980e+02, /* 0x42fa9499 */
273 2.3227647400e+02, /* 0x436846c7 */
274 1.1767937469e+02, /* 0x42eb5bd7 */
275 8.3646392822e+00, /* 0x4105d590 */
278 #ifdef __STDC__
279 static float ponef(float x)
280 #else
281 static float ponef(x)
282 float x;
283 #endif
285 #ifdef __STDC__
286 const float *p,*q;
287 #else
288 float *p,*q;
289 #endif
290 float z,r,s;
291 __int32_t ix;
292 GET_FLOAT_WORD(ix,x);
293 ix &= 0x7fffffff;
294 if(ix>=0x41000000) {p = pr8; q= ps8;}
295 else if(ix>=0x40f71c58){p = pr5; q= ps5;}
296 else if(ix>=0x4036db68){p = pr3; q= ps3;}
297 else {p = pr2; q= ps2;}
298 z = one/(x*x);
299 r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
300 s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
301 return one+ r/s;
305 /* For x >= 8, the asymptotic expansions of qone is
306 * 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
307 * We approximate qone by
308 * qone(x) = s*(0.375 + (R/S))
309 * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
310 * S = 1 + qs1*s^2 + ... + qs6*s^12
311 * and
312 * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
315 #ifdef __STDC__
316 static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
317 #else
318 static float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
319 #endif
320 0.0000000000e+00, /* 0x00000000 */
321 -1.0253906250e-01, /* 0xbdd20000 */
322 -1.6271753311e+01, /* 0xc1822c8d */
323 -7.5960174561e+02, /* 0xc43de683 */
324 -1.1849806641e+04, /* 0xc639273a */
325 -4.8438511719e+04, /* 0xc73d3683 */
327 #ifdef __STDC__
328 static const float qs8[6] = {
329 #else
330 static float qs8[6] = {
331 #endif
332 1.6139537048e+02, /* 0x43216537 */
333 7.8253862305e+03, /* 0x45f48b17 */
334 1.3387534375e+05, /* 0x4802bcd6 */
335 7.1965775000e+05, /* 0x492fb29c */
336 6.6660125000e+05, /* 0x4922be94 */
337 -2.9449025000e+05, /* 0xc88fcb48 */
340 #ifdef __STDC__
341 static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
342 #else
343 static float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
344 #endif
345 -2.0897993405e-11, /* 0xadb7d219 */
346 -1.0253904760e-01, /* 0xbdd1fffe */
347 -8.0564479828e+00, /* 0xc100e736 */
348 -1.8366960144e+02, /* 0xc337ab6b */
349 -1.3731937256e+03, /* 0xc4aba633 */
350 -2.6124443359e+03, /* 0xc523471c */
352 #ifdef __STDC__
353 static const float qs5[6] = {
354 #else
355 static float qs5[6] = {
356 #endif
357 8.1276550293e+01, /* 0x42a28d98 */
358 1.9917987061e+03, /* 0x44f8f98f */
359 1.7468484375e+04, /* 0x468878f8 */
360 4.9851425781e+04, /* 0x4742bb6d */
361 2.7948074219e+04, /* 0x46da5826 */
362 -4.7191835938e+03, /* 0xc5937978 */
365 #ifdef __STDC__
366 static const float qr3[6] = {
367 #else
368 static float qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
369 #endif
370 -5.0783124372e-09, /* 0xb1ae7d4f */
371 -1.0253783315e-01, /* 0xbdd1ff5b */
372 -4.6101160049e+00, /* 0xc0938612 */
373 -5.7847221375e+01, /* 0xc267638e */
374 -2.2824453735e+02, /* 0xc3643e9a */
375 -2.1921012878e+02, /* 0xc35b35cb */
377 #ifdef __STDC__
378 static const float qs3[6] = {
379 #else
380 static float qs3[6] = {
381 #endif
382 4.7665153503e+01, /* 0x423ea91e */
383 6.7386511230e+02, /* 0x4428775e */
384 3.3801528320e+03, /* 0x45534272 */
385 5.5477290039e+03, /* 0x45ad5dd5 */
386 1.9031191406e+03, /* 0x44ede3d0 */
387 -1.3520118713e+02, /* 0xc3073381 */
390 #ifdef __STDC__
391 static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
392 #else
393 static float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
394 #endif
395 -1.7838172539e-07, /* 0xb43f8932 */
396 -1.0251704603e-01, /* 0xbdd1f475 */
397 -2.7522056103e+00, /* 0xc0302423 */
398 -1.9663616180e+01, /* 0xc19d4f16 */
399 -4.2325313568e+01, /* 0xc2294d1f */
400 -2.1371921539e+01, /* 0xc1aaf9b2 */
402 #ifdef __STDC__
403 static const float qs2[6] = {
404 #else
405 static float qs2[6] = {
406 #endif
407 2.9533363342e+01, /* 0x41ec4454 */
408 2.5298155212e+02, /* 0x437cfb47 */
409 7.5750280762e+02, /* 0x443d602e */
410 7.3939318848e+02, /* 0x4438d92a */
411 1.5594900513e+02, /* 0x431bf2f2 */
412 -4.9594988823e+00, /* 0xc09eb437 */
415 #ifdef __STDC__
416 static float qonef(float x)
417 #else
418 static float qonef(x)
419 float x;
420 #endif
422 #ifdef __STDC__
423 const float *p,*q;
424 #else
425 float *p,*q;
426 #endif
427 float s,r,z;
428 __int32_t ix;
429 GET_FLOAT_WORD(ix,x);
430 ix &= 0x7fffffff;
431 if(ix>=0x40200000) {p = qr8; q= qs8;}
432 else if(ix>=0x40f71c58){p = qr5; q= qs5;}
433 else if(ix>=0x4036db68){p = qr3; q= qs3;}
434 else {p = qr2; q= qs2;}
435 z = one/(x*x);
436 r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
437 s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
438 return ((float).375 + r/s)/x;