Cygwin: mmap: allow remapping part of an existing anonymous mapping
[newlib-cygwin.git] / newlib / libm / mathfp / er_lgamma.c
blobcb0f2c257928f6a13052fe5a07041156446f59ca
2 /* @(#)er_lgamma.c 5.1 93/09/24 */
3 /*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7 * Developed at SunPro, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
16 FUNCTION
17 <<gamma>>, <<gammaf>>, <<lgamma>>, <<lgammaf>>, <<gamma_r>>,
18 <<gammaf_r>>, <<lgamma_r>>, <<lgammaf_r>>---logarithmic gamma
19 function
20 INDEX
21 gamma
22 INDEX
23 gammaf
24 INDEX
25 lgamma
26 INDEX
27 lgammaf
28 INDEX
29 gamma_r
30 INDEX
31 gammaf_r
32 INDEX
33 lgamma_r
34 INDEX
35 lgammaf_r
37 SYNOPSIS
38 #include <math.h>
39 double gamma(double <[x]>);
40 float gammaf(float <[x]>);
41 double lgamma(double <[x]>);
42 float lgammaf(float <[x]>);
43 double gamma_r(double <[x]>, int *<[signgamp]>);
44 float gammaf_r(float <[x]>, int *<[signgamp]>);
45 double lgamma_r(double <[x]>, int *<[signgamp]>);
46 float lgammaf_r(float <[x]>, int *<[signgamp]>);
48 DESCRIPTION
49 <<gamma>> calculates
50 @tex
51 $\mit ln\bigl(\Gamma(x)\bigr)$,
52 @end tex
53 the natural logarithm of the gamma function of <[x]>. The gamma function
54 (<<exp(gamma(<[x]>))>>) is a generalization of factorial, and retains
55 the property that
56 @ifnottex
57 <<exp(gamma(N))>> is equivalent to <<N*exp(gamma(N-1))>>.
58 @end ifnottex
59 @tex
60 $\mit \Gamma(N)\equiv N\times\Gamma(N-1)$.
61 @end tex
62 Accordingly, the results of the gamma function itself grow very
63 quickly. <<gamma>> is defined as
64 @tex
65 $\mit ln\bigl(\Gamma(x)\bigr)$ rather than simply $\mit \Gamma(x)$
66 @end tex
67 @ifnottex
68 the natural log of the gamma function, rather than the gamma function
69 itself,
70 @end ifnottex
71 to extend the useful range of results representable.
73 The sign of the result is returned in the global variable <<signgam>>,
74 which is declared in math.h.
76 <<gammaf>> performs the same calculation as <<gamma>>, but uses and
77 returns <<float>> values.
79 <<lgamma>> and <<lgammaf>> are alternate names for <<gamma>> and
80 <<gammaf>>. The use of <<lgamma>> instead of <<gamma>> is a reminder
81 that these functions compute the log of the gamma function, rather
82 than the gamma function itself.
84 The functions <<gamma_r>>, <<gammaf_r>>, <<lgamma_r>>, and
85 <<lgammaf_r>> are just like <<gamma>>, <<gammaf>>, <<lgamma>>, and
86 <<lgammaf>>, respectively, but take an additional argument. This
87 additional argument is a pointer to an integer. This additional
88 argument is used to return the sign of the result, and the global
89 variable <<signgam>> is not used. These functions may be used for
90 reentrant calls (but they will still set the global variable <<errno>>
91 if an error occurs).
93 RETURNS
94 Normally, the computed result is returned.
96 When <[x]> is a nonpositive integer, <<gamma>> returns <<HUGE_VAL>>
97 and <<errno>> is set to <<EDOM>>. If the result overflows, <<gamma>>
98 returns <<HUGE_VAL>> and <<errno>> is set to <<ERANGE>>.
100 PORTABILITY
101 Neither <<gamma>> nor <<gammaf>> is ANSI C. */
103 /* lgamma_r(x, signgamp)
104 * Reentrant version of the logarithm of the Gamma function
105 * with user provide pointer for the sign of Gamma(x).
107 * Method:
108 * 1. Argument Reduction for 0 < x <= 8
109 * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
110 * reduce x to a number in [1.5,2.5] by
111 * lgamma(1+s) = log(s) + lgamma(s)
112 * for example,
113 * lgamma(7.3) = log(6.3) + lgamma(6.3)
114 * = log(6.3*5.3) + lgamma(5.3)
115 * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
116 * 2. Polynomial approximation of lgamma around its
117 * minimun ymin=1.461632144968362245 to maintain monotonicity.
118 * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
119 * Let z = x-ymin;
120 * lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
121 * where
122 * poly(z) is a 14 degree polynomial.
123 * 2. Rational approximation in the primary interval [2,3]
124 * We use the following approximation:
125 * s = x-2.0;
126 * lgamma(x) = 0.5*s + s*P(s)/Q(s)
127 * with accuracy
128 * |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
129 * Our algorithms are based on the following observation
131 * zeta(2)-1 2 zeta(3)-1 3
132 * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
133 * 2 3
135 * where Euler = 0.5771... is the Euler constant, which is very
136 * close to 0.5.
138 * 3. For x>=8, we have
139 * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
140 * (better formula:
141 * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
142 * Let z = 1/x, then we approximation
143 * f(z) = lgamma(x) - (x-0.5)(log(x)-1)
144 * by
145 * 3 5 11
146 * w = w0 + w1*z + w2*z + w3*z + ... + w6*z
147 * where
148 * |w - f(z)| < 2**-58.74
150 * 4. For negative x, since (G is gamma function)
151 * -x*G(-x)*G(x) = pi/sin(pi*x),
152 * we have
153 * G(x) = pi/(sin(pi*x)*(-x)*G(-x))
154 * since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
155 * Hence, for x<0, signgam = sign(sin(pi*x)) and
156 * lgamma(x) = log(|Gamma(x)|)
157 * = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
158 * Note: one should avoid compute pi*(-x) directly in the
159 * computation of sin(pi*(-x)).
161 * 5. Special Cases
162 * lgamma(2+s) ~ s*(1-Euler) for tiny s
163 * lgamma(1)=lgamma(2)=0
164 * lgamma(x) ~ -log(x) for tiny x
165 * lgamma(0) = lgamma(inf) = inf
166 * lgamma(-integer) = +-inf
170 #include "fdlibm.h"
172 #ifdef __STDC__
173 static const double
174 #else
175 static double
176 #endif
177 two52= 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
178 half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
179 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
180 pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
181 a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
182 a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
183 a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
184 a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
185 a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
186 a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
187 a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
188 a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
189 a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
190 a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
191 a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
192 a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
193 tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
194 tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
195 /* tt = -(tail of tf) */
196 tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
197 t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
198 t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
199 t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
200 t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
201 t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
202 t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
203 t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
204 t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
205 t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
206 t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
207 t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
208 t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
209 t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
210 t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
211 t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
212 u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
213 u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
214 u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
215 u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
216 u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
217 u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
218 v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
219 v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
220 v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
221 v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
222 v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
223 s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
224 s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
225 s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
226 s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
227 s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
228 s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
229 s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
230 r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
231 r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
232 r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
233 r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
234 r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
235 r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
236 w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
237 w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
238 w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
239 w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
240 w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
241 w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
242 w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
244 #ifdef __STDC__
245 static const double zero= 0.00000000000000000000e+00;
246 #else
247 static double zero= 0.00000000000000000000e+00;
248 #endif
250 #ifdef __STDC__
251 static double sin_pi(double x)
252 #else
253 static double sin_pi(x)
254 double x;
255 #endif
257 double y,z;
258 __int32_t n,ix;
260 GET_HIGH_WORD(ix,x);
261 ix &= 0x7fffffff;
263 if(ix<0x3fd00000) return sin(pi*x);
264 y = -x; /* x is assume negative */
267 * argument reduction, make sure inexact flag not raised if input
268 * is an integer
270 z = floor(y);
271 if(z!=y) { /* inexact anyway */
272 y *= 0.5;
273 y = 2.0*(y - floor(y)); /* y = |x| mod 2.0 */
274 n = (__int32_t) (y*4.0);
275 } else {
276 if(ix>=0x43400000) {
277 y = zero; n = 0; /* y must be even */
278 } else {
279 if(ix<0x43300000) z = y+two52; /* exact */
280 GET_LOW_WORD(n,z);
281 n &= 1;
282 y = n;
283 n<<= 2;
286 switch (n) {
287 case 0: y = sin(pi*y); break;
288 case 1:
289 case 2: y = cos(pi*(0.5-y)); break;
290 case 3:
291 case 4: y = sin(pi*(one-y)); break;
292 case 5:
293 case 6: y = -cos(pi*(y-1.5)); break;
294 default: y = sin(pi*(y-2.0)); break;
296 return -y;
300 #ifdef __STDC__
301 double lgamma_r(double x, int *signgamp)
302 #else
303 double lgamma_r(x,signgamp)
304 double x; int *signgamp;
305 #endif
307 double t,y,z,nadj,p,p1,p2,p3,q,r,w;
308 __int32_t i,hx,lx,ix;
310 nadj = 0;
312 EXTRACT_WORDS(hx,lx,x);
314 /* purge off +-inf, NaN, +-0, and negative arguments */
315 *signgamp = 1;
316 ix = hx&0x7fffffff;
317 if(ix>=0x7ff00000) return x*x;
318 if((ix|lx)==0) return one/zero;
319 if(ix<0x3b900000) { /* |x|<2**-70, return -log(|x|) */
320 if(hx<0) {
321 *signgamp = -1;
322 return -log(-x);
323 } else return -log(x);
325 if(hx<0) {
326 if(ix>=0x43300000) /* |x|>=2**52, must be -integer */
327 return one/zero;
328 t = sin_pi(x);
329 if(t==zero) return one/zero; /* -integer */
330 nadj = log(pi/fabs(t*x));
331 if(t<zero) *signgamp = -1;
332 x = -x;
335 /* purge off 1 and 2 */
336 if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0;
337 /* for x < 2.0 */
338 else if(ix<0x40000000) {
339 if(ix<=0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */
340 r = -log(x);
341 if(ix>=0x3FE76944) {y = one-x; i= 0;}
342 else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;}
343 else {y = x; i=2;}
344 } else {
345 r = zero;
346 if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */
347 else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */
348 else {y=x-one;i=2;}
350 switch(i) {
351 case 0:
352 z = y*y;
353 p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
354 p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
355 p = y*p1+p2;
356 r += (p-0.5*y); break;
357 case 1:
358 z = y*y;
359 w = z*y;
360 p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */
361 p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
362 p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
363 p = z*p1-(tt-w*(p2+y*p3));
364 r += (tf + p); break;
365 case 2:
366 p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
367 p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
368 r += (-0.5*y + p1/p2);
371 else if(ix<0x40200000) { /* x < 8.0 */
372 i = (__int32_t)x;
373 t = zero;
374 y = x-(double)i;
375 p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
376 q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
377 r = half*y+p/q;
378 z = one; /* lgamma(1+s) = log(s) + lgamma(s) */
379 switch(i) {
380 case 7: z *= (y+6.0); /* FALLTHRU */
381 case 6: z *= (y+5.0); /* FALLTHRU */
382 case 5: z *= (y+4.0); /* FALLTHRU */
383 case 4: z *= (y+3.0); /* FALLTHRU */
384 case 3: z *= (y+2.0); /* FALLTHRU */
385 r += log(z); break;
387 /* 8.0 <= x < 2**58 */
388 } else if (ix < 0x43900000) {
389 t = log(x);
390 z = one/x;
391 y = z*z;
392 w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
393 r = (x-half)*(t-one)+w;
394 } else
395 /* 2**58 <= x <= inf */
396 r = x*(log(x)-one);
397 if(hx<0) r = nadj - r;
398 return r;
401 double
402 lgamma(double x)
404 return lgamma_r(x, &(_REENT_SIGNGAM(_REENT)));