Cygwin: mmap: allow remapping part of an existing anonymous mapping
[newlib-cygwin.git] / newlib / libm / mathfp / s_erf.c
blob514da74640a9c5237f6968a0f52738a3fa8e8b38
2 /* @(#)s_erf.c 5.1 93/09/24 */
3 /*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7 * Developed at SunPro, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
15 FUNCTION
16 <<erf>>, <<erff>>, <<erfc>>, <<erfcf>>---error function
17 INDEX
18 erf
19 INDEX
20 erff
21 INDEX
22 erfc
23 INDEX
24 erfcf
26 SYNOPSIS
27 #include <math.h>
28 double erf(double <[x]>);
29 float erff(float <[x]>);
30 double erfc(double <[x]>);
31 float erfcf(float <[x]>);
33 DESCRIPTION
34 <<erf>> calculates an approximation to the ``error function'',
35 which estimates the probability that an observation will fall within
36 <[x]> standard deviations of the mean (assuming a normal
37 distribution).
38 @tex
39 The error function is defined as
40 $${2\over\sqrt\pi}\times\int_0^x e^{-t^2}dt$$
41 @end tex
43 <<erfc>> calculates the complementary probability; that is,
44 <<erfc(<[x]>)>> is <<1 - erf(<[x]>)>>. <<erfc>> is computed directly,
45 so that you can use it to avoid the loss of precision that would
46 result from subtracting large probabilities (on large <[x]>) from 1.
48 <<erff>> and <<erfcf>> differ from <<erf>> and <<erfc>> only in the
49 argument and result types.
51 RETURNS
52 For positive arguments, <<erf>> and all its variants return a
53 probability---a number between 0 and 1.
55 PORTABILITY
56 None of the variants of <<erf>> are ANSI C.
59 /* double erf(double x)
60 * double erfc(double x)
61 * x
62 * 2 |\
63 * erf(x) = --------- | exp(-t*t)dt
64 * sqrt(pi) \|
65 * 0
67 * erfc(x) = 1-erf(x)
68 * Note that
69 * erf(-x) = -erf(x)
70 * erfc(-x) = 2 - erfc(x)
72 * Method:
73 * 1. For |x| in [0, 0.84375]
74 * erf(x) = x + x*R(x^2)
75 * erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
76 * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
77 * where R = P/Q where P is an odd poly of degree 8 and
78 * Q is an odd poly of degree 10.
79 * -57.90
80 * | R - (erf(x)-x)/x | <= 2
83 * Remark. The formula is derived by noting
84 * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
85 * and that
86 * 2/sqrt(pi) = 1.128379167095512573896158903121545171688
87 * is close to one. The interval is chosen because the fix
88 * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
89 * near 0.6174), and by some experiment, 0.84375 is chosen to
90 * guarantee the error is less than one ulp for erf.
92 * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
93 * c = 0.84506291151 rounded to single (24 bits)
94 * erf(x) = sign(x) * (c + P1(s)/Q1(s))
95 * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
96 * 1+(c+P1(s)/Q1(s)) if x < 0
97 * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
98 * Remark: here we use the taylor series expansion at x=1.
99 * erf(1+s) = erf(1) + s*Poly(s)
100 * = 0.845.. + P1(s)/Q1(s)
101 * That is, we use rational approximation to approximate
102 * erf(1+s) - (c = (single)0.84506291151)
103 * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
104 * where
105 * P1(s) = degree 6 poly in s
106 * Q1(s) = degree 6 poly in s
108 * 3. For x in [1.25,1/0.35(~2.857143)],
109 * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
110 * erf(x) = 1 - erfc(x)
111 * where
112 * R1(z) = degree 7 poly in z, (z=1/x^2)
113 * S1(z) = degree 8 poly in z
115 * 4. For x in [1/0.35,28]
116 * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
117 * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
118 * = 2.0 - tiny (if x <= -6)
119 * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
120 * erf(x) = sign(x)*(1.0 - tiny)
121 * where
122 * R2(z) = degree 6 poly in z, (z=1/x^2)
123 * S2(z) = degree 7 poly in z
125 * Note1:
126 * To compute exp(-x*x-0.5625+R/S), let s be a single
127 * precision number and s := x; then
128 * -x*x = -s*s + (s-x)*(s+x)
129 * exp(-x*x-0.5626+R/S) =
130 * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
131 * Note2:
132 * Here 4 and 5 make use of the asymptotic series
133 * exp(-x*x)
134 * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
135 * x*sqrt(pi)
136 * We use rational approximation to approximate
137 * g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
138 * Here is the error bound for R1/S1 and R2/S2
139 * |R1/S1 - f(x)| < 2**(-62.57)
140 * |R2/S2 - f(x)| < 2**(-61.52)
142 * 5. For inf > x >= 28
143 * erf(x) = sign(x) *(1 - tiny) (raise inexact)
144 * erfc(x) = tiny*tiny (raise underflow) if x > 0
145 * = 2 - tiny if x<0
147 * 7. Special case:
148 * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
149 * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
150 * erfc/erf(NaN) is NaN
154 #include "fdlibm.h"
156 #ifndef _DOUBLE_IS_32BITS
158 #ifdef __STDC__
159 static const double
160 #else
161 static double
162 #endif
163 tiny = 1e-300,
164 half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
165 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
166 two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
167 /* c = (float)0.84506291151 */
168 erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
170 * Coefficients for approximation to erf on [0,0.84375]
172 efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
173 efx8= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
174 pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
175 pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
176 pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
177 pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
178 pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
179 qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
180 qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
181 qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
182 qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
183 qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
185 * Coefficients for approximation to erf in [0.84375,1.25]
187 pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
188 pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
189 pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
190 pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
191 pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
192 pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
193 pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
194 qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
195 qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
196 qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
197 qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
198 qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
199 qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
201 * Coefficients for approximation to erfc in [1.25,1/0.35]
203 ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
204 ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
205 ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
206 ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
207 ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
208 ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
209 ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
210 ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
211 sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
212 sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
213 sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
214 sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
215 sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
216 sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
217 sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
218 sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
220 * Coefficients for approximation to erfc in [1/.35,28]
222 rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
223 rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
224 rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
225 rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
226 rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
227 rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
228 rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
229 sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
230 sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
231 sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
232 sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
233 sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
234 sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
235 sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
237 #ifdef __STDC__
238 double erf(double x)
239 #else
240 double erf(x)
241 double x;
242 #endif
244 __int32_t hx,ix,i;
245 double R,S,P,Q,s,y,z,r;
246 GET_HIGH_WORD(hx,x);
247 ix = hx&0x7fffffff;
248 if(ix>=0x7ff00000) { /* erf(nan)=nan */
249 i = ((__uint32_t)hx>>31)<<1;
250 return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */
253 if(ix < 0x3feb0000) { /* |x|<0.84375 */
254 if(ix < 0x3e300000) { /* |x|<2**-28 */
255 if (ix < 0x00800000)
256 return 0.125*(8.0*x+efx8*x); /*avoid underflow */
257 return x + efx*x;
259 z = x*x;
260 r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
261 s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
262 y = r/s;
263 return x + x*y;
265 if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
266 s = fabs(x)-one;
267 P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
268 Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
269 if(hx>=0) return erx + P/Q; else return -erx - P/Q;
271 if (ix >= 0x40180000) { /* inf>|x|>=6 */
272 if(hx>=0) return one-tiny; else return tiny-one;
274 x = fabs(x);
275 s = one/(x*x);
276 if(ix< 0x4006DB6E) { /* |x| < 1/0.35 */
277 R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
278 ra5+s*(ra6+s*ra7))))));
279 S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
280 sa5+s*(sa6+s*(sa7+s*sa8)))))));
281 } else { /* |x| >= 1/0.35 */
282 R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
283 rb5+s*rb6)))));
284 S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
285 sb5+s*(sb6+s*sb7))))));
287 z = x;
288 SET_LOW_WORD(z,0);
289 r = exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S);
290 if(hx>=0) return one-r/x; else return r/x-one;
293 #ifdef __STDC__
294 double erfc(double x)
295 #else
296 double erfc(x)
297 double x;
298 #endif
300 __int32_t hx,ix;
301 double R,S,P,Q,s,y,z,r;
302 GET_HIGH_WORD(hx,x);
303 ix = hx&0x7fffffff;
304 if(ix>=0x7ff00000) { /* erfc(nan)=nan */
305 /* erfc(+-inf)=0,2 */
306 return (double)(((__uint32_t)hx>>31)<<1)+one/x;
309 if(ix < 0x3feb0000) { /* |x|<0.84375 */
310 if(ix < 0x3c700000) /* |x|<2**-56 */
311 return one-x;
312 z = x*x;
313 r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
314 s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
315 y = r/s;
316 if(hx < 0x3fd00000) { /* x<1/4 */
317 return one-(x+x*y);
318 } else {
319 r = x*y;
320 r += (x-half);
321 return half - r ;
324 if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
325 s = fabs(x)-one;
326 P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
327 Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
328 if(hx>=0) {
329 z = one-erx; return z - P/Q;
330 } else {
331 z = erx+P/Q; return one+z;
334 if (ix < 0x403c0000) { /* |x|<28 */
335 x = fabs(x);
336 s = one/(x*x);
337 if(ix< 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/
338 R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
339 ra5+s*(ra6+s*ra7))))));
340 S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
341 sa5+s*(sa6+s*(sa7+s*sa8)))))));
342 } else { /* |x| >= 1/.35 ~ 2.857143 */
343 if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
344 R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
345 rb5+s*rb6)))));
346 S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
347 sb5+s*(sb6+s*sb7))))));
349 z = x;
350 SET_LOW_WORD(z,0);
351 r = exp(-z*z-0.5625)*
352 exp((z-x)*(z+x)+R/S);
353 if(hx>0) return r/x; else return two-r/x;
354 } else {
355 if(hx>0) return tiny*tiny; else return two-tiny;
359 #endif /* _DOUBLE_IS_32BITS */