4 "cell_type": "markdown",
5 "id": "83b774b3-ef55-480a-b999-506676e49145",
8 "# v2.1 run RNN with Spatial Training\n",
10 "This notebook is intended to set up a test where the RNN is run serial by location and compared to the spatial training scheme. Additionally, the ODE model with the augmented KF will be run as a comparison, but note that the RNN models will be predicting entirely without knowledge of the heldout locations, while the augmented KF will be run directly on the test locations.\n"
14 "cell_type": "markdown",
15 "id": "bbd84d61-a9cd-47b4-b538-4986fb10b98d",
18 "## Environment Setup"
23 "execution_count": null,
24 "id": "83cc1dc4-3dcb-4325-9263-58101a3dc378",
28 "import numpy as np\n",
29 "from utils import print_dict_summary, print_first, str2time, logging_setup\n",
32 "import os.path as osp\n",
33 "from moisture_rnn_pkl import pkl2train\n",
34 "from moisture_rnn import RNNParams, RNNData, RNN, rnn_data_wrap\n",
35 "from utils import hash2, read_yml, read_pkl, retrieve_url, Dict\n",
36 "from moisture_rnn import RNN\n",
37 "import reproducibility\n",
38 "from data_funcs import rmse, to_json, combine_nested, build_train_dict\n",
39 "from moisture_models import run_augmented_kf\n",
41 "import pandas as pd\n",
42 "import matplotlib.pyplot as plt\n",
49 "execution_count": null,
50 "id": "17db9b90-a931-4674-a447-5b8ffbcdc86a",
59 "execution_count": null,
60 "id": "35319c1c-7849-4b8c-8262-f5aa6656e0c7",
64 "filename = \"fmda_rocky_202403-05_f05.pkl\"\n",
66 " url = f\"https://demo.openwfm.org/web/data/fmda/dicts/{filename}\", \n",
67 " dest_path = f\"data/{filename}\")"
72 "execution_count": null,
73 "id": "eabdbd9c-07d9-4bae-9851-cca79f321895",
77 "file_paths = [f\"data/{filename}\"]"
82 "execution_count": null,
83 "id": "dcca6185-e799-4dd1-8acb-87ad33c411d7",
87 "# read/write control\n",
88 "train_file='data/train.pkl'\n",
89 "train_create=True # if false, read\n",
90 "train_write=False\n",
96 "execution_count": null,
97 "id": "604388de-11ab-45c3-9f0d-80bdff0cca60",
101 "# Params used for data filtering\n",
102 "params_data = read_yml(\"params_data.yaml\") \n",
108 "execution_count": null,
109 "id": "211a1c2f-ba8d-40b8-b29c-daa38af97a26",
113 "# Params used for setting up RNN\n",
114 "params = read_yml(\"params.yaml\", subkey='rnn') \n",
120 "execution_count": null,
121 "id": "be81d76c-3123-4467-982b-d2da5b1c08bd",
127 "train = build_train_dict(file_paths, atm_source=\"HRRR\", params_data = params_data, spatial=False, verbose=True)"
132 "execution_count": null,
133 "id": "bc0a775b-b587-42ef-8576-e36dc0be3a75",
139 "# if train_create:\n",
140 "# logging.info('creating the training cases from files %s',file_paths)\n",
141 "# # osp.join works on windows too, joins paths using \\ or /\n",
142 "# train = process_train_dict(file_paths, atm_dict=\"HRRR\", params_data = params_data, verbose=True)\n",
143 "# if train_write:\n",
144 "# with open(train_file, 'wb') as file:\n",
145 "# logging.info('Writing the rain cases into file %s',train_file)\n",
146 "# pickle.dump(train, file)\n",
147 "# if train_read:\n",
148 "# logging.info('Reading the train cases from file %s',train_file)\n",
149 "# train = read_pkl(train_file)"
154 "execution_count": null,
155 "id": "23cd60c0-9865-4314-9a96-948c3d400c08",
159 "from itertools import islice\n",
160 "train = {k: train[k] for k in islice(train, 250)}"
164 "cell_type": "markdown",
165 "id": "efc10cdc-f18b-4781-84da-b8e2eef39981",
168 "## Setup Validation Runs"
172 "cell_type": "markdown",
173 "id": "2d9cd5c5-87ed-41f9-b36c-e0c18d58c841",
176 "The following parameters will be used for both serial and spatial models."
181 "execution_count": null,
182 "id": "66f40c9f-c1c2-4b12-bf14-2ada8c26113d",
186 "params = RNNParams(params)\n",
187 "params.update({'epochs': 200, \n",
188 " 'learning_rate': 0.001,\n",
189 " 'activation': ['tanh', 'tanh'], # Activation for RNN Layers, Dense layers respectively.\n",
190 " 'rnn_layers': 2, 'recurrent_units': 30, \n",
191 " 'dense_layers': 2, 'dense_units': 30,\n",
192 " 'early_stopping_patience': 30, # how many epochs of no validation accuracy gain to wait before stopping\n",
193 " 'batch_schedule_type': 'exp', # Hidden state batch reset schedule\n",
194 " 'bmin': 20, # Lower bound of hidden state batch reset, \n",
195 " 'bmax': params_data['hours'], # Upper bound of hidden state batch reset, using max hours\n",
196 " 'features_list': ['hod', 'Ed', 'Ew', 'rain', 'elev', 'lon', 'lat', 'solar', 'wind'],\n",
197 " 'timesteps': 12,\n",
198 " 'space_fracs': [.8, .1, .1]\n",
204 "execution_count": null,
205 "id": "36823193-b93c-421e-b699-8c1ae5719309",
209 "reproducibility.set_seed(123)"
213 "cell_type": "markdown",
214 "id": "a24d76fc-6c25-43e7-99df-3cd5dbf84fc3",
217 "## Spatial Data Training\n",
219 "This method combines the training timeseries data into a single 3-d array, with timeseries at the same location arranged appropriately in the right order for a given `batch_size` hyperparameter. The hidden state of the recurrent layers are set up reset when the location changes. "
224 "execution_count": null,
225 "id": "3b5371a9-c1e8-4df5-b360-210746f7cd52",
229 "# Start timer for code \n",
230 "start_time = time.time()"
235 "execution_count": null,
236 "id": "faf93470-b55f-4770-9fa9-3288a2f13fcc",
240 "# Combine Nested Dictionary into Spatial Data\n",
241 "train_sp = Dict(combine_nested(train))"
246 "execution_count": null,
247 "id": "c0c7f5fb-4c33-45f8-9a2e-38c9ab1cd4e3",
251 "# rnn_dat_sp = RNNData(\n",
252 "# train_sp, # input dictionary\n",
253 "# scaler=\"standard\", # data scaling type\n",
254 "# features_list = params['features_list'] # features for predicting outcome\n",
258 "# rnn_dat_sp.train_test_split( \n",
259 "# time_fracs = [.8, .1, .1], # Percent of total time steps used for train/val/test\n",
260 "# space_fracs = [.8, .1, .1] # Percent of total timeseries used for train/val/test\n",
262 "# rnn_dat_sp.scale_data()\n",
264 "# rnn_dat_sp.batch_reshape(\n",
265 "# timesteps = params['timesteps'], # Timesteps aka sequence length for RNN input data. \n",
266 "# batch_size = params['batch_size'] # Number of samples of length timesteps for a single round of grad. descent\n",
272 "execution_count": null,
273 "id": "af82c50e-bcc4-406d-b759-399119d1af81",
277 "rnn_dat_sp = rnn_data_wrap(train, params)\n",
279 " 'loc_batch_reset': rnn_dat_sp.n_seqs # Used to reset hidden state when location changes for a given batch\n",
285 "execution_count": null,
286 "id": "7431bc95-d384-40fd-a622-bbc0ee68e5cd",
290 "# # Update Params specific to spatial training\n",
291 "# params.update({\n",
292 "# 'loc_batch_reset': rnn_dat_sp.n_seqs # Used to reset hidden state when location changes for a given batch\n",
298 "execution_count": null,
299 "id": "4bc11474-fed8-47f2-b9cf-dfdda0d3d3b2",
303 "rnn_sp = RNN(params)\n",
304 "m_sp, errs = rnn_sp.run_model(rnn_dat_sp)"
309 "execution_count": null,
310 "id": "704ad662-d81a-488d-be3d-e90bf775a5b8",
319 "execution_count": null,
320 "id": "d53571e3-b6cf-49aa-9848-e3c77053283d",
325 "end_time = time.time()\n",
327 "# Calculate Code Runtime\n",
328 "elapsed_time_sp = end_time - start_time\n",
329 "print(f\"Spatial Training Elapsed time: {elapsed_time_sp:.4f} seconds\")"
333 "cell_type": "markdown",
334 "id": "7d8292a2-418c-48ed-aff7-ccbe98b046d3",
342 "execution_count": null,
343 "id": "8eaa136b-b496-4543-8970-dac46cb88df8",
347 "import importlib\n",
348 "import moisture_models\n",
349 "importlib.reload(moisture_models)\n",
350 "from moisture_models import run_augmented_kf"
355 "execution_count": null,
356 "id": "cca12d8c-c0e1-4df4-b2ca-20440485f2f3",
360 "# Get timeseries IDs from previous RNNData object\n",
361 "test_cases = rnn_dat_sp.loc['test_locs']\n",
362 "print(len(test_cases))"
367 "execution_count": null,
368 "id": "997f2534-7e77-45b3-93bf-d988837dfc0b",
372 "test_ind = rnn_dat_sp.test_ind # Time index for test period start\n",
378 "execution_count": null,
379 "id": "1e4ffc68-c775-41c6-ac42-f49c76824b43",
386 "for case in test_cases:\n",
387 " print(\"~\"*50)\n",
389 " # Run Augmented KF\n",
390 " print('Running Augmented KF')\n",
391 " train[case]['h2'] = test_ind\n",
392 " train[case]['scale_fm'] = 1\n",
393 " m, Ec = run_augmented_kf(train[case])\n",
394 " y = train[case]['y'] \n",
395 " train[case]['m_kf'] = m\n",
396 " print(f\"KF RMSE: {rmse(m[test_ind:],y[test_ind:])}\")\n",
397 " outputs_kf[case] = {'case':case, 'errs': rmse(m[test_ind:],y[test_ind:])}"
402 "execution_count": null,
403 "id": "57b19ec5-23f6-44ec-9f71-16d4d69aec68",
407 "df_kf = pd.DataFrame.from_dict(outputs_kf).transpose()\n",
413 "execution_count": null,
414 "id": "25a9d2fe-83f7-4ef3-a04b-14c970b6e2ba",
422 "cell_type": "markdown",
423 "id": "86795281-f8ea-4141-81ea-c53fae830e80",
431 "execution_count": null,
432 "id": "508a6392-49bc-4471-ad8e-814f60119283",
436 "print(f\"Total Test Cases: {len(test_cases)}\")\n",
437 "print(f\"Total Test Hours: {rnn_dat_sp.y_test.shape[0]}\")"
442 "execution_count": null,
443 "id": "73e8ca05-d17b-4e72-8def-fa77664e7bb0",
447 "print(f\"Spatial Training RMSE: {errs.mean()}\")\n",
448 "print(f\"Augmented KF RMSE: {df_kf.errs.mean()}\")"
453 "execution_count": null,
454 "id": "a73d22ee-707b-44a3-80ab-ad6e671731cf",
461 "execution_count": null,
462 "id": "272bfb32-e8e2-49dd-8f90-4b5b09c3a2a2",
466 "print(f\"Spatial Training Elapsed time: {elapsed_time_sp:.4f} seconds\")"
471 "execution_count": null,
472 "id": "38ab08fb-ac97-45be-8907-6f9cd124243b",
480 "display_name": "Python 3 (ipykernel)",
481 "language": "python",
489 "file_extension": ".py",
490 "mimetype": "text/x-python",
492 "nbconvert_exporter": "python",
493 "pygments_lexer": "ipython3",