Fix plot annotations
[notebooks.git] / fmda / fmda_rnn_serial.ipynb
blob99d5a7e1f5ac027aac8e78e6aa72305210671745
2  "cells": [
3   {
4    "cell_type": "markdown",
5    "id": "83b774b3-ef55-480a-b999-506676e49145",
6    "metadata": {},
7    "source": [
8     "# v2.1 run RNN strategy serial by Location\n",
9     "\n",
10     "This version of the RNN runs the model on each location separately, one at a time. Two main runs:\n",
11     "1. Run separate model at each location - training and prediction at least location independently - training mode periods 0:train_ind (was 0:h2), then prediction in test_ind:end. Validation data, if any, are from train_ind:test_ind\n",
12     "2. Run same model with multiple fitting calls 0:train_ind at different locations, compare prediction accuracy in test_ind:end  at for all location. \n"
13    ]
14   },
15   {
16    "cell_type": "code",
17    "execution_count": null,
18    "id": "83cc1dc4-3dcb-4325-9263-58101a3dc378",
19    "metadata": {},
20    "outputs": [],
21    "source": [
22     "import numpy as np\n",
23     "from utils import print_dict_summary, print_first, str2time, logging_setup\n",
24     "import pickle\n",
25     "import logging\n",
26     "import os.path as osp\n",
27     "from moisture_rnn_pkl import pkl2train\n",
28     "from moisture_rnn import RNNParams, RNNData, RNN, create_rnn_data2 \n",
29     "from utils import hash2, read_yml, read_pkl, retrieve_url\n",
30     "from moisture_rnn import RNN\n",
31     "import reproducibility\n",
32     "from data_funcs import rmse\n",
33     "from moisture_models import run_augmented_kf\n",
34     "import copy\n",
35     "import pandas as pd\n",
36     "import matplotlib.pyplot as plt\n",
37     "import yaml"
38    ]
39   },
40   {
41    "cell_type": "code",
42    "execution_count": null,
43    "id": "17db9b90-a931-4674-a447-5b8ffbcdc86a",
44    "metadata": {},
45    "outputs": [],
46    "source": [
47     "logging_setup()"
48    ]
49   },
50   {
51    "cell_type": "code",
52    "execution_count": null,
53    "id": "35319c1c-7849-4b8c-8262-f5aa6656e0c7",
54    "metadata": {},
55    "outputs": [],
56    "source": [
57     "retrieve_url(\n",
58     "    url = \"https://demo.openwfm.org/web/data/fmda/dicts/test_CA_202401.pkl\", \n",
59     "    dest_path = \"data/test_CA_202401.pkl\")"
60    ]
61   },
62   {
63    "cell_type": "code",
64    "execution_count": null,
65    "id": "eabdbd9c-07d9-4bae-9851-cca79f321895",
66    "metadata": {},
67    "outputs": [],
68    "source": [
69     "repro_file = \"data/reproducibility_dict_v2_TEST.pkl\"\n",
70     "file_names=['test_CA_202401.pkl']\n",
71     "file_dir='data'\n",
72     "file_paths = [osp.join(file_dir,file_name) for file_name in file_names]"
73    ]
74   },
75   {
76    "cell_type": "code",
77    "execution_count": null,
78    "id": "dcca6185-e799-4dd1-8acb-87ad33c411d7",
79    "metadata": {},
80    "outputs": [],
81    "source": [
82     "# read/write control\n",
83     "train_file='train.pkl'\n",
84     "train_create=True   # if false, read\n",
85     "train_write=True\n",
86     "train_read=True"
87    ]
88   },
89   {
90    "cell_type": "code",
91    "execution_count": null,
92    "id": "bc0a775b-b587-42ef-8576-e36dc0be3a75",
93    "metadata": {
94     "scrolled": true
95    },
96    "outputs": [],
97    "source": [
98     "repro = read_pkl(repro_file)\n",
99     "\n",
100     "if train_create:\n",
101     "    logging.info('creating the training cases from files %s',file_paths)\n",
102     "    # osp.join works on windows too, joins paths using \\ or /\n",
103     "    train = pkl2train(file_paths)\n",
104     "if train_write:\n",
105     "    with open(train_file, 'wb') as file:\n",
106     "        logging.info('Writing the rain cases into file %s',train_file)\n",
107     "        pickle.dump(train, file)\n",
108     "if train_read:\n",
109     "    logging.info('Reading the train cases from file %s',train_file)\n",
110     "    train = read_pkl(train_file)"
111    ]
112   },
113   {
114    "cell_type": "code",
115    "execution_count": null,
116    "id": "211a1c2f-ba8d-40b8-b29c-daa38af97a26",
117    "metadata": {},
118    "outputs": [],
119    "source": [
120     "params_all = read_yml(\"params.yaml\")\n",
121     "print(params_all.keys())"
122    ]
123   },
124   {
125    "cell_type": "code",
126    "execution_count": null,
127    "id": "698df86b-8550-4135-81df-45dbf503dd4e",
128    "metadata": {},
129    "outputs": [],
130    "source": [
131     "# from module_param_sets import param_sets"
132    ]
133   },
134   {
135    "cell_type": "code",
136    "execution_count": null,
137    "id": "4b0c9a9b-dd02-4251-aa4a-2acc1101e153",
138    "metadata": {},
139    "outputs": [],
140    "source": [
141     "param_sets_keys=['rnn']\n",
142     "# cases=[list(train.keys())[0]]\n",
143     "cases=list(train.keys())[70:90]\n",
144     "# cases.remove('reproducibility')\n",
145     "cases"
146    ]
147   },
148   {
149    "cell_type": "code",
150    "execution_count": null,
151    "id": "dd22baf2-59d2-460e-8c47-b20116dd5982",
152    "metadata": {},
153    "outputs": [],
154    "source": [
155     "logging.info('Running over parameter sets %s',param_sets_keys)\n",
156     "logging.info('Running over cases %s',cases)"
157    ]
158   },
159   {
160    "cell_type": "markdown",
161    "id": "802f3eef-1702-4478-b6e3-2288a6edae24",
162    "metadata": {},
163    "source": [
164     "## Run Reproducibility Case"
165    ]
166   },
167   {
168    "cell_type": "code",
169    "execution_count": null,
170    "id": "69a3adb9-39fd-4c0c-9c9b-aaa2a9a3af40",
171    "metadata": {},
172    "outputs": [],
173    "source": [
174     "params = repro['repro_info']['params']\n",
175     "print(type(params))\n",
176     "print(params)\n",
177     "\n",
178     "# Set up input data\n",
179     "rnn_dat = RNNData(repro, scaler = params['scaler'], features_list = params['features_list'])\n",
180     "rnn_dat.train_test_split(\n",
181     "    train_frac = params['train_frac'],\n",
182     "    val_frac = params['val_frac']\n",
183     ")\n",
184     "rnn_dat.scale_data()"
185    ]
186   },
187   {
188    "cell_type": "code",
189    "execution_count": null,
190    "id": "855703c4-d7a9-4579-bca7-7c737a81d0de",
191    "metadata": {},
192    "outputs": [],
193    "source": [
194     "reproducibility.set_seed(123)\n",
195     "rnn = RNN(params)\n",
196     "m, errs = rnn.run_model(rnn_dat, reproducibility_run=True)"
197    ]
198   },
199   {
200    "cell_type": "markdown",
201    "id": "49e31fdd-4c14-4a81-9e2b-4c6ba94d1f83",
202    "metadata": {},
203    "source": [
204     "## Separate Models by Location"
205    ]
206   },
207   {
208    "cell_type": "code",
209    "execution_count": null,
210    "id": "e11e7c83-183f-48ba-abd8-a6aedff66090",
211    "metadata": {},
212    "outputs": [],
213    "source": [
214     "# Set up output dictionaries\n",
215     "outputs_kf = {}\n",
216     "outputs_rnn = {}"
217    ]
218   },
219   {
220    "cell_type": "code",
221    "execution_count": null,
222    "id": "dc5b47bd-4fbc-44b8-b2dd-d118e068b450",
223    "metadata": {},
224    "outputs": [],
225    "source": [
226     "\n",
227     "for k in param_sets_keys:\n",
228     "    params = RNNParams(params_all[k])\n",
229     "    print(\"~\"*80)\n",
230     "    print(\"Running with params:\")\n",
231     "    print(params)\n",
232     "    # Increase Val Frac so no errors, TODO fix validation\n",
233     "    params.update({\n",
234     "        'train_frac': .5,\n",
235     "        'val_frac': .2,\n",
236     "        'activation': ['relu', 'relu'],\n",
237     "        'epochs': 200\n",
238     "    })\n",
239     "    for case in cases:\n",
240     "        print(\"~\"*50)\n",
241     "        logging.info('Processing case %s',case)\n",
242     "        print_dict_summary(train[case])\n",
243     "        # Format data & Run Model\n",
244     "        # rnn_dat = create_rnn_data2(train[case], params)\n",
245     "        rnn_dat = RNNData(train[case], scaler = params['scaler'], features_list = params['features_list'])\n",
246     "        rnn_dat.train_test_split(\n",
247     "            train_frac = params['train_frac'],\n",
248     "            val_frac = params['val_frac']\n",
249     "        )\n",
250     "        rnn_dat.scale_data()\n",
251     "        reproducibility.set_seed()\n",
252     "        rnn = RNN(params)\n",
253     "        m, errs = rnn.run_model(rnn_dat)\n",
254     "        # Add model output to case\n",
255     "        train[case]['m']=m\n",
256     "        # Get RMSE Prediction Error\n",
257     "        print(f\"RMSE: {errs}\")\n",
258     "        outputs_rnn[case] = {'case':case, 'm': m.copy(), 'errs': errs.copy()}\n",
259     "        \n",
260     "        # Run Augmented KF\n",
261     "        print('Running Augmented KF')\n",
262     "        train[case]['h2'] = train[case]['hours'] // 2\n",
263     "        train[case]['scale_fm'] = 1\n",
264     "        m, Ec = run_augmented_kf(train[case])\n",
265     "        m = m*rnn_dat['scale_fm']\n",
266     "        y = rnn_dat['y']*rnn_dat['scale_fm']          \n",
267     "        train[case]['m'] = m\n",
268     "        print(f\"KF RMSE: {rmse(m,y)}\")\n",
269     "        outputs_kf[case] = {'case':case, 'm': m.copy(), 'errs': rmse(m,y)}"
270    ]
271   },
272   {
273    "cell_type": "code",
274    "execution_count": null,
275    "id": "15384e4d-b8ec-4700-bdc2-83b0433d11c9",
276    "metadata": {},
277    "outputs": [],
278    "source": [
279     "logging.info('fmda_rnn_serial.ipynb done')"
280    ]
281   },
282   {
283    "cell_type": "code",
284    "execution_count": null,
285    "id": "d0e78fb3-b501-49d6-81a9-1a13da0134a0",
286    "metadata": {},
287    "outputs": [],
288    "source": [
289     "import importlib\n",
290     "import moisture_rnn\n",
291     "importlib.reload(moisture_rnn)\n",
292     "from moisture_rnn import RNN"
293    ]
294   },
295   {
296    "cell_type": "code",
297    "execution_count": null,
298    "id": "37053436-8dfe-4c40-8614-811817e83782",
299    "metadata": {},
300    "outputs": [],
301    "source": [
302     "for k in outputs_rnn:\n",
303     "    print(\"~\"*50)\n",
304     "    print(outputs_rnn[k]['case'])\n",
305     "    print(outputs_rnn[k]['errs']['prediction'])"
306    ]
307   },
308   {
309    "cell_type": "code",
310    "execution_count": null,
311    "id": "9154d5f7-015f-4ef7-af45-020410a1ea65",
312    "metadata": {},
313    "outputs": [],
314    "source": [
315     "for k in outputs_kf:\n",
316     "    print(\"~\"*50)\n",
317     "    print(outputs_kf[k]['case'])\n",
318     "    print(outputs_kf[k]['errs'])"
319    ]
320   },
321   {
322    "cell_type": "code",
323    "execution_count": null,
324    "id": "fe407f61-15f2-4086-a386-7d7a5bb90d26",
325    "metadata": {},
326    "outputs": [],
327    "source": []
328   },
329   {
330    "cell_type": "code",
331    "execution_count": null,
332    "id": "2fdb63b3-68b8-4877-a7a2-f63257cb29d5",
333    "metadata": {},
334    "outputs": [],
335    "source": []
336   },
337   {
338    "cell_type": "code",
339    "execution_count": null,
340    "id": "5c7563c5-a880-45c7-8381-8ce4e1a44216",
341    "metadata": {},
342    "outputs": [],
343    "source": []
344   },
345   {
346    "cell_type": "code",
347    "execution_count": null,
348    "id": "ad5dae6c-1269-4674-a49e-2efe8b956911",
349    "metadata": {},
350    "outputs": [],
351    "source": []
352   }
353  ],
354  "metadata": {
355   "kernelspec": {
356    "display_name": "Python 3 (ipykernel)",
357    "language": "python",
358    "name": "python3"
359   },
360   "language_info": {
361    "codemirror_mode": {
362     "name": "ipython",
363     "version": 3
364    },
365    "file_extension": ".py",
366    "mimetype": "text/x-python",
367    "name": "python",
368    "nbconvert_exporter": "python",
369    "pygments_lexer": "ipython3",
370    "version": "3.12.5"
371   }
372  },
373  "nbformat": 4,
374  "nbformat_minor": 5