3 import matplotlib
.pyplot
as plt
5 from abc
import ABC
, abstractmethod
7 # from xgboost import XGBRegressor
8 from sklearn
.metrics
import mean_squared_error
10 from sklearn
.ensemble
import RandomForestRegressor
11 from sklearn
.linear_model
import LinearRegression
12 from utils
import Dict
14 # ODE + Augmented Kalman Filter Code
15 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
17 def model_decay(m0
,E
,partials
=0,T1
=0.1,tlen
=1):
19 # m0 fuel moisture content at start dimensionless, unit (1)
20 # E fuel moisture eqilibrium (1)
21 # partials=0: return m1 = fuel moisture contents after time tlen (1)
22 # =1: return m1, dm0/dm0
23 # =2: return m1, dm1/dm0, dm1/dE
24 # =3: return m1, dm1/dm0, dm1/dE dm1/dT1
25 # T1 1/T, where T is the time constant approaching the equilibrium
27 # tlen the time interval length, default 1 hour
29 exp_t
= np
.exp(-tlen
*T1
) # compute this subexpression only once
30 m1
= E
+ (m0
- E
)*exp_t
# the solution at end
35 return m1
, dm1_dm0
# return value and Jacobian
38 return m1
, dm1_dm0
, dm1_dE
39 dm1_dT1
= -(m0
- E
)*tlen
*exp_t
# partial derivative dm1 / dT1
41 return m1
, dm1_dm0
, dm1_dE
, dm1_dT1
# return value and all partial derivatives wrt m1 and parameters
42 raise('Bad arg partials')
45 def ext_kf(u
,P
,F
,Q
=0,d
=None,H
=None,R
=None):
47 One step of the extended Kalman filter.
48 If there is no data, only advance in time.
49 :param u: the state vector, shape n
50 :param P: the state covariance, shape (n,n)
51 :param F: the model function, args vector u, returns F(u) and Jacobian J(u)
52 :param Q: the process model noise covariance, shape (n,n)
53 :param d: data vector, shape (m). If none, only advance in time
54 :param H: observation matrix, shape (m,n)
55 :param R: data error covariance, shape (n,n)
56 :return ua: the analysis state vector, shape (n)
57 :return Pa: the analysis covariance matrix, shape (n,n)
60 return np
.atleast_2d(a
) # convert to at least 2d array
63 return np
.atleast_1d(a
) # convert to at least 1d array
66 uf
, J
= F(u
) # advance the model state in time and get the Jacobian
67 uf
= d1(uf
) # if scalar, make state a 1D array
68 J
= d2(J
) # if scalar, make jacobian a 2D array
69 P
= d2(P
) # if scalar, make Jacobian as 2D array
70 Pf
= d2(J
.T
@ P
) @ J
+ Q
# advance the state covariance Pf = J' * P * J + Q
72 if d
is None or not d
.size
: # no data, no analysis
74 # K = P H' * inverse(H * P * H' + R) = (inverse(H * P * H' + R)*(H P))'
76 HP
= d2(H
@ P
) # precompute a part used twice
77 K
= d2(np
.linalg
.solve( d2(HP
@ H
.T
) + R
, HP
)).T
# Kalman gain
80 res
= d1(H
@ d1(uf
) - d
) # res = H*uf - d
81 ua
= uf
- K
@ res
# analysis mean uf - K*res
82 Pa
= Pf
- K
@ d2(H
@ P
) # analysis covariance
85 ### Define model function with drying, wetting, and rain equilibria
88 r0
= 0.05 # threshold rainfall [mm/h]
89 rs
= 8.0 # saturation rain intensity [mm/h]
90 Tr
= 14.0 # time constant for rain wetting model [h]
91 S
= 250 # saturation intensity [dimensionless]
92 T
= 10.0 # time constant for wetting/drying
94 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96 def model_moisture(m0
,Eqd
,Eqw
,r
,t
=None,partials
=0,T
=10.0,tlen
=1.0):
98 # m0 starting fuel moistureb (%s
99 # Eqd drying equilibrium (%)
100 # Eqw wetting equilibrium (%)
101 # r rain intensity (mm/h)
104 # returns: same as model_decay
105 # if partials==0: m1 = fuel moisture contents after time 1 hour
107 # ==2: m1, dm1/dm0, dm1/dE
112 T1
= (1.0 - np
.exp(- (r
- r0
) / rs
)) / Tr
124 exp_t
= np
.exp(-tlen
*T1
)
125 m1
= E
+ (m0
- E
)*exp_t
128 #if t>=933 and t < 940:
129 # print('t,Eqw,Eqd,r,T1,E,m0,m1,dm1_dm0,dm1_dE',
130 # t,Eqw,Eqd,r,T1,E,m0,m1,dm1_dm0,dm1_dE)
136 return m1
, dm1_dm0
, dm1_dE
137 raise('bad partials')
139 def model_augmented(u0
,Ed
,Ew
,r
,t
):
140 # state u is the vector [m,dE] with dE correction to equilibria Ed and Ew at t
142 m0
, Ec
= u0
# decompose state u0
143 # reuse model_moisture(m0,Eqd,Eqw,r,partials=0):
145 # m0 starting fuel moistureb (1)
146 # Ed drying equilibrium (1)
147 # Ew wetting equilibrium (1)
148 # r rain intensity (mm/h)
150 # returns: same as model_decay
151 # if partials==0: m1 = fuel moisture contents after time 1 hour
153 # ==2: m1, dm1/dm0, dm1/dE
154 m1
, dm1_dm0
, dm1_dE
= model_moisture(m0
,Ed
+ Ec
, Ew
+ Ec
, r
, t
, partials
=2)
155 u1
= np
.array([m1
,Ec
]) # dE is just copied
156 J
= np
.array([[dm1_dm0
, dm1_dE
],
161 ### Default Uncertainty Matrices
162 Q
= np
.array([[1e-3, 0.],
163 [0, 1e-3]]) # process noise covariance
164 H
= np
.array([[1., 0.]]) # first component observed
165 R
= np
.array([1e-3]) # data variance
167 def run_augmented_kf(dat0
,h2
=None,hours
=None, H
=H
, Q
=Q
, R
=R
):
168 dat
= copy
.deepcopy(dat0
)
173 hours
= int(dat
['hours'])
176 feats
= dat
['features_list']
177 Ed
= dat
['X'][:,feats
.index('Ed')]
178 Ew
= dat
['X'][:,feats
.index('Ew')]
179 rain
= dat
['X'][:,feats
.index('rain')]
181 u
= np
.zeros((2,hours
))
182 u
[:,0]=[0.1,0.0] # initialize,background state
183 P
= np
.zeros((2,2,hours
))
184 P
[:,:,0] = np
.array([[1e-3, 0.],
185 [0., 1e-3]]) # background state covariance
186 # Q = np.array([[1e-3, 0.],
187 # [0, 1e-3]]) # process noise covariance
188 # H = np.array([[1., 0.]]) # first component observed
189 # R = np.array([1e-3]) # data variance
191 for t
in range(1,h2
):
192 # use lambda construction to pass additional arguments to the model
193 u
[:,t
],P
[:,:,t
] = ext_kf(u
[:,t
-1],P
[:,:,t
-1],
194 lambda uu
: model_augmented(uu
,Ed
[t
],Ew
[t
],rain
[t
],t
),
196 # print('time',t,'data',d[t],'filtered',u[0,t],'Ec',u[1,t])
197 for t
in range(h2
,hours
):
198 u
[:,t
],P
[:,:,t
] = ext_kf(u
[:,t
-1],P
[:,:,t
-1],
199 lambda uu
: model_augmented(uu
,Ed
[t
],Ew
[t
],rain
[t
],t
),
201 # print('time',t,'data',d[t],'forecast',u[0,t],'Ec',u[1,t])
204 # General Machine Learning Models
205 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
208 def __init__(self
, params
: dict):
209 self
.params
= Dict(params
)
210 if type(self
) is MLModel
:
211 raise TypeError("MLModel is an abstract class and cannot be instantiated directly")
214 def filter_params(self
, model_cls
):
215 """Filters out parameters that are not part of the model constructor."""
216 model_params
= self
.params
.copy()
217 valid_keys
= model_cls
.__init
__.__code
__.co_varnames
218 filtered_params
= {k
: v
for k
, v
in model_params
.items() if k
in valid_keys
}
219 return filtered_params
222 def fit(self
, X_train
, y_train
, weights
=None):
223 print(f
"Fitting {self.params.mod_type} with params {self.params}")
224 self
.model
.fit(X_train
, y_train
, sample_weight
=weights
)
226 def predict(self
, X
):
227 print(f
"Predicting with {self.params.mod_type}")
228 preds
= self
.model
.predict(X
)
231 def eval(self
, X_test
, y_test
):
232 preds
= self
.predict(X_test
)
233 rmse
= np
.sqrt(mean_squared_error(y_test
, preds
))
234 # rmse_ros = np.sqrt(mean_squared_error(ros_3wind(y_test), ros_3wind(preds)))
235 print(f
"Test RMSE: {rmse}")
236 # print(f"Test RMSE (ROS): {rmse_ros}")
240 def __init__(self
, params
: dict):
241 super().__init
__(params
)
242 model_params
= self
.filter_params(XGBRegressor
)
243 self
.model
= XGBRegressor(**model_params
)
244 self
.params
['mod_type'] = "XGBoost"
246 def predict(self
, X
):
247 print("Predicting with XGB")
248 preds
= self
.model
.predict(X
)
252 def __init__(self
, params
: dict):
253 super().__init
__(params
)
254 model_params
= self
.filter_params(RandomForestRegressor
)
255 self
.model
= RandomForestRegressor(**model_params
)
256 self
.params
['mod_type'] = "RandomForest"
259 def __init__(self
, params
: dict):
260 super().__init
__(params
)
261 model_params
= self
.filter_params(LinearRegression
)
262 self
.model
= LinearRegression(**model_params
)
263 self
.params
['mod_type'] = "LinearRegression"