4 "cell_type": "markdown",
5 "id": "83b774b3-ef55-480a-b999-506676e49145",
8 "# v2.3 run RNN and Save\n",
10 "This notebook is intended to test traing and then saving a model object for later use.\n"
14 "cell_type": "markdown",
15 "id": "bbd84d61-a9cd-47b4-b538-4986fb10b98d",
18 "## Environment Setup"
23 "execution_count": null,
24 "id": "83cc1dc4-3dcb-4325-9263-58101a3dc378",
28 "import numpy as np\n",
30 "sys.path.append('..')\n",
33 "import os.path as osp\n",
34 "import tensorflow as tf\n",
35 "from moisture_rnn_pkl import pkl2train\n",
36 "from moisture_rnn import RNNParams, RNNData, RNN, rnn_data_wrap\n",
37 "from utils import hash2, read_yml, read_pkl, retrieve_url, Dict, print_dict_summary, print_first, str2time, logging_setup\n",
38 "from moisture_rnn import RNN\n",
39 "import reproducibility\n",
40 "from data_funcs import rmse, to_json, combine_nested, subset_by_features, build_train_dict\n",
41 "from moisture_models import run_augmented_kf\n",
43 "import pandas as pd\n",
44 "import matplotlib.pyplot as plt\n",
51 "execution_count": null,
52 "id": "17db9b90-a931-4674-a447-5b8ffbcdc86a",
61 "execution_count": null,
62 "id": "35319c1c-7849-4b8c-8262-f5aa6656e0c7",
66 "filename = \"fmda_rocky_202403-05_f05.pkl\"\n",
68 " url = f\"https://demo.openwfm.org/web/data/fmda/dicts/{filename}\", \n",
69 " dest_path = f\"../data/{filename}\")"
74 "execution_count": null,
75 "id": "eabdbd9c-07d9-4bae-9851-cca79f321895",
79 "file_paths = [f'../data/{filename}']"
84 "execution_count": null,
85 "id": "dcca6185-e799-4dd1-8acb-87ad33c411d7",
89 "# # read/write control\n",
90 "# train_file='../data/train.pkl'\n",
91 "# train_create=True # if false, read\n",
92 "# train_write=False\n",
98 "execution_count": null,
99 "id": "604388de-11ab-45c3-9f0d-80bdff0cca60",
103 "# Params used for data filtering\n",
104 "params_data = read_yml(\"../params_data.yaml\") \n",
110 "execution_count": null,
111 "id": "211a1c2f-ba8d-40b8-b29c-daa38af97a26",
115 "# Params used for setting up RNN\n",
116 "params = read_yml(\"../params.yaml\", subkey='rnn') \n",
118 " 'hidden_layers': ['dense', 'lstm', 'attention', 'dense'],\n",
119 " 'hidden_units': [64, 32, None, 32],\n",
120 " 'hidden_activation': ['relu', 'tanh', None, 'relu']\n",
126 "execution_count": null,
127 "id": "38e6bc61-e123-4cc9-bdee-54b051bbb352",
131 "feats = ['Ed', 'Ew', 'solar', 'wind', 'elev', 'lon', 'lat', 'rain']\n",
132 "params.update({'features_list': feats})"
137 "execution_count": null,
138 "id": "ef84104f-9898-4cd9-be54-7c480536ee0e",
144 "train = build_train_dict(file_paths, atm_source=\"RAWS\", params_data = params_data,\n",
145 " features_subset = feats, spatial=False, verbose=True)\n",
146 "train = subset_by_features(train, params['features_list'])\n",
147 "train = combine_nested(train)"
152 "execution_count": null,
153 "id": "bc0a775b-b587-42ef-8576-e36dc0be3a75",
159 "# if train_create:\n",
160 "# params_data.update({'hours': 1440})\n",
161 "# logging.info('creating the training cases from files %s',file_paths)\n",
162 "# # osp.join works on windows too, joins paths using \\ or /\n",
163 "# train = process_train_dict(file_paths, atm_dict = \"RAWS\", params_data = params_data, verbose=True)\n",
164 "# train = subset_by_features(train, feats)\n",
165 "# train = combine_nested(train)\n",
166 "# if train_write:\n",
167 "# with open(train_file, 'wb') as file:\n",
168 "# logging.info('Writing the rain cases into file %s',train_file)\n",
169 "# pickle.dump(train, file)\n",
170 "# if train_read:\n",
171 "# logging.info('Reading the train cases from file %s',train_file)\n",
172 "# train = read_pkl(train_file)"
176 "cell_type": "markdown",
177 "id": "a24d76fc-6c25-43e7-99df-3cd5dbf84fc3",
180 "## Spatial Data Training\n",
182 "This method combines the training timeseries data into a single 3-d array, with timeseries at the same location arranged appropriately in the right order for a given `batch_size` hyperparameter. The hidden state of the recurrent layers are set up reset when the location changes. "
187 "execution_count": null,
188 "id": "36823193-b93c-421e-b699-8c1ae5719309",
192 "reproducibility.set_seed(123)"
197 "execution_count": null,
198 "id": "66f40c9f-c1c2-4b12-bf14-2ada8c26113d",
202 "params = RNNParams(params)\n",
203 "# params.update({'epochs': 200, \n",
204 "# 'learning_rate': 0.001,\n",
205 "# 'activation': ['relu', 'relu'], # Activation for RNN Layers, Dense layers respectively.\n",
206 "# 'recurrent_layers': 1, 'recurrent_units': 30, \n",
207 "# 'dense_layers': 1, 'dense_units': 30,\n",
208 "# 'early_stopping_patience': 30, # how many epochs of no validation accuracy gain to wait before stopping\n",
209 "# 'batch_schedule_type': 'exp', # Hidden state batch reset schedule\n",
210 "# 'bmin': 20, # Lower bound of hidden state batch reset, \n",
211 "# 'bmax': params_data['hours'], # Upper bound of hidden state batch reset, using max hours\n",
212 "# 'batch_size': 60\n",
218 "execution_count": null,
219 "id": "82bc407d-9d26-41e3-8b58-ab3f7238e105",
223 "import importlib\n",
224 "import moisture_rnn\n",
225 "importlib.reload(moisture_rnn)\n",
226 "from moisture_rnn import RNNData"
231 "execution_count": null,
232 "id": "924549ba-ea73-4fc9-91b3-8f1f0e32e831",
236 "rnn_dat_sp = rnn_data_wrap(train, params)\n",
238 " 'loc_batch_reset': rnn_dat_sp.n_seqs, # Used to reset hidden state when location changes for a given batch\n",
239 " 'bmax': params_data['hours']\n",
245 "execution_count": null,
246 "id": "4bc11474-fed8-47f2-b9cf-dfdda0d3d3b2",
250 "rnn_sp = RNN(params)\n",
251 "m_sp, errs = rnn_sp.run_model(rnn_dat_sp)"
256 "execution_count": null,
257 "id": "704ad662-d81a-488d-be3d-e90bf775a5b8",
265 "cell_type": "markdown",
266 "id": "62c1b049-304e-4c90-b1d2-b9b96b9a202f",
274 "execution_count": null,
275 "id": "f333521f-c724-40bf-8c1c-32735aea52cc",
279 "outpath = \"../outputs/models\"\n",
280 "filename = osp.join(outpath, f\"model_predict_raws_rocky.keras\")\n",
281 "rnn_sp.model_predict.save(filename) # save prediction model only"
286 "execution_count": null,
287 "id": "cf6231a9-0c7b-45ba-ac75-7fb5b6124c72",
291 "with open(f\"{outpath}/rnn_data_rocky.pkl\", 'wb') as file:\n",
292 " pickle.dump(rnn_dat_sp, file)"
296 "cell_type": "markdown",
297 "id": "bc1c601f-23a9-41b0-b921-47f1340f2a47",
305 "execution_count": null,
306 "id": "3c27b3c1-6f60-450e-82ea-18eaf012fece",
310 "mod = tf.keras.models.load_model(filename)"
315 "execution_count": null,
316 "id": "25bf5420-d681-40ec-9eb8-aed784ca4e5a",
320 "from utils import hash_weights\n",
327 "execution_count": null,
328 "id": "d773b2ab-18de-4b13-a243-b6353c57f192",
332 "type(rnn_dat_sp.X_test)"
337 "execution_count": null,
338 "id": "253ba437-c3a2-452b-b8e6-078aa17c8408",
342 "X_test = np.stack(rnn_dat_sp.X_test, axis=0)\n",
343 "y_array = np.stack(rnn_dat_sp.y_test, axis=0)"
348 "execution_count": null,
349 "id": "f4332dd8-57cd-4f5b-a864-dc72f96d72b2",
353 "preds = mod.predict(X_test)\n",
359 "execution_count": null,
360 "id": "4e4cd809-6701-4bd7-b4fe-37c5e35d8999",
364 "np.mean(np.sqrt(np.mean(np.square(preds - y_array), axis=(1,2))))"
369 "execution_count": null,
370 "id": "4f4d80cb-edef-4720-b335-4af5a04992c3",
377 "execution_count": null,
378 "id": "e9d7f913-b391-4e14-9b64-46a0a9786f4a",
386 "display_name": "Python 3 (ipykernel)",
387 "language": "python",
395 "file_extension": ".py",
396 "mimetype": "text/x-python",
398 "nbconvert_exporter": "python",
399 "pygments_lexer": "ipython3",