1 # v2 training and prediction class infrastructure
7 import tensorflow
as tf
8 import matplotlib
.pyplot
as plt
10 from tensorflow
.keras
.callbacks
import Callback
, EarlyStopping
, TerminateOnNaN
11 # from sklearn.metrics import mean_squared_error
13 from tensorflow
.keras
.layers
import LSTM
, SimpleRNN
, Input
, Dropout
, Dense
15 import reproducibility
16 # from utils import print_dict_summary
17 from abc
import ABC
, abstractmethod
18 from utils
import hash2
, all_items_exist
, hash_ndarray
, hash_weights
19 from data_funcs
import rmse
, plot_data
, compare_dicts
22 from sklearn
.preprocessing
import MinMaxScaler
, StandardScaler
25 #*************************************************************************************
26 # Data Formatting Functions
28 def staircase(x
,y
,timesteps
,datapoints
,return_sequences
=False, verbose
= False):
29 # x [datapoints,features] all inputs
30 # y [datapoints,outputs]
31 # timesteps: split x and y into samples length timesteps, shifted by 1
32 # datapoints: number of timesteps to use for training, no more than y.shape[0]
34 print('staircase: shape x = ',x
.shape
)
35 print('staircase: shape y = ',y
.shape
)
36 print('staircase: timesteps=',timesteps
)
37 print('staircase: datapoints=',datapoints
)
38 print('staircase: return_sequences=',return_sequences
)
41 samples
= datapoints
-timesteps
+1
43 print('staircase: samples=',samples
,'timesteps=',timesteps
,'features=',features
)
44 x_train
= np
.empty([samples
, timesteps
, features
])
47 print('returning all timesteps in a sample')
48 y_train
= np
.empty([samples
, timesteps
, outputs
]) # all
49 for i
in range(samples
):
50 for k
in range(timesteps
):
51 x_train
[i
,k
,:] = x
[i
+k
,:]
52 y_train
[i
,k
,:] = y
[i
+k
,:]
55 print('returning only the last timestep in a sample')
56 y_train
= np
.empty([samples
, outputs
])
57 for i
in range(samples
):
58 for k
in range(timesteps
):
59 x_train
[i
,k
,:] = x
[i
+k
,:]
60 y_train
[i
,:] = y
[i
+timesteps
-1,:]
62 return x_train
, y_train
64 def staircase_2(x
,y
,timesteps
,batch_size
=None,trainsteps
=np
.inf
,return_sequences
=False, verbose
= False):
65 # create RNN training data in multiple batches
69 # timesteps: split x and y into sequences length timesteps
70 # a.k.a. lookback or sequence_length
72 # print params if verbose
74 if batch_size
is None:
75 raise ValueError('staircase_2 requires batch_size')
77 print('staircase_2: shape x = ',x
.shape
)
78 print('staircase_2: shape y = ',y
.shape
)
79 print('staircase_2: timesteps=',timesteps
)
80 print('staircase_2: batch_size=',batch_size
)
81 print('staircase_2: return_sequences=',return_sequences
)
85 datapoints
= min(nx
,ny
,trainsteps
)
87 print('staircase_2: datapoints=',datapoints
)
89 # sequence j in a given batch is assumed to be the continuation of sequence j in the previous batch
90 # https://www.tensorflow.org/guide/keras/working_with_rnns Cross-batch statefulness
92 # example with timesteps=3 batch_size=3 datapoints=15
93 # batch 0: [0 1 2] [1 2 3] [2 3 4]
94 # batch 1: [3 4 5] [4 5 6] [5 6 7]
95 # batch 2: [6 7 8] [7 8 9] [8 9 10]
96 # batch 3: [9 10 11] [10 11 12] [11 12 13]
97 # batch 4: [12 13 14] [13 14 15] when runs out this is the last batch, can be shorter
99 # TODO: implement for multiple locations, same starting time for each batch
101 # batch 0: [0 1 2] [0 1 2] [0 1 2]
102 # batch 1: [3 4 5] [3 4 5] [3 4 5]
103 # batch 2: [6 7 8] [6 7 8] [6 7 8]
104 # TODO: second epoch shift starting time at batch 0 in time
106 # TODO: implement for multiple locations, different starting times for each batch
108 # batch 0: [0 1 2] [1 2 3] [2 3 4]
109 # batch 1: [3 4 5] [4 5 6] [5 6 57
110 # batch 2: [6 7 8] [7 8 9] [8 9 10]
113 # the first sample in batch j starts from timesteps*j and ends with timesteps*(j+1)-1
114 # e.g. the final hidden state of the rnn after the sequence of steps [0 1 2] in batch 0
115 # becomes the starting hidden state of the rnn in the sequence of steps [3 4 5] in batch 1, etc.
117 # sample [0 1 2] means the rnn is used twice to map state 0 -> 1 -> 2
118 # the state at time 0 is fixed but the state is considered a variable at times 1 and 2
119 # the loss is computed from the output at time 2 and the gradient of the loss function by chain rule which ends at time 0 because the state there is a constant -> derivative is zero
120 # sample [3 4 5] means the rnn is used twice to map state 3 -> 4 -> 5 # the state at time 3 is fixed to the output of the first sequence [0 1 2]
121 # the loss is computed from the output at time 5 and the gradient of the loss function by chain rule which ends at time 3 because the state there is considered constant -> derivative is zero
122 # how is the gradient computed? I suppose keras adds gradient wrt the weights at 2 5 8 ... 3 6 9... 4 7 ... and uses that to update the weights
123 # there is only one set of weights h(2) = f(h(1),w) h(1) = f(h(0),w) but w is always the same
124 # each column is a one successive evaluation of h(n+1) = f(h(n),w) for n = n_startn n_start+1,...
125 # the cannot be evaluated efficiently on gpu because gpu is a parallel processor
126 # this of it as each column served by one thread, and the threads are independent because they execute in parallel, there needs to be large number of threads (32 is a good number)\
127 # each batch consists of independent calculations
128 # but it can depend on the result of the previous batch (that's the recurrent parr)
132 max_batches
= datapoints
// timesteps
133 max_sequences
= max_batches
* batch_size
136 print('staircase_2: max_batches=',max_batches
)
137 print('staircase_2: max_sequences=',max_sequences
)
139 x_train
= np
.zeros((max_sequences
, timesteps
, features
))
141 y_train
= np
.empty((max_sequences
, timesteps
, outputs
))
143 y_train
= np
.empty((max_sequences
, outputs
))
145 # build the sequences
147 for i
in range(max_batches
):
148 for j
in range(batch_size
):
149 begin
= i
*timesteps
+ j
150 next
= begin
+ timesteps
151 if next
> datapoints
:
154 print('sequence',k
,'batch',i
,'sample',j
,'data',begin
,'to',next
-1)
155 x_train
[k
,:,:] = x
[begin
:next
,:]
157 y_train
[k
,:,:] = y
[begin
:next
,:]
159 y_train
[k
,:] = y
[next
-1,:]
162 print('staircase_2: shape x_train = ',x_train
.shape
)
163 print('staircase_2: shape y_train = ',y_train
.shape
)
164 print('staircase_2: sequences generated',k
)
165 print('staircase_2: batch_size=',batch_size
)
166 k
= (k
// batch_size
) * batch_size
168 print('staircase_2: removing partial and empty batches at the end, keeping',k
)
169 x_train
= x_train
[:k
,:,:]
171 y_train
= y_train
[:k
,:,:]
173 y_train
= y_train
[:k
,:]
176 print('staircase_2: shape x_train = ',x_train
.shape
)
177 print('staircase_2: shape y_train = ',y_train
.shape
)
179 return x_train
, y_train
182 # Dictionary of scalers, used to avoid multiple object creation and to avoid multiple if statements
184 'minmax': MinMaxScaler(),
185 'standard': StandardScaler()
189 def batch_setup(ids
, batch_size
):
191 Sets up stateful batched training data scheme for RNN training.
193 This function takes a list or array of identifiers (`ids`) and divides them into batches of a specified size (`batch_size`). If the last batch does not have enough elements to meet the `batch_size`, the function will loop back to the start of the identifiers and continue filling the batch until it reaches the required size.
197 ids : list or numpy array
198 A list or numpy array containing the ids to be batched.
201 The desired size of each batch.
205 batches : list of lists
206 A list where each element is a batch (itself a list) of identifiers. Each batch will contain exactly `batch_size` elements.
210 >>> ids = [1, 2, 3, 4, 5]
212 >>> batch_setup(ids, batch_size)
213 [[1, 2, 3], [4, 5, 1]]
217 - If `ids` is shorter than `batch_size`, the returned list will contain a single batch where identifiers are repeated from the start of `ids` until the batch is filled.
219 # Ensure ids is a numpy array
222 # Initialize the list to hold the batches
225 # Use a loop to slice the list/array into batches
226 for i
in range(0, len(x
), batch_size
):
227 batch
= list(x
[i
:i
+ batch_size
])
229 # If the batch is not full, continue from the start
230 while len(batch
) < batch_size
:
231 # Calculate the remaining number of items needed
232 remaining
= batch_size
- len(batch
)
233 # Append the needed number of items from the start of the array
234 batch
.extend(x
[:remaining
])
236 batches
.append(batch
)
240 def staircase_spatial(X
, y
, batch_size
, timesteps
, hours
=None, start_times
= None, verbose
= True):
242 Prepares spatially formatted time series data for RNN training by creating batches of sequences across different locations, stacked to be compatible with stateful models.
244 This function processes multi-location time series data by slicing it into batches and formatting it to fit into a recurrent neural network (RNN) model. It utilizes a staircase-like approach to prepare sequences for each location and then interlaces them to align with stateful RNN structures.
248 X : list of numpy arrays
249 A list where each element is a numpy array containing features for a specific location. The shape of each array is `(total_time_steps, features)`.
251 y : list of numpy arrays
252 A list where each element is a numpy array containing the target values for a specific location. The shape of each array is `(total_time_steps,)`.
255 The number of sequences to include in each batch.
258 The number of time steps to include in each sequence for the RNN.
260 hours : int, optional
261 The length of each time series to consider for each location. If `None`, it defaults to the minimum length of `y` across all locations.
263 start_times : numpy array, optional
264 The initial time step for each location. If `None`, it defaults to an array starting from 0 and incrementing by 1 for each location.
266 verbose : bool, optional
267 If `True`, prints additional information during processing. Default is `True`.
272 A 3D numpy array with shape `(total_sequences, timesteps, features)` containing the prepared feature sequences for all locations.
275 A 2D numpy array with shape `(total_sequences, 1)` containing the corresponding target values for all locations.
278 Number of sequences per location. Used to reset states when location changes. Hidden state of RNN will be reset after n_seqs number of batches
282 - The function handles spatially distributed time series data by batching and formatting it for stateful RNNs.
283 - `hours` determines how much of the time series is used for each location. If not provided, it defaults to the shortest series in `y`.
284 - If `start_times` is not provided, it assumes each location starts its series at progressively later time steps.
285 - The `batch_setup` function is used internally to manage the creation of location and time step batches.
286 - The returned feature sequences `XX` and target sequences `yy` are interlaced to align with the expected input format of stateful RNNs.
289 # Generate ids based on number of distinct timeseries provided
290 n_loc
= len(y
) # assuming each list entry for y is a separate location
291 loc_ids
= np
.arange(n_loc
)
293 # Generate hours and start_times if None
295 print("Setting total hours to minimum length of y in provided dictionary")
296 hours
= min(len(yi
) for yi
in y
)
297 if start_times
is None:
298 print("Setting Start times to offset by 1 hour by location")
299 start_times
= np
.arange(n_loc
)
301 loc_batch
, t_batch
= batch_setup(loc_ids
, batch_size
), batch_setup(start_times
, batch_size
)
303 print(f
"Location ID Batches: {loc_batch}")
304 print(f
"Start Times for Batches: {t_batch}")
306 # Loop over batches and construct with staircase_2
309 for i
in range(0, len(loc_batch
)):
310 locs_i
= loc_batch
[i
]
312 for j
in range(0, len(locs_i
)):
315 # Create RNNData Dict
316 # Subset data to given location and time from t0 to t0+hours
317 k
= locs_i
[j
] # Used to account for fewer locations than batch size
318 X_temp
= X
[k
][t0
:tend
,:]
319 y_temp
= y
[k
][t0
:tend
].reshape(-1,1)
322 Xi
, yi
= staircase_2(
325 timesteps
= timesteps
,
326 batch_size
= 1, # note: using 1 here to format sequences for a single location, not same as target batch size for training data
332 # Drop incomplete batches
333 lens
= [yi
.shape
[0] for yi
in ys
]
336 print(f
"Minimum number of sequences by location: {n_seqs}")
337 print(f
"Applying minimum length to other arrays.")
338 Xs
= [Xi
[:n_seqs
] for Xi
in Xs
]
339 ys
= [yi
[:n_seqs
] for yi
in ys
]
341 # Interlace arrays to match stateful structure
342 n_features
= Xi
.shape
[2]
345 for i
in range(0, len(loc_batch
)):
346 locs_i
= loc_batch
[i
]
347 XXi
= np
.empty((Xs
[0].shape
[0]*batch_size
, 5, n_features
))
348 yyi
= np
.empty((Xs
[0].shape
[0]*batch_size
, 1))
349 for j
in range(0, len(locs_i
)):
350 XXi
[j
::(batch_size
)] = Xs
[locs_i
[j
]]
351 yyi
[j
::(batch_size
)] = ys
[locs_i
[j
]]
354 yy
= np
.concatenate(yys
, axis
=0)
355 XX
= np
.concatenate(XXs
, axis
=0)
358 print(f
"Spatially Formatted X Shape: {XX.shape}")
359 print(f
"Spatially Formatted X Shape: {yy.shape}")
362 return XX
, yy
, n_seqs
364 #***********************************************************************************************
365 ### RNN Class Functionality
367 class RNNParams(dict):
369 A custom dictionary class for handling RNN parameters. Automatically calculates certain params based on others. Overwrites the update method to protect from incompatible parameter choices. Inherits from dict
371 def __init__(self
, input_dict
):
373 Initializes the RNNParams instance and runs checks and shape calculations.
378 A dictionary containing RNN parameters.
380 super().__init
__(input_dict
)
381 # Automatically run checks on initialization
383 # Automatically calculate shapes on initialization
384 self
.calc_param_shapes()
385 def run_checks(self
, verbose
=True):
387 Validates that required keys exist and are of the correct type.
391 verbose : bool, optional
392 If True, prints status messages. Default is True.
394 print("Checking params...")
395 # Keys must exist and be integers
397 'batch_size', 'timesteps', 'rnn_layers',
398 'rnn_units', 'dense_layers', 'dense_units', 'epochs'
402 assert key
in self
, f
"Missing required key: {key}"
403 assert isinstance(self
[key
], int), f
"Key '{key}' must be an integer"
405 # Keys must exist and be lists
406 list_keys
= ['activation', 'features_list', 'dropout']
407 for key
in list_keys
:
408 assert key
in self
, f
"Missing required key: {key}"
409 assert isinstance(self
[key
], list), f
"Key '{key}' must be a list"
411 # Keys must exist and be floats
412 float_keys
= ['learning_rate', 'train_frac', 'val_frac']
413 for key
in float_keys
:
414 assert key
in self
, f
"Missing required key: {key}"
415 assert isinstance(self
[key
], float), f
"Key '{key}' must be a float"
417 print("Input dictionary passed all checks.")
418 def calc_param_shapes(self
, verbose
=True):
420 Calculates and updates the shapes of certain parameters based on input data.
424 verbose : bool, optional
425 If True, prints status messages. Default is True.
428 print("Calculating shape params based on features list, timesteps, and batch size")
429 print(f
"Input Feature List: {self['features_list']}")
430 print(f
"Input Timesteps: {self['timesteps']}")
431 print(f
"Input Batch Size: {self['batch_size']}")
433 n_features
= len(self
['features_list'])
434 batch_shape
= (self
["batch_size"], self
["timesteps"], n_features
)
436 print("Calculated params:")
437 print(f
"Number of features: {n_features}")
438 print(f
"Batch Shape: {batch_shape}")
440 # Update the dictionary
442 'n_features': n_features
,
443 'batch_shape': batch_shape
448 def update(self
, *args
, verbose
=True, **kwargs
):
450 Overwrites the standard update functon from dict. This is to prevent certain keys from being modified directly and to automatically update keys to be compatible with each other. The keys handled relate to the shape of the input data to the RNN.
454 verbose : bool, optional
455 If True, prints status messages. Default is True.
457 # Prevent updating n_features and batch_shape
458 restricted_keys
= {'n_features', 'batch_shape'}
459 keys_to_check
= {'features_list', 'timesteps', 'batch_size'}
461 # Check for restricted keys in args
463 if isinstance(args
[0], dict):
464 if restricted_keys
& args
[0].keys():
465 raise KeyError(f
"Cannot directly update keys: {restricted_keys & args[0].keys()}, \n Instead update one of: {keys_to_check}")
466 elif isinstance(args
[0], (tuple, list)) and all(isinstance(i
, tuple) and len(i
) == 2 for i
in args
[0]):
467 if restricted_keys
& {k
for k
, v
in args
[0]}:
468 raise KeyError(f
"Cannot directly update keys: {restricted_keys & {k for k, v in args[0]}}, \n Instead update one of: {keys_to_check}")
470 # Check for restricted keys in kwargs
471 if restricted_keys
& kwargs
.keys():
472 raise KeyError(f
"Cannot update restricted keys: {restricted_keys & kwargs.keys()}")
475 # Track if specific keys are updated
478 # Update using the standard dict update method
480 if isinstance(args
[0], dict):
481 keys_updated
.update(args
[0].keys() & keys_to_check
)
482 elif isinstance(args
[0], (tuple, list)) and all(isinstance(i
, tuple) and len(i
) == 2 for i
in args
[0]):
483 keys_updated
.update(k
for k
, v
in args
[0] if k
in keys_to_check
)
486 keys_updated
.update(kwargs
.keys() & keys_to_check
)
488 # Call the parent update method
489 super().update(*args
, **kwargs
)
491 # Recalculate shapes if necessary
493 self
.calc_param_shapes(verbose
=verbose
)
496 ## Class for handling input data
499 A custom dictionary class for managing RNN data, with validation, scaling, and train-test splitting functionality.
501 required_keys
= {"loc", "time", "X", "y", "features_list"}
502 def __init__(self
, input_dict
, scaler
=None, features_list
=None):
504 Initializes the RNNData instance, performs checks, and prepares data.
509 A dictionary containing the initial data.
510 scaler : str, optional
511 The name of the scaler to be used (e.g., 'minmax', 'standard'). Default is None.
512 features_list : list, optional
513 A subset of features to be used. Default is None which means all features.
516 # Copy to avoid changing external input
517 input_data
= input_dict
.copy()
518 # Initialize inherited dict class
519 super().__init
__(input_data
)
521 # Check if input data is one timeseries dataset or multiple
522 if type(self
.loc
['STID']) == str:
524 print("Input data is single timeseries.")
525 elif type(self
.loc
['STID']) == list:
527 print("Input data from multiple timeseries.")
529 raise KeyError(f
"Input locations not list or single string")
531 # Set up Data Scaling
533 if scaler
is not None:
534 self
.set_scaler(scaler
)
536 # Rename and define other stuff.
538 self
['hours'] = min(arr
.shape
[0] for arr
in self
.y
)
540 self
['hours'] = len(self
['y'])
542 self
['all_features_list'] = self
.pop('features_list')
543 if features_list
is None:
544 print("Using all input features.")
545 self
.features_list
= self
.all_features_list
547 self
.features_list
= features_list
549 self
.__dict
__.update(self
)
551 # TODO: Fix checks for multilocation
552 def run_checks(self
, verbose
=True):
554 Validates that required keys are present and checks the integrity of data shapes.
558 verbose : bool, optional
559 If True, prints status messages. Default is True.
561 missing_keys
= self
.required_keys
- self
.keys()
563 raise KeyError(f
"Missing required keys: {missing_keys}")
565 # y_shape = np.shape(self.y)
566 # if not (len(y_shape) == 1 or (len(y_shape) == 2 and y_shape[1] == 1)):
567 # raise ValueError(f"'y' must be one-dimensional, with shape (N,) or (N, 1). Current shape is {y_shape}.")
569 # # Check if 'hours' is provided and matches len(y)
570 # if 'hours' in self:
571 # if self.hours != len(self.y):
572 # raise ValueError(f"Provided 'hours' value {self.hours} does not match the length of 'y', which is {len(self.y)}.")
573 # Check desired subset of features is in all input features
574 if not all_items_exist(self
.features_list
, self
.all_features_list
):
575 raise ValueError(f
"Provided 'features_list' {self.features_list} has elements not in input features.")
576 def set_scaler(self
, scaler
):
578 Sets the scaler to be used for data normalization.
583 The name of the scaler (e.g., 'minmax', 'standard').
585 recognized_scalers
= ['minmax', 'standard']
586 if scaler
in recognized_scalers
:
587 print(f
"Setting data scaler: {scaler}")
588 self
.scaler
= scalers
[scaler
]
590 raise ValueError(f
"Unrecognized scaler '{scaler}'. Recognized scalers are: {recognized_scalers}.")
591 def train_test_split(self
, train_frac
, val_frac
=0.0, subset_features
=True, features_list
=None, split_space
=False, verbose
=True):
593 Splits the data into training, validation, and test sets.
598 The fraction of data to be used for training.
599 val_frac : float, optional
600 The fraction of data to be used for validation. Default is 0.0.
601 subset_features : bool, optional
602 If True, subsets the data to the specified features list. Default is True.
603 features_list : list, optional
604 A list of features to use for subsetting. Default is None.
605 split_space : bool, optional
606 Whether to split the data based on space. Default is False.
607 verbose : bool, optional
608 If True, prints status messages. Default is True.
610 # Indicate whether multi timeseries or not
611 spatial
= self
.spatial
613 # Extract data to desired features, copy to avoid changing input objects
617 if verbose
and self
.features_list
!= self
.all_features_list
:
618 print(f
"Subsetting input data to features_list: {self.features_list}")
619 # Indices to subset all features with based on params features
621 for item
in self
.features_list
:
622 if item
in self
.all_features_list
:
623 indices
.append(self
.all_features_list
.index(item
))
625 print(f
"Warning: feature name '{item}' not found in list of all features from input data")
627 X
= [Xi
[:, indices
] for Xi
in X
]
631 # Setup train/test in time
632 train_ind
= int(np
.floor(self
.hours
* train_frac
)); self
.train_ind
= train_ind
633 test_ind
= int(train_ind
+ round(self
.hours
* val_frac
)); self
.test_ind
= test_ind
635 # Check for any potential issues with indices
636 if test_ind
> self
.hours
:
637 print(f
"Setting test index to {self.hours}")
638 test_ind
= self
.hours
639 if train_ind
>= test_ind
:
640 raise ValueError("Train index must be less than test index.")
642 # Training data from 0 to train_ind
643 # Validation data from train_ind to test_ind
644 # Test data from test_ind to end
646 self
.X_train
= [Xi
[:train_ind
] for Xi
in X
]
647 self
.y_train
= [yi
[:train_ind
].reshape(-1,1) for yi
in y
]
649 self
.X_val
= [Xi
[train_ind
:test_ind
] for Xi
in X
]
650 self
.y_val
= [yi
[train_ind
:test_ind
].reshape(-1,1) for yi
in y
]
651 self
.X_test
= [Xi
[test_ind
:] for Xi
in X
]
652 self
.y_test
= [yi
[test_ind
:].reshape(-1,1) for yi
in y
]
654 self
.X_train
= X
[:train_ind
]
655 self
.y_train
= y
[:train_ind
].reshape(-1,1) # assumes y 1-d, change this if vector output
657 self
.X_val
= X
[train_ind
:test_ind
]
658 self
.y_val
= y
[train_ind
:test_ind
].reshape(-1,1) # assumes y 1-d, change this if vector output
659 self
.X_test
= X
[test_ind
:]
660 self
.y_test
= y
[test_ind
:].reshape(-1,1) # assumes y 1-d, change this if vector output
664 # Print statements if verbose
666 print(f
"Train index: 0 to {train_ind}")
667 print(f
"Validation index: {train_ind} to {test_ind}")
668 print(f
"Test index: {test_ind} to {self.hours}")
671 print(f
"X_train[0] shape: {self.X_train[0].shape}, y_train[0] shape: {self.y_train[0].shape}")
672 print(f
"X_val[0] shape: {self.X_val[0].shape}, y_val[0] shape: {self.y_val[0].shape}")
673 print(f
"X_test[0] shape: {self.X_test[0].shape}, y_test[0] shape: {self.y_test[0].shape}")
675 print(f
"X_train shape: {self.X_train.shape}, y_train shape: {self.y_train.shape}")
676 print(f
"X_val shape: {self.X_val.shape}, y_val shape: {self.y_val.shape}")
677 print(f
"X_test shape: {self.X_test.shape}, y_test shape: {self.y_test.shape}")
678 # def train_test_split(self, time_fracs=[1.,0.,0.], space_fracs=[1.,0.,0.], subset_features=True, features_list=None, verbose=True):
680 # Splits the data into training, validation, and test sets.
685 # The fraction of data to be used for training.
686 # val_frac : float, optional
687 # The fraction of data to be used for validation. Default is 0.0.
688 # subset_features : bool, optional
689 # If True, subsets the data to the specified features list. Default is True.
690 # features_list : list, optional
691 # A list of features to use for subsetting. Default is None.
692 # split_space : bool, optional
693 # Whether to split the data based on space. Default is False.
694 # verbose : bool, optional
695 # If True, prints status messages. Default is True.
697 # # Indicate whether multi timeseries or not
698 # spatial = self.spatial
701 # assert np.sum(time_fracs) == np.sum(space_fracs) == 1., f"Provided cross validation params don't sum to 1"
702 # if (len(time_fracs) != 3) or (len(space_fracs) != 3):
703 # raise ValueError("Cross-validation params `time_fracs` and `space_fracs` must be lists of length 3, representing (train/validation/test)")
705 # train_frac = time_fracs[0]
706 # val_frac = time_fracs[1]
707 # test_frac = time_fracs[2]
709 # # Setup train/val/test in time
710 # train_ind = int(np.floor(self.hours * train_frac)); self.train_ind = train_ind
711 # test_ind= int(train_ind + round(self.hours * val_frac)); self.test_ind = test_ind
712 # # Check for any potential issues with indices
713 # if test_ind > self.hours:
714 # print(f"Setting test index to {self.hours}")
715 # test_ind = self.hours
716 # if train_ind > test_ind:
717 # raise ValueError("Train index must be less than test index.")
719 # # Setup train/val/test in space
721 # train_frac_sp = space_fracs[0]
722 # val_frac_sp = space_fracs[1]
723 # locs = np.arange(len(self.loc['STID'])) # indices of locations
724 # train_size = int(len(locs) * train_frac_sp)
725 # val_size = int(len(locs) * val_frac_sp)
726 # random.shuffle(locs)
727 # train_locs = locs[:train_size]
728 # val_locs = locs[train_size:train_size + val_size]
729 # test_locs = locs[train_size + val_size:]
730 # # Store Lists of IDs in loc subdirectory
731 # self.loc['train_locs'] = [self.loc['STID'][i] for i in train_locs]
732 # self.loc['val_locs'] = [self.loc['STID'][i] for i in val_locs]
733 # self.loc['test_locs'] = [self.loc['STID'][i] for i in test_locs]
736 # # Extract data to desired features, copy to avoid changing input objects
739 # if subset_features:
740 # if verbose and self.features_list != self.all_features_list:
741 # print(f"Subsetting input data to features_list: {self.features_list}")
742 # # Indices to subset all features with based on params features
744 # for item in self.features_list:
745 # if item in self.all_features_list:
746 # indices.append(self.all_features_list.index(item))
748 # print(f"Warning: feature name '{item}' not found in list of all features from input data")
750 # X = [Xi[:, indices] for Xi in X]
754 # # Training data from 0 to train_ind
755 # # Validation data from train_ind to test_ind
756 # # Test data from test_ind to end
758 # X_train = [X[i] for i in train_locs]
759 # X_val = [X[i] for i in val_locs]
760 # X_test = [X[i] for i in test_locs]
761 # y_train = [y[i] for i in train_locs]
762 # y_val = [y[i] for i in val_locs]
763 # y_test = [y[i] for i in test_locs]
765 # self.X_train = [Xi[:train_ind] for Xi in X_train]
766 # self.y_train = [yi[:train_ind].reshape(-1,1) for yi in y_train]
767 # if (val_frac >0) and (val_frac_sp)>0:
768 # self.X_val = [Xi[train_ind:test_ind] for Xi in X_val]
769 # self.y_val = [yi[train_ind:test_ind].reshape(-1,1) for yi in y_val]
770 # self.X_test = [Xi[test_ind:] for Xi in X_test]
771 # self.y_test = [yi[test_ind:].reshape(-1,1) for yi in y_test]
773 # self.X_train = X[:train_ind]
774 # self.y_train = y[:train_ind].reshape(-1,1) # assumes y 1-d, change this if vector output
776 # self.X_val = X[train_ind:test_ind]
777 # self.y_val = y[train_ind:test_ind].reshape(-1,1) # assumes y 1-d, change this if vector output
778 # self.X_test = X[test_ind:]
779 # self.y_test = y[test_ind:].reshape(-1,1) # assumes y 1-d, change this if vector output
783 # # Print statements if verbose
785 # print(f"Train index: 0 to {train_ind}")
786 # print(f"Validation index: {train_ind} to {test_ind}")
787 # print(f"Test index: {test_ind} to {self.hours}")
790 # print("Subsetting locations into train/val/test")
791 # print(f"Total Locations: {len(locs)}")
792 # print(f"Train Locations: {len(train_locs)}")
793 # print(f"Val. Locations: {len(val_locs)}")
794 # print(f"Test Locations: {len(test_locs)}")
795 # print(f"X_train[0] shape: {self.X_train[0].shape}, y_train[0] shape: {self.y_train[0].shape}")
796 # print(f"X_val[0] shape: {self.X_val[0].shape}, y_val[0] shape: {self.y_val[0].shape}")
797 # print(f"X_test[0] shape: {self.X_test[0].shape}, y_test[0] shape: {self.y_test[0].shape}")
799 # print(f"X_train shape: {self.X_train.shape}, y_train shape: {self.y_train.shape}")
800 # if hasattr(self, "X_val"):
801 # print(f"X_val shape: {self.X_val.shape}, y_val shape: {self.y_val.shape}")
802 # print(f"X_test shape: {self.X_test.shape}, y_test shape: {self.y_test.shape}")
803 def scale_data(self
, verbose
=True):
805 Scales the training data using the set scaler.
809 verbose : bool, optional
810 If True, prints status messages. Default is True.
812 # Indicate whether multi timeseries or not
813 spatial
= self
.spatial
814 if self
.scaler
is None:
815 raise ValueError("Scaler is not set. Use 'set_scaler' method to set a scaler before scaling data.")
816 if hasattr(self
.scaler
, 'n_features_in_'):
817 warnings
.warn("Scale_data has already been called. Exiting to prevent issues.")
819 if not hasattr(self
, "X_train"):
820 raise AttributeError("No X_train within object. Run train_test_split first. This is to avoid fitting the scaler with prediction data.")
822 print(f
"Scaling training data with scaler {self.scaler}, fitting on X_train")
825 # Fit scaler on row-joined training data
826 self
.scaler
.fit(np
.vstack(self
.X_train
))
827 # Transform data using fitted scaler
828 self
.X_train
= [self
.scaler
.transform(Xi
) for Xi
in self
.X_train
]
829 if hasattr(self
, 'X_val'):
830 self
.X_val
= [self
.scaler
.transform(Xi
) for Xi
in self
.X_val
]
831 self
.X_test
= [self
.scaler
.transform(Xi
) for Xi
in self
.X_test
]
833 # Fit the scaler on the training data
834 self
.scaler
.fit(self
.X_train
)
835 # Transform the data using the fitted scaler
836 self
.X_train
= self
.scaler
.transform(self
.X_train
)
837 if hasattr(self
, 'X_val'):
838 self
.X_val
= self
.scaler
.transform(self
.X_val
)
839 self
.X_test
= self
.scaler
.transform(self
.X_test
)
841 # NOTE: only works for non spatial
842 def scale_all_X(self
, verbose
=True):
844 Scales the all data using the set scaler.
848 verbose : bool, optional
849 If True, prints status messages. Default is True.
853 Scaled X matrix, subsetted to features_list.
856 raise ValueError("Not implemented for spatial data")
858 if self
.scaler
is None:
859 raise ValueError("Scaler is not set. Use 'set_scaler' method to set a scaler before scaling data.")
861 print(f
"Scaling all X data with scaler {self.scaler}, fitted on X_train")
864 for item
in self
.features_list
:
865 if item
in self
.all_features_list
:
866 indices
.append(self
.all_features_list
.index(item
))
868 print(f
"Warning: feature name '{item}' not found in list of all features from input data")
869 X
= self
.X
[:, indices
]
870 X
= self
.scaler
.transform(X
)
874 def inverse_scale(self
, return_X
= 'all_hours', save_changes
=False, verbose
=True):
876 Inversely scales the data to its original form.
880 return_X : str, optional
881 Specifies what data to return after inverse scaling. Default is 'all_hours'.
882 save_changes : bool, optional
883 If True, updates the internal data with the inversely scaled values. Default is False.
884 verbose : bool, optional
885 If True, prints status messages. Default is True.
888 print("Inverse scaling data...")
889 X_train
= self
.scaler
.inverse_transform(self
.X_train
)
890 X_val
= self
.scaler
.inverse_transform(self
.X_val
)
891 X_test
= self
.scaler
.inverse_transform(self
.X_test
)
894 print("Inverse transformed data saved")
895 self
.X_train
= X_train
900 print("Inverse scaled, but internal data not changed.")
902 print(f
"Attempting to return {return_X}")
903 if return_X
== "all_hours":
904 return np
.concatenate((X_train
, X_val
, X_test
), axis
=0)
906 print(f
"Unrecognized or unimplemented return value {return_X}")
907 def batch_reshape(self
, timesteps
, batch_size
, hours
=None, verbose
=False):
909 Restructures input data to RNN using batches and sequences.
914 The size of each training batch to reshape the data.
916 The number of timesteps or sequence length. Consistitutes a single sample
918 Number of timesteps or sequence length used for a single sequence in RNN training. Constitutes a single sample to the model
921 Number of sequences used within a batch of training
926 This method reshapes the data in place.
930 If either 'X_train' or 'y_train' attributes do not exist within the instance.
934 The reshaping method depends on self param "spatial".
935 - spatial == False: Reshapes data assuming no spatial dimensions.
936 - spatial == True: Reshapes data considering spatial dimensions.
940 if not hasattr(self
, 'X_train') or not hasattr(self
, 'y_train'):
941 raise AttributeError("Both 'X_train' and 'y_train' must be set before reshaping batches.")
943 # Indicator of spatial training scheme or not
944 spatial
= self
.spatial
947 print(f
"Reshaping spatial training data using batch size: {batch_size} and timesteps: {timesteps}")
948 self
.X_train
, self
.y_train
, self
.n_seqs
= staircase_spatial(self
.X_train
, self
.y_train
, timesteps
= timesteps
, batch_size
=batch_size
, hours
=hours
, verbose
=verbose
)
949 if hasattr(self
, "X_val"):
950 print(f
"Reshaping validation data using batch size: {batch_size} and timesteps: {timesteps}")
951 self
.X_val
, self
.y_val
, _
= staircase_spatial(self
.X_val
, self
.y_val
, timesteps
= timesteps
, batch_size
=batch_size
, hours
=None, verbose
=verbose
)
953 print(f
"Reshaping training data using batch size: {batch_size} and timesteps: {timesteps}")
954 self
.X_train
, self
.y_train
= staircase_2(self
.X_train
, self
.y_train
, timesteps
= timesteps
, batch_size
=batch_size
, verbose
=verbose
)
955 if hasattr(self
, "X_val"):
956 print(f
"Reshaping validation data using batch size: {batch_size} and timesteps: {timesteps}")
957 self
.X_val
, self
.y_val
= staircase_2(self
.X_val
, self
.y_val
, timesteps
= timesteps
, batch_size
=batch_size
, verbose
=verbose
)
959 def print_hashes(self
, attrs_to_check
= ['X', 'y', 'X_train', 'y_train', 'X_val', 'y_val', 'X_test', 'y_test']):
961 Prints the hash of specified data attributes.
965 attrs_to_check : list, optional
966 A list of attribute names to hash and print. Default includes 'X', 'y', and split data.
968 for attr
in attrs_to_check
:
969 if hasattr(self
, attr
):
970 value
= getattr(self
, attr
)
974 print(f
"Hash of {attr}: {hash_ndarray(value)}")
975 def __getattr__(self
, key
):
977 Allows attribute-style access to dictionary keys, a.k.a. enables the "." operator for get elements
982 raise AttributeError(f
"'rnn_data' object has no attribute '{key}'")
984 def __setitem__(self
, key
, value
):
986 Ensures dictionary and attribute updates stay in sync for required keys.
988 super().__setitem
__(key
, value
) # Update the dictionary
989 if key
in self
.required_keys
:
990 super().__setattr
__(key
, value
) # Ensure the attribute is updated as well
992 def __setattr__(self
, key
, value
):
994 Ensures dictionary keys are updated when setting attributes.
999 # Function to check reproduciblity hashes, environment info, and model parameters
1000 def check_reproducibility(dict0
, params
, m_hash
, w_hash
):
1002 Performs reproducibility checks on a model by comparing current settings and outputs with stored reproducibility information.
1007 The data dictionary that should contain reproducibility information under the 'repro_info' attribute.
1009 The current model parameters to be checked against the reproducibility information.
1011 The hash of the current model predictions.
1013 The hash of the current fitted model weights.
1018 The function returns None. It issues warnings if any reproducibility checks fail.
1022 - Checks are only performed if the `dict0` contains the 'repro_info' attribute.
1023 - Issues warnings for mismatches in model weights, predictions, Python version, TensorFlow version, and model parameters.
1024 - Skips checks if physics-based initialization is used (not implemented).
1026 if not hasattr(dict0
, "repro_info"):
1027 warnings
.warn("The provided data dictionary does not have the required 'repro_info' attribute. Not running reproduciblity checks.")
1030 repro_info
= dict0
.repro_info
1032 if params
['phys_initialize']:
1033 hashes
= repro_info
['phys_initialize']
1034 warnings
.warn("Physics Initialization not implemented yet. Not running reproduciblity checks.")
1036 hashes
= repro_info
['rand_initialize']
1037 print(f
"Fitted weights hash: {w_hash} \n Reproducibility weights hash: {hashes['fitted_weights_hash']}")
1038 print(f
"Model predictions hash: {m_hash} \n Reproducibility preds hash: {hashes['preds_hash']}")
1039 if (w_hash
!= hashes
['fitted_weights_hash']) or (m_hash
!= hashes
['preds_hash']):
1040 if w_hash
!= hashes
['fitted_weights_hash']:
1041 warnings
.warn("The fitted weights hash does not match the reproducibility weights hash.")
1042 if m_hash
!= hashes
['preds_hash']:
1043 warnings
.warn("The predictions hash does not match the reproducibility predictions hash.")
1045 print("***Reproducibility Checks passed - model weights and model predictions match expected.***")
1048 current_py_version
= sys
.version
[0:6]
1049 current_tf_version
= tf
.__version
__
1050 if current_py_version
!= repro_info
['env_info']['py_version']:
1051 warnings
.warn(f
"Python version mismatch: Current Python version is {current_py_version}, "
1052 f
"expected {repro_info['env_info']['py_version']}.")
1054 if current_tf_version
!= repro_info
['env_info']['tf_version']:
1055 warnings
.warn(f
"TensorFlow version mismatch: Current TensorFlow version is {current_tf_version}, "
1056 f
"expected {repro_info['env_info']['tf_version']}.")
1059 repro_params
= repro_info
.get('params', {})
1061 for key
, repro_value
in repro_params
.items():
1063 if params
[key
] != repro_value
:
1064 warnings
.warn(f
"Parameter mismatch for '{key}': Current value is {params[key]}, "
1065 f
"repro value is {repro_value}.")
1067 warnings
.warn(f
"Parameter '{key}' is missing in the current params.")
1071 class RNNModel(ABC
):
1073 Abstract base class for RNN models, providing structure for training, predicting, and running reproducibility checks.
1075 def __init__(self
, params
: dict):
1077 Initializes the RNNModel with the given parameters.
1082 A dictionary containing model parameters.
1084 self
.params
= params
1085 if type(self
) is RNNModel
:
1086 raise TypeError("MLModel is an abstract class and cannot be instantiated directly")
1090 def _build_model_train(self
):
1091 """Abstract method to build the training model."""
1095 def _build_model_predict(self
, return_sequences
=True):
1096 """Abstract method to build the prediction model. This model copies weights from the train model but with input structure that allows for easier prediction of arbitrary length timeseries. This model is not to be used for training, or don't use with .fit calls"""
1099 def is_stateful(self
):
1101 Checks whether any of the layers in the internal model (self.model_train) are stateful.
1104 bool: True if at least one layer in the model is stateful, False otherwise.
1106 This method iterates over all the layers in the model and checks if any of them
1107 have the 'stateful' attribute set to True. This is useful for determining if
1108 the model is designed to maintain state across batches during training.
1114 for layer
in self
.model_train
.layers
:
1115 if hasattr(layer
, 'stateful') and layer
.stateful
:
1119 def fit(self
, X_train
, y_train
, plot_history
=True, plot_title
= '',
1120 weights
=None, callbacks
=[], validation_data
=None, *args
, **kwargs
):
1122 Trains the model on the provided training data. Uses the fit method of the training model and then copies the weights over to the prediction model, which has a less restrictive input shape. Formats a list of callbacks to use within the fit method based on params input
1126 X_train : np.ndarray
1127 The input matrix data for training.
1128 y_train : np.ndarray
1129 The target vector data for training.
1130 plot_history : bool, optional
1131 If True, plots the training history. Default is True.
1132 plot_title : str, optional
1133 The title for the training plot. Default is an empty string.
1135 Initial weights for the model. Default is None.
1136 callbacks : list, optional
1137 A list of callback functions to use during training. Default is an empty list.
1138 validation_data : tuple, optional
1139 Validation data to use during training, expected format (X_val, y_val). Default is None.
1141 # verbose_fit argument is for printing out update after each epoch, which gets very long
1142 verbose_fit
= self
.params
['verbose_fit']
1143 verbose_weights
= self
.params
['verbose_weights']
1145 print(f
"Training simple RNN with params: {self.params}")
1148 if self
.params
["reset_states"]:
1149 callbacks
=callbacks
+[ResetStatesCallback(self
.params
), TerminateOnNaN()]
1151 # Early stopping callback requires validation data
1152 if validation_data
is not None:
1153 X_val
, y_val
=validation_data
[0], validation_data
[1]
1154 print("Using early stopping callback.")
1155 callbacks
=callbacks
+[EarlyStoppingCallback(patience
= self
.params
['early_stopping_patience'])]
1157 print(f
"Formatted X_train hash: {hash_ndarray(X_train)}")
1158 print(f
"Formatted y_train hash: {hash_ndarray(y_train)}")
1159 if validation_data
is not None:
1160 print(f
"Formatted X_val hash: {hash_ndarray(X_val)}")
1161 print(f
"Formatted y_val hash: {hash_ndarray(y_val)}")
1162 print(f
"Initial weights before training hash: {hash_weights(self.model_train)}")
1164 ## TODO: Hidden State Initialization
1165 # Evaluate Model once to set nonzero initial state
1166 # self.model_train(X_train[0:self.params['batch_size'],:,:])
1168 if validation_data
is not None:
1169 history
= self
.model_train
.fit(
1171 epochs
=self
.params
['epochs'],
1172 batch_size
=self
.params
['batch_size'],
1173 callbacks
= callbacks
,
1174 verbose
=verbose_fit
,
1175 validation_data
= (X_val
, y_val
),
1179 history
= self
.model_train
.fit(
1181 epochs
=self
.params
['epochs'],
1182 batch_size
=self
.params
['batch_size'],
1183 callbacks
= callbacks
,
1184 verbose
=verbose_fit
,
1189 self
.plot_history(history
,plot_title
)
1191 if self
.params
["verbose_weights"]:
1192 print(f
"Fitted Weights Hash: {hash_weights(self.model_train)}")
1194 # Update Weights for Prediction Model
1195 w_fitted
= self
.model_train
.get_weights()
1196 self
.model_predict
.set_weights(w_fitted
)
1198 def predict(self
, X_test
):
1200 Generates predictions on the provided test data using the internal prediction model.
1205 The input data for generating predictions.
1210 The predicted values.
1212 print("Predicting test data")
1213 X_test
= self
._format
_pred
_data
(X_test
)
1214 preds
= self
.model_predict
.predict(X_test
).flatten()
1218 def _format_pred_data(self
, X
):
1220 Formats the prediction data for RNN input.
1230 The formatted input data.
1232 return np
.reshape(X
,(1, X
.shape
[0], self
.params
['n_features']))
1234 def plot_history(self
, history
, plot_title
, create_figure
=True):
1236 Plots the training history. Uses log scale on y axis for readability.
1240 history : History object
1241 The training history object from model fitting. Output of keras' .fit command
1243 The title for the plot.
1247 plt
.figure(figsize
=(10, 6))
1248 plt
.semilogy(history
.history
['loss'], label
='Training loss')
1249 if 'val_loss' in history
.history
:
1250 plt
.semilogy(history
.history
['val_loss'], label
='Validation loss')
1251 plt
.title(f
'{plot_title} Model loss')
1254 plt
.legend(loc
='upper left')
1257 def run_model(self
, dict0
, reproducibility_run
=False, plot_period
='all', save_outputs
=True):
1259 Runs the RNN model on input data dictionary, including training, prediction, and reproducibility checks.
1263 dict0 : RNNData (dict)
1264 The dictionary containing the input data and configuration.
1265 reproducibility_run : bool, optional
1266 If True, performs reproducibility checks after running the model. Default is False.
1268 If True, writes model outputs into input dictionary.
1273 Model predictions and a dictionary of RMSE errors broken up by time period.
1275 verbose_fit
= self
.params
['verbose_fit']
1276 verbose_weights
= self
.params
['verbose_weights']
1278 print("Input data hashes, NOT formatted for rnn sequence/batches yet")
1279 dict0
.print_hashes()
1281 X_train
, y_train
, X_test
, y_test
= dict0
.X_train
, dict0
.y_train
, dict0
.X_test
, dict0
.y_test
1282 if 'X_val' in dict0
:
1283 X_val
, y_val
= dict0
.X_val
, dict0
.y_val
1287 case_id
= "Spatial Training Set"
1289 case_id
= dict0
.case
1293 self
.fit(X_train
, y_train
, plot_title
=case_id
)
1295 self
.fit(X_train
, y_train
, validation_data
= (X_val
, y_val
), plot_title
=case_id
)
1297 # Generate Predictions and Evaluate Test Error
1299 m
, errs
= self
._eval
_multi
(dict0
)
1303 m
, errs
= self
._eval
_single
(dict0
, verbose_weights
, reproducibility_run
)
1306 plot_data(dict0
, title
="RNN", title2
=dict0
.case
, plot_period
=plot_period
)
1310 def _eval_single(self
, dict0
, verbose_weights
, reproducibility_run
):
1311 # Generate Predictions,
1312 # run through training to get hidden state set properly for forecast period
1313 print(f
"Running prediction on all input data, Training through Test")
1314 X
= dict0
.scale_all_X()
1315 y
= dict0
.y
.flatten()
1318 print(f
"All X hash: {hash_ndarray(X)}")
1320 m
= self
.predict(X
).flatten()
1322 print(f
"Predictions Hash: {hash_ndarray(m)}")
1324 if reproducibility_run
:
1325 print("Checking Reproducibility")
1326 check_reproducibility(dict0
, self
.params
, hash_ndarray(m
), hash_weights(self
.model_predict
))
1328 # print(dict0.keys())
1329 # Plot final fit and data
1331 # plot_data(dict0, title="RNN", title2=dict0['case'], plot_period=plot_period)
1335 train_ind
= dict0
.train_ind
# index of final training set value
1336 test_ind
= dict0
.test_ind
# index of first test set value
1338 err_train
= rmse(m
[:train_ind
], y
[:train_ind
].flatten())
1339 err_pred
= rmse(m
[test_ind
:], y
[test_ind
:].flatten())
1342 'training': err_train
,
1343 'prediction': err_pred
1347 def _eval_multi(self
, dict0
):
1348 # Train Error: NOT DOING YET. DECIDE WHETHER THIS IS NEEDED
1351 new_data
= np
.stack(dict0
.X_test
, axis
=0)
1352 y_array
= np
.stack(dict0
.y_test
, axis
=0)
1353 preds
= self
.model_predict
.predict(new_data
)
1356 ## Note: not using util rmse function since this approach is for 3d arrays
1357 # Compute the squared differences
1358 squared_diff
= np
.square(preds
- y_array
)
1360 # Mean squared error along the timesteps and dimensions (axis 1 and 2)
1361 mse
= np
.mean(squared_diff
, axis
=(1, 2))
1363 # Root mean squared error (RMSE) for each timeseries
1364 rmses
= np
.sqrt(mse
)
1371 # Helper functions for batch reset schedules
1372 def calc_exp_intervals(bmin
, bmax
, n_epochs
, force_bmax
= True):
1373 # Calculate the exponential intervals for each epoch
1374 epochs
= np
.arange(n_epochs
)
1375 factors
= epochs
/ n_epochs
1376 intervals
= bmin
* (bmax
/ bmin
) ** factors
1378 intervals
[-1] = bmax
# Ensure the last value is exactly bmax
1379 return intervals
.astype(int)
1381 def calc_log_intervals(bmin
, bmax
, n_epochs
, force_bmax
= True):
1382 # Calculate the logarithmic intervals for each epoch
1383 epochs
= np
.arange(n_epochs
)
1384 factors
= np
.log(1 + epochs
) / np
.log(1 + n_epochs
)
1385 intervals
= bmin
+ (bmax
- bmin
) * factors
1387 intervals
[-1] = bmax
# Ensure the last value is exactly bmax
1388 return intervals
.astype(int)
1390 class ResetStatesCallback(Callback
):
1392 Custom callback to reset the states of RNN layers at the end of each epoch and optionally after a specified number of batches.
1396 batch_reset : int, optional
1397 If provided, resets the states of RNN layers after every `batch_reset` batches. Default is None.
1399 # def __init__(self, bmin=None, bmax=None, epochs=None, loc_batch_reset = None, batch_schedule_type='linear', verbose=True):
1400 def __init__(self
, params
=None, verbose
=True):
1402 Initializes the ResetStatesCallback with an optional batch reset interval.
1406 params: dict, optional
1407 Dictionary of parameters. If None provided, only on_epoch_end will trigger reset of hidden states.
1409 Minimum for batch reset schedule
1411 Maximum for batch reset schedule
1413 Number of training epochs.
1414 - loc_batch_reset : int
1415 Interval of batches after which to reset the states of RNN layers for location changes. Triggers reset for training AND validation phases
1416 - batch_schedule_type : str
1417 Type of batch scheduling to be used. Recognized methods are following:
1418 - 'constant' : Used fixed batch reset interval throughout training
1419 - 'linear' : Increases the batch reset interval linearly over epochs from bmin to bmax.
1420 - 'exp' : Increases the batch reset interval exponentially over epochs from bmin to bmax.
1421 - 'log' : Increases the batch reset interval logarithmically over epochs from bmin to bmax.
1426 Only in-place reset of hidden states of RNN that calls uses this callback.
1429 super(ResetStatesCallback
, self
).__init
__()
1431 # Check for optional arguments, set None if missing in input params
1432 arg_list
= ['bmin', 'bmax', 'epochs', 'loc_batch_reset', 'batch_schedule_type']
1433 for arg
in arg_list
:
1434 setattr(self
, arg
, params
.get(arg
, None))
1436 self
.verbose
= verbose
1438 print(f
"Using ResetStatesCallback with Batch Reset Schedule: {self.batch_schedule_type}")
1439 # Calculate the reset intervals for each epoch during initialization
1440 if self
.batch_schedule_type
is not None:
1441 if self
.epochs
is None:
1442 raise ValueError(f
"Arugment `epochs` cannot be none with self.batch_schedule_type: {self.batch_schedule_type}")
1443 self
.batch_reset_intervals
= self
._calc
_reset
_intervals
(self
.batch_schedule_type
)
1445 print(f
"batch_reset_intervals: {self.batch_reset_intervals}")
1447 self
.batch_reset_intervals
= None
1448 def on_epoch_end(self
, epoch
, logs
=None):
1450 Resets the states of RNN layers at the end of each epoch.
1455 The index of the current epoch.
1456 logs : dict, optional
1457 A dictionary containing metrics from the epoch. Default is None.
1459 # print(f" Resetting hidden state after epoch: {epoch+1}", flush=True)
1460 # Iterate over each layer in the model
1461 for layer
in self
.model
.layers
:
1462 # Check if the layer has a reset_states method
1463 if hasattr(layer
, 'reset_states'):
1464 layer
.reset_states()
1465 def _calc_reset_intervals(self
,batch_schedule_type
):
1466 methods
= ['constant', 'linear', 'exp', 'log']
1467 if batch_schedule_type
not in methods
:
1468 raise ValueError(f
"Batch schedule method {batch_schedule_type} not recognized. \n Available methods: {methods}")
1469 if batch_schedule_type
== "constant":
1471 return np
.repeat(self
.bmin
, self
.epochs
).astype(int)
1472 elif batch_schedule_type
== "linear":
1473 return np
.linspace(self
.bmin
, self
.bmax
, self
.epochs
).astype(int)
1474 elif batch_schedule_type
== "exp":
1475 return calc_exp_intervals(self
.bmin
, self
.bmax
, self
.epochs
)
1476 elif batch_schedule_type
== "log":
1477 return calc_log_intervals(self
.bmin
, self
.bmax
, self
.epochs
)
1478 def on_epoch_begin(self
, epoch
, logs
=None):
1479 # Set the reset interval for the current epoch
1480 if self
.batch_reset_intervals
is not None:
1481 self
.current_batch_reset
= self
.batch_reset_intervals
[epoch
]
1483 self
.current_batch_reset
= None
1484 def on_train_batch_end(self
, batch
, logs
=None):
1486 Resets the states of RNN layers during training after a specified number of batches, if `batch_reset` or `loc_batch_reset` are provided. The `batch_reset` is used for stability and to avoid exploding gradients at the beginning of training when a hidden state is being passed with weights that haven't learned yet. The `loc_batch_reset` is used to reset the states when a particular batch is from a new location and thus the hidden state should be passed.
1491 The index of the current batch.
1492 logs : dict, optional
1493 A dictionary containing metrics from the batch. Default is None.
1495 batch_reset
= self
.current_batch_reset
1496 if (batch_reset
is not None and batch
% batch_reset
== 0):
1497 # print(f" Resetting states after batch {batch + 1}")
1498 # Iterate over each layer in the model
1499 for layer
in self
.model
.layers
:
1500 # Check if the layer has a reset_states method
1501 if hasattr(layer
, 'reset_states'):
1502 layer
.reset_states()
1503 def on_test_batch_end(self
, batch
, logs
=None):
1505 Resets the states of RNN layers during validation if `loc_batch_reset` is provided to demarcate a new location and thus avoid passing a hidden state to a wrong location.
1510 The index of the current batch.
1511 logs : dict, optional
1512 A dictionary containing metrics from the batch. Default is None.
1514 loc_batch_reset
= self
.loc_batch_reset
1515 if (loc_batch_reset
is not None and batch
% loc_batch_reset
== 0):
1516 # print(f"Resetting states in Validation mode after batch {batch + 1}")
1517 # Iterate over each layer in the model
1518 for layer
in self
.model
.layers
:
1519 # Check if the layer has a reset_states method
1520 if hasattr(layer
, 'reset_states'):
1521 layer
.reset_states()
1523 ## Learning Schedules
1525 lr_schedule
= tf
.keras
.optimizers
.schedules
.CosineDecay(
1526 initial_learning_rate
=0.001,
1530 # warmup_target=None,
1535 def EarlyStoppingCallback(patience
=5):
1537 Creates an EarlyStopping callback with the specified patience.
1540 patience (int): Number of epochs with no improvement after which training will be stopped.
1543 EarlyStopping: Configured EarlyStopping callback.
1545 return EarlyStopping(
1550 restore_best_weights
=True
1554 'DeltaE': [0,-1], # bias correction
1555 'T1': 0.1, # 1/fuel class (10)
1556 'fm_raise_vs_rain': 0.2 # fm increase per mm rain
1561 def get_initial_weights(model_fit
,params
,scale_fm
=1):
1562 # Given a RNN architecture and hyperparameter dictionary, return array of physics-initiated weights
1564 # model_fit: output of create_RNN_2 with no training
1565 # params: (dict) dictionary of hyperparameters
1566 # rnn_dat: (dict) data dictionary, output of create_rnn_dat
1567 # Returns: numpy ndarray of weights that should be a rough solution to the moisture ODE
1568 DeltaE
= phys_params
['DeltaE']
1569 T1
= phys_params
['T1']
1570 fmr
= phys_params
['fm_raise_vs_rain']
1571 centering
= params
['centering'] # shift activation down
1573 w0_initial
={'Ed':(1.-np
.exp(-T1
))/2,
1574 'Ew':(1.-np
.exp(-T1
))/2,
1575 'rain':fmr
* scale_fm
} # wx - input feature
1576 # wh wb wd bd = bias -1
1578 w_initial
=np
.array([np
.nan
, np
.exp(-0.1), DeltaE
[0]/scale_fm
, # layer 0
1579 1.0, -centering
[0] + DeltaE
[1]/scale_fm
]) # layer 1
1580 if params
['verbose_weights']:
1581 print('Equilibrium moisture correction bias',DeltaE
[0],
1582 'in the hidden layer and',DeltaE
[1],' in the output layer')
1584 w_name
= ['wx','wh','bh','wd','bd']
1586 w
=model_fit
.get_weights()
1587 for j
in range(w
[0].shape
[0]):
1588 feature
= params
['features_list'][j
]
1589 for k
in range(w
[0].shape
[1]):
1590 w
[0][j
][k
]=w0_initial
[feature
]
1591 for i
in range(1,len(w
)): # number of the weight
1592 for j
in range(w
[i
].shape
[0]): # number of the inputs
1594 # initialize all entries of the weight matrix to the same number
1595 for k
in range(w
[i
].shape
[1]):
1596 w
[i
][j
][k
]=w_initial
[i
]/w
[i
].shape
[0]
1598 w
[i
][j
]=w_initial
[i
]
1600 print('weight',i
,'shape',w
[i
].shape
)
1601 raise ValueError("Only 1 or 2 dimensions supported")
1602 if params
['verbose_weights']:
1603 print('weight',i
,w_name
[i
],'shape',w
[i
].shape
,'ndim',w
[i
].ndim
,
1604 'initial: sum',np
.sum(w
[i
],axis
=0),'\nentries',w
[i
])
1608 class RNN(RNNModel
):
1610 A concrete implementation of the RNNModel abstract base class, using simple recurrent cells for hidden recurrent layers.
1615 A dictionary of model parameters.
1616 loss : str, optional
1617 The loss function to use during model training. Default is 'mean_squared_error'.
1619 def __init__(self
, params
, loss
='mean_squared_error'):
1621 Initializes the RNN model by building the training and prediction models.
1625 params : dict or RNNParams
1626 A dictionary containing the model's parameters.
1627 loss : str, optional
1628 The loss function to use during model training. Default is 'mean_squared_error'.
1630 super().__init
__(params
)
1631 self
.model_train
= self
._build
_model
_train
()
1632 self
.model_predict
= self
._build
_model
_predict
()
1634 def _build_model_train(self
):
1636 Builds and compiles the training model, with batch & sequence shape specifications for input.
1640 model : tf.keras.Model
1641 The compiled Keras model for training.
1643 inputs
= tf
.keras
.Input(batch_shape
=self
.params
['batch_shape'])
1645 for i
in range(self
.params
['rnn_layers']):
1646 # Return sequences True if recurrent layer feeds into another recurrent layer.
1647 # False if feeds into dense layer
1648 return_sequences
= True if i
< self
.params
['rnn_layers'] - 1 else False
1650 units
=self
.params
['rnn_units'],
1651 activation
=self
.params
['activation'][0],
1652 dropout
=self
.params
["dropout"][0],
1653 recurrent_dropout
= self
.params
["recurrent_dropout"],
1654 stateful
=self
.params
['stateful'],
1655 return_sequences
=return_sequences
)(x
)
1656 if self
.params
["dropout"][1] > 0:
1657 x
= Dropout(self
.params
["dropout"][1])(x
)
1658 for i
in range(self
.params
['dense_layers']):
1659 x
= Dense(self
.params
['dense_units'], activation
=self
.params
['activation'][1])(x
)
1660 # Add final output layer, must be 1 dense cell with linear activation if continuous scalar output
1661 x
= Dense(units
=1, activation
='linear')(x
)
1662 model
= tf
.keras
.Model(inputs
=inputs
, outputs
=x
)
1663 optimizer
=tf
.keras
.optimizers
.Adam(learning_rate
=self
.params
['learning_rate'])
1664 model
.compile(loss
='mean_squared_error', optimizer
=optimizer
)
1666 if self
.params
["verbose_weights"]:
1667 print(f
"Initial Weights Hash: {hash_weights(model)}")
1668 # print(model.get_weights())
1670 if self
.params
['phys_initialize']:
1671 assert self
.params
['scaler'] == 'reproducibility', f
"Not implemented yet to do physics initialize with given data scaling {self.params['scaler']}"
1672 assert self
.params
['features_list'] == ['Ed', 'Ew', 'rain'], f
"Physics initiation can only be done with features ['Ed', 'Ew', 'rain'], but given features {self.params['features_list']}"
1673 print("Initializing Model with Physics based weights")
1674 w
, w_name
=get_initial_weights(model
, self
.params
)
1675 model
.set_weights(w
)
1676 print('initial weights hash =',hash_weights(model
))
1679 def _build_model_predict(self
, return_sequences
=True):
1681 Builds and compiles the prediction model, doesn't use batch shape nor sequence length to make it easier to predict arbitrary number of timesteps. This model has weights copied over from training model is not directly used for training itself.
1685 return_sequences : bool, optional
1686 Whether to return the full sequence of outputs. Default is True.
1690 model : tf.keras.Model
1691 The compiled Keras model for prediction.
1693 inputs
= tf
.keras
.Input(shape
=(None,self
.params
['n_features']))
1695 for i
in range(self
.params
['rnn_layers']):
1696 x
= SimpleRNN(self
.params
['rnn_units'],activation
=self
.params
['activation'][0],
1697 stateful
=False,return_sequences
=return_sequences
)(x
)
1698 for i
in range(self
.params
['dense_layers']):
1699 x
= Dense(self
.params
['dense_units'], activation
=self
.params
['activation'][1])(x
)
1700 # Add final output layer, must be 1 dense cell with linear activation if continuous scalar output
1701 x
= Dense(units
=1, activation
='linear')(x
)
1702 model
= tf
.keras
.Model(inputs
=inputs
, outputs
=x
)
1703 optimizer
=tf
.keras
.optimizers
.Adam(learning_rate
=self
.params
['learning_rate'])
1704 model
.compile(loss
='mean_squared_error', optimizer
=optimizer
)
1706 # Set Weights to model_train
1707 w_fitted
= self
.model_train
.get_weights()
1708 model
.set_weights(w_fitted
)
1713 class RNN_LSTM(RNNModel
):
1715 A concrete implementation of the RNNModel abstract base class, use LSTM cells for hidden recurrent layers.
1720 A dictionary of model parameters.
1721 loss : str, optional
1722 The loss function to use during model training. Default is 'mean_squared_error'.
1724 def __init__(self
, params
, loss
='mean_squared_error'):
1726 Initializes the RNN model by building the training and prediction models.
1730 params : dict or RNNParams
1731 A dictionary containing the model's parameters.
1732 loss : str, optional
1733 The loss function to use during model training. Default is 'mean_squared_error'.
1735 super().__init
__(params
)
1736 self
.model_train
= self
._build
_model
_train
()
1737 self
.model_predict
= self
._build
_model
_predict
()
1739 def _build_model_train(self
):
1741 Builds and compiles the training model, with batch & sequence shape specifications for input.
1745 model : tf.keras.Model
1746 The compiled Keras model for training.
1748 inputs
= tf
.keras
.Input(batch_shape
=self
.params
['batch_shape'])
1750 for i
in range(self
.params
['rnn_layers']):
1751 return_sequences
= True if i
< self
.params
['rnn_layers'] - 1 else False
1753 units
=self
.params
['rnn_units'],
1754 activation
=self
.params
['activation'][0],
1755 dropout
=self
.params
["dropout"][0],
1756 recurrent_dropout
= self
.params
["recurrent_dropout"],
1757 recurrent_activation
=self
.params
["recurrent_activation"],
1758 stateful
=self
.params
['stateful'],
1759 return_sequences
=return_sequences
)(x
)
1760 if self
.params
["dropout"][1] > 0:
1761 x
= Dropout(self
.params
["dropout"][1])(x
)
1762 for i
in range(self
.params
['dense_layers']):
1763 x
= Dense(self
.params
['dense_units'], activation
=self
.params
['activation'][1])(x
)
1764 model
= tf
.keras
.Model(inputs
=inputs
, outputs
=x
)
1765 # optimizer=tf.keras.optimizers.Adam(learning_rate=self.params['learning_rate'], clipvalue=self.params['clipvalue'])
1766 optimizer
=tf
.keras
.optimizers
.Adam(learning_rate
=self
.params
['learning_rate'])
1767 model
.compile(loss
='mean_squared_error', optimizer
=optimizer
)
1769 if self
.params
["verbose_weights"]:
1770 print(f
"Initial Weights Hash: {hash_weights(model)}")
1772 def _build_model_predict(self
, return_sequences
=True):
1774 Builds and compiles the prediction model, doesn't use batch shape nor sequence length to make it easier to predict arbitrary number of timesteps. This model has weights copied over from training model is not directly used for training itself.
1778 return_sequences : bool, optional
1779 Whether to return the full sequence of outputs. Default is True.
1783 model : tf.keras.Model
1784 The compiled Keras model for prediction.
1786 inputs
= tf
.keras
.Input(shape
=(None,self
.params
['n_features']))
1788 for i
in range(self
.params
['rnn_layers']):
1790 units
=self
.params
['rnn_units'],
1791 activation
=self
.params
['activation'][0],
1792 stateful
=False,return_sequences
=return_sequences
)(x
)
1793 for i
in range(self
.params
['dense_layers']):
1794 x
= Dense(self
.params
['dense_units'], activation
=self
.params
['activation'][1])(x
)
1795 model
= tf
.keras
.Model(inputs
=inputs
, outputs
=x
)
1796 optimizer
=tf
.keras
.optimizers
.Adam(learning_rate
=self
.params
['learning_rate'])
1797 model
.compile(loss
='mean_squared_error', optimizer
=optimizer
)
1799 # Set Weights to model_train
1800 w_fitted
= self
.model_train
.get_weights()
1801 model
.set_weights(w_fitted
)