Update moisture_rnn.py
[notebooks.git] / fmda / OLD / create_RAWS_dict.ipynb
blob848e303387883bd7cf33aab95781f4c790ab89fc
2  "cells": [
3   {
4    "cell_type": "markdown",
5    "id": "b1100419-e2ec-46b6-89d3-327421288025",
6    "metadata": {},
7    "source": [
8     "## Find Data Availability for Stations\n",
9     "\n",
10     "Find which RAWS stations in given state have data availability for variables of interest to fuel moisture model.\n",
11     "\n",
12     "See available Mesonet variables [here](https://developers.synopticdata.com/mesonet/v2/api-variables/)."
13    ]
14   },
15   {
16    "cell_type": "code",
17    "execution_count": 1,
18    "id": "edb47918-af48-4002-8a66-7e78c7d10c77",
19    "metadata": {},
20    "outputs": [],
21    "source": [
22     "# !pip install MesoPy\n",
23     "import pickle\n",
24     "from MesoPy import Meso\n",
25     "import os.path as osp\n",
26     "import os\n",
27     "import pandas as pd\n",
28     "import numpy as np\n",
29     "\n",
30     "outpath = \".\"\n",
31     "\n",
32     "meso_token=\"4192c18707b848299783d59a9317c6e1\" # Get your own token...\n",
33     "m=Meso(meso_token)"
34    ]
35   },
36   {
37    "cell_type": "code",
38    "execution_count": 2,
39    "id": "fe4c6fbf-0242-4345-9fc5-38cdb5628861",
40    "metadata": {},
41    "outputs": [
42     {
43      "name": "stderr",
44      "output_type": "stream",
45      "text": [
46       "C:\\Users\\jhirs\\anaconda3\\lib\\site-packages\\requests\\__init__.py:109: RequestsDependencyWarning: urllib3 (1.26.15) or chardet (5.1.0)/charset_normalizer (2.0.12) doesn't match a supported version!\n",
47       "  warnings.warn(\n"
48      ]
49     }
50    ],
51    "source": [
52     "os.chdir('..')\n",
53     "from data_funcs import format_raws"
54    ]
55   },
56   {
57    "cell_type": "code",
58    "execution_count": 3,
59    "id": "37683794-406d-4524-99d3-2c167ff444ea",
60    "metadata": {},
61    "outputs": [],
62    "source": [
63     "time_start = \"202306010800\"  # June 1 2022 08:00 in format yyyymmddHHMM\n",
64     "time_s2    = \"202306010900\"  # small time to get station ids\n",
65     "time_end   = \"202306300900\"  # June 30 2022 09:00 in format yyyymmddHHMM\n",
66     "state_str = \"CO\"\n",
67     "\n",
68     "vars='air_temp,relative_humidity,precip_accum,fuel_moisture,wind_speed,solar_radiation'"
69    ]
70   },
71   {
72    "cell_type": "code",
73    "execution_count": 4,
74    "id": "7dfb0387-6535-4976-9e9a-62e3cf9a69cd",
75    "metadata": {},
76    "outputs": [],
77    "source": [
78     "meso_obss = m.timeseries(start=time_start,end=time_s2, state=state_str, \n",
79     "                             showemptystations = '0', vars=vars)"
80    ]
81   },
82   {
83    "cell_type": "code",
84    "execution_count": 5,
85    "id": "2255f323-2685-47b1-b862-f86eca6a3991",
86    "metadata": {},
87    "outputs": [],
88    "source": [
89     "station_df = pd.DataFrame(columns=['STID', 'air_temp', 'relative_humidity', 'precip_accum', 'fuel_moisture', 'wind_speed', 'solar_radiation'],\n",
90     "                  index=range(0, len(meso_obss[\"STATION\"])))"
91    ]
92   },
93   {
94    "cell_type": "code",
95    "execution_count": 6,
96    "id": "6f4fbe0d-dd16-4c1c-950e-97e23e5a1918",
97    "metadata": {},
98    "outputs": [],
99    "source": [
100     "for i in range(0, station_df.shape[0]):\n",
101     "    station_df[\"STID\"][i] = meso_obss[\"STATION\"][i][\"STID\"]\n",
102     "    station_df[\"air_temp\"][i] = int(\"air_temp\" in meso_obss[\"STATION\"][i][\"SENSOR_VARIABLES\"].keys())\n",
103     "    station_df[\"relative_humidity\"][i] = int(\"relative_humidity\" in meso_obss[\"STATION\"][i][\"SENSOR_VARIABLES\"].keys())\n",
104     "    station_df[\"precip_accum\"][i] = int(\"precip_accum\" in meso_obss[\"STATION\"][i][\"SENSOR_VARIABLES\"].keys())\n",
105     "    station_df[\"fuel_moisture\"][i] = int(\"fuel_moisture\" in meso_obss[\"STATION\"][i][\"SENSOR_VARIABLES\"].keys())\n",
106     "    station_df[\"wind_speed\"][i] = int(\"wind_speed\" in meso_obss[\"STATION\"][i][\"SENSOR_VARIABLES\"].keys())\n",
107     "    station_df[\"solar_radiation\"][i] = int(\"solar_radiation\" in meso_obss[\"STATION\"][i][\"SENSOR_VARIABLES\"].keys())"
108    ]
109   },
110   {
111    "cell_type": "code",
112    "execution_count": 7,
113    "id": "99938a78-4cac-440b-a2d8-6509b30f8c31",
114    "metadata": {
115     "tags": []
116    },
117    "outputs": [],
118    "source": [
119     "# Filter to stations with complete observations over time period\n",
120     "station_df = station_df[\n",
121     "    (station_df[\"fuel_moisture\"]==1) & \n",
122     "    (station_df[\"relative_humidity\"]==1) &\n",
123     "    (station_df[\"precip_accum\"]==1) &\n",
124     "    (station_df[\"air_temp\"]==1) &\n",
125     "    (station_df[\"wind_speed\"]==1) &\n",
126     "    (station_df[\"solar_radiation\"]==1)\n",
127     "]\n",
128     "# Extract station IDs\n",
129     "\n",
130     "ids = station_df['STID'].tolist()"
131    ]
132   },
133   {
134    "cell_type": "code",
135    "execution_count": 8,
136    "id": "5492a962-b3da-4407-86d9-8ba35d004c29",
137    "metadata": {
138     "tags": []
139    },
140    "outputs": [
141     {
142      "name": "stdout",
143      "output_type": "stream",
144      "text": [
145       "Number of RAWS Stations:  47\n"
146      ]
147     }
148    ],
149    "source": [
150     "print('Number of RAWS Stations: ',station_df.shape[0])"
151    ]
152   },
153   {
154    "cell_type": "code",
155    "execution_count": 9,
156    "id": "99dde77e-5f6f-4e45-babf-f7599e8fca14",
157    "metadata": {},
158    "outputs": [],
159    "source": [
160     "# write output\n",
161     "# station_df.to_csv(osp.join(outpath, 'station_df_co.csv'), index=False)"
162    ]
163   },
164   {
165    "cell_type": "markdown",
166    "id": "1d92fcdb-afaa-4048-848e-e201b29040c4",
167    "metadata": {},
168    "source": [
169     "## Get Observations"
170    ]
171   },
172   {
173    "cell_type": "code",
174    "execution_count": 10,
175    "id": "5ca1523d-b381-457c-9051-d2352144a666",
176    "metadata": {
177     "tags": []
178    },
179    "outputs": [],
180    "source": [
181     "# Queuery all stations with complete vars\n",
182     "meso_ts = m.timeseries(time_start, time_end, stid=ids, showemptystations = '0', vars=vars)   # ask the object for data"
183    ]
184   },
185   {
186    "cell_type": "code",
187    "execution_count": null,
188    "id": "7abd402f-af58-46ce-8cb6-6854201f9d31",
189    "metadata": {
190     "tags": []
191    },
192    "outputs": [],
193    "source": [
194     "# Dictionary to be saved for testing\n",
195     "test_dict = {}"
196    ]
197   },
198   {
199    "cell_type": "code",
200    "execution_count": null,
201    "id": "86e20fc8-f935-4577-83d7-ac188739698d",
202    "metadata": {
203     "tags": []
204    },
205    "outputs": [],
206    "source": [
207     "for i in range(0, len(meso_ts['STATION'])):\n",
208     "    raws1 = format_raws(meso_ts['STATION'][i])\n",
209     "    dict1={\n",
210     "        'id': 'case'+str(i+1),\n",
211     "        'time': raws1['time'],\n",
212     "        'rain': raws1['rain'],\n",
213     "        'fm' : raws1['fm'],\n",
214     "        'rh' : raws1['rh'],\n",
215     "        'temp' : raws1['temp'],\n",
216     "        'Ed' : raws1['Ed'],\n",
217     "        'Ew' : raws1['Ew'],\n",
218     "        'wind' : raws1['wind_speed'],\n",
219     "        'solar' : raws1['solar'],\n",
220     "        'STID' : raws1['STID'],\n",
221     "        'title' : 'RAWS Station '+raws1['STID'],\n",
222     "        'descr' : 'RAWS sensor data, Colorado',\n",
223     "        'hours':len(raws1['time']),\n",
224     "        'h2':int(24*20),\n",
225     "        'other': {'lon': raws1['lon'], 'lat': raws1['lat']}\n",
226     "    }\n",
227     "    test_dict['case'+str(i+1)] = dict1 # save to test dictionary"
228    ]
229   },
230   {
231    "cell_type": "markdown",
232    "id": "35ab9bfc-1773-4d50-a83c-69780945245b",
233    "metadata": {},
234    "source": [
235     "## Save Dictionary"
236    ]
237   },
238   {
239    "cell_type": "code",
240    "execution_count": null,
241    "id": "5f0f7cff-96bb-4b1e-a2b7-3fc2afcf5770",
242    "metadata": {
243     "tags": []
244    },
245    "outputs": [],
246    "source": [
247     "# Create file name from environment vars\n",
248     "filename = \"testing_dict\"+\"_\"+state_str+\"_\"+time_start[0:6:1]\n",
249     "print(filename)"
250    ]
251   },
252   {
253    "cell_type": "code",
254    "execution_count": null,
255    "id": "6aac2c25-b605-4437-b1de-f0f46cbba308",
256    "metadata": {
257     "tags": []
258    },
259    "outputs": [],
260    "source": [
261     "os.chdir('data')\n",
262     "with open(filename+'.pickle', 'wb') as handle:\n",
263     "    pickle.dump(test_dict, handle, protocol=pickle.HIGHEST_PROTOCOL)"
264    ]
265   },
266   {
267    "cell_type": "code",
268    "execution_count": null,
269    "id": "a6bdb681-0843-4dac-be53-e45aa0f4b991",
270    "metadata": {},
271    "outputs": [],
272    "source": []
273   }
274  ],
275  "metadata": {
276   "kernelspec": {
277    "display_name": "Python 3 (ipykernel)",
278    "language": "python",
279    "name": "python3"
280   },
281   "language_info": {
282    "codemirror_mode": {
283     "name": "ipython",
284     "version": 3
285    },
286    "file_extension": ".py",
287    "mimetype": "text/x-python",
288    "name": "python",
289    "nbconvert_exporter": "python",
290    "pygments_lexer": "ipython3",
291    "version": "3.9.12"
292   }
293  },
294  "nbformat": 4,
295  "nbformat_minor": 5