4 "cell_type": "markdown",
5 "id": "c887bd3d-4f89-4d8f-9cc8-b8a20c50b2a2",
8 "# Utility to create stable file used for reproduciblity checks\n",
16 "id": "58a6ff55-f5c6-41ee-8c71-fc97813f18d6",
21 "import numpy as np\n",
22 "import os.path as osp\n",
24 "import pandas as pd\n",
25 "import tensorflow as tf\n",
27 "sys.path.append('..')\n",
28 "from moisture_rnn_pkl import pkl2train\n",
29 "from moisture_rnn import RNNParams\n",
30 "from utils import read_yml, read_pkl, print_dict_summary, load_and_fix_data"
36 "id": "18a399f9-e66a-448f-82bc-8816a19444f0",
40 "pkl_file = \"../data/test_CA_202401.pkl\"\n",
41 "case_name = \"NV020_202401\"\n",
42 "# Destination File\n",
43 "outfile = \"../data/reproducibility_dict_v2_TEST.pkl\""
47 "cell_type": "markdown",
48 "id": "a4c7c4b3-9652-405f-b0b9-fbc26241afdc",
51 "## Read Data and Extract Case"
55 "cell_type": "markdown",
56 "id": "f9378d70-5e4a-4d26-8445-4ab4c959b3bd",
59 "### Read subdict directly"
65 "id": "513c5f9c-5ce1-440e-85aa-bfb986e74e20",
70 "output_type": "stream",
72 "loading file ../data/test_CA_202401.pkl\n",
76 " lon : -119.53656\n",
78 " pixel_x : 268.6997896202013\n",
79 " pixel_y : 444.2995027841032\n",
81 " temp: NumPy array of shape (1009,), min: 263.15, max: 280.506\n",
82 " fm: NumPy array of shape (1009,), min: 8.62, max: 16.2\n",
83 " rh: NumPy array of shape (1009,), min: 14.52, max: 93.7\n",
84 " wind: NumPy array of shape (1009,), min: nan, max: nan\n",
85 " time_raws: NumPy array of shape (1009,), type object\n",
87 " time: NumPy array of shape (168,), type object\n",
88 " Ed: NumPy array of shape (1009,), min: 8.049790374634147, max: 30.42933179653953\n",
89 " Ew: NumPy array of shape (1009,), min: 6.999615289304687, max: 28.609014502317358\n",
91 " time: NumPy array of shape (168,), type object\n",
93 " temp: NumPy array of shape (168,), min: 262.1491059538274, max: 278.6557143358586\n",
94 " rh: NumPy array of shape (168,), min: 19.766470197815824, max: 88.04762200131668\n",
95 " wind: NumPy array of shape (168,), min: 0.4422897586312999, max: 11.740318800249659\n",
96 " rain: NumPy array of shape (168,), min: 0.0, max: 0.0\n",
97 " precip_accum: NumPy array of shape (168,), min: 0.0, max: 0.0\n",
98 " solar: NumPy array of shape (168,), min: 0.0, max: 531.9806798402358\n",
99 " soilm: NumPy array of shape (168,), min: 0.04917251652964121, max: 0.12315401646785898\n",
100 " canopyw: NumPy array of shape (168,), min: 0.0, max: 0.0\n",
101 " groundflux: NumPy array of shape (168,), min: -131.7843148684105, max: 323.2364124714159\n",
102 " Ed: NumPy array of shape (168,), min: 10.01036196657367, max: 27.084001303686698\n",
103 " Ew: NumPy array of shape (168,), min: 8.847334592947469, max: 25.46199682778882\n",
104 " descr : Source: HRRR data from 3d pressure model, linear grid interpolated to RAWS location\n",
106 " temp: NumPy array of shape (168,), min: 262.62389410746255, max: 277.81355191096424\n",
107 " rh: NumPy array of shape (168,), min: 19.11316672559181, max: 91.87131998621496\n",
108 " wind: NumPy array of shape (168,), min: 1.2391147980713344, max: 13.282109257495303\n",
109 " rain: NumPy array of shape (168,), min: 0.0, max: 0.00039006309462551956\n",
110 " precip_accum: NumPy array of shape (168,), min: 0.0, max: 0.945306784924014\n",
111 " solar: NumPy array of shape (168,), min: 0.0, max: 545.6303389769764\n",
112 " soilm: NumPy array of shape (168,), min: 0.04868231485555667, max: 0.12315401646785898\n",
113 " canopyw: NumPy array of shape (168,), min: 0.0, max: 0.0\n",
114 " groundflux: NumPy array of shape (168,), min: -128.93263270355502, max: 84.48231533782075\n",
115 " Ed: NumPy array of shape (168,), min: 10.55464038561572, max: 28.68516905374082\n",
116 " Ew: NumPy array of shape (168,), min: 9.403674257216629, max: 26.943124103890092\n",
117 " descr : Source: HRRR data from 3d pressure model, linear grid interpolated to RAWS location\n",
118 " case : NV020_202401\n",
119 " filename : ../data/test_CA_202401.pkl\n",
120 " title : NV020_202401\n",
121 " descr : NV020_202401 FMDA dictionary\n"
126 "dat = load_and_fix_data(pkl_file)\n",
127 "print_dict_summary(dat[case_name])"
131 "cell_type": "markdown",
132 "id": "40eff829-d24e-4ef9-bcb2-773112063359",
135 "### Extract processed case"
140 "execution_count": 4,
141 "id": "1e3403e6-de9c-47a2-af31-190e212210a1",
145 "train = pkl2train([pkl_file])"
150 "execution_count": 5,
151 "id": "e6a76831-a898-41c0-9caa-0f060f978417",
156 "output_type": "stream",
158 " id : NV020_202401\n",
159 " case : NV020_202401\n",
160 " filename : ../data/test_CA_202401.pkl\n",
164 " lon : -119.53656\n",
166 " pixel_x : 268.6997896202013\n",
167 " pixel_y : 444.2995027841032\n",
170 "time: NumPy array of shape (168,), type object\n",
172 "X: NumPy array of shape (168, 8), min: -119.53656, max: 5677.0\n",
173 "features_list: Array of 8 items\n",
174 "y: NumPy array of shape (168,), min: 8.62, max: 15.98\n"
179 "print_dict_summary(train[case_name])"
183 "cell_type": "markdown",
184 "id": "4597d3f5-2833-41df-b070-f99d4f8b4ff9",
187 "## Add Reproducibility Info"
192 "execution_count": 6,
193 "id": "b7525bd2-5c3e-430a-87e9-3c3ec048553e",
199 "{'batch_size': 32,\n",
200 " 'timesteps': 5,\n",
201 " 'optimizer': 'adam',\n",
202 " 'rnn_layers': 1,\n",
203 " 'rnn_units': 20,\n",
204 " 'dense_layers': 1,\n",
205 " 'dense_units': 5,\n",
206 " 'activation': ['linear', 'linear'],\n",
207 " 'dropout': [0.2, 0.2],\n",
208 " 'recurrent_dropout': 0.2,\n",
209 " 'reset_states': True,\n",
211 " 'learning_rate': 0.001,\n",
212 " 'clipvalue': 10.0,\n",
213 " 'phys_initialize': False,\n",
214 " 'stateful': True,\n",
215 " 'verbose_weights': True,\n",
216 " 'verbose_fit': False,\n",
217 " 'features_list': ['Ed', 'Ew', 'solar', 'wind', 'rain'],\n",
219 " 'scaler': 'minmax',\n",
220 " 'time_fracs': [0.5, 0.2, 0.3],\n",
221 " 'early_stopping_patience': 9999,\n",
222 " 'predict_spinup_hours': None}"
225 "execution_count": 6,
227 "output_type": "execute_result"
231 "params = read_yml('../params.yaml', subkey=\"rnn_repro\")\n",
237 "execution_count": 7,
238 "id": "e820012b-6f48-4c58-bc6e-6c9811935ec9",
243 "output_type": "stream",
245 "Checking params...\n",
246 "Input dictionary passed all checks.\n",
247 "Calculating shape params based on features list, timesteps, and batch size\n",
248 "Input Feature List: ['Ed', 'Ew', 'solar', 'wind', 'rain']\n",
249 "Input Timesteps: 5\n",
250 "Input Batch Size: 32\n",
251 "Calculated params:\n",
252 "Number of features: 5\n",
253 "Batch Shape: (32, 5, 5)\n",
254 "{'batch_size': 32, 'timesteps': 5, 'optimizer': 'adam', 'rnn_layers': 1, 'rnn_units': 20, 'dense_layers': 1, 'dense_units': 5, 'activation': ['linear', 'linear'], 'dropout': [0.2, 0.2], 'recurrent_dropout': 0.2, 'reset_states': True, 'epochs': 300, 'learning_rate': 0.001, 'clipvalue': 10.0, 'phys_initialize': False, 'stateful': True, 'verbose_weights': True, 'verbose_fit': False, 'features_list': ['Ed', 'Ew', 'solar', 'wind', 'rain'], 'scale': True, 'scaler': 'minmax', 'time_fracs': [0.5, 0.2, 0.3], 'early_stopping_patience': 9999, 'predict_spinup_hours': None, 'n_features': 5, 'batch_shape': (32, 5, 5)}\n"
260 " 'phys_initialize': \"NOT YET IMPLEMENTED WITH v2.1\",\n",
261 " 'rand_initialize':{\n",
262 " 'fitted_weights_hash': '01513ac086d842dc67d40eb94ee1110c',\n",
263 " 'preds_hash': '4999d10893207f2b40086e3f84c214a3'\n",
266 " 'py_version': sys.version[0:6],\n",
267 " 'tf_version': tf.__version__,\n",
270 " 'params': RNNParams(params)\n",
273 "train[case_name]['repro_info'] = repro_info"
277 "cell_type": "markdown",
278 "id": "d15f56fe-a5b1-4d66-91c2-0c9a7f7929bf",
286 "execution_count": 8,
287 "id": "4cc57cd9-4dd7-488d-abd5-b253aa2cee7d",
292 "output_type": "stream",
294 "Writing file: ../data/reproducibility_dict_v2_TEST.pkl\n"
299 "with open(outfile, 'wb') as file:\n",
300 " print(f\"Writing file: {outfile}\")\n",
301 " pickle.dump(train[case_name], file)"
306 "execution_count": null,
307 "id": "d1846862-af98-4781-bcad-e8f32a87412c",
315 "display_name": "Python 3 (ipykernel)",
316 "language": "python",
324 "file_extension": ".py",
325 "mimetype": "text/x-python",
327 "nbconvert_exporter": "python",
328 "pygments_lexer": "ipython3",