Update rnn_workshop.ipynb
[notebooks.git] / fmda / moisture_rnn.py
blob4cb7d2662f0534f1a6a7948b4c019522c572fe28
1 # v2 training and prediction class infrastructure
3 # Environment
4 import random
5 import numpy as np
6 import pandas as pd
7 import tensorflow as tf
8 import matplotlib.pyplot as plt
9 import sys
10 from tensorflow.keras.callbacks import Callback, EarlyStopping, TerminateOnNaN
11 # from sklearn.metrics import mean_squared_error
12 import logging
13 from tensorflow.keras.layers import LSTM, SimpleRNN, Input, Dropout, Dense
14 # Local modules
15 import reproducibility
16 # from utils import print_dict_summary
17 from abc import ABC, abstractmethod
18 from utils import hash2, all_items_exist, hash_ndarray, hash_weights
19 from data_funcs import rmse, plot_data, compare_dicts
20 import copy
21 # import yaml
22 from sklearn.preprocessing import MinMaxScaler, StandardScaler
23 import warnings
25 #*************************************************************************************
26 # Data Formatting Functions
28 def staircase(x,y,timesteps,datapoints,return_sequences=False, verbose = False):
29 # x [datapoints,features] all inputs
30 # y [datapoints,outputs]
31 # timesteps: split x and y into samples length timesteps, shifted by 1
32 # datapoints: number of timesteps to use for training, no more than y.shape[0]
33 if verbose:
34 print('staircase: shape x = ',x.shape)
35 print('staircase: shape y = ',y.shape)
36 print('staircase: timesteps=',timesteps)
37 print('staircase: datapoints=',datapoints)
38 print('staircase: return_sequences=',return_sequences)
39 outputs = y.shape[1]
40 features = x.shape[1]
41 samples = datapoints-timesteps+1
42 if verbose:
43 print('staircase: samples=',samples,'timesteps=',timesteps,'features=',features)
44 x_train = np.empty([samples, timesteps, features])
45 if return_sequences:
46 if verbose:
47 print('returning all timesteps in a sample')
48 y_train = np.empty([samples, timesteps, outputs]) # all
49 for i in range(samples):
50 for k in range(timesteps):
51 x_train[i,k,:] = x[i+k,:]
52 y_train[i,k,:] = y[i+k,:]
53 else:
54 if verbose:
55 print('returning only the last timestep in a sample')
56 y_train = np.empty([samples, outputs])
57 for i in range(samples):
58 for k in range(timesteps):
59 x_train[i,k,:] = x[i+k,:]
60 y_train[i,:] = y[i+timesteps-1,:]
62 return x_train, y_train
64 def staircase_2(x,y,timesteps,batch_size=None,trainsteps=np.inf,return_sequences=False, verbose = False):
65 # create RNN training data in multiple batches
66 # input:
67 # x (,features)
68 # y (,outputs)
69 # timesteps: split x and y into sequences length timesteps
70 # a.k.a. lookback or sequence_length
72 # print params if verbose
74 if batch_size is None:
75 raise ValueError('staircase_2 requires batch_size')
76 if verbose:
77 print('staircase_2: shape x = ',x.shape)
78 print('staircase_2: shape y = ',y.shape)
79 print('staircase_2: timesteps=',timesteps)
80 print('staircase_2: batch_size=',batch_size)
81 print('staircase_2: return_sequences=',return_sequences)
83 nx,features= x.shape
84 ny,outputs = y.shape
85 datapoints = min(nx,ny,trainsteps)
86 if verbose:
87 print('staircase_2: datapoints=',datapoints)
89 # sequence j in a given batch is assumed to be the continuation of sequence j in the previous batch
90 # https://www.tensorflow.org/guide/keras/working_with_rnns Cross-batch statefulness
92 # example with timesteps=3 batch_size=3 datapoints=15
93 # batch 0: [0 1 2] [1 2 3] [2 3 4]
94 # batch 1: [3 4 5] [4 5 6] [5 6 7]
95 # batch 2: [6 7 8] [7 8 9] [8 9 10]
96 # batch 3: [9 10 11] [10 11 12] [11 12 13]
97 # batch 4: [12 13 14] [13 14 15] when runs out this is the last batch, can be shorter
99 # TODO: implement for multiple locations, same starting time for each batch
100 # Loc 1 Loc 2 Loc 3
101 # batch 0: [0 1 2] [0 1 2] [0 1 2]
102 # batch 1: [3 4 5] [3 4 5] [3 4 5]
103 # batch 2: [6 7 8] [6 7 8] [6 7 8]
104 # TODO: second epoch shift starting time at batch 0 in time
106 # TODO: implement for multiple locations, different starting times for each batch
107 # Loc 1 Loc 2 Loc 3
108 # batch 0: [0 1 2] [1 2 3] [2 3 4]
109 # batch 1: [3 4 5] [4 5 6] [5 6 57
110 # batch 2: [6 7 8] [7 8 9] [8 9 10]
113 # the first sample in batch j starts from timesteps*j and ends with timesteps*(j+1)-1
114 # e.g. the final hidden state of the rnn after the sequence of steps [0 1 2] in batch 0
115 # becomes the starting hidden state of the rnn in the sequence of steps [3 4 5] in batch 1, etc.
117 # sample [0 1 2] means the rnn is used twice to map state 0 -> 1 -> 2
118 # the state at time 0 is fixed but the state is considered a variable at times 1 and 2
119 # the loss is computed from the output at time 2 and the gradient of the loss function by chain rule which ends at time 0 because the state there is a constant -> derivative is zero
120 # sample [3 4 5] means the rnn is used twice to map state 3 -> 4 -> 5 # the state at time 3 is fixed to the output of the first sequence [0 1 2]
121 # the loss is computed from the output at time 5 and the gradient of the loss function by chain rule which ends at time 3 because the state there is considered constant -> derivative is zero
122 # how is the gradient computed? I suppose keras adds gradient wrt the weights at 2 5 8 ... 3 6 9... 4 7 ... and uses that to update the weights
123 # there is only one set of weights h(2) = f(h(1),w) h(1) = f(h(0),w) but w is always the same
124 # each column is a one successive evaluation of h(n+1) = f(h(n),w) for n = n_startn n_start+1,...
125 # the cannot be evaluated efficiently on gpu because gpu is a parallel processor
126 # this of it as each column served by one thread, and the threads are independent because they execute in parallel, there needs to be large number of threads (32 is a good number)\
127 # each batch consists of independent calculations
128 # but it can depend on the result of the previous batch (that's the recurrent parr)
132 max_batches = datapoints // timesteps
133 max_sequences = max_batches * batch_size
135 if verbose:
136 print('staircase_2: max_batches=',max_batches)
137 print('staircase_2: max_sequences=',max_sequences)
139 x_train = np.zeros((max_sequences, timesteps, features))
140 if return_sequences:
141 y_train = np.empty((max_sequences, timesteps, outputs))
142 else:
143 y_train = np.empty((max_sequences, outputs ))
145 # build the sequences
147 for i in range(max_batches):
148 for j in range(batch_size):
149 begin = i*timesteps + j
150 next = begin + timesteps
151 if next > datapoints:
152 break
153 if verbose:
154 print('sequence',k,'batch',i,'sample',j,'data',begin,'to',next-1)
155 x_train[k,:,:] = x[begin:next,:]
156 if return_sequences:
157 y_train[k,:,:] = y[begin:next,:]
158 else:
159 y_train[k,:] = y[next-1,:]
160 k += 1
161 if verbose:
162 print('staircase_2: shape x_train = ',x_train.shape)
163 print('staircase_2: shape y_train = ',y_train.shape)
164 print('staircase_2: sequences generated',k)
165 print('staircase_2: batch_size=',batch_size)
166 k = (k // batch_size) * batch_size
167 if verbose:
168 print('staircase_2: removing partial and empty batches at the end, keeping',k)
169 x_train = x_train[:k,:,:]
170 if return_sequences:
171 y_train = y_train[:k,:,:]
172 else:
173 y_train = y_train[:k,:]
175 if verbose:
176 print('staircase_2: shape x_train = ',x_train.shape)
177 print('staircase_2: shape y_train = ',y_train.shape)
179 return x_train, y_train
182 # Dictionary of scalers, used to avoid multiple object creation and to avoid multiple if statements
183 scalers = {
184 'minmax': MinMaxScaler(),
185 'standard': StandardScaler()
189 def batch_setup(ids, batch_size):
191 Sets up stateful batched training data scheme for RNN training.
193 This function takes a list or array of identifiers (`ids`) and divides them into batches of a specified size (`batch_size`). If the last batch does not have enough elements to meet the `batch_size`, the function will loop back to the start of the identifiers and continue filling the batch until it reaches the required size.
195 Parameters:
196 -----------
197 ids : list or numpy array
198 A list or numpy array containing the ids to be batched.
200 batch_size : int
201 The desired size of each batch.
203 Returns:
204 --------
205 batches : list of lists
206 A list where each element is a batch (itself a list) of identifiers. Each batch will contain exactly `batch_size` elements.
208 Example:
209 --------
210 >>> ids = [1, 2, 3, 4, 5]
211 >>> batch_size = 3
212 >>> batch_setup(ids, batch_size)
213 [[1, 2, 3], [4, 5, 1]]
215 Notes:
216 ------
217 - If `ids` is shorter than `batch_size`, the returned list will contain a single batch where identifiers are repeated from the start of `ids` until the batch is filled.
218 """
219 # Ensure ids is a numpy array
220 x = np.array(ids)
222 # Initialize the list to hold the batches
223 batches = []
225 # Use a loop to slice the list/array into batches
226 for i in range(0, len(x), batch_size):
227 batch = list(x[i:i + batch_size])
229 # If the batch is not full, continue from the start
230 while len(batch) < batch_size:
231 # Calculate the remaining number of items needed
232 remaining = batch_size - len(batch)
233 # Append the needed number of items from the start of the array
234 batch.extend(x[:remaining])
236 batches.append(batch)
238 return batches
240 def staircase_spatial(X, y, batch_size, timesteps, hours=None, start_times = None, verbose = True):
242 Prepares spatially formatted time series data for RNN training by creating batches of sequences across different locations, stacked to be compatible with stateful models.
244 This function processes multi-location time series data by slicing it into batches and formatting it to fit into a recurrent neural network (RNN) model. It utilizes a staircase-like approach to prepare sequences for each location and then interlaces them to align with stateful RNN structures.
246 Parameters:
247 -----------
248 X : list of numpy arrays
249 A list where each element is a numpy array containing features for a specific location. The shape of each array is `(total_time_steps, features)`.
251 y : list of numpy arrays
252 A list where each element is a numpy array containing the target values for a specific location. The shape of each array is `(total_time_steps,)`.
254 batch_size : int
255 The number of sequences to include in each batch.
257 timesteps : int
258 The number of time steps to include in each sequence for the RNN.
260 hours : int, optional
261 The length of each time series to consider for each location. If `None`, it defaults to the minimum length of `y` across all locations.
263 start_times : numpy array, optional
264 The initial time step for each location. If `None`, it defaults to an array starting from 0 and incrementing by 1 for each location.
266 verbose : bool, optional
267 If `True`, prints additional information during processing. Default is `True`.
269 Returns:
270 --------
271 XX : numpy array
272 A 3D numpy array with shape `(total_sequences, timesteps, features)` containing the prepared feature sequences for all locations.
274 yy : numpy array
275 A 2D numpy array with shape `(total_sequences, 1)` containing the corresponding target values for all locations.
277 n_seqs : int
278 Number of sequences per location. Used to reset states when location changes. Hidden state of RNN will be reset after n_seqs number of batches
280 Notes:
281 ------
282 - The function handles spatially distributed time series data by batching and formatting it for stateful RNNs.
283 - `hours` determines how much of the time series is used for each location. If not provided, it defaults to the shortest series in `y`.
284 - If `start_times` is not provided, it assumes each location starts its series at progressively later time steps.
285 - The `batch_setup` function is used internally to manage the creation of location and time step batches.
286 - The returned feature sequences `XX` and target sequences `yy` are interlaced to align with the expected input format of stateful RNNs.
289 # Generate ids based on number of distinct timeseries provided
290 n_loc = len(y) # assuming each list entry for y is a separate location
291 loc_ids = np.arange(n_loc)
293 # Generate hours and start_times if None
294 if hours is None:
295 print("Setting total hours to minimum length of y in provided dictionary")
296 hours = min(len(yi) for yi in y)
297 if start_times is None:
298 print("Setting Start times to offset by 1 hour by location")
299 start_times = np.arange(n_loc)
300 # Set up batches
301 loc_batch, t_batch = batch_setup(loc_ids, batch_size), batch_setup(start_times, batch_size)
302 if verbose:
303 print(f"Location ID Batches: {loc_batch}")
304 print(f"Start Times for Batches: {t_batch}")
306 # Loop over batches and construct with staircase_2
307 Xs = []
308 ys = []
309 for i in range(0, len(loc_batch)):
310 locs_i = loc_batch[i]
311 ts = t_batch[i]
312 for j in range(0, len(locs_i)):
313 t0 = ts[j]
314 tend = t0 + hours
315 # Create RNNData Dict
316 # Subset data to given location and time from t0 to t0+hours
317 k = locs_i[j] # Used to account for fewer locations than batch size
318 X_temp = X[k][t0:tend,:]
319 y_temp = y[k][t0:tend].reshape(-1,1)
321 # Format sequences
322 Xi, yi = staircase_2(
323 X_temp,
324 y_temp,
325 timesteps = timesteps,
326 batch_size = 1, # note: using 1 here to format sequences for a single location, not same as target batch size for training data
327 verbose=False)
329 Xs.append(Xi)
330 ys.append(yi)
332 # Drop incomplete batches
333 lens = [yi.shape[0] for yi in ys]
334 n_seqs = min(lens)
335 if verbose:
336 print(f"Minimum number of sequences by location: {n_seqs}")
337 print(f"Applying minimum length to other arrays.")
338 Xs = [Xi[:n_seqs] for Xi in Xs]
339 ys = [yi[:n_seqs] for yi in ys]
341 # Interlace arrays to match stateful structure
342 n_features = Xi.shape[2]
343 XXs = []
344 yys = []
345 for i in range(0, len(loc_batch)):
346 locs_i = loc_batch[i]
347 XXi = np.empty((Xs[0].shape[0]*batch_size, 5, n_features))
348 yyi = np.empty((Xs[0].shape[0]*batch_size, 1))
349 for j in range(0, len(locs_i)):
350 XXi[j::(batch_size)] = Xs[locs_i[j]]
351 yyi[j::(batch_size)] = ys[locs_i[j]]
352 XXs.append(XXi)
353 yys.append(yyi)
354 yy = np.concatenate(yys, axis=0)
355 XX = np.concatenate(XXs, axis=0)
357 if verbose:
358 print(f"Spatially Formatted X Shape: {XX.shape}")
359 print(f"Spatially Formatted X Shape: {yy.shape}")
362 return XX, yy, n_seqs
364 #***********************************************************************************************
365 ### RNN Class Functionality
367 class RNNParams(dict):
369 A custom dictionary class for handling RNN parameters. Automatically calculates certain params based on others. Overwrites the update method to protect from incompatible parameter choices. Inherits from dict
370 """
371 def __init__(self, input_dict):
373 Initializes the RNNParams instance and runs checks and shape calculations.
375 Parameters:
376 -----------
377 input_dict : dict,
378 A dictionary containing RNN parameters.
380 super().__init__(input_dict)
381 # Automatically run checks on initialization
382 self.run_checks()
383 # Automatically calculate shapes on initialization
384 self.calc_param_shapes()
385 def run_checks(self, verbose=True):
387 Validates that required keys exist and are of the correct type.
389 Parameters:
390 -----------
391 verbose : bool, optional
392 If True, prints status messages. Default is True.
394 print("Checking params...")
395 # Keys must exist and be integers
396 int_keys = [
397 'batch_size', 'timesteps', 'rnn_layers',
398 'rnn_units', 'dense_layers', 'dense_units', 'epochs'
401 for key in int_keys:
402 assert key in self, f"Missing required key: {key}"
403 assert isinstance(self[key], int), f"Key '{key}' must be an integer"
405 # Keys must exist and be lists
406 list_keys = ['activation', 'features_list', 'dropout', 'time_fracs']
407 for key in list_keys:
408 assert key in self, f"Missing required key: {key}"
409 assert isinstance(self[key], list), f"Key '{key}' must be a list"
411 # Keys must exist and be floats
412 float_keys = ['learning_rate']
413 for key in float_keys:
414 assert key in self, f"Missing required key: {key}"
415 assert isinstance(self[key], float), f"Key '{key}' must be a float"
417 print("Input dictionary passed all checks.")
418 def calc_param_shapes(self, verbose=True):
420 Calculates and updates the shapes of certain parameters based on input data.
422 Parameters:
423 -----------
424 verbose : bool, optional
425 If True, prints status messages. Default is True.
427 if verbose:
428 print("Calculating shape params based on features list, timesteps, and batch size")
429 print(f"Input Feature List: {self['features_list']}")
430 print(f"Input Timesteps: {self['timesteps']}")
431 print(f"Input Batch Size: {self['batch_size']}")
433 n_features = len(self['features_list'])
434 batch_shape = (self["batch_size"], self["timesteps"], n_features)
435 if verbose:
436 print("Calculated params:")
437 print(f"Number of features: {n_features}")
438 print(f"Batch Shape: {batch_shape}")
440 # Update the dictionary
441 super().update({
442 'n_features': n_features,
443 'batch_shape': batch_shape
445 if verbose:
446 print(self)
448 def update(self, *args, verbose=True, **kwargs):
450 Overwrites the standard update functon from dict. This is to prevent certain keys from being modified directly and to automatically update keys to be compatible with each other. The keys handled relate to the shape of the input data to the RNN.
452 Parameters:
453 -----------
454 verbose : bool, optional
455 If True, prints status messages. Default is True.
457 # Prevent updating n_features and batch_shape
458 restricted_keys = {'n_features', 'batch_shape'}
459 keys_to_check = {'features_list', 'timesteps', 'batch_size'}
461 # Check for restricted keys in args
462 if args:
463 if isinstance(args[0], dict):
464 if restricted_keys & args[0].keys():
465 raise KeyError(f"Cannot directly update keys: {restricted_keys & args[0].keys()}, \n Instead update one of: {keys_to_check}")
466 elif isinstance(args[0], (tuple, list)) and all(isinstance(i, tuple) and len(i) == 2 for i in args[0]):
467 if restricted_keys & {k for k, v in args[0]}:
468 raise KeyError(f"Cannot directly update keys: {restricted_keys & {k for k, v in args[0]}}, \n Instead update one of: {keys_to_check}")
470 # Check for restricted keys in kwargs
471 if restricted_keys & kwargs.keys():
472 raise KeyError(f"Cannot update restricted keys: {restricted_keys & kwargs.keys()}")
475 # Track if specific keys are updated
476 keys_updated = set()
478 # Update using the standard dict update method
479 if args:
480 if isinstance(args[0], dict):
481 keys_updated.update(args[0].keys() & keys_to_check)
482 elif isinstance(args[0], (tuple, list)) and all(isinstance(i, tuple) and len(i) == 2 for i in args[0]):
483 keys_updated.update(k for k, v in args[0] if k in keys_to_check)
485 if kwargs:
486 keys_updated.update(kwargs.keys() & keys_to_check)
488 # Call the parent update method
489 super().update(*args, **kwargs)
491 # Recalculate shapes if necessary
492 if keys_updated:
493 self.calc_param_shapes(verbose=verbose)
496 ## Class for handling input data
497 class RNNData(dict):
499 A custom dictionary class for managing RNN data, with validation, scaling, and train-test splitting functionality.
500 """
501 required_keys = {"loc", "time", "X", "y", "features_list"}
502 def __init__(self, input_dict, scaler=None, features_list=None):
504 Initializes the RNNData instance, performs checks, and prepares data.
506 Parameters:
507 -----------
508 input_dict : dict
509 A dictionary containing the initial data.
510 scaler : str, optional
511 The name of the scaler to be used (e.g., 'minmax', 'standard'). Default is None.
512 features_list : list, optional
513 A subset of features to be used. Default is None which means all features.
516 # Copy to avoid changing external input
517 input_data = input_dict.copy()
518 # Initialize inherited dict class
519 super().__init__(input_data)
521 # Check if input data is one timeseries dataset or multiple
522 if type(self.loc['STID']) == str:
523 self.spatial = False
524 print("Input data is single timeseries.")
525 elif type(self.loc['STID']) == list:
526 self.spatial = True
527 print("Input data from multiple timeseries.")
528 else:
529 raise KeyError(f"Input locations not list or single string")
531 # Set up Data Scaling
532 self.scaler = None
533 if scaler is not None:
534 self.set_scaler(scaler)
536 # Rename and define other stuff.
537 if self.spatial:
538 self['hours'] = min(arr.shape[0] for arr in self.y)
539 else:
540 self['hours'] = len(self['y'])
542 self['all_features_list'] = self.pop('features_list')
543 if features_list is None:
544 print("Using all input features.")
545 self.features_list = self.all_features_list
546 else:
547 self.features_list = features_list
548 # self.run_checks()
549 self.__dict__.update(self)
551 # TODO: Fix checks for multilocation
552 def run_checks(self, verbose=True):
554 Validates that required keys are present and checks the integrity of data shapes.
556 Parameters:
557 -----------
558 verbose : bool, optional
559 If True, prints status messages. Default is True.
560 """
561 missing_keys = self.required_keys - self.keys()
562 if missing_keys:
563 raise KeyError(f"Missing required keys: {missing_keys}")
564 # # Check y 1-d
565 # y_shape = np.shape(self.y)
566 # if not (len(y_shape) == 1 or (len(y_shape) == 2 and y_shape[1] == 1)):
567 # raise ValueError(f"'y' must be one-dimensional, with shape (N,) or (N, 1). Current shape is {y_shape}.")
569 # # Check if 'hours' is provided and matches len(y)
570 # if 'hours' in self:
571 # if self.hours != len(self.y):
572 # raise ValueError(f"Provided 'hours' value {self.hours} does not match the length of 'y', which is {len(self.y)}.")
573 # Check desired subset of features is in all input features
574 if not all_items_exist(self.features_list, self.all_features_list):
575 raise ValueError(f"Provided 'features_list' {self.features_list} has elements not in input features.")
576 def set_scaler(self, scaler):
578 Sets the scaler to be used for data normalization.
580 Parameters:
581 -----------
582 scaler : str
583 The name of the scaler (e.g., 'minmax', 'standard').
584 """
585 recognized_scalers = ['minmax', 'standard']
586 if scaler in recognized_scalers:
587 print(f"Setting data scaler: {scaler}")
588 self.scaler = scalers[scaler]
589 else:
590 raise ValueError(f"Unrecognized scaler '{scaler}'. Recognized scalers are: {recognized_scalers}.")
591 def train_test_split(self, time_fracs=[1.,0.,0.], space_fracs=[1.,0.,0.], subset_features=True, features_list=None, verbose=True):
593 Splits the data into training, validation, and test sets.
595 Parameters:
596 -----------
597 train_frac : float
598 The fraction of data to be used for training.
599 val_frac : float, optional
600 The fraction of data to be used for validation. Default is 0.0.
601 subset_features : bool, optional
602 If True, subsets the data to the specified features list. Default is True.
603 features_list : list, optional
604 A list of features to use for subsetting. Default is None.
605 split_space : bool, optional
606 Whether to split the data based on space. Default is False.
607 verbose : bool, optional
608 If True, prints status messages. Default is True.
610 # Indicate whether multi timeseries or not
611 spatial = self.spatial
613 # Set up
614 assert np.sum(time_fracs) == np.sum(space_fracs) == 1., f"Provided cross validation params don't sum to 1"
615 if (len(time_fracs) != 3) or (len(space_fracs) != 3):
616 raise ValueError("Cross-validation params `time_fracs` and `space_fracs` must be lists of length 3, representing (train/validation/test)")
618 train_frac = time_fracs[0]
619 val_frac = time_fracs[1]
620 test_frac = time_fracs[2]
622 # Setup train/val/test in time
623 train_ind = int(np.floor(self.hours * train_frac)); self.train_ind = train_ind
624 test_ind= int(train_ind + round(self.hours * val_frac)); self.test_ind = test_ind
625 # Check for any potential issues with indices
626 if test_ind > self.hours:
627 print(f"Setting test index to {self.hours}")
628 test_ind = self.hours
629 if train_ind > test_ind:
630 raise ValueError("Train index must be less than test index.")
632 # Setup train/val/test in space
633 if spatial:
634 train_frac_sp = space_fracs[0]
635 val_frac_sp = space_fracs[1]
636 locs = np.arange(len(self.loc['STID'])) # indices of locations
637 train_size = int(len(locs) * train_frac_sp)
638 val_size = int(len(locs) * val_frac_sp)
639 random.shuffle(locs)
640 train_locs = locs[:train_size]
641 val_locs = locs[train_size:train_size + val_size]
642 test_locs = locs[train_size + val_size:]
643 # Store Lists of IDs in loc subdirectory
644 self.loc['train_locs'] = [self.case[i] for i in train_locs]
645 self.loc['val_locs'] = [self.case[i] for i in val_locs]
646 self.loc['test_locs'] = [self.case[i] for i in test_locs]
649 # Extract data to desired features, copy to avoid changing input objects
650 X = self.X.copy()
651 y = self.y.copy()
652 if subset_features:
653 if verbose and self.features_list != self.all_features_list:
654 print(f"Subsetting input data to features_list: {self.features_list}")
655 # Indices to subset all features with based on params features
656 indices = []
657 for item in self.features_list:
658 if item in self.all_features_list:
659 indices.append(self.all_features_list.index(item))
660 else:
661 print(f"Warning: feature name '{item}' not found in list of all features from input data")
662 if spatial:
663 X = [Xi[:, indices] for Xi in X]
664 else:
665 X = X[:, indices]
667 # Training data from 0 to train_ind
668 # Validation data from train_ind to test_ind
669 # Test data from test_ind to end
670 if spatial:
671 X_train = [X[i] for i in train_locs]
672 X_val = [X[i] for i in val_locs]
673 X_test = [X[i] for i in test_locs]
674 y_train = [y[i] for i in train_locs]
675 y_val = [y[i] for i in val_locs]
676 y_test = [y[i] for i in test_locs]
678 self.X_train = [Xi[:train_ind] for Xi in X_train]
679 self.y_train = [yi[:train_ind].reshape(-1,1) for yi in y_train]
680 if (val_frac >0) and (val_frac_sp)>0:
681 self.X_val = [Xi[train_ind:test_ind] for Xi in X_val]
682 self.y_val = [yi[train_ind:test_ind].reshape(-1,1) for yi in y_val]
683 self.X_test = [Xi[test_ind:] for Xi in X_test]
684 self.y_test = [yi[test_ind:].reshape(-1,1) for yi in y_test]
685 else:
686 self.X_train = X[:train_ind]
687 self.y_train = y[:train_ind].reshape(-1,1) # assumes y 1-d, change this if vector output
688 if val_frac >0:
689 self.X_val = X[train_ind:test_ind]
690 self.y_val = y[train_ind:test_ind].reshape(-1,1) # assumes y 1-d, change this if vector output
691 self.X_test = X[test_ind:]
692 self.y_test = y[test_ind:].reshape(-1,1) # assumes y 1-d, change this if vector output
696 # Print statements if verbose
697 if verbose:
698 print(f"Train index: 0 to {train_ind}")
699 print(f"Validation index: {train_ind} to {test_ind}")
700 print(f"Test index: {test_ind} to {self.hours}")
702 if spatial:
703 print("Subsetting locations into train/val/test")
704 print(f"Total Locations: {len(locs)}")
705 print(f"Train Locations: {len(train_locs)}")
706 print(f"Val. Locations: {len(val_locs)}")
707 print(f"Test Locations: {len(test_locs)}")
708 print(f"X_train[0] shape: {self.X_train[0].shape}, y_train[0] shape: {self.y_train[0].shape}")
709 print(f"X_val[0] shape: {self.X_val[0].shape}, y_val[0] shape: {self.y_val[0].shape}")
710 print(f"X_test[0] shape: {self.X_test[0].shape}, y_test[0] shape: {self.y_test[0].shape}")
711 else:
712 print(f"X_train shape: {self.X_train.shape}, y_train shape: {self.y_train.shape}")
713 if hasattr(self, "X_val"):
714 print(f"X_val shape: {self.X_val.shape}, y_val shape: {self.y_val.shape}")
715 print(f"X_test shape: {self.X_test.shape}, y_test shape: {self.y_test.shape}")
716 def scale_data(self, verbose=True):
718 Scales the training data using the set scaler.
720 Parameters:
721 -----------
722 verbose : bool, optional
723 If True, prints status messages. Default is True.
724 """
725 # Indicate whether multi timeseries or not
726 spatial = self.spatial
727 if self.scaler is None:
728 raise ValueError("Scaler is not set. Use 'set_scaler' method to set a scaler before scaling data.")
729 # if hasattr(self.scaler, 'n_features_in_'):
730 # warnings.warn("Scale_data has already been called. Exiting to prevent issues.")
731 # return
732 if not hasattr(self, "X_train"):
733 raise AttributeError("No X_train within object. Run train_test_split first. This is to avoid fitting the scaler with prediction data.")
734 if verbose:
735 print(f"Scaling training data with scaler {self.scaler}, fitting on X_train")
737 if spatial:
738 # Fit scaler on row-joined training data
739 self.scaler.fit(np.vstack(self.X_train))
740 # Transform data using fitted scaler
741 self.X_train = [self.scaler.transform(Xi) for Xi in self.X_train]
742 if hasattr(self, 'X_val'):
743 self.X_val = [self.scaler.transform(Xi) for Xi in self.X_val]
744 self.X_test = [self.scaler.transform(Xi) for Xi in self.X_test]
745 else:
746 # Fit the scaler on the training data
747 self.scaler.fit(self.X_train)
748 # Transform the data using the fitted scaler
749 self.X_train = self.scaler.transform(self.X_train)
750 if hasattr(self, 'X_val'):
751 self.X_val = self.scaler.transform(self.X_val)
752 self.X_test = self.scaler.transform(self.X_test)
754 # NOTE: only works for non spatial
755 def scale_all_X(self, verbose=True):
757 Scales the all data using the set scaler.
759 Parameters:
760 -----------
761 verbose : bool, optional
762 If True, prints status messages. Default is True.
763 Returns:
764 -------
765 ndarray
766 Scaled X matrix, subsetted to features_list.
767 """
768 if self.spatial:
769 raise ValueError("Not implemented for spatial data")
771 if self.scaler is None:
772 raise ValueError("Scaler is not set. Use 'set_scaler' method to set a scaler before scaling data.")
773 if verbose:
774 print(f"Scaling all X data with scaler {self.scaler}, fitted on X_train")
775 # Subset features
776 indices = []
777 for item in self.features_list:
778 if item in self.all_features_list:
779 indices.append(self.all_features_list.index(item))
780 else:
781 print(f"Warning: feature name '{item}' not found in list of all features from input data")
782 X = self.X[:, indices]
783 X = self.scaler.transform(X)
785 return X
787 def inverse_scale(self, return_X = 'all_hours', save_changes=False, verbose=True):
789 Inversely scales the data to its original form.
791 Parameters:
792 -----------
793 return_X : str, optional
794 Specifies what data to return after inverse scaling. Default is 'all_hours'.
795 save_changes : bool, optional
796 If True, updates the internal data with the inversely scaled values. Default is False.
797 verbose : bool, optional
798 If True, prints status messages. Default is True.
799 """
800 if verbose:
801 print("Inverse scaling data...")
802 X_train = self.scaler.inverse_transform(self.X_train)
803 X_val = self.scaler.inverse_transform(self.X_val)
804 X_test = self.scaler.inverse_transform(self.X_test)
806 if save_changes:
807 print("Inverse transformed data saved")
808 self.X_train = X_train
809 self.X_val = X_val
810 self.X_test = X_test
811 else:
812 if verbose:
813 print("Inverse scaled, but internal data not changed.")
814 if verbose:
815 print(f"Attempting to return {return_X}")
816 if return_X == "all_hours":
817 return np.concatenate((X_train, X_val, X_test), axis=0)
818 else:
819 print(f"Unrecognized or unimplemented return value {return_X}")
820 def batch_reshape(self, timesteps, batch_size, hours=None, verbose=False, start_times=None):
822 Restructures input data to RNN using batches and sequences.
824 Parameters:
825 ----------
826 batch_size : int
827 The size of each training batch to reshape the data.
828 timesteps : int
829 The number of timesteps or sequence length. Consistitutes a single sample
830 timesteps : int
831 Number of timesteps or sequence length used for a single sequence in RNN training. Constitutes a single sample to the model
833 batch_size : int
834 Number of sequences used within a batch of training
836 Returns:
837 -------
838 None
839 This method reshapes the data in place.
840 Raises:
841 ------
842 AttributeError
843 If either 'X_train' or 'y_train' attributes do not exist within the instance.
845 Notes:
846 ------
847 The reshaping method depends on self param "spatial".
848 - spatial == False: Reshapes data assuming no spatial dimensions.
849 - spatial == True: Reshapes data considering spatial dimensions.
853 if not hasattr(self, 'X_train') or not hasattr(self, 'y_train'):
854 raise AttributeError("Both 'X_train' and 'y_train' must be set before reshaping batches.")
856 # Indicator of spatial training scheme or not
857 spatial = self.spatial
859 if spatial:
860 print(f"Reshaping spatial training data using batch size: {batch_size} and timesteps: {timesteps}")
861 self.X_train, self.y_train, self.n_seqs = staircase_spatial(self.X_train, self.y_train, timesteps = timesteps, batch_size=batch_size, hours=hours, verbose=verbose, start_times=start_times)
862 if hasattr(self, "X_val"):
863 print(f"Reshaping validation data using batch size: {batch_size} and timesteps: {timesteps}")
864 self.X_val, self.y_val, _ = staircase_spatial(self.X_val, self.y_val, timesteps = timesteps, batch_size=batch_size, hours=None, verbose=verbose, start_times=start_times)
865 else:
866 print(f"Reshaping training data using batch size: {batch_size} and timesteps: {timesteps}")
867 self.X_train, self.y_train = staircase_2(self.X_train, self.y_train, timesteps = timesteps, batch_size=batch_size, verbose=verbose)
868 if hasattr(self, "X_val"):
869 print(f"Reshaping validation data using batch size: {batch_size} and timesteps: {timesteps}")
870 self.X_val, self.y_val = staircase_2(self.X_val, self.y_val, timesteps = timesteps, batch_size=batch_size, verbose=verbose)
872 def print_hashes(self, attrs_to_check = ['X', 'y', 'X_train', 'y_train', 'X_val', 'y_val', 'X_test', 'y_test']):
874 Prints the hash of specified data attributes.
876 Parameters:
877 -----------
878 attrs_to_check : list, optional
879 A list of attribute names to hash and print. Default includes 'X', 'y', and split data.
881 for attr in attrs_to_check:
882 if hasattr(self, attr):
883 value = getattr(self, attr)
884 if self.spatial:
885 pass
886 else:
887 print(f"Hash of {attr}: {hash_ndarray(value)}")
888 def __getattr__(self, key):
890 Allows attribute-style access to dictionary keys, a.k.a. enables the "." operator for get elements
891 """
892 try:
893 return self[key]
894 except KeyError:
895 raise AttributeError(f"'rnn_data' object has no attribute '{key}'")
897 def __setitem__(self, key, value):
899 Ensures dictionary and attribute updates stay in sync for required keys.
900 """
901 super().__setitem__(key, value) # Update the dictionary
902 if key in self.required_keys:
903 super().__setattr__(key, value) # Ensure the attribute is updated as well
905 def __setattr__(self, key, value):
907 Ensures dictionary keys are updated when setting attributes.
909 self[key] = value
912 # Function to check reproduciblity hashes, environment info, and model parameters
913 def check_reproducibility(dict0, params, m_hash, w_hash):
915 Performs reproducibility checks on a model by comparing current settings and outputs with stored reproducibility information.
917 Parameters:
918 -----------
919 dict0 : dict
920 The data dictionary that should contain reproducibility information under the 'repro_info' attribute.
921 params : dict
922 The current model parameters to be checked against the reproducibility information.
923 m_hash : str
924 The hash of the current model predictions.
925 w_hash : str
926 The hash of the current fitted model weights.
928 Returns:
929 --------
930 None
931 The function returns None. It issues warnings if any reproducibility checks fail.
933 Notes:
934 ------
935 - Checks are only performed if the `dict0` contains the 'repro_info' attribute.
936 - Issues warnings for mismatches in model weights, predictions, Python version, TensorFlow version, and model parameters.
937 - Skips checks if physics-based initialization is used (not implemented).
938 """
939 if not hasattr(dict0, "repro_info"):
940 warnings.warn("The provided data dictionary does not have the required 'repro_info' attribute. Not running reproduciblity checks.")
941 return
943 repro_info = dict0.repro_info
944 # Check Hashes
945 if params['phys_initialize']:
946 hashes = repro_info['phys_initialize']
947 warnings.warn("Physics Initialization not implemented yet. Not running reproduciblity checks.")
948 else:
949 hashes = repro_info['rand_initialize']
950 print(f"Fitted weights hash: {w_hash} \n Reproducibility weights hash: {hashes['fitted_weights_hash']}")
951 print(f"Model predictions hash: {m_hash} \n Reproducibility preds hash: {hashes['preds_hash']}")
952 if (w_hash != hashes['fitted_weights_hash']) or (m_hash != hashes['preds_hash']):
953 if w_hash != hashes['fitted_weights_hash']:
954 warnings.warn("The fitted weights hash does not match the reproducibility weights hash.")
955 if m_hash != hashes['preds_hash']:
956 warnings.warn("The predictions hash does not match the reproducibility predictions hash.")
957 else:
958 print("***Reproducibility Checks passed - model weights and model predictions match expected.***")
960 # Check Environment
961 current_py_version = sys.version[0:6]
962 current_tf_version = tf.__version__
963 if current_py_version != repro_info['env_info']['py_version']:
964 warnings.warn(f"Python version mismatch: Current Python version is {current_py_version}, "
965 f"expected {repro_info['env_info']['py_version']}.")
967 if current_tf_version != repro_info['env_info']['tf_version']:
968 warnings.warn(f"TensorFlow version mismatch: Current TensorFlow version is {current_tf_version}, "
969 f"expected {repro_info['env_info']['tf_version']}.")
971 # Check Params
972 repro_params = repro_info.get('params', {})
974 for key, repro_value in repro_params.items():
975 if key in params:
976 if params[key] != repro_value:
977 warnings.warn(f"Parameter mismatch for '{key}': Current value is {params[key]}, "
978 f"repro value is {repro_value}.")
979 else:
980 warnings.warn(f"Parameter '{key}' is missing in the current params.")
982 return
984 class RNNModel(ABC):
986 Abstract base class for RNN models, providing structure for training, predicting, and running reproducibility checks.
988 def __init__(self, params: dict):
990 Initializes the RNNModel with the given parameters.
992 Parameters:
993 -----------
994 params : dict
995 A dictionary containing model parameters.
997 self.params = params
998 if type(self) is RNNModel:
999 raise TypeError("MLModel is an abstract class and cannot be instantiated directly")
1000 super().__init__()
1002 @abstractmethod
1003 def _build_model_train(self):
1004 """Abstract method to build the training model."""
1005 pass
1007 @abstractmethod
1008 def _build_model_predict(self, return_sequences=True):
1009 """Abstract method to build the prediction model. This model copies weights from the train model but with input structure that allows for easier prediction of arbitrary length timeseries. This model is not to be used for training, or don't use with .fit calls"""
1010 pass
1012 def is_stateful(self):
1014 Checks whether any of the layers in the internal model (self.model_train) are stateful.
1016 Returns:
1017 bool: True if at least one layer in the model is stateful, False otherwise.
1019 This method iterates over all the layers in the model and checks if any of them
1020 have the 'stateful' attribute set to True. This is useful for determining if
1021 the model is designed to maintain state across batches during training.
1023 Example:
1024 --------
1025 model.is_stateful()
1026 """
1027 for layer in self.model_train.layers:
1028 if hasattr(layer, 'stateful') and layer.stateful:
1029 return True
1030 return False
1032 def fit(self, X_train, y_train, plot_history=True, plot_title = '',
1033 weights=None, callbacks=[], validation_data=None, return_epochs=False, *args, **kwargs):
1035 Trains the model on the provided training data. Uses the fit method of the training model and then copies the weights over to the prediction model, which has a less restrictive input shape. Formats a list of callbacks to use within the fit method based on params input
1037 Parameters:
1038 -----------
1039 X_train : np.ndarray
1040 The input matrix data for training.
1041 y_train : np.ndarray
1042 The target vector data for training.
1043 plot_history : bool, optional
1044 If True, plots the training history. Default is True.
1045 plot_title : str, optional
1046 The title for the training plot. Default is an empty string.
1047 weights : optional
1048 Initial weights for the model. Default is None.
1049 callbacks : list, optional
1050 A list of callback functions to use during training. Default is an empty list.
1051 validation_data : tuple, optional
1052 Validation data to use during training, expected format (X_val, y_val). Default is None.
1053 return_epochs : bool
1054 If True, return the number of epochs that training took. Used to test and optimize early stopping
1055 """
1056 # verbose_fit argument is for printing out update after each epoch, which gets very long
1057 verbose_fit = self.params['verbose_fit']
1058 verbose_weights = self.params['verbose_weights']
1059 if verbose_weights:
1060 print(f"Training simple RNN with params: {self.params}")
1062 # Setup callbacks
1063 if self.params["reset_states"]:
1064 callbacks=callbacks+[ResetStatesCallback(self.params), TerminateOnNaN()]
1066 # Early stopping callback requires validation data
1067 if validation_data is not None:
1068 X_val, y_val =validation_data[0], validation_data[1]
1069 print("Using early stopping callback.")
1070 early_stop = EarlyStoppingCallback(patience = self.params['early_stopping_patience'])
1071 callbacks=callbacks+[early_stop]
1072 if verbose_weights:
1073 print(f"Formatted X_train hash: {hash_ndarray(X_train)}")
1074 print(f"Formatted y_train hash: {hash_ndarray(y_train)}")
1075 if validation_data is not None:
1076 print(f"Formatted X_val hash: {hash_ndarray(X_val)}")
1077 print(f"Formatted y_val hash: {hash_ndarray(y_val)}")
1078 print(f"Initial weights before training hash: {hash_weights(self.model_train)}")
1080 ## TODO: Hidden State Initialization
1081 # Evaluate Model once to set nonzero initial state
1082 # self.model_train(X_train[0:self.params['batch_size'],:,:])
1084 if validation_data is not None:
1085 history = self.model_train.fit(
1086 X_train, y_train,
1087 epochs=self.params['epochs'],
1088 batch_size=self.params['batch_size'],
1089 callbacks = callbacks,
1090 verbose=verbose_fit,
1091 validation_data = (X_val, y_val),
1092 *args, **kwargs
1094 else:
1095 history = self.model_train.fit(
1096 X_train, y_train,
1097 epochs=self.params['epochs'],
1098 batch_size=self.params['batch_size'],
1099 callbacks = callbacks,
1100 verbose=verbose_fit,
1101 *args, **kwargs
1104 if plot_history:
1105 self.plot_history(history,plot_title)
1107 if self.params["verbose_weights"]:
1108 print(f"Fitted Weights Hash: {hash_weights(self.model_train)}")
1110 # Update Weights for Prediction Model
1111 w_fitted = self.model_train.get_weights()
1112 self.model_predict.set_weights(w_fitted)
1114 if return_epochs:
1115 # Epoch counting starts at 0, adding 1 for the count
1116 return early_stop.best_epoch + 1
1118 def predict(self, X_test):
1120 Generates predictions on the provided test data using the internal prediction model.
1122 Parameters:
1123 -----------
1124 X_test : np.ndarray
1125 The input data for generating predictions.
1127 Returns:
1128 --------
1129 np.ndarray
1130 The predicted values.
1131 """
1132 print("Predicting test data")
1133 X_test = self._format_pred_data(X_test)
1134 preds = self.model_predict.predict(X_test).flatten()
1135 return preds
1138 def _format_pred_data(self, X):
1140 Formats the prediction data for RNN input.
1142 Parameters:
1143 -----------
1144 X : np.ndarray
1145 The input data.
1147 Returns:
1148 --------
1149 np.ndarray
1150 The formatted input data.
1151 """
1152 return np.reshape(X,(1, X.shape[0], self.params['n_features']))
1154 def plot_history(self, history, plot_title, create_figure=True):
1156 Plots the training history. Uses log scale on y axis for readability.
1158 Parameters:
1159 -----------
1160 history : History object
1161 The training history object from model fitting. Output of keras' .fit command
1162 plot_title : str
1163 The title for the plot.
1166 if create_figure:
1167 plt.figure(figsize=(10, 6))
1168 plt.semilogy(history.history['loss'], label='Training loss')
1169 if 'val_loss' in history.history:
1170 plt.semilogy(history.history['val_loss'], label='Validation loss')
1171 plt.title(f'{plot_title} Model loss')
1172 plt.ylabel('Loss')
1173 plt.xlabel('Epoch')
1174 plt.legend(loc='upper left')
1175 plt.show()
1177 def run_model(self, dict0, reproducibility_run=False, plot_period='all', save_outputs=True, return_epochs=False):
1179 Runs the RNN model on input data dictionary, including training, prediction, and reproducibility checks.
1181 Parameters:
1182 -----------
1183 dict0 : RNNData (dict)
1184 The dictionary containing the input data and configuration.
1185 reproducibility_run : bool, optional
1186 If True, performs reproducibility checks after running the model. Default is False.
1187 save_outputs : bool
1188 If True, writes model outputs into input dictionary.
1189 return_epochs : bool
1190 If True, returns how many epochs of training happened. Used to optimize params related to early stopping
1192 Returns:
1193 --------
1194 tuple
1195 Model predictions and a dictionary of RMSE errors broken up by time period.
1196 """
1197 verbose_fit = self.params['verbose_fit']
1198 verbose_weights = self.params['verbose_weights']
1199 if verbose_weights:
1200 dict0.print_hashes()
1201 # Extract Datasets
1202 X_train, y_train, X_test, y_test = dict0.X_train, dict0.y_train, dict0.X_test, dict0.y_test
1203 if 'X_val' in dict0:
1204 X_val, y_val = dict0.X_val, dict0.y_val
1205 else:
1206 X_val = None
1207 if dict0.spatial:
1208 case_id = "Spatial Training Set"
1209 else:
1210 case_id = dict0.case
1212 # Fit model
1213 if X_val is None:
1214 eps = self.fit(X_train, y_train, plot_title=case_id, return_epochs=return_epochs)
1215 else:
1216 eps = self.fit(X_train, y_train, validation_data = (X_val, y_val), plot_title=case_id, return_epochs=return_epochs)
1218 # Generate Predictions and Evaluate Test Error
1219 if dict0.spatial:
1220 m, errs = self._eval_multi(dict0)
1221 if save_outputs:
1222 dict0['m']=m
1223 else:
1224 m, errs = self._eval_single(dict0, verbose_weights, reproducibility_run)
1225 if save_outputs:
1226 dict0['m']=m
1227 plot_data(dict0, title="RNN", title2=dict0.case, plot_period=plot_period)
1229 if return_epochs:
1230 return m, errs, eps
1231 else:
1232 return m, errs
1234 def _eval_single(self, dict0, verbose_weights, reproducibility_run):
1235 # Generate Predictions,
1236 # run through training to get hidden state set properly for forecast period
1237 print(f"Running prediction on all input data, Training through Test")
1238 X = dict0.scale_all_X()
1239 y = dict0.y.flatten()
1240 # Predict
1241 if verbose_weights:
1242 print(f"All X hash: {hash_ndarray(X)}")
1244 m = self.predict(X).flatten()
1245 if verbose_weights:
1246 print(f"Predictions Hash: {hash_ndarray(m)}")
1248 if reproducibility_run:
1249 print("Checking Reproducibility")
1250 check_reproducibility(dict0, self.params, hash_ndarray(m), hash_weights(self.model_predict))
1252 # print(dict0.keys())
1253 # Plot final fit and data
1254 # dict0['y'] = y
1255 # plot_data(dict0, title="RNN", title2=dict0['case'], plot_period=plot_period)
1257 # Calculate Errors
1258 err = rmse(m, y)
1259 train_ind = dict0.train_ind # index of final training set value
1260 test_ind = dict0.test_ind # index of first test set value
1262 err_train = rmse(m[:train_ind], y[:train_ind].flatten())
1263 err_pred = rmse(m[test_ind:], y[test_ind:].flatten())
1264 rmse_dict = {
1265 'all': err,
1266 'training': err_train,
1267 'prediction': err_pred
1269 return m, rmse_dict
1271 def _eval_multi(self, dict0):
1272 # Train Error: NOT DOING YET. DECIDE WHETHER THIS IS NEEDED
1274 # Test Error
1275 new_data = np.stack(dict0.X_test, axis=0)
1276 y_array = np.stack(dict0.y_test, axis=0)
1277 preds = self.model_predict.predict(new_data)
1279 # Calculate RMSE
1280 ## Note: not using util rmse function since this approach is for 3d arrays
1281 # Compute the squared differences
1282 squared_diff = np.square(preds - y_array)
1284 # Mean squared error along the timesteps and dimensions (axis 1 and 2)
1285 mse = np.mean(squared_diff, axis=(1, 2))
1287 # Root mean squared error (RMSE) for each timeseries
1288 rmses = np.sqrt(mse)
1290 return preds, rmses
1293 ## Callbacks
1295 # Helper functions for batch reset schedules
1296 def calc_exp_intervals(bmin, bmax, n_epochs, force_bmax = True):
1297 # Calculate the exponential intervals for each epoch
1298 epochs = np.arange(n_epochs)
1299 factors = epochs / n_epochs
1300 intervals = bmin * (bmax / bmin) ** factors
1301 if force_bmax:
1302 intervals[-1] = bmax # Ensure the last value is exactly bmax
1303 return intervals.astype(int)
1305 def calc_log_intervals(bmin, bmax, n_epochs, force_bmax = True):
1306 # Calculate the logarithmic intervals for each epoch
1307 epochs = np.arange(n_epochs)
1308 factors = np.log(1 + epochs) / np.log(1 + n_epochs)
1309 intervals = bmin + (bmax - bmin) * factors
1310 if force_bmax:
1311 intervals[-1] = bmax # Ensure the last value is exactly bmax
1312 return intervals.astype(int)
1314 class ResetStatesCallback(Callback):
1316 Custom callback to reset the states of RNN layers at the end of each epoch and optionally after a specified number of batches.
1318 Parameters:
1319 -----------
1320 batch_reset : int, optional
1321 If provided, resets the states of RNN layers after every `batch_reset` batches. Default is None.
1322 """
1323 # def __init__(self, bmin=None, bmax=None, epochs=None, loc_batch_reset = None, batch_schedule_type='linear', verbose=True):
1324 def __init__(self, params=None, verbose=True):
1326 Initializes the ResetStatesCallback with an optional batch reset interval.
1328 Parameters:
1329 -----------
1330 params: dict, optional
1331 Dictionary of parameters. If None provided, only on_epoch_end will trigger reset of hidden states.
1332 - bmin : int
1333 Minimum for batch reset schedule
1334 - bmax : int
1335 Maximum for batch reset schedule
1336 - epochs : int
1337 Number of training epochs.
1338 - loc_batch_reset : int
1339 Interval of batches after which to reset the states of RNN layers for location changes. Triggers reset for training AND validation phases
1340 - batch_schedule_type : str
1341 Type of batch scheduling to be used. Recognized methods are following:
1342 - 'constant' : Used fixed batch reset interval throughout training
1343 - 'linear' : Increases the batch reset interval linearly over epochs from bmin to bmax.
1344 - 'exp' : Increases the batch reset interval exponentially over epochs from bmin to bmax.
1345 - 'log' : Increases the batch reset interval logarithmically over epochs from bmin to bmax.
1348 Returns:
1349 -----------
1350 Only in-place reset of hidden states of RNN that calls uses this callback.
1352 """
1353 super(ResetStatesCallback, self).__init__()
1355 # Check for optional arguments, set None if missing in input params
1356 arg_list = ['bmin', 'bmax', 'epochs', 'loc_batch_reset', 'batch_schedule_type']
1357 for arg in arg_list:
1358 setattr(self, arg, params.get(arg, None))
1360 self.verbose = verbose
1361 if self.verbose:
1362 print(f"Using ResetStatesCallback with Batch Reset Schedule: {self.batch_schedule_type}")
1363 # Calculate the reset intervals for each epoch during initialization
1364 if self.batch_schedule_type is not None:
1365 if self.epochs is None:
1366 raise ValueError(f"Arugment `epochs` cannot be none with self.batch_schedule_type: {self.batch_schedule_type}")
1367 self.batch_reset_intervals = self._calc_reset_intervals(self.batch_schedule_type)
1368 if self.verbose:
1369 print(f"batch_reset_intervals: {self.batch_reset_intervals}")
1370 else:
1371 self.batch_reset_intervals = None
1372 def on_epoch_end(self, epoch, logs=None):
1374 Resets the states of RNN layers at the end of each epoch.
1376 Parameters:
1377 -----------
1378 epoch : int
1379 The index of the current epoch.
1380 logs : dict, optional
1381 A dictionary containing metrics from the epoch. Default is None.
1382 """
1383 # print(f" Resetting hidden state after epoch: {epoch+1}", flush=True)
1384 # Iterate over each layer in the model
1385 for layer in self.model.layers:
1386 # Check if the layer has a reset_states method
1387 if hasattr(layer, 'reset_states'):
1388 layer.reset_states()
1389 def _calc_reset_intervals(self,batch_schedule_type):
1390 methods = ['constant', 'linear', 'exp', 'log']
1391 if batch_schedule_type not in methods:
1392 raise ValueError(f"Batch schedule method {batch_schedule_type} not recognized. \n Available methods: {methods}")
1393 if batch_schedule_type == "constant":
1395 return np.repeat(self.bmin, self.epochs).astype(int)
1396 elif batch_schedule_type == "linear":
1397 return np.linspace(self.bmin, self.bmax, self.epochs).astype(int)
1398 elif batch_schedule_type == "exp":
1399 return calc_exp_intervals(self.bmin, self.bmax, self.epochs)
1400 elif batch_schedule_type == "log":
1401 return calc_log_intervals(self.bmin, self.bmax, self.epochs)
1402 def on_epoch_begin(self, epoch, logs=None):
1403 # Set the reset interval for the current epoch
1404 if self.batch_reset_intervals is not None:
1405 self.current_batch_reset = self.batch_reset_intervals[epoch]
1406 else:
1407 self.current_batch_reset = None
1408 def on_train_batch_end(self, batch, logs=None):
1410 Resets the states of RNN layers during training after a specified number of batches, if `batch_reset` or `loc_batch_reset` are provided. The `batch_reset` is used for stability and to avoid exploding gradients at the beginning of training when a hidden state is being passed with weights that haven't learned yet. The `loc_batch_reset` is used to reset the states when a particular batch is from a new location and thus the hidden state should be passed.
1412 Parameters:
1413 -----------
1414 batch : int
1415 The index of the current batch.
1416 logs : dict, optional
1417 A dictionary containing metrics from the batch. Default is None.
1418 """
1419 batch_reset = self.current_batch_reset
1420 if (batch_reset is not None and batch % batch_reset == 0):
1421 # print(f" Resetting states after batch {batch + 1}")
1422 # Iterate over each layer in the model
1423 for layer in self.model.layers:
1424 # Check if the layer has a reset_states method
1425 if hasattr(layer, 'reset_states'):
1426 layer.reset_states()
1427 def on_test_batch_end(self, batch, logs=None):
1429 Resets the states of RNN layers during validation if `loc_batch_reset` is provided to demarcate a new location and thus avoid passing a hidden state to a wrong location.
1431 Parameters:
1432 -----------
1433 batch : int
1434 The index of the current batch.
1435 logs : dict, optional
1436 A dictionary containing metrics from the batch. Default is None.
1437 """
1438 loc_batch_reset = self.loc_batch_reset
1439 if (loc_batch_reset is not None and batch % loc_batch_reset == 0):
1440 # print(f"Resetting states in Validation mode after batch {batch + 1}")
1441 # Iterate over each layer in the model
1442 for layer in self.model.layers:
1443 # Check if the layer has a reset_states method
1444 if hasattr(layer, 'reset_states'):
1445 layer.reset_states()
1447 ## Learning Schedules
1448 ## NOT TESTED YET
1449 lr_schedule = tf.keras.optimizers.schedules.CosineDecay(
1450 initial_learning_rate=0.01,
1451 decay_steps=200,
1452 alpha=0.0,
1453 name='CosineDecay',
1454 # warmup_target=None,
1455 # warmup_steps=100
1459 def EarlyStoppingCallback(patience=5):
1461 Creates an EarlyStopping callback with the specified patience.
1463 Args:
1464 patience (int): Number of epochs with no improvement after which training will be stopped.
1466 Returns:
1467 EarlyStopping: Configured EarlyStopping callback.
1469 return EarlyStopping(
1470 monitor='val_loss',
1471 patience=patience,
1472 verbose=1,
1473 mode='min',
1474 restore_best_weights=True
1477 phys_params = {
1478 'DeltaE': [0,-1], # bias correction
1479 'T1': 0.1, # 1/fuel class (10)
1480 'fm_raise_vs_rain': 0.2 # fm increase per mm rain
1485 def get_initial_weights(model_fit,params,scale_fm=1):
1486 # Given a RNN architecture and hyperparameter dictionary, return array of physics-initiated weights
1487 # Inputs:
1488 # model_fit: output of create_RNN_2 with no training
1489 # params: (dict) dictionary of hyperparameters
1490 # rnn_dat: (dict) data dictionary, output of create_rnn_dat
1491 # Returns: numpy ndarray of weights that should be a rough solution to the moisture ODE
1492 DeltaE = phys_params['DeltaE']
1493 T1 = phys_params['T1']
1494 fmr = phys_params['fm_raise_vs_rain']
1495 centering = params['centering'] # shift activation down
1497 w0_initial={'Ed':(1.-np.exp(-T1))/2,
1498 'Ew':(1.-np.exp(-T1))/2,
1499 'rain':fmr * scale_fm} # wx - input feature
1500 # wh wb wd bd = bias -1
1502 w_initial=np.array([np.nan, np.exp(-0.1), DeltaE[0]/scale_fm, # layer 0
1503 1.0, -centering[0] + DeltaE[1]/scale_fm]) # layer 1
1504 if params['verbose_weights']:
1505 print('Equilibrium moisture correction bias',DeltaE[0],
1506 'in the hidden layer and',DeltaE[1],' in the output layer')
1508 w_name = ['wx','wh','bh','wd','bd']
1510 w=model_fit.get_weights()
1511 for j in range(w[0].shape[0]):
1512 feature = params['features_list'][j]
1513 for k in range(w[0].shape[1]):
1514 w[0][j][k]=w0_initial[feature]
1515 for i in range(1,len(w)): # number of the weight
1516 for j in range(w[i].shape[0]): # number of the inputs
1517 if w[i].ndim==2:
1518 # initialize all entries of the weight matrix to the same number
1519 for k in range(w[i].shape[1]):
1520 w[i][j][k]=w_initial[i]/w[i].shape[0]
1521 elif w[i].ndim==1:
1522 w[i][j]=w_initial[i]
1523 else:
1524 print('weight',i,'shape',w[i].shape)
1525 raise ValueError("Only 1 or 2 dimensions supported")
1526 if params['verbose_weights']:
1527 print('weight',i,w_name[i],'shape',w[i].shape,'ndim',w[i].ndim,
1528 'initial: sum',np.sum(w[i],axis=0),'\nentries',w[i])
1530 return w, w_name
1532 class RNN(RNNModel):
1534 A concrete implementation of the RNNModel abstract base class, using simple recurrent cells for hidden recurrent layers.
1536 Parameters:
1537 -----------
1538 params : dict
1539 A dictionary of model parameters.
1540 loss : str, optional
1541 The loss function to use during model training. Default is 'mean_squared_error'.
1543 def __init__(self, params, loss='mean_squared_error'):
1545 Initializes the RNN model by building the training and prediction models.
1547 Parameters:
1548 -----------
1549 params : dict or RNNParams
1550 A dictionary containing the model's parameters.
1551 loss : str, optional
1552 The loss function to use during model training. Default is 'mean_squared_error'.
1553 """
1554 super().__init__(params)
1555 self.model_train = self._build_model_train()
1556 self.model_predict = self._build_model_predict()
1558 def _build_model_train(self):
1560 Builds and compiles the training model, with batch & sequence shape specifications for input.
1562 Returns:
1563 --------
1564 model : tf.keras.Model
1565 The compiled Keras model for training.
1566 """
1567 inputs = tf.keras.Input(batch_shape=self.params['batch_shape'])
1568 x = inputs
1569 for i in range(self.params['rnn_layers']):
1570 # Return sequences True if recurrent layer feeds into another recurrent layer.
1571 # False if feeds into dense layer
1572 return_sequences = True if i < self.params['rnn_layers'] - 1 else False
1573 x = SimpleRNN(
1574 units=self.params['rnn_units'],
1575 activation=self.params['activation'][0],
1576 dropout=self.params["dropout"][0],
1577 recurrent_dropout = self.params["recurrent_dropout"],
1578 stateful=self.params['stateful'],
1579 return_sequences=return_sequences)(x)
1580 if self.params["dropout"][1] > 0:
1581 x = Dropout(self.params["dropout"][1])(x)
1582 for i in range(self.params['dense_layers']):
1583 x = Dense(self.params['dense_units'], activation=self.params['activation'][1])(x)
1584 # Add final output layer, must be 1 dense cell with linear activation if continuous scalar output
1585 x = Dense(units=1, activation='linear')(x)
1586 model = tf.keras.Model(inputs=inputs, outputs=x)
1587 optimizer=tf.keras.optimizers.Adam(learning_rate=self.params['learning_rate'])
1588 # optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
1589 model.compile(loss='mean_squared_error', optimizer=optimizer)
1591 if self.params["verbose_weights"]:
1592 print(f"Initial Weights Hash: {hash_weights(model)}")
1593 # print(model.get_weights())
1595 if self.params['phys_initialize']:
1596 assert self.params['scaler'] == 'reproducibility', f"Not implemented yet to do physics initialize with given data scaling {self.params['scaler']}"
1597 assert self.params['features_list'] == ['Ed', 'Ew', 'rain'], f"Physics initiation can only be done with features ['Ed', 'Ew', 'rain'], but given features {self.params['features_list']}"
1598 print("Initializing Model with Physics based weights")
1599 w, w_name=get_initial_weights(model, self.params)
1600 model.set_weights(w)
1601 print('initial weights hash =',hash_weights(model))
1602 return model
1604 def _build_model_predict(self, return_sequences=True):
1606 Builds and compiles the prediction model, doesn't use batch shape nor sequence length to make it easier to predict arbitrary number of timesteps. This model has weights copied over from training model is not directly used for training itself.
1608 Parameters:
1609 -----------
1610 return_sequences : bool, optional
1611 Whether to return the full sequence of outputs. Default is True.
1613 Returns:
1614 --------
1615 model : tf.keras.Model
1616 The compiled Keras model for prediction.
1617 """
1618 inputs = tf.keras.Input(shape=(None,self.params['n_features']))
1619 x = inputs
1620 for i in range(self.params['rnn_layers']):
1621 x = SimpleRNN(self.params['rnn_units'],activation=self.params['activation'][0],
1622 stateful=False,return_sequences=return_sequences)(x)
1623 for i in range(self.params['dense_layers']):
1624 x = Dense(self.params['dense_units'], activation=self.params['activation'][1])(x)
1625 # Add final output layer, must be 1 dense cell with linear activation if continuous scalar output
1626 x = Dense(units=1, activation='linear')(x)
1627 model = tf.keras.Model(inputs=inputs, outputs=x)
1628 optimizer=tf.keras.optimizers.Adam(learning_rate=self.params['learning_rate'])
1629 model.compile(loss='mean_squared_error', optimizer=optimizer)
1631 # Set Weights to model_train
1632 w_fitted = self.model_train.get_weights()
1633 model.set_weights(w_fitted)
1635 return model
1638 class RNN_LSTM(RNNModel):
1640 A concrete implementation of the RNNModel abstract base class, use LSTM cells for hidden recurrent layers.
1642 Parameters:
1643 -----------
1644 params : dict
1645 A dictionary of model parameters.
1646 loss : str, optional
1647 The loss function to use during model training. Default is 'mean_squared_error'.
1649 def __init__(self, params, loss='mean_squared_error'):
1651 Initializes the RNN model by building the training and prediction models.
1653 Parameters:
1654 -----------
1655 params : dict or RNNParams
1656 A dictionary containing the model's parameters.
1657 loss : str, optional
1658 The loss function to use during model training. Default is 'mean_squared_error'.
1659 """
1660 super().__init__(params)
1661 self.model_train = self._build_model_train()
1662 self.model_predict = self._build_model_predict()
1664 def _build_model_train(self):
1666 Builds and compiles the training model, with batch & sequence shape specifications for input.
1668 Returns:
1669 --------
1670 model : tf.keras.Model
1671 The compiled Keras model for training.
1672 """
1673 inputs = tf.keras.Input(batch_shape=self.params['batch_shape'])
1674 x = inputs
1675 for i in range(self.params['rnn_layers']):
1676 return_sequences = True if i < self.params['rnn_layers'] - 1 else False
1677 x = LSTM(
1678 units=self.params['rnn_units'],
1679 activation=self.params['activation'][0],
1680 dropout=self.params["dropout"][0],
1681 recurrent_dropout = self.params["recurrent_dropout"],
1682 recurrent_activation=self.params["recurrent_activation"],
1683 stateful=self.params['stateful'],
1684 return_sequences=return_sequences)(x)
1685 if self.params["dropout"][1] > 0:
1686 x = Dropout(self.params["dropout"][1])(x)
1687 for i in range(self.params['dense_layers']):
1688 x = Dense(self.params['dense_units'], activation=self.params['activation'][1])(x)
1689 model = tf.keras.Model(inputs=inputs, outputs=x)
1690 # optimizer=tf.keras.optimizers.Adam(learning_rate=self.params['learning_rate'], clipvalue=self.params['clipvalue'])
1691 optimizer=tf.keras.optimizers.Adam(learning_rate=self.params['learning_rate'])
1692 model.compile(loss='mean_squared_error', optimizer=optimizer)
1694 if self.params["verbose_weights"]:
1695 print(f"Initial Weights Hash: {hash_weights(model)}")
1696 return model
1697 def _build_model_predict(self, return_sequences=True):
1699 Builds and compiles the prediction model, doesn't use batch shape nor sequence length to make it easier to predict arbitrary number of timesteps. This model has weights copied over from training model is not directly used for training itself.
1701 Parameters:
1702 -----------
1703 return_sequences : bool, optional
1704 Whether to return the full sequence of outputs. Default is True.
1706 Returns:
1707 --------
1708 model : tf.keras.Model
1709 The compiled Keras model for prediction.
1710 """
1711 inputs = tf.keras.Input(shape=(None,self.params['n_features']))
1712 x = inputs
1713 for i in range(self.params['rnn_layers']):
1714 x = LSTM(
1715 units=self.params['rnn_units'],
1716 activation=self.params['activation'][0],
1717 stateful=False,return_sequences=return_sequences)(x)
1718 for i in range(self.params['dense_layers']):
1719 x = Dense(self.params['dense_units'], activation=self.params['activation'][1])(x)
1720 model = tf.keras.Model(inputs=inputs, outputs=x)
1721 optimizer=tf.keras.optimizers.Adam(learning_rate=self.params['learning_rate'])
1722 model.compile(loss='mean_squared_error', optimizer=optimizer)
1724 # Set Weights to model_train
1725 w_fitted = self.model_train.get_weights()
1726 model.set_weights(w_fitted)
1728 return model