Sys.Signals module for a Variant type of signals (and a set_signal function that...
[ocaml.git] / byterun / md5.c
blob9d2481fe91f4fab73f105d62d166f25c8a60b567
1 /***********************************************************************/
2 /* */
3 /* Objective Caml */
4 /* */
5 /* Xavier Leroy, projet Cristal, INRIA Rocquencourt */
6 /* */
7 /* Copyright 1996 Institut National de Recherche en Informatique et */
8 /* en Automatique. All rights reserved. This file is distributed */
9 /* under the terms of the GNU Library General Public License, with */
10 /* the special exception on linking described in file ../LICENSE. */
11 /* */
12 /***********************************************************************/
14 /* $Id$ */
16 #include <string.h>
17 #include "alloc.h"
18 #include "fail.h"
19 #include "md5.h"
20 #include "memory.h"
21 #include "mlvalues.h"
22 #include "io.h"
23 #include "reverse.h"
25 /* MD5 message digest */
27 CAMLprim value caml_md5_string(value str, value ofs, value len)
29 struct MD5Context ctx;
30 value res;
31 caml_MD5Init(&ctx);
32 caml_MD5Update(&ctx, &Byte_u(str, Long_val(ofs)), Long_val(len));
33 res = caml_alloc_string(16);
34 caml_MD5Final(&Byte_u(res, 0), &ctx);
35 return res;
38 CAMLprim value caml_md5_chan(value vchan, value len)
40 CAMLparam2 (vchan, len);
41 struct channel * chan = Channel(vchan);
42 struct MD5Context ctx;
43 value res;
44 intnat toread, read;
45 char buffer[4096];
47 Lock(chan);
48 caml_MD5Init(&ctx);
49 toread = Long_val(len);
50 if (toread < 0){
51 while (1){
52 read = caml_getblock (chan, buffer, sizeof(buffer));
53 if (read == 0) break;
54 caml_MD5Update (&ctx, (unsigned char *) buffer, read);
56 }else{
57 while (toread > 0) {
58 read = caml_getblock(chan, buffer,
59 toread > sizeof(buffer) ? sizeof(buffer) : toread);
60 if (read == 0) caml_raise_end_of_file();
61 caml_MD5Update(&ctx, (unsigned char *) buffer, read);
62 toread -= read;
65 res = caml_alloc_string(16);
66 caml_MD5Final(&Byte_u(res, 0), &ctx);
67 Unlock(chan);
68 CAMLreturn (res);
72 * This code implements the MD5 message-digest algorithm.
73 * The algorithm is due to Ron Rivest. This code was
74 * written by Colin Plumb in 1993, no copyright is claimed.
75 * This code is in the public domain; do with it what you wish.
77 * Equivalent code is available from RSA Data Security, Inc.
78 * This code has been tested against that, and is equivalent,
79 * except that you don't need to include two pages of legalese
80 * with every copy.
82 * To compute the message digest of a chunk of bytes, declare an
83 * MD5Context structure, pass it to caml_MD5Init, call caml_MD5Update as
84 * needed on buffers full of bytes, and then call caml_MD5Final, which
85 * will fill a supplied 16-byte array with the digest.
88 #ifndef ARCH_BIG_ENDIAN
89 #define byteReverse(buf, len) /* Nothing */
90 #else
91 static void byteReverse(unsigned char * buf, unsigned longs)
93 uint32 t;
94 do {
95 t = (uint32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
96 ((unsigned) buf[1] << 8 | buf[0]);
97 *(uint32 *) buf = t;
98 buf += 4;
99 } while (--longs);
101 #endif
104 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
105 * initialization constants.
107 CAMLexport void caml_MD5Init(struct MD5Context *ctx)
109 ctx->buf[0] = 0x67452301;
110 ctx->buf[1] = 0xefcdab89;
111 ctx->buf[2] = 0x98badcfe;
112 ctx->buf[3] = 0x10325476;
114 ctx->bits[0] = 0;
115 ctx->bits[1] = 0;
119 * Update context to reflect the concatenation of another buffer full
120 * of bytes.
122 CAMLexport void caml_MD5Update(struct MD5Context *ctx, unsigned char *buf,
123 uintnat len)
125 uint32 t;
127 /* Update bitcount */
129 t = ctx->bits[0];
130 if ((ctx->bits[0] = t + ((uint32) len << 3)) < t)
131 ctx->bits[1]++; /* Carry from low to high */
132 ctx->bits[1] += len >> 29;
134 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
136 /* Handle any leading odd-sized chunks */
138 if (t) {
139 unsigned char *p = (unsigned char *) ctx->in + t;
141 t = 64 - t;
142 if (len < t) {
143 memcpy(p, buf, len);
144 return;
146 memcpy(p, buf, t);
147 byteReverse(ctx->in, 16);
148 caml_MD5Transform(ctx->buf, (uint32 *) ctx->in);
149 buf += t;
150 len -= t;
152 /* Process data in 64-byte chunks */
154 while (len >= 64) {
155 memcpy(ctx->in, buf, 64);
156 byteReverse(ctx->in, 16);
157 caml_MD5Transform(ctx->buf, (uint32 *) ctx->in);
158 buf += 64;
159 len -= 64;
162 /* Handle any remaining bytes of data. */
164 memcpy(ctx->in, buf, len);
168 * Final wrapup - pad to 64-byte boundary with the bit pattern
169 * 1 0* (64-bit count of bits processed, MSB-first)
171 CAMLexport void caml_MD5Final(unsigned char *digest, struct MD5Context *ctx)
173 unsigned count;
174 unsigned char *p;
176 /* Compute number of bytes mod 64 */
177 count = (ctx->bits[0] >> 3) & 0x3F;
179 /* Set the first char of padding to 0x80. This is safe since there is
180 always at least one byte free */
181 p = ctx->in + count;
182 *p++ = 0x80;
184 /* Bytes of padding needed to make 64 bytes */
185 count = 64 - 1 - count;
187 /* Pad out to 56 mod 64 */
188 if (count < 8) {
189 /* Two lots of padding: Pad the first block to 64 bytes */
190 memset(p, 0, count);
191 byteReverse(ctx->in, 16);
192 caml_MD5Transform(ctx->buf, (uint32 *) ctx->in);
194 /* Now fill the next block with 56 bytes */
195 memset(ctx->in, 0, 56);
196 } else {
197 /* Pad block to 56 bytes */
198 memset(p, 0, count - 8);
200 byteReverse(ctx->in, 14);
202 /* Append length in bits and transform */
203 ((uint32 *) ctx->in)[14] = ctx->bits[0];
204 ((uint32 *) ctx->in)[15] = ctx->bits[1];
206 caml_MD5Transform(ctx->buf, (uint32 *) ctx->in);
207 byteReverse((unsigned char *) ctx->buf, 4);
208 memcpy(digest, ctx->buf, 16);
209 memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */
212 /* The four core functions - F1 is optimized somewhat */
214 /* #define F1(x, y, z) (x & y | ~x & z) */
215 #define F1(x, y, z) (z ^ (x & (y ^ z)))
216 #define F2(x, y, z) F1(z, x, y)
217 #define F3(x, y, z) (x ^ y ^ z)
218 #define F4(x, y, z) (y ^ (x | ~z))
220 /* This is the central step in the MD5 algorithm. */
221 #define MD5STEP(f, w, x, y, z, data, s) \
222 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
225 * The core of the MD5 algorithm, this alters an existing MD5 hash to
226 * reflect the addition of 16 longwords of new data. caml_MD5Update blocks
227 * the data and converts bytes into longwords for this routine.
229 CAMLexport void caml_MD5Transform(uint32 *buf, uint32 *in)
231 register uint32 a, b, c, d;
233 a = buf[0];
234 b = buf[1];
235 c = buf[2];
236 d = buf[3];
238 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
239 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
240 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
241 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
242 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
243 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
244 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
245 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
246 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
247 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
248 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
249 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
250 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
251 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
252 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
253 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
255 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
256 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
257 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
258 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
259 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
260 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
261 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
262 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
263 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
264 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
265 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
266 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
267 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
268 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
269 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
270 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
272 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
273 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
274 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
275 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
276 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
277 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
278 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
279 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
280 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
281 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
282 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
283 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
284 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
285 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
286 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
287 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
289 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
290 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
291 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
292 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
293 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
294 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
295 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
296 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
297 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
298 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
299 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
300 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
301 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
302 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
303 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
304 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
306 buf[0] += a;
307 buf[1] += b;
308 buf[2] += c;
309 buf[3] += d;