Cosmetic: Commentary spelling corrections by Max Seidenstücker
[ode.git] / include / ode / odemath.h
blob0bad6e9d98a089d39e1ddab219d0e53b59c99d58
1 /*************************************************************************
2 * *
3 * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
4 * All rights reserved. Email: russ@q12.org Web: www.q12.org *
5 * *
6 * This library is free software; you can redistribute it and/or *
7 * modify it under the terms of EITHER: *
8 * (1) The GNU Lesser General Public License as published by the Free *
9 * Software Foundation; either version 2.1 of the License, or (at *
10 * your option) any later version. The text of the GNU Lesser *
11 * General Public License is included with this library in the *
12 * file LICENSE.TXT. *
13 * (2) The BSD-style license that is included with this library in *
14 * the file LICENSE-BSD.TXT. *
15 * *
16 * This library is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
19 * LICENSE.TXT and LICENSE-BSD.TXT for more details. *
20 * *
21 *************************************************************************/
23 #ifndef _ODE_ODEMATH_H_
24 #define _ODE_ODEMATH_H_
26 #include <ode/common.h>
29 * macro to access elements i,j in an NxM matrix A, independent of the
30 * matrix storage convention.
32 #define dACCESS33(A,i,j) ((A)[(i)*4+(j)])
35 * Macro to test for valid floating point values
37 #define dVALIDVEC3(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2])))
38 #define dVALIDVEC4(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2]) || dIsNan(v[3])))
39 #define dVALIDMAT3(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11])))
40 #define dVALIDMAT4(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11]) || dIsNan(m[12]) || dIsNan(m[13]) || dIsNan(m[14]) || dIsNan(m[15]) ))
43 ODE_PURE_INLINE void dZeroVector3(dVector3 res)
45 res[dV3E_X] = REAL(0.0);
46 res[dV3E_Y] = REAL(0.0);
47 res[dV3E_Z] = REAL(0.0);
50 ODE_PURE_INLINE void dAssignVector3(dVector3 res, dReal x, dReal y, dReal z)
52 res[dV3E_X] = x;
53 res[dV3E_Y] = y;
54 res[dV3E_Z] = z;
57 ODE_PURE_INLINE void dZeroMatrix3(dMatrix3 res)
59 res[dM3E_XX] = REAL(0.0); res[dM3E_XY] = REAL(0.0); res[dM3E_XZ] = REAL(0.0);
60 res[dM3E_YX] = REAL(0.0); res[dM3E_YY] = REAL(0.0); res[dM3E_YZ] = REAL(0.0);
61 res[dM3E_ZX] = REAL(0.0); res[dM3E_ZY] = REAL(0.0); res[dM3E_ZZ] = REAL(0.0);
64 ODE_PURE_INLINE void dZeroMatrix4(dMatrix4 res)
66 res[dM4E_XX] = REAL(0.0); res[dM4E_XY] = REAL(0.0); res[dM4E_XZ] = REAL(0.0); res[dM4E_XO] = REAL(0.0);
67 res[dM4E_YX] = REAL(0.0); res[dM4E_YY] = REAL(0.0); res[dM4E_YZ] = REAL(0.0); res[dM4E_YO] = REAL(0.0);
68 res[dM4E_ZX] = REAL(0.0); res[dM4E_ZY] = REAL(0.0); res[dM4E_ZZ] = REAL(0.0); res[dM4E_ZO] = REAL(0.0);
69 res[dM4E_OX] = REAL(0.0); res[dM4E_OY] = REAL(0.0); res[dM4E_OZ] = REAL(0.0); res[dM4E_OO] = REAL(0.0);
72 /* Some vector math */
73 ODE_PURE_INLINE void dAddVectors3(dReal *res, const dReal *a, const dReal *b)
75 const dReal res_0 = a[0] + b[0];
76 const dReal res_1 = a[1] + b[1];
77 const dReal res_2 = a[2] + b[2];
78 /* Only assign after all the calculations are over to avoid incurring memory aliasing*/
79 res[0] = res_0; res[1] = res_1; res[2] = res_2;
82 ODE_PURE_INLINE void dSubtractVectors3(dReal *res, const dReal *a, const dReal *b)
84 const dReal res_0 = a[0] - b[0];
85 const dReal res_1 = a[1] - b[1];
86 const dReal res_2 = a[2] - b[2];
87 /* Only assign after all the calculations are over to avoid incurring memory aliasing*/
88 res[0] = res_0; res[1] = res_1; res[2] = res_2;
91 ODE_PURE_INLINE void dAddVectorScaledVector3(dReal *res, const dReal *a, const dReal *b, dReal b_scale)
93 const dReal res_0 = a[0] + b_scale * b[0];
94 const dReal res_1 = a[1] + b_scale * b[1];
95 const dReal res_2 = a[2] + b_scale * b[2];
96 /* Only assign after all the calculations are over to avoid incurring memory aliasing*/
97 res[0] = res_0; res[1] = res_1; res[2] = res_2;
100 ODE_PURE_INLINE void dAddScaledVectors3(dReal *res, const dReal *a, const dReal *b, dReal a_scale, dReal b_scale)
102 const dReal res_0 = a_scale * a[0] + b_scale * b[0];
103 const dReal res_1 = a_scale * a[1] + b_scale * b[1];
104 const dReal res_2 = a_scale * a[2] + b_scale * b[2];
105 /* Only assign after all the calculations are over to avoid incurring memory aliasing*/
106 res[0] = res_0; res[1] = res_1; res[2] = res_2;
109 ODE_PURE_INLINE void dAddThreeScaledVectors3(dReal *res, const dReal *a, const dReal *b, const dReal *c, dReal a_scale, dReal b_scale, dReal c_scale)
111 const dReal res_0 = a_scale * a[0] + b_scale * b[0] + c_scale * c[0];
112 const dReal res_1 = a_scale * a[1] + b_scale * b[1] + c_scale * c[1];
113 const dReal res_2 = a_scale * a[2] + b_scale * b[2] + c_scale * c[2];
114 /* Only assign after all the calculations are over to avoid incurring memory aliasing*/
115 res[0] = res_0; res[1] = res_1; res[2] = res_2;
118 ODE_PURE_INLINE void dScaleVector3(dReal *res, dReal nScale)
120 res[0] *= nScale ;
121 res[1] *= nScale ;
122 res[2] *= nScale ;
125 ODE_PURE_INLINE void dNegateVector3(dReal *res)
127 res[0] = -res[0];
128 res[1] = -res[1];
129 res[2] = -res[2];
132 ODE_PURE_INLINE void dCopyVector3(dReal *res, const dReal *a)
134 const dReal res_0 = a[0];
135 const dReal res_1 = a[1];
136 const dReal res_2 = a[2];
137 /* Only assign after all the calculations are over to avoid incurring memory aliasing*/
138 res[0] = res_0; res[1] = res_1; res[2] = res_2;
141 ODE_PURE_INLINE void dCopyScaledVector3(dReal *res, const dReal *a, dReal nScale)
143 const dReal res_0 = a[0] * nScale;
144 const dReal res_1 = a[1] * nScale;
145 const dReal res_2 = a[2] * nScale;
146 /* Only assign after all the calculations are over to avoid incurring memory aliasing*/
147 res[0] = res_0; res[1] = res_1; res[2] = res_2;
150 ODE_PURE_INLINE void dCopyNegatedVector3(dReal *res, const dReal *a)
152 const dReal res_0 = -a[0];
153 const dReal res_1 = -a[1];
154 const dReal res_2 = -a[2];
155 /* Only assign after all the calculations are over to avoid incurring memory aliasing*/
156 res[0] = res_0; res[1] = res_1; res[2] = res_2;
159 ODE_PURE_INLINE void dCopyVector4(dReal *res, const dReal *a)
161 const dReal res_0 = a[0];
162 const dReal res_1 = a[1];
163 const dReal res_2 = a[2];
164 const dReal res_3 = a[3];
165 /* Only assign after all the calculations are over to avoid incurring memory aliasing*/
166 res[0] = res_0; res[1] = res_1; res[2] = res_2; res[3] = res_3;
169 ODE_PURE_INLINE void dCopyMatrix4x4(dReal *res, const dReal *a)
171 dCopyVector4(res + 0, a + 0);
172 dCopyVector4(res + 4, a + 4);
173 dCopyVector4(res + 8, a + 8);
176 ODE_PURE_INLINE void dCopyMatrix4x3(dReal *res, const dReal *a)
178 dCopyVector3(res + 0, a + 0);
179 dCopyVector3(res + 4, a + 4);
180 dCopyVector3(res + 8, a + 8);
183 ODE_PURE_INLINE void dGetMatrixColumn3(dReal *res, const dReal *a, unsigned n)
185 const dReal res_0 = a[n + 0];
186 const dReal res_1 = a[n + 4];
187 const dReal res_2 = a[n + 8];
188 /* Only assign after all the calculations are over to avoid incurring memory aliasing*/
189 res[0] = res_0; res[1] = res_1; res[2] = res_2;
192 ODE_PURE_INLINE dReal dCalcVectorLength3(const dReal *a)
194 return dSqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2]);
197 ODE_PURE_INLINE dReal dCalcVectorLengthSquare3(const dReal *a)
199 return (a[0] * a[0] + a[1] * a[1] + a[2] * a[2]);
202 ODE_PURE_INLINE dReal dCalcPointDepth3(const dReal *test_p, const dReal *plane_p, const dReal *plane_n)
204 return (plane_p[0] - test_p[0]) * plane_n[0] + (plane_p[1] - test_p[1]) * plane_n[1] + (plane_p[2] - test_p[2]) * plane_n[2];
209 * 3-way dot product. _dCalcVectorDot3 means that elements of `a' and `b' are spaced
210 * step_a and step_b indexes apart respectively. dCalcVectorDot3() means dDot311.
213 ODE_PURE_INLINE dReal _dCalcVectorDot3(const dReal *a, const dReal *b, unsigned step_a, unsigned step_b)
215 return a[0] * b[0] + a[step_a] * b[step_b] + a[2 * step_a] * b[2 * step_b];
219 ODE_PURE_INLINE dReal dCalcVectorDot3 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,1,1); }
220 ODE_PURE_INLINE dReal dCalcVectorDot3_13 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,1,3); }
221 ODE_PURE_INLINE dReal dCalcVectorDot3_31 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,3,1); }
222 ODE_PURE_INLINE dReal dCalcVectorDot3_33 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,3,3); }
223 ODE_PURE_INLINE dReal dCalcVectorDot3_14 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,1,4); }
224 ODE_PURE_INLINE dReal dCalcVectorDot3_41 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,4,1); }
225 ODE_PURE_INLINE dReal dCalcVectorDot3_44 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,4,4); }
229 * cross product, set res = a x b. _dCalcVectorCross3 means that elements of `res', `a'
230 * and `b' are spaced step_res, step_a and step_b indexes apart respectively.
231 * dCalcVectorCross3() means dCross3111.
234 ODE_PURE_INLINE void _dCalcVectorCross3(dReal *res, const dReal *a, const dReal *b, unsigned step_res, unsigned step_a, unsigned step_b)
236 const dReal res_0 = a[ step_a]*b[2*step_b] - a[2*step_a]*b[ step_b];
237 const dReal res_1 = a[2*step_a]*b[ 0] - a[ 0]*b[2*step_b];
238 const dReal res_2 = a[ 0]*b[ step_b] - a[ step_a]*b[ 0];
239 /* Only assign after all the calculations are over to avoid incurring memory aliasing*/
240 res[ 0] = res_0;
241 res[ step_res] = res_1;
242 res[2*step_res] = res_2;
245 ODE_PURE_INLINE void dCalcVectorCross3 (dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 1, 1); }
246 ODE_PURE_INLINE void dCalcVectorCross3_114(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 1, 4); }
247 ODE_PURE_INLINE void dCalcVectorCross3_141(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 4, 1); }
248 ODE_PURE_INLINE void dCalcVectorCross3_144(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 4, 4); }
249 ODE_PURE_INLINE void dCalcVectorCross3_411(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 1, 1); }
250 ODE_PURE_INLINE void dCalcVectorCross3_414(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 1, 4); }
251 ODE_PURE_INLINE void dCalcVectorCross3_441(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 4, 1); }
252 ODE_PURE_INLINE void dCalcVectorCross3_444(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 4, 4); }
254 ODE_PURE_INLINE void dAddVectorCross3(dReal *res, const dReal *a, const dReal *b)
256 dReal tmp[3];
257 dCalcVectorCross3(tmp, a, b);
258 dAddVectors3(res, res, tmp);
261 ODE_PURE_INLINE void dSubtractVectorCross3(dReal *res, const dReal *a, const dReal *b)
263 dReal tmp[3];
264 dCalcVectorCross3(tmp, a, b);
265 dSubtractVectors3(res, res, tmp);
270 * set a 3x3 submatrix of A to a matrix such that submatrix(A)*b = a x b.
271 * A is stored by rows, and has `skip' elements per row. the matrix is
272 * assumed to be already zero, so this does not write zero elements!
273 * if (plus,minus) is (+,-) then a positive version will be written.
274 * if (plus,minus) is (-,+) then a negative version will be written.
277 ODE_PURE_INLINE void dSetCrossMatrixPlus(dReal *res, const dReal *a, unsigned skip)
279 const dReal a_0 = a[0], a_1 = a[1], a_2 = a[2];
280 res[1] = -a_2;
281 res[2] = +a_1;
282 res[skip+0] = +a_2;
283 res[skip+2] = -a_0;
284 res[2*skip+0] = -a_1;
285 res[2*skip+1] = +a_0;
288 ODE_PURE_INLINE void dSetCrossMatrixMinus(dReal *res, const dReal *a, unsigned skip)
290 const dReal a_0 = a[0], a_1 = a[1], a_2 = a[2];
291 res[1] = +a_2;
292 res[2] = -a_1;
293 res[skip+0] = -a_2;
294 res[skip+2] = +a_0;
295 res[2*skip+0] = +a_1;
296 res[2*skip+1] = -a_0;
301 * compute the distance between two 3D-vectors
304 ODE_PURE_INLINE dReal dCalcPointsDistance3(const dReal *a, const dReal *b)
306 dReal res;
307 dReal tmp[3];
308 dSubtractVectors3(tmp, a, b);
309 res = dCalcVectorLength3(tmp);
310 return res;
314 * special case matrix multiplication, with operator selection
317 ODE_PURE_INLINE void _dMultiplyHelper0_331(dReal *res, const dReal *a, const dReal *b)
319 const dReal res_0 = dCalcVectorDot3(a, b);
320 const dReal res_1 = dCalcVectorDot3(a + 4, b);
321 const dReal res_2 = dCalcVectorDot3(a + 8, b);
322 /* Only assign after all the calculations are over to avoid incurring memory aliasing*/
323 res[0] = res_0; res[1] = res_1; res[2] = res_2;
326 ODE_PURE_INLINE void _dMultiplyHelper1_331(dReal *res, const dReal *a, const dReal *b)
328 const dReal res_0 = dCalcVectorDot3_41(a, b);
329 const dReal res_1 = dCalcVectorDot3_41(a + 1, b);
330 const dReal res_2 = dCalcVectorDot3_41(a + 2, b);
331 /* Only assign after all the calculations are over to avoid incurring memory aliasing*/
332 res[0] = res_0; res[1] = res_1; res[2] = res_2;
335 ODE_PURE_INLINE void _dMultiplyHelper0_133(dReal *res, const dReal *a, const dReal *b)
337 _dMultiplyHelper1_331(res, b, a);
340 ODE_PURE_INLINE void _dMultiplyHelper1_133(dReal *res, const dReal *a, const dReal *b)
342 const dReal res_0 = dCalcVectorDot3_44(a, b);
343 const dReal res_1 = dCalcVectorDot3_44(a + 1, b);
344 const dReal res_2 = dCalcVectorDot3_44(a + 2, b);
345 /* Only assign after all the calculations are over to avoid incurring memory aliasing*/
346 res[0] = res_0; res[1] = res_1; res[2] = res_2;
350 Note: NEVER call any of these functions/macros with the same variable for A and C,
351 it is not equivalent to A*=B.
354 ODE_PURE_INLINE void dMultiply0_331(dReal *res, const dReal *a, const dReal *b)
356 _dMultiplyHelper0_331(res, a, b);
359 ODE_PURE_INLINE void dMultiply1_331(dReal *res, const dReal *a, const dReal *b)
361 _dMultiplyHelper1_331(res, a, b);
364 ODE_PURE_INLINE void dMultiply0_133(dReal *res, const dReal *a, const dReal *b)
366 _dMultiplyHelper0_133(res, a, b);
369 ODE_PURE_INLINE void dMultiply0_333(dReal *res, const dReal *a, const dReal *b)
371 _dMultiplyHelper0_133(res + 0, a + 0, b);
372 _dMultiplyHelper0_133(res + 4, a + 4, b);
373 _dMultiplyHelper0_133(res + 8, a + 8, b);
376 ODE_PURE_INLINE void dMultiply1_333(dReal *res, const dReal *a, const dReal *b)
378 _dMultiplyHelper1_133(res + 0, b, a + 0);
379 _dMultiplyHelper1_133(res + 4, b, a + 1);
380 _dMultiplyHelper1_133(res + 8, b, a + 2);
383 ODE_PURE_INLINE void dMultiply2_333(dReal *res, const dReal *a, const dReal *b)
385 _dMultiplyHelper0_331(res + 0, b, a + 0);
386 _dMultiplyHelper0_331(res + 4, b, a + 4);
387 _dMultiplyHelper0_331(res + 8, b, a + 8);
390 ODE_PURE_INLINE void dMultiplyAdd0_331(dReal *res, const dReal *a, const dReal *b)
392 dReal tmp[3];
393 _dMultiplyHelper0_331(tmp, a, b);
394 dAddVectors3(res, res, tmp);
397 ODE_PURE_INLINE void dMultiplyAdd1_331(dReal *res, const dReal *a, const dReal *b)
399 dReal tmp[3];
400 _dMultiplyHelper1_331(tmp, a, b);
401 dAddVectors3(res, res, tmp);
404 ODE_PURE_INLINE void dMultiplyAdd0_133(dReal *res, const dReal *a, const dReal *b)
406 dReal tmp[3];
407 _dMultiplyHelper0_133(tmp, a, b);
408 dAddVectors3(res, res, tmp);
411 ODE_PURE_INLINE void dMultiplyAdd0_333(dReal *res, const dReal *a, const dReal *b)
413 dReal tmp[3];
414 _dMultiplyHelper0_133(tmp, a + 0, b);
415 dAddVectors3(res+ 0, res + 0, tmp);
416 _dMultiplyHelper0_133(tmp, a + 4, b);
417 dAddVectors3(res + 4, res + 4, tmp);
418 _dMultiplyHelper0_133(tmp, a + 8, b);
419 dAddVectors3(res + 8, res + 8, tmp);
422 ODE_PURE_INLINE void dMultiplyAdd1_333(dReal *res, const dReal *a, const dReal *b)
424 dReal tmp[3];
425 _dMultiplyHelper1_133(tmp, b, a + 0);
426 dAddVectors3(res + 0, res + 0, tmp);
427 _dMultiplyHelper1_133(tmp, b, a + 1);
428 dAddVectors3(res + 4, res + 4, tmp);
429 _dMultiplyHelper1_133(tmp, b, a + 2);
430 dAddVectors3(res + 8, res + 8, tmp);
433 ODE_PURE_INLINE void dMultiplyAdd2_333(dReal *res, const dReal *a, const dReal *b)
435 dReal tmp[3];
436 _dMultiplyHelper0_331(tmp, b, a + 0);
437 dAddVectors3(res + 0, res + 0, tmp);
438 _dMultiplyHelper0_331(tmp, b, a + 4);
439 dAddVectors3(res + 4, res + 4, tmp);
440 _dMultiplyHelper0_331(tmp, b, a + 8);
441 dAddVectors3(res + 8, res + 8, tmp);
444 ODE_PURE_INLINE dReal dCalcMatrix3Det( const dReal* mat )
446 dReal det;
448 det = mat[0] * ( mat[5]*mat[10] - mat[9]*mat[6] )
449 - mat[1] * ( mat[4]*mat[10] - mat[8]*mat[6] )
450 + mat[2] * ( mat[4]*mat[9] - mat[8]*mat[5] );
452 return( det );
456 Closed form matrix inversion, copied from
457 collision_util.h for use in the stepper.
459 Returns the determinant.
460 returns 0 and does nothing
461 if the matrix is singular.
463 ODE_PURE_INLINE dReal dInvertMatrix3(dReal *dst, const dReal *ma)
465 dReal det;
466 dReal detRecip;
468 det = dCalcMatrix3Det( ma );
471 /* Setting an arbitrary non-zero threshold
472 for the determinant doesn't do anyone
473 any favors. The condition number is the
474 important thing. If all the eigen-values
475 of the matrix are small, so is the
476 determinant, but it can still be well
477 conditioned.
478 A single extremely large eigen-value could
479 push the determinant over threshold, but
480 produce a very unstable result if the other
481 eigen-values are small. So we just say that
482 the determinant must be non-zero and trust the
483 caller to provide well-conditioned matrices.
485 if ( det == 0 )
487 return 0;
490 detRecip = dRecip(det);
492 dst[0] = ( ma[5]*ma[10] - ma[6]*ma[9] ) * detRecip;
493 dst[1] = ( ma[9]*ma[2] - ma[1]*ma[10] ) * detRecip;
494 dst[2] = ( ma[1]*ma[6] - ma[5]*ma[2] ) * detRecip;
496 dst[4] = ( ma[6]*ma[8] - ma[4]*ma[10] ) * detRecip;
497 dst[5] = ( ma[0]*ma[10] - ma[8]*ma[2] ) * detRecip;
498 dst[6] = ( ma[4]*ma[2] - ma[0]*ma[6] ) * detRecip;
500 dst[8] = ( ma[4]*ma[9] - ma[8]*ma[5] ) * detRecip;
501 dst[9] = ( ma[8]*ma[1] - ma[0]*ma[9] ) * detRecip;
502 dst[10] = ( ma[0]*ma[5] - ma[1]*ma[4] ) * detRecip;
504 return det;
508 /* Include legacy macros here */
509 #include <ode/odemath_legacy.h>
512 #ifdef __cplusplus
513 extern "C" {
514 #endif
517 * normalize 3x1 and 4x1 vectors (i.e. scale them to unit length)
520 /* For DLL export*/
521 ODE_API int dSafeNormalize3 (dVector3 a);
522 ODE_API int dSafeNormalize4 (dVector4 a);
523 ODE_API void dNormalize3 (dVector3 a); /* Potentially asserts on zero vec*/
524 ODE_API void dNormalize4 (dVector4 a); /* Potentially asserts on zero vec*/
527 * given a unit length "normal" vector n, generate vectors p and q vectors
528 * that are an orthonormal basis for the plane space perpendicular to n.
529 * i.e. this makes p,q such that n,p,q are all perpendicular to each other.
530 * q will equal n x p. if n is not unit length then p will be unit length but
531 * q wont be.
534 ODE_API void dPlaneSpace (const dVector3 n, dVector3 p, dVector3 q);
535 /* Makes sure the matrix is a proper rotation, returns a boolean status */
536 ODE_API int dOrthogonalizeR(dMatrix3 m);
540 #ifdef __cplusplus
542 #endif
545 #endif