1 /*************************************************************************
3 * Open Dynamics Engine, Copyright (C) 2001-2003 Russell L. Smith. *
4 * All rights reserved. Email: russ@q12.org Web: www.q12.org *
6 * This library is free software; you can redistribute it and/or *
7 * modify it under the terms of EITHER: *
8 * (1) The GNU Lesser General Public License as published by the Free *
9 * Software Foundation; either version 2.1 of the License, or (at *
10 * your option) any later version. The text of the GNU Lesser *
11 * General Public License is included with this library in the *
13 * (2) The BSD-style license that is included with this library in *
14 * the file LICENSE-BSD.TXT. *
16 * This library is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
19 * LICENSE.TXT and LICENSE-BSD.TXT for more details. *
21 *************************************************************************/
24 /*******************************************************************
26 * cylinder-sphere collider by Christoph Beyer (boernerb@web.de) *
28 * In Cylinder/Sphere-collisions, there are three possibilies: *
29 * 1. collision with the cylinder's nappe *
30 * 2. collision with one of the cylinder's disc *
31 * 3. collision with one of the disc's border *
33 * This collider computes two distances (s, t) and based on them, *
34 * it decides, which collision we have. *
35 * This collider always generates 1 (or 0, if we have no collison) *
37 * It is able to "separate" cylinder and sphere in all *
38 * configurations, but it never pays attention to velocity. *
39 * So, in extrem situations, "tunneling-effect" is possible. *
41 *******************************************************************/
43 #include <ode/collision.h>
44 #include <ode/rotation.h>
45 #include <ode/objects.h>
49 #include "collision_kernel.h" // for dxGeom
50 #include "collision_util.h"
52 int dCollideCylinderSphere(dxGeom
* Cylinder
, dxGeom
* Sphere
,
53 int flags
, dContactGeom
*contact
, int skip
)
55 dIASSERT (skip
>= (int)sizeof(dContactGeom
));
56 dIASSERT (Cylinder
->type
== dCylinderClass
);
57 dIASSERT (Sphere
->type
== dSphereClass
);
58 dIASSERT ((flags
& NUMC_MASK
) >= 1);
60 //unsigned char* pContactData = (unsigned char*)contact;
61 int GeomCount
= 0; // count of used contacts
64 const dReal toleranz
= REAL(0.0001);
67 const dReal toleranz
= REAL(0.0000001);
70 // get the data from the geoms
72 dGeomCylinderGetParams(Cylinder
, &radius
, &length
);
73 dVector3
&cylpos
= Cylinder
->final_posr
->pos
;
74 //const dReal* pfRot1 = dGeomGetRotation(Cylinder);
77 radius2
= dGeomSphereGetRadius(Sphere
);
78 const dReal
* SpherePos
= dGeomGetPosition(Sphere
);
80 // G1Pos1 is the middle of the first disc
81 // G1Pos2 is the middle of the second disc
82 // vDir1 is the unit direction of the cylinderaxis
83 dVector3 G1Pos1
, G1Pos2
, vDir1
;
84 vDir1
[0] = Cylinder
->final_posr
->R
[2];
85 vDir1
[1] = Cylinder
->final_posr
->R
[6];
86 vDir1
[2] = Cylinder
->final_posr
->R
[10];
89 s
= length
* REAL(0.5); // just a precomputed factor
90 G1Pos2
[0] = vDir1
[0] * s
+ cylpos
[0];
91 G1Pos2
[1] = vDir1
[1] * s
+ cylpos
[1];
92 G1Pos2
[2] = vDir1
[2] * s
+ cylpos
[2];
94 G1Pos1
[0] = vDir1
[0] * -s
+ cylpos
[0];
95 G1Pos1
[1] = vDir1
[1] * -s
+ cylpos
[1];
96 G1Pos1
[2] = vDir1
[2] * -s
+ cylpos
[2];
100 // Step 1: compute the two distances 's' and 't'
101 // 's' is the distance from the first disc (in vDir1-/Zylinderaxis-direction), the disc with G1Pos1 in the middle
102 s
= (SpherePos
[0] - G1Pos1
[0]) * vDir1
[0] - (G1Pos1
[1] - SpherePos
[1]) * vDir1
[1] - (G1Pos1
[2] - SpherePos
[2]) * vDir1
[2];
103 if(s
< (-radius2
) || s
> (length
+ radius2
) )
105 // Sphere is too far away from the discs
110 // C is the direction from Sphere-middle to the cylinder-axis (vDir1); C is orthogonal to the cylinder-axis
111 C
[0] = s
* vDir1
[0] + G1Pos1
[0] - SpherePos
[0];
112 C
[1] = s
* vDir1
[1] + G1Pos1
[1] - SpherePos
[1];
113 C
[2] = s
* vDir1
[2] + G1Pos1
[2] - SpherePos
[2];
114 // t is the distance from the Sphere-middle to the cylinder-axis!
115 t
= dVector3Length(C
);
116 if(t
> (radius
+ radius2
) )
118 // Sphere is too far away from the cylinder axis!
123 // decide which kind of collision we have:
124 if(t
> radius
&& (s
< 0 || s
> length
) )
129 contact
->depth
= radius2
- dSqrt( (s
) * (s
) + (t
- radius
) * (t
- radius
) );
130 if(contact
->depth
< 0)
135 contact
->pos
[0] = C
[0] / t
* -radius
+ G1Pos1
[0];
136 contact
->pos
[1] = C
[1] / t
* -radius
+ G1Pos1
[1];
137 contact
->pos
[2] = C
[2] / t
* -radius
+ G1Pos1
[2];
138 contact
->normal
[0] = (contact
->pos
[0] - SpherePos
[0]) / (radius2
- contact
->depth
);
139 contact
->normal
[1] = (contact
->pos
[1] - SpherePos
[1]) / (radius2
- contact
->depth
);
140 contact
->normal
[2] = (contact
->pos
[2] - SpherePos
[2]) / (radius2
- contact
->depth
);
141 contact
->g1
= Cylinder
;
142 contact
->g2
= Sphere
;
150 // now s is bigger than length here!
151 contact
->depth
= radius2
- dSqrt( (s
- length
) * (s
- length
) + (t
- radius
) * (t
- radius
) );
152 if(contact
->depth
< 0)
157 contact
->pos
[0] = C
[0] / t
* -radius
+ G1Pos2
[0];
158 contact
->pos
[1] = C
[1] / t
* -radius
+ G1Pos2
[1];
159 contact
->pos
[2] = C
[2] / t
* -radius
+ G1Pos2
[2];
160 contact
->normal
[0] = (contact
->pos
[0] - SpherePos
[0]) / (radius2
- contact
->depth
);
161 contact
->normal
[1] = (contact
->pos
[1] - SpherePos
[1]) / (radius2
- contact
->depth
);
162 contact
->normal
[2] = (contact
->pos
[2] - SpherePos
[2]) / (radius2
- contact
->depth
);
163 contact
->g1
= Cylinder
;
164 contact
->g2
= Sphere
;
171 else if( (radius
- t
) <= s
&& (radius
- t
) <= (length
- s
) )
174 if(t
> (radius2
+ toleranz
))
176 // cylinder-axis is outside the sphere
177 contact
->depth
= (radius2
+ radius
) - t
;
178 if(contact
->depth
< 0)
180 // should never happen, but just for safeness
188 contact
->pos
[0] = C
[0] * radius2
+ SpherePos
[0];
189 contact
->pos
[1] = C
[1] * radius2
+ SpherePos
[1];
190 contact
->pos
[2] = C
[2] * radius2
+ SpherePos
[2];
191 contact
->normal
[0] = C
[0];
192 contact
->normal
[1] = C
[1];
193 contact
->normal
[2] = C
[2];
194 contact
->g1
= Cylinder
;
195 contact
->g2
= Sphere
;
204 // cylinder-axis is outside of the sphere
205 contact
->depth
= (radius2
+ radius
) - t
;
206 if(contact
->depth
< 0)
208 // should never happen, but just for safeness
213 contact
->pos
[0] = C
[0] + SpherePos
[0];
214 contact
->pos
[1] = C
[1] + SpherePos
[1];
215 contact
->pos
[2] = C
[2] + SpherePos
[2];
216 contact
->normal
[0] = C
[0] / t
;
217 contact
->normal
[1] = C
[1] / t
;
218 contact
->normal
[2] = C
[2] / t
;
219 contact
->g1
= Cylinder
;
220 contact
->g2
= Sphere
;
231 if(s
<= (length
* REAL(0.5)) )
233 // collision with the first disc
234 contact
->depth
= s
+ radius2
;
235 if(contact
->depth
< 0)
237 // should never happen, but just for safeness
240 contact
->pos
[0] = radius2
* vDir1
[0] + SpherePos
[0];
241 contact
->pos
[1] = radius2
* vDir1
[1] + SpherePos
[1];
242 contact
->pos
[2] = radius2
* vDir1
[2] + SpherePos
[2];
243 contact
->normal
[0] = vDir1
[0];
244 contact
->normal
[1] = vDir1
[1];
245 contact
->normal
[2] = vDir1
[2];
246 contact
->g1
= Cylinder
;
247 contact
->g2
= Sphere
;
255 // collision with the second disc
256 contact
->depth
= (radius2
+ length
- s
);
257 if(contact
->depth
< 0)
259 // should never happen, but just for safeness
262 contact
->pos
[0] = radius2
* -vDir1
[0] + SpherePos
[0];
263 contact
->pos
[1] = radius2
* -vDir1
[1] + SpherePos
[1];
264 contact
->pos
[2] = radius2
* -vDir1
[2] + SpherePos
[2];
265 contact
->normal
[0] = -vDir1
[0];
266 contact
->normal
[1] = -vDir1
[1];
267 contact
->normal
[2] = -vDir1
[2];
268 contact
->g1
= Cylinder
;
269 contact
->g2
= Sphere
;