libstdc++: Refactor loops in std::__platform_semaphore
[official-gcc.git] / gcc / reginfo.cc
blob73121365c4776309e7f755be5240552f6a2070fa
1 /* Compute different info about registers.
2 Copyright (C) 1987-2024 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* This file contains regscan pass of the compiler and passes for
22 dealing with info about modes of pseudo-registers inside
23 subregisters. It also defines some tables of information about the
24 hardware registers, function init_reg_sets to initialize the
25 tables, and other auxiliary functions to deal with info about
26 registers and their classes. */
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "backend.h"
32 #include "target.h"
33 #include "rtl.h"
34 #include "tree.h"
35 #include "df.h"
36 #include "memmodel.h"
37 #include "tm_p.h"
38 #include "insn-config.h"
39 #include "regs.h"
40 #include "ira.h"
41 #include "recog.h"
42 #include "diagnostic-core.h"
43 #include "reload.h"
44 #include "output.h"
45 #include "tree-pass.h"
46 #include "function-abi.h"
48 /* Maximum register number used in this function, plus one. */
50 int max_regno;
52 /* Used to cache the results of simplifiable_subregs. SHAPE is the input
53 parameter and SIMPLIFIABLE_REGS is the result. */
54 class simplifiable_subreg
56 public:
57 simplifiable_subreg (const subreg_shape &);
59 subreg_shape shape;
60 HARD_REG_SET simplifiable_regs;
63 struct target_hard_regs default_target_hard_regs;
64 struct target_regs default_target_regs;
65 #if SWITCHABLE_TARGET
66 struct target_hard_regs *this_target_hard_regs = &default_target_hard_regs;
67 struct target_regs *this_target_regs = &default_target_regs;
68 #endif
70 #define call_used_regs \
71 (this_target_hard_regs->x_call_used_regs)
72 #define regs_invalidated_by_call \
73 (this_target_hard_regs->x_regs_invalidated_by_call)
75 /* Data for initializing fixed_regs. */
76 static const char initial_fixed_regs[] = FIXED_REGISTERS;
78 /* Data for initializing call_used_regs. */
79 #ifdef CALL_REALLY_USED_REGISTERS
80 #ifdef CALL_USED_REGISTERS
81 #error CALL_USED_REGISTERS and CALL_REALLY_USED_REGISTERS are both defined
82 #endif
83 static const char initial_call_used_regs[] = CALL_REALLY_USED_REGISTERS;
84 #else
85 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
86 #endif
88 /* Indexed by hard register number, contains 1 for registers
89 that are being used for global register decls.
90 These must be exempt from ordinary flow analysis
91 and are also considered fixed. */
92 char global_regs[FIRST_PSEUDO_REGISTER];
94 /* The set of global registers. */
95 HARD_REG_SET global_reg_set;
97 /* Declaration for the global register. */
98 tree global_regs_decl[FIRST_PSEUDO_REGISTER];
100 /* Used to initialize reg_alloc_order. */
101 #ifdef REG_ALLOC_ORDER
102 static int initial_reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
103 #endif
105 /* The same information, but as an array of unsigned ints. We copy from
106 these unsigned ints to the table above. We do this so the tm.h files
107 do not have to be aware of the wordsize for machines with <= 64 regs.
108 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
109 #define N_REG_INTS \
110 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
112 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
113 = REG_CLASS_CONTENTS;
115 /* Array containing all of the register names. */
116 static const char *const initial_reg_names[] = REGISTER_NAMES;
118 /* Array containing all of the register class names. */
119 const char * reg_class_names[] = REG_CLASS_NAMES;
121 /* No more global register variables may be declared; true once
122 reginfo has been initialized. */
123 static int no_global_reg_vars = 0;
125 static void
126 clear_global_regs_cache (void)
128 for (size_t i = 0 ; i < FIRST_PSEUDO_REGISTER ; i++)
130 global_regs[i] = 0;
131 global_regs_decl[i] = NULL;
135 void
136 reginfo_cc_finalize (void)
138 clear_global_regs_cache ();
139 no_global_reg_vars = 0;
140 CLEAR_HARD_REG_SET (global_reg_set);
143 /* In insn-preds.cc. */
144 extern void init_reg_class_start_regs ();
146 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
147 correspond to the hard registers, if any, set in that map. This
148 could be done far more efficiently by having all sorts of special-cases
149 with moving single words, but probably isn't worth the trouble. */
150 void
151 reg_set_to_hard_reg_set (HARD_REG_SET *to, const_bitmap from)
153 unsigned i;
154 bitmap_iterator bi;
156 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
158 if (i >= FIRST_PSEUDO_REGISTER)
159 return;
160 SET_HARD_REG_BIT (*to, i);
164 /* Function called only once per target_globals to initialize the
165 target_hard_regs structure. Once this is done, various switches
166 may override. */
167 void
168 init_reg_sets (void)
170 int i, j;
172 /* First copy the register information from the initial int form into
173 the regsets. */
175 for (i = 0; i < N_REG_CLASSES; i++)
177 CLEAR_HARD_REG_SET (reg_class_contents[i]);
179 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
180 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
181 if (int_reg_class_contents[i][j / 32]
182 & ((unsigned) 1 << (j % 32)))
183 SET_HARD_REG_BIT (reg_class_contents[i], j);
186 /* Sanity check: make sure the target macros FIXED_REGISTERS and
187 CALL_USED_REGISTERS had the right number of initializers. */
188 gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
189 gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
190 #ifdef REG_ALLOC_ORDER
191 gcc_assert (sizeof reg_alloc_order == sizeof initial_reg_alloc_order);
192 #endif
193 gcc_assert (sizeof reg_names == sizeof initial_reg_names);
195 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
196 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
197 #ifdef REG_ALLOC_ORDER
198 memcpy (reg_alloc_order, initial_reg_alloc_order, sizeof reg_alloc_order);
199 #endif
200 memcpy (reg_names, initial_reg_names, sizeof reg_names);
202 SET_HARD_REG_SET (accessible_reg_set);
203 SET_HARD_REG_SET (operand_reg_set);
205 init_reg_class_start_regs ();
208 /* We need to save copies of some of the register information which
209 can be munged by command-line switches so we can restore it during
210 subsequent back-end reinitialization. */
211 static char saved_fixed_regs[FIRST_PSEUDO_REGISTER];
212 static char saved_call_used_regs[FIRST_PSEUDO_REGISTER];
213 static const char *saved_reg_names[FIRST_PSEUDO_REGISTER];
214 static HARD_REG_SET saved_accessible_reg_set;
215 static HARD_REG_SET saved_operand_reg_set;
217 /* Save the register information. */
218 void
219 save_register_info (void)
221 /* Sanity check: make sure the target macros FIXED_REGISTERS and
222 CALL_USED_REGISTERS had the right number of initializers. */
223 gcc_assert (sizeof fixed_regs == sizeof saved_fixed_regs);
224 gcc_assert (sizeof call_used_regs == sizeof saved_call_used_regs);
225 memcpy (saved_fixed_regs, fixed_regs, sizeof fixed_regs);
226 memcpy (saved_call_used_regs, call_used_regs, sizeof call_used_regs);
228 /* And similarly for reg_names. */
229 gcc_assert (sizeof reg_names == sizeof saved_reg_names);
230 memcpy (saved_reg_names, reg_names, sizeof reg_names);
231 saved_accessible_reg_set = accessible_reg_set;
232 saved_operand_reg_set = operand_reg_set;
235 /* Restore the register information. */
236 static void
237 restore_register_info (void)
239 memcpy (fixed_regs, saved_fixed_regs, sizeof fixed_regs);
240 memcpy (call_used_regs, saved_call_used_regs, sizeof call_used_regs);
242 memcpy (reg_names, saved_reg_names, sizeof reg_names);
243 accessible_reg_set = saved_accessible_reg_set;
244 operand_reg_set = saved_operand_reg_set;
247 /* After switches have been processed, which perhaps alter
248 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
249 static void
250 init_reg_sets_1 (void)
252 unsigned int i, j;
253 unsigned int /* machine_mode */ m;
255 restore_register_info ();
257 #ifdef REG_ALLOC_ORDER
258 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
259 inv_reg_alloc_order[reg_alloc_order[i]] = i;
260 #endif
262 /* Let the target tweak things if necessary. */
264 targetm.conditional_register_usage ();
266 /* Compute number of hard regs in each class. */
268 memset (reg_class_size, 0, sizeof reg_class_size);
269 for (i = 0; i < N_REG_CLASSES; i++)
271 bool any_nonfixed = false;
272 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
273 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
275 reg_class_size[i]++;
276 if (!fixed_regs[j])
277 any_nonfixed = true;
279 class_only_fixed_regs[i] = !any_nonfixed;
282 /* Initialize the table of subunions.
283 reg_class_subunion[I][J] gets the largest-numbered reg-class
284 that is contained in the union of classes I and J. */
286 memset (reg_class_subunion, 0, sizeof reg_class_subunion);
287 for (i = 0; i < N_REG_CLASSES; i++)
289 for (j = 0; j < N_REG_CLASSES; j++)
291 HARD_REG_SET c;
292 int k;
294 c = reg_class_contents[i] | reg_class_contents[j];
295 for (k = 0; k < N_REG_CLASSES; k++)
296 if (hard_reg_set_subset_p (reg_class_contents[k], c)
297 && !hard_reg_set_subset_p (reg_class_contents[k],
298 reg_class_contents
299 [(int) reg_class_subunion[i][j]]))
300 reg_class_subunion[i][j] = (enum reg_class) k;
304 /* Initialize the table of superunions.
305 reg_class_superunion[I][J] gets the smallest-numbered reg-class
306 containing the union of classes I and J. */
308 memset (reg_class_superunion, 0, sizeof reg_class_superunion);
309 for (i = 0; i < N_REG_CLASSES; i++)
311 for (j = 0; j < N_REG_CLASSES; j++)
313 HARD_REG_SET c;
314 int k;
316 c = reg_class_contents[i] | reg_class_contents[j];
317 for (k = 0; k < N_REG_CLASSES; k++)
318 if (hard_reg_set_subset_p (c, reg_class_contents[k]))
319 break;
321 reg_class_superunion[i][j] = (enum reg_class) k;
325 /* Initialize the tables of subclasses and superclasses of each reg class.
326 First clear the whole table, then add the elements as they are found. */
328 for (i = 0; i < N_REG_CLASSES; i++)
330 for (j = 0; j < N_REG_CLASSES; j++)
331 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
334 for (i = 0; i < N_REG_CLASSES; i++)
336 if (i == (int) NO_REGS)
337 continue;
339 for (j = i + 1; j < N_REG_CLASSES; j++)
340 if (hard_reg_set_subset_p (reg_class_contents[i],
341 reg_class_contents[j]))
343 /* Reg class I is a subclass of J.
344 Add J to the table of superclasses of I. */
345 enum reg_class *p;
347 /* Add I to the table of superclasses of J. */
348 p = &reg_class_subclasses[j][0];
349 while (*p != LIM_REG_CLASSES) p++;
350 *p = (enum reg_class) i;
354 /* Initialize "constant" tables. */
356 CLEAR_HARD_REG_SET (fixed_reg_set);
357 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
359 operand_reg_set &= accessible_reg_set;
360 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
362 /* As a special exception, registers whose class is NO_REGS are
363 not accepted by `register_operand'. The reason for this change
364 is to allow the representation of special architecture artifacts
365 (such as a condition code register) without extending the rtl
366 definitions. Since registers of class NO_REGS cannot be used
367 as registers in any case where register classes are examined,
368 it is better to apply this exception in a target-independent way. */
369 if (REGNO_REG_CLASS (i) == NO_REGS)
370 CLEAR_HARD_REG_BIT (operand_reg_set, i);
372 /* If a register is too limited to be treated as a register operand,
373 then it should never be allocated to a pseudo. */
374 if (!TEST_HARD_REG_BIT (operand_reg_set, i))
375 fixed_regs[i] = 1;
377 if (fixed_regs[i])
378 SET_HARD_REG_BIT (fixed_reg_set, i);
380 /* There are a couple of fixed registers that we know are safe to
381 exclude from being clobbered by calls:
383 The frame pointer is always preserved across calls. The arg
384 pointer is if it is fixed. The stack pointer usually is,
385 unless TARGET_RETURN_POPS_ARGS, in which case an explicit
386 CLOBBER will be present. If we are generating PIC code, the
387 PIC offset table register is preserved across calls, though the
388 target can override that. */
390 if (i == STACK_POINTER_REGNUM)
392 else if (global_regs[i])
393 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
394 else if (i == FRAME_POINTER_REGNUM)
396 else if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
397 && i == HARD_FRAME_POINTER_REGNUM)
399 else if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
400 && i == ARG_POINTER_REGNUM && fixed_regs[i])
402 else if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
403 && i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
405 else if (call_used_regs[i])
406 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
409 SET_HARD_REG_SET (savable_regs);
410 fixed_nonglobal_reg_set = fixed_reg_set;
412 /* Preserve global registers if called more than once. */
413 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
415 if (global_regs[i])
417 fixed_regs[i] = call_used_regs[i] = 1;
418 SET_HARD_REG_BIT (fixed_reg_set, i);
419 SET_HARD_REG_BIT (global_reg_set, i);
423 /* Recalculate eh_return_data_regs. */
424 CLEAR_HARD_REG_SET (eh_return_data_regs);
425 for (i = 0; ; ++i)
427 unsigned int regno = EH_RETURN_DATA_REGNO (i);
428 if (regno == INVALID_REGNUM)
429 break;
430 SET_HARD_REG_BIT (eh_return_data_regs, regno);
433 memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
434 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
435 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
437 HARD_REG_SET ok_regs, ok_regs2;
438 CLEAR_HARD_REG_SET (ok_regs);
439 CLEAR_HARD_REG_SET (ok_regs2);
440 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
441 if (!TEST_HARD_REG_BIT (fixed_nonglobal_reg_set, j)
442 && targetm.hard_regno_mode_ok (j, (machine_mode) m))
444 SET_HARD_REG_BIT (ok_regs, j);
445 if (!fixed_regs[j])
446 SET_HARD_REG_BIT (ok_regs2, j);
449 for (i = 0; i < N_REG_CLASSES; i++)
450 if ((targetm.class_max_nregs ((reg_class_t) i, (machine_mode) m)
451 <= reg_class_size[i])
452 && hard_reg_set_intersect_p (ok_regs, reg_class_contents[i]))
454 contains_reg_of_mode[i][m] = 1;
455 if (hard_reg_set_intersect_p (ok_regs2, reg_class_contents[i]))
457 have_regs_of_mode[m] = 1;
458 contains_allocatable_reg_of_mode[i][m] = 1;
463 default_function_abi.initialize (0, regs_invalidated_by_call);
466 /* Compute the table of register modes.
467 These values are used to record death information for individual registers
468 (as opposed to a multi-register mode).
469 This function might be invoked more than once, if the target has support
470 for changing register usage conventions on a per-function basis.
472 void
473 init_reg_modes_target (void)
475 int i, j;
477 this_target_regs->x_hard_regno_max_nregs = 1;
478 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
479 for (j = 0; j < MAX_MACHINE_MODE; j++)
481 unsigned char nregs = targetm.hard_regno_nregs (i, (machine_mode) j);
482 this_target_regs->x_hard_regno_nregs[i][j] = nregs;
483 if (nregs > this_target_regs->x_hard_regno_max_nregs)
484 this_target_regs->x_hard_regno_max_nregs = nregs;
487 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
489 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, NULL);
491 /* If we couldn't find a valid mode, just use the previous mode
492 if it is suitable, otherwise fall back on word_mode. */
493 if (reg_raw_mode[i] == VOIDmode)
495 if (i > 0 && hard_regno_nregs (i, reg_raw_mode[i - 1]) == 1)
496 reg_raw_mode[i] = reg_raw_mode[i - 1];
497 else
498 reg_raw_mode[i] = word_mode;
503 /* Finish initializing the register sets and initialize the register modes.
504 This function might be invoked more than once, if the target has support
505 for changing register usage conventions on a per-function basis.
507 void
508 init_regs (void)
510 /* This finishes what was started by init_reg_sets, but couldn't be done
511 until after register usage was specified. */
512 init_reg_sets_1 ();
515 /* The same as previous function plus initializing IRA. */
516 void
517 reinit_regs (void)
519 init_regs ();
520 /* caller_save needs to be re-initialized. */
521 caller_save_initialized_p = false;
522 if (this_target_rtl->target_specific_initialized)
524 ira_init ();
525 recog_init ();
529 /* Initialize some fake stack-frame MEM references for use in
530 memory_move_secondary_cost. */
531 void
532 init_fake_stack_mems (void)
534 int i;
536 for (i = 0; i < MAX_MACHINE_MODE; i++)
537 top_of_stack[i] = gen_rtx_MEM ((machine_mode) i, stack_pointer_rtx);
541 /* Compute cost of moving data from a register of class FROM to one of
542 TO, using MODE. */
545 register_move_cost (machine_mode mode, reg_class_t from, reg_class_t to)
547 return targetm.register_move_cost (mode, from, to);
550 /* Compute cost of moving registers to/from memory. */
553 memory_move_cost (machine_mode mode, reg_class_t rclass, bool in)
555 return targetm.memory_move_cost (mode, rclass, in);
558 /* Compute extra cost of moving registers to/from memory due to reloads.
559 Only needed if secondary reloads are required for memory moves. */
561 memory_move_secondary_cost (machine_mode mode, reg_class_t rclass,
562 bool in)
564 reg_class_t altclass;
565 int partial_cost = 0;
566 /* We need a memory reference to feed to SECONDARY... macros. */
567 /* mem may be unused even if the SECONDARY_ macros are defined. */
568 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
570 altclass = secondary_reload_class (in ? 1 : 0, rclass, mode, mem);
572 if (altclass == NO_REGS)
573 return 0;
575 if (in)
576 partial_cost = register_move_cost (mode, altclass, rclass);
577 else
578 partial_cost = register_move_cost (mode, rclass, altclass);
580 if (rclass == altclass)
581 /* This isn't simply a copy-to-temporary situation. Can't guess
582 what it is, so TARGET_MEMORY_MOVE_COST really ought not to be
583 calling here in that case.
585 I'm tempted to put in an assert here, but returning this will
586 probably only give poor estimates, which is what we would've
587 had before this code anyways. */
588 return partial_cost;
590 /* Check if the secondary reload register will also need a
591 secondary reload. */
592 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
595 /* Return a machine mode that is legitimate for hard reg REGNO and large
596 enough to save nregs. If we can't find one, return VOIDmode.
597 If ABI is nonnull, only consider modes that are preserved across
598 calls that use ABI. */
599 machine_mode
600 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
601 unsigned int nregs, const predefined_function_abi *abi)
603 unsigned int /* machine_mode */ m;
604 machine_mode found_mode = VOIDmode, mode;
606 /* We first look for the largest integer mode that can be validly
607 held in REGNO. If none, we look for the largest floating-point mode.
608 If we still didn't find a valid mode, try CCmode.
610 The tests use maybe_gt rather than known_gt because we want (for example)
611 N V4SFs to win over plain V4SF even though N might be 1. */
612 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
613 if (hard_regno_nregs (regno, mode) == nregs
614 && targetm.hard_regno_mode_ok (regno, mode)
615 && (!abi || !abi->clobbers_reg_p (mode, regno))
616 && maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode)))
617 found_mode = mode;
619 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
620 if (hard_regno_nregs (regno, mode) == nregs
621 && targetm.hard_regno_mode_ok (regno, mode)
622 && (!abi || !abi->clobbers_reg_p (mode, regno))
623 && maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode)))
624 found_mode = mode;
626 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT)
627 if (hard_regno_nregs (regno, mode) == nregs
628 && targetm.hard_regno_mode_ok (regno, mode)
629 && (!abi || !abi->clobbers_reg_p (mode, regno))
630 && maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode)))
631 found_mode = mode;
633 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
634 if (hard_regno_nregs (regno, mode) == nregs
635 && targetm.hard_regno_mode_ok (regno, mode)
636 && (!abi || !abi->clobbers_reg_p (mode, regno))
637 && maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode)))
638 found_mode = mode;
640 if (found_mode != VOIDmode)
641 return found_mode;
643 /* Iterate over all of the CCmodes. */
644 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
646 mode = (machine_mode) m;
647 if (hard_regno_nregs (regno, mode) == nregs
648 && targetm.hard_regno_mode_ok (regno, mode)
649 && (!abi || !abi->clobbers_reg_p (mode, regno)))
650 return mode;
653 /* We can't find a mode valid for this register. */
654 return VOIDmode;
657 /* Specify the usage characteristics of the register named NAME.
658 It should be a fixed register if FIXED and a
659 call-used register if CALL_USED. */
660 void
661 fix_register (const char *name, int fixed, int call_used)
663 int i;
664 int reg, nregs;
666 /* Decode the name and update the primary form of
667 the register info. */
669 if ((reg = decode_reg_name_and_count (name, &nregs)) >= 0)
671 gcc_assert (nregs >= 1);
672 for (i = reg; i < reg + nregs; i++)
674 if ((i == STACK_POINTER_REGNUM
675 #ifdef HARD_FRAME_POINTER_REGNUM
676 || i == HARD_FRAME_POINTER_REGNUM
677 #else
678 || i == FRAME_POINTER_REGNUM
679 #endif
681 && (fixed == 0 || call_used == 0))
683 switch (fixed)
685 case 0:
686 switch (call_used)
688 case 0:
689 error ("cannot use %qs as a call-saved register", name);
690 break;
692 case 1:
693 error ("cannot use %qs as a call-used register", name);
694 break;
696 default:
697 gcc_unreachable ();
699 break;
701 case 1:
702 switch (call_used)
704 case 1:
705 error ("cannot use %qs as a fixed register", name);
706 break;
708 case 0:
709 default:
710 gcc_unreachable ();
712 break;
714 default:
715 gcc_unreachable ();
718 else
720 fixed_regs[i] = fixed;
721 #ifdef CALL_REALLY_USED_REGISTERS
722 if (fixed == 0)
723 call_used_regs[i] = call_used;
724 #else
725 call_used_regs[i] = call_used;
726 #endif
730 else
732 warning (0, "unknown register name: %s", name);
736 /* Mark register number I as global. */
737 void
738 globalize_reg (tree decl, int i)
740 location_t loc = DECL_SOURCE_LOCATION (decl);
742 #ifdef STACK_REGS
743 if (IN_RANGE (i, FIRST_STACK_REG, LAST_STACK_REG))
745 error ("stack register used for global register variable");
746 return;
748 #endif
750 if (fixed_regs[i] == 0 && no_global_reg_vars)
751 error_at (loc, "global register variable follows a function definition");
753 if (global_regs[i])
755 auto_diagnostic_group d;
756 warning_at (loc, 0,
757 "register of %qD used for multiple global register variables",
758 decl);
759 inform (DECL_SOURCE_LOCATION (global_regs_decl[i]),
760 "conflicts with %qD", global_regs_decl[i]);
761 return;
764 if (call_used_regs[i] && ! fixed_regs[i])
765 warning_at (loc, 0, "call-clobbered register used for global register variable");
767 global_regs[i] = 1;
768 global_regs_decl[i] = decl;
769 SET_HARD_REG_BIT (global_reg_set, i);
771 /* If we're globalizing the frame pointer, we need to set the
772 appropriate regs_invalidated_by_call bit, even if it's already
773 set in fixed_regs. */
774 if (i != STACK_POINTER_REGNUM)
776 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
777 for (unsigned int j = 0; j < NUM_ABI_IDS; ++j)
778 function_abis[j].add_full_reg_clobber (i);
781 /* If already fixed, nothing else to do. */
782 if (fixed_regs[i])
783 return;
785 fixed_regs[i] = call_used_regs[i] = 1;
787 SET_HARD_REG_BIT (fixed_reg_set, i);
789 reinit_regs ();
793 /* Structure used to record preferences of given pseudo. */
794 struct reg_pref
796 /* (enum reg_class) prefclass is the preferred class. May be
797 NO_REGS if no class is better than memory. */
798 char prefclass;
800 /* altclass is a register class that we should use for allocating
801 pseudo if no register in the preferred class is available.
802 If no register in this class is available, memory is preferred.
804 It might appear to be more general to have a bitmask of classes here,
805 but since it is recommended that there be a class corresponding to the
806 union of most major pair of classes, that generality is not required. */
807 char altclass;
809 /* allocnoclass is a register class that IRA uses for allocating
810 the pseudo. */
811 char allocnoclass;
814 /* Record preferences of each pseudo. This is available after RA is
815 run. */
816 static struct reg_pref *reg_pref;
818 /* Current size of reg_info. */
819 static int reg_info_size;
820 /* Max_reg_num still last resize_reg_info call. */
821 static int max_regno_since_last_resize;
823 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
824 This function is sometimes called before the info has been computed.
825 When that happens, just return GENERAL_REGS, which is innocuous. */
826 enum reg_class
827 reg_preferred_class (int regno)
829 if (reg_pref == 0)
830 return GENERAL_REGS;
832 gcc_assert (regno < reg_info_size);
833 return (enum reg_class) reg_pref[regno].prefclass;
836 enum reg_class
837 reg_alternate_class (int regno)
839 if (reg_pref == 0)
840 return ALL_REGS;
842 gcc_assert (regno < reg_info_size);
843 return (enum reg_class) reg_pref[regno].altclass;
846 /* Return the reg_class which is used by IRA for its allocation. */
847 enum reg_class
848 reg_allocno_class (int regno)
850 if (reg_pref == 0)
851 return NO_REGS;
853 gcc_assert (regno < reg_info_size);
854 return (enum reg_class) reg_pref[regno].allocnoclass;
859 /* Allocate space for reg info and initilize it. */
860 static void
861 allocate_reg_info (void)
863 int i;
865 max_regno_since_last_resize = max_reg_num ();
866 reg_info_size = max_regno_since_last_resize * 3 / 2 + 1;
867 gcc_assert (! reg_pref && ! reg_renumber);
868 reg_renumber = XNEWVEC (short, reg_info_size);
869 reg_pref = XCNEWVEC (struct reg_pref, reg_info_size);
870 memset (reg_renumber, -1, reg_info_size * sizeof (short));
871 for (i = 0; i < reg_info_size; i++)
873 reg_pref[i].prefclass = GENERAL_REGS;
874 reg_pref[i].altclass = ALL_REGS;
875 reg_pref[i].allocnoclass = GENERAL_REGS;
880 /* Resize reg info. The new elements will be initialized. Return TRUE
881 if new pseudos were added since the last call. */
882 bool
883 resize_reg_info (void)
885 int old, i;
886 bool change_p;
888 if (reg_pref == NULL)
890 allocate_reg_info ();
891 return true;
893 change_p = max_regno_since_last_resize != max_reg_num ();
894 max_regno_since_last_resize = max_reg_num ();
895 if (reg_info_size >= max_reg_num ())
896 return change_p;
897 old = reg_info_size;
898 reg_info_size = max_reg_num () * 3 / 2 + 1;
899 gcc_assert (reg_pref && reg_renumber);
900 reg_renumber = XRESIZEVEC (short, reg_renumber, reg_info_size);
901 reg_pref = XRESIZEVEC (struct reg_pref, reg_pref, reg_info_size);
902 memset (reg_pref + old, -1,
903 (reg_info_size - old) * sizeof (struct reg_pref));
904 memset (reg_renumber + old, -1, (reg_info_size - old) * sizeof (short));
905 for (i = old; i < reg_info_size; i++)
907 reg_pref[i].prefclass = GENERAL_REGS;
908 reg_pref[i].altclass = ALL_REGS;
909 reg_pref[i].allocnoclass = GENERAL_REGS;
911 return true;
915 /* Free up the space allocated by allocate_reg_info. */
916 void
917 free_reg_info (void)
919 if (reg_pref)
921 free (reg_pref);
922 reg_pref = NULL;
925 if (reg_renumber)
927 free (reg_renumber);
928 reg_renumber = NULL;
932 /* Initialize some global data for this pass. */
933 static unsigned int
934 reginfo_init (void)
936 if (df)
937 df_compute_regs_ever_live (true);
939 /* This prevents dump_reg_info from losing if called
940 before reginfo is run. */
941 reg_pref = NULL;
942 reg_info_size = max_regno_since_last_resize = 0;
943 /* No more global register variables may be declared. */
944 no_global_reg_vars = 1;
945 return 1;
948 namespace {
950 const pass_data pass_data_reginfo_init =
952 RTL_PASS, /* type */
953 "reginfo", /* name */
954 OPTGROUP_NONE, /* optinfo_flags */
955 TV_NONE, /* tv_id */
956 0, /* properties_required */
957 0, /* properties_provided */
958 0, /* properties_destroyed */
959 0, /* todo_flags_start */
960 0, /* todo_flags_finish */
963 class pass_reginfo_init : public rtl_opt_pass
965 public:
966 pass_reginfo_init (gcc::context *ctxt)
967 : rtl_opt_pass (pass_data_reginfo_init, ctxt)
970 /* opt_pass methods: */
971 unsigned int execute (function *) final override { return reginfo_init (); }
973 }; // class pass_reginfo_init
975 } // anon namespace
977 rtl_opt_pass *
978 make_pass_reginfo_init (gcc::context *ctxt)
980 return new pass_reginfo_init (ctxt);
985 /* Set up preferred, alternate, and allocno classes for REGNO as
986 PREFCLASS, ALTCLASS, and ALLOCNOCLASS. */
987 void
988 setup_reg_classes (int regno,
989 enum reg_class prefclass, enum reg_class altclass,
990 enum reg_class allocnoclass)
992 if (reg_pref == NULL)
993 return;
994 gcc_assert (reg_info_size >= max_reg_num ());
995 reg_pref[regno].prefclass = prefclass;
996 reg_pref[regno].altclass = altclass;
997 reg_pref[regno].allocnoclass = allocnoclass;
1001 /* This is the `regscan' pass of the compiler, run just before cse and
1002 again just before loop. It finds the first and last use of each
1003 pseudo-register. */
1005 static void reg_scan_mark_refs (rtx, rtx_insn *);
1007 void
1008 reg_scan (rtx_insn *f, unsigned int nregs ATTRIBUTE_UNUSED)
1010 rtx_insn *insn;
1012 timevar_push (TV_REG_SCAN);
1014 for (insn = f; insn; insn = NEXT_INSN (insn))
1015 if (INSN_P (insn))
1017 reg_scan_mark_refs (PATTERN (insn), insn);
1018 if (REG_NOTES (insn))
1019 reg_scan_mark_refs (REG_NOTES (insn), insn);
1022 timevar_pop (TV_REG_SCAN);
1026 /* X is the expression to scan. INSN is the insn it appears in.
1027 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
1028 We should only record information for REGs with numbers
1029 greater than or equal to MIN_REGNO. */
1030 static void
1031 reg_scan_mark_refs (rtx x, rtx_insn *insn)
1033 enum rtx_code code;
1034 rtx dest;
1035 rtx note;
1037 if (!x)
1038 return;
1039 code = GET_CODE (x);
1040 switch (code)
1042 case CONST:
1043 CASE_CONST_ANY:
1044 case PC:
1045 case SYMBOL_REF:
1046 case LABEL_REF:
1047 case ADDR_VEC:
1048 case ADDR_DIFF_VEC:
1049 case REG:
1050 return;
1052 case EXPR_LIST:
1053 if (XEXP (x, 0))
1054 reg_scan_mark_refs (XEXP (x, 0), insn);
1055 if (XEXP (x, 1))
1056 reg_scan_mark_refs (XEXP (x, 1), insn);
1057 break;
1059 case INSN_LIST:
1060 case INT_LIST:
1061 if (XEXP (x, 1))
1062 reg_scan_mark_refs (XEXP (x, 1), insn);
1063 break;
1065 case CLOBBER:
1066 if (MEM_P (XEXP (x, 0)))
1067 reg_scan_mark_refs (XEXP (XEXP (x, 0), 0), insn);
1068 break;
1070 case SET:
1071 /* Count a set of the destination if it is a register. */
1072 for (dest = SET_DEST (x);
1073 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
1074 || GET_CODE (dest) == ZERO_EXTRACT;
1075 dest = XEXP (dest, 0))
1078 /* If this is setting a pseudo from another pseudo or the sum of a
1079 pseudo and a constant integer and the other pseudo is known to be
1080 a pointer, set the destination to be a pointer as well.
1082 Likewise if it is setting the destination from an address or from a
1083 value equivalent to an address or to the sum of an address and
1084 something else.
1086 But don't do any of this if the pseudo corresponds to a user
1087 variable since it should have already been set as a pointer based
1088 on the type. */
1090 if (REG_P (SET_DEST (x))
1091 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
1092 /* If the destination pseudo is set more than once, then other
1093 sets might not be to a pointer value (consider access to a
1094 union in two threads of control in the presence of global
1095 optimizations). So only set REG_POINTER on the destination
1096 pseudo if this is the only set of that pseudo. */
1097 && DF_REG_DEF_COUNT (REGNO (SET_DEST (x))) == 1
1098 && ! REG_USERVAR_P (SET_DEST (x))
1099 && ! REG_POINTER (SET_DEST (x))
1100 && ((REG_P (SET_SRC (x))
1101 && REG_POINTER (SET_SRC (x)))
1102 || ((GET_CODE (SET_SRC (x)) == PLUS
1103 || GET_CODE (SET_SRC (x)) == LO_SUM)
1104 && CONST_INT_P (XEXP (SET_SRC (x), 1))
1105 && REG_P (XEXP (SET_SRC (x), 0))
1106 && REG_POINTER (XEXP (SET_SRC (x), 0)))
1107 || GET_CODE (SET_SRC (x)) == CONST
1108 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
1109 || GET_CODE (SET_SRC (x)) == LABEL_REF
1110 || (GET_CODE (SET_SRC (x)) == HIGH
1111 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
1112 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
1113 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
1114 || ((GET_CODE (SET_SRC (x)) == PLUS
1115 || GET_CODE (SET_SRC (x)) == LO_SUM)
1116 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
1117 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
1118 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
1119 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
1120 && (GET_CODE (XEXP (note, 0)) == CONST
1121 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
1122 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
1123 REG_POINTER (SET_DEST (x)) = 1;
1125 /* If this is setting a register from a register or from a simple
1126 conversion of a register, propagate REG_EXPR. */
1127 if (REG_P (dest) && !REG_ATTRS (dest))
1128 set_reg_attrs_from_value (dest, SET_SRC (x));
1130 /* fall through */
1132 default:
1134 const char *fmt = GET_RTX_FORMAT (code);
1135 int i;
1136 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1138 if (fmt[i] == 'e')
1139 reg_scan_mark_refs (XEXP (x, i), insn);
1140 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
1142 int j;
1143 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1144 reg_scan_mark_refs (XVECEXP (x, i, j), insn);
1152 /* Return true if C1 is a subset of C2, i.e., if every register in C1
1153 is also in C2. */
1154 bool
1155 reg_class_subset_p (reg_class_t c1, reg_class_t c2)
1157 return (c1 == c2
1158 || c2 == ALL_REGS
1159 || hard_reg_set_subset_p (reg_class_contents[(int) c1],
1160 reg_class_contents[(int) c2]));
1163 /* Return true if there is a register that is in both C1 and C2. */
1164 bool
1165 reg_classes_intersect_p (reg_class_t c1, reg_class_t c2)
1167 return (c1 == c2
1168 || c1 == ALL_REGS
1169 || c2 == ALL_REGS
1170 || hard_reg_set_intersect_p (reg_class_contents[(int) c1],
1171 reg_class_contents[(int) c2]));
1175 inline hashval_t
1176 simplifiable_subregs_hasher::hash (const simplifiable_subreg *value)
1178 inchash::hash h;
1179 h.add_hwi (value->shape.unique_id ());
1180 return h.end ();
1183 inline bool
1184 simplifiable_subregs_hasher::equal (const simplifiable_subreg *value,
1185 const subreg_shape *compare)
1187 return value->shape == *compare;
1190 inline simplifiable_subreg::simplifiable_subreg (const subreg_shape &shape_in)
1191 : shape (shape_in)
1193 CLEAR_HARD_REG_SET (simplifiable_regs);
1196 /* Return the set of hard registers that are able to form the subreg
1197 described by SHAPE. */
1199 const HARD_REG_SET &
1200 simplifiable_subregs (const subreg_shape &shape)
1202 if (!this_target_hard_regs->x_simplifiable_subregs)
1203 this_target_hard_regs->x_simplifiable_subregs
1204 = new hash_table <simplifiable_subregs_hasher> (30);
1205 inchash::hash h;
1206 h.add_hwi (shape.unique_id ());
1207 simplifiable_subreg **slot
1208 = (this_target_hard_regs->x_simplifiable_subregs
1209 ->find_slot_with_hash (&shape, h.end (), INSERT));
1211 if (!*slot)
1213 simplifiable_subreg *info = new simplifiable_subreg (shape);
1214 for (unsigned int i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1215 if (targetm.hard_regno_mode_ok (i, shape.inner_mode)
1216 && simplify_subreg_regno (i, shape.inner_mode, shape.offset,
1217 shape.outer_mode) >= 0)
1218 SET_HARD_REG_BIT (info->simplifiable_regs, i);
1219 *slot = info;
1221 return (*slot)->simplifiable_regs;
1224 /* Passes for keeping and updating info about modes of registers
1225 inside subregisters. */
1227 static HARD_REG_SET **valid_mode_changes;
1228 static obstack valid_mode_changes_obstack;
1230 /* Restrict the choice of register for SUBREG_REG (SUBREG) based
1231 on information about SUBREG.
1233 If PARTIAL_DEF, SUBREG is a partial definition of a multipart inner
1234 register and we want to ensure that the other parts of the inner
1235 register are correctly preserved. If !PARTIAL_DEF we need to
1236 ensure that SUBREG itself can be formed. */
1238 static void
1239 record_subregs_of_mode (rtx subreg, bool partial_def)
1241 unsigned int regno;
1243 if (!REG_P (SUBREG_REG (subreg)))
1244 return;
1246 regno = REGNO (SUBREG_REG (subreg));
1247 if (regno < FIRST_PSEUDO_REGISTER)
1248 return;
1250 subreg_shape shape (shape_of_subreg (subreg));
1251 if (partial_def)
1253 /* The number of independently-accessible SHAPE.outer_mode values
1254 in SHAPE.inner_mode is GET_MODE_SIZE (SHAPE.inner_mode) / SIZE.
1255 We need to check that the assignment will preserve all the other
1256 SIZE-byte chunks in the inner register besides the one that
1257 includes SUBREG.
1259 In practice it is enough to check whether an equivalent
1260 SHAPE.inner_mode value in an adjacent SIZE-byte chunk can be formed.
1261 If the underlying registers are small enough, both subregs will
1262 be valid. If the underlying registers are too large, one of the
1263 subregs will be invalid.
1265 This relies on the fact that we've already been passed
1266 SUBREG with PARTIAL_DEF set to false.
1268 The size of the outer mode must ordered wrt the size of the
1269 inner mode's registers, since otherwise we wouldn't know at
1270 compile time how many registers the outer mode occupies. */
1271 poly_uint64 size = ordered_max (REGMODE_NATURAL_SIZE (shape.inner_mode),
1272 GET_MODE_SIZE (shape.outer_mode));
1273 gcc_checking_assert (known_lt (size, GET_MODE_SIZE (shape.inner_mode)));
1274 if (known_ge (shape.offset, size))
1275 shape.offset -= size;
1276 else
1277 shape.offset += size;
1280 if (valid_mode_changes[regno])
1281 *valid_mode_changes[regno] &= simplifiable_subregs (shape);
1282 else
1284 valid_mode_changes[regno]
1285 = XOBNEW (&valid_mode_changes_obstack, HARD_REG_SET);
1286 *valid_mode_changes[regno] = simplifiable_subregs (shape);
1290 /* Call record_subregs_of_mode for all the subregs in X. */
1291 static void
1292 find_subregs_of_mode (rtx x)
1294 enum rtx_code code = GET_CODE (x);
1295 const char * const fmt = GET_RTX_FORMAT (code);
1296 int i;
1298 if (code == SUBREG)
1299 record_subregs_of_mode (x, false);
1301 /* Time for some deep diving. */
1302 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1304 if (fmt[i] == 'e')
1305 find_subregs_of_mode (XEXP (x, i));
1306 else if (fmt[i] == 'E')
1308 int j;
1309 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1310 find_subregs_of_mode (XVECEXP (x, i, j));
1315 void
1316 init_subregs_of_mode (void)
1318 basic_block bb;
1319 rtx_insn *insn;
1321 gcc_obstack_init (&valid_mode_changes_obstack);
1322 valid_mode_changes = XCNEWVEC (HARD_REG_SET *, max_reg_num ());
1324 FOR_EACH_BB_FN (bb, cfun)
1325 FOR_BB_INSNS (bb, insn)
1326 if (NONDEBUG_INSN_P (insn))
1328 find_subregs_of_mode (PATTERN (insn));
1329 df_ref def;
1330 FOR_EACH_INSN_DEF (def, insn)
1331 if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
1332 && read_modify_subreg_p (DF_REF_REG (def)))
1333 record_subregs_of_mode (DF_REF_REG (def), true);
1337 const HARD_REG_SET *
1338 valid_mode_changes_for_regno (unsigned int regno)
1340 return valid_mode_changes[regno];
1343 void
1344 finish_subregs_of_mode (void)
1346 XDELETEVEC (valid_mode_changes);
1347 obstack_free (&valid_mode_changes_obstack, NULL);
1350 /* Free all data attached to the structure. This isn't a destructor because
1351 we don't want to run on exit. */
1353 void
1354 target_hard_regs::finalize ()
1356 delete x_simplifiable_subregs;