libcpp, c, middle-end: Optimize initializers using #embed in C
[official-gcc.git] / gcc / cfgloopmanip.cc
blobd37d351fdf3e45e04bea19563a5e04c5b377a045
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002-2024 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "cfganal.h"
29 #include "cfgloop.h"
30 #include "gimple-iterator.h"
31 #include "gimplify-me.h"
32 #include "tree-ssa-loop-manip.h"
33 #include "dumpfile.h"
34 #include "sreal.h"
36 static void copy_loops_to (class loop **, int,
37 class loop *);
38 static void loop_redirect_edge (edge, basic_block);
39 static void remove_bbs (basic_block *, int);
40 static bool rpe_enum_p (const_basic_block, const void *);
41 static int find_path (edge, basic_block **);
42 static void fix_loop_placements (class loop *, bool *, bitmap);
43 static bool fix_bb_placement (basic_block);
44 static void fix_bb_placements (basic_block, bool *, bitmap);
46 /* Checks whether basic block BB is dominated by DATA. */
47 static bool
48 rpe_enum_p (const_basic_block bb, const void *data)
50 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
53 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
55 static void
56 remove_bbs (basic_block *bbs, int nbbs)
58 int i;
60 for (i = 0; i < nbbs; i++)
61 delete_basic_block (bbs[i]);
64 /* Find path -- i.e. the basic blocks dominated by edge E and put them
65 into array BBS, that will be allocated large enough to contain them.
66 E->dest must have exactly one predecessor for this to work (it is
67 easy to achieve and we do not put it here because we do not want to
68 alter anything by this function). The number of basic blocks in the
69 path is returned. */
70 static int
71 find_path (edge e, basic_block **bbs)
73 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
75 /* Find bbs in the path. */
76 *bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
77 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
78 n_basic_blocks_for_fn (cfun), e->dest);
81 /* Fix placement of basic block BB inside loop hierarchy --
82 Let L be a loop to that BB belongs. Then every successor of BB must either
83 1) belong to some superloop of loop L, or
84 2) be a header of loop K such that K->outer is superloop of L
85 Returns true if we had to move BB into other loop to enforce this condition,
86 false if the placement of BB was already correct (provided that placements
87 of its successors are correct). */
88 static bool
89 fix_bb_placement (basic_block bb)
91 edge e;
92 edge_iterator ei;
93 class loop *loop = current_loops->tree_root, *act;
95 FOR_EACH_EDGE (e, ei, bb->succs)
97 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
98 continue;
100 act = e->dest->loop_father;
101 if (act->header == e->dest)
102 act = loop_outer (act);
104 if (flow_loop_nested_p (loop, act))
105 loop = act;
108 if (loop == bb->loop_father)
109 return false;
111 remove_bb_from_loops (bb);
112 add_bb_to_loop (bb, loop);
114 return true;
117 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
118 of LOOP to that leads at least one exit edge of LOOP, and set it
119 as the immediate superloop of LOOP. Return true if the immediate superloop
120 of LOOP changed.
122 IRRED_INVALIDATED is set to true if a change in the loop structures might
123 invalidate the information about irreducible regions. */
125 static bool
126 fix_loop_placement (class loop *loop, bool *irred_invalidated)
128 unsigned i;
129 edge e;
130 auto_vec<edge> exits = get_loop_exit_edges (loop);
131 class loop *father = current_loops->tree_root, *act;
132 bool ret = false;
134 FOR_EACH_VEC_ELT (exits, i, e)
136 act = find_common_loop (loop, e->dest->loop_father);
137 if (flow_loop_nested_p (father, act))
138 father = act;
141 if (father != loop_outer (loop))
143 for (act = loop_outer (loop); act != father; act = loop_outer (act))
144 act->num_nodes -= loop->num_nodes;
145 flow_loop_tree_node_remove (loop);
146 flow_loop_tree_node_add (father, loop);
148 /* The exit edges of LOOP no longer exits its original immediate
149 superloops; remove them from the appropriate exit lists. */
150 FOR_EACH_VEC_ELT (exits, i, e)
152 /* We may need to recompute irreducible loops. */
153 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
154 *irred_invalidated = true;
155 rescan_loop_exit (e, false, false);
158 ret = true;
161 return ret;
164 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
165 enforce condition stated in description of fix_bb_placement. We
166 start from basic block FROM that had some of its successors removed, so that
167 his placement no longer has to be correct, and iteratively fix placement of
168 its predecessors that may change if placement of FROM changed. Also fix
169 placement of subloops of FROM->loop_father, that might also be altered due
170 to this change; the condition for them is similar, except that instead of
171 successors we consider edges coming out of the loops.
173 If the changes may invalidate the information about irreducible regions,
174 IRRED_INVALIDATED is set to true.
176 If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
177 changed loop_father are collected there. */
179 static void
180 fix_bb_placements (basic_block from,
181 bool *irred_invalidated,
182 bitmap loop_closed_ssa_invalidated)
184 basic_block *queue, *qtop, *qbeg, *qend;
185 class loop *base_loop, *target_loop;
186 edge e;
188 /* We pass through blocks back-reachable from FROM, testing whether some
189 of their successors moved to outer loop. It may be necessary to
190 iterate several times, but it is finite, as we stop unless we move
191 the basic block up the loop structure. The whole story is a bit
192 more complicated due to presence of subloops, those are moved using
193 fix_loop_placement. */
195 base_loop = from->loop_father;
196 /* If we are already in the outermost loop, the basic blocks cannot be moved
197 outside of it. If FROM is the header of the base loop, it cannot be moved
198 outside of it, either. In both cases, we can end now. */
199 if (base_loop == current_loops->tree_root
200 || from == base_loop->header)
201 return;
203 auto_sbitmap in_queue (last_basic_block_for_fn (cfun));
204 bitmap_clear (in_queue);
205 bitmap_set_bit (in_queue, from->index);
206 /* Prevent us from going out of the base_loop. */
207 bitmap_set_bit (in_queue, base_loop->header->index);
209 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
210 qtop = queue + base_loop->num_nodes + 1;
211 qbeg = queue;
212 qend = queue + 1;
213 *qbeg = from;
215 while (qbeg != qend)
217 edge_iterator ei;
218 from = *qbeg;
219 qbeg++;
220 if (qbeg == qtop)
221 qbeg = queue;
222 bitmap_clear_bit (in_queue, from->index);
224 if (from->loop_father->header == from)
226 /* Subloop header, maybe move the loop upward. */
227 if (!fix_loop_placement (from->loop_father, irred_invalidated))
228 continue;
229 target_loop = loop_outer (from->loop_father);
230 if (loop_closed_ssa_invalidated)
232 basic_block *bbs = get_loop_body (from->loop_father);
233 for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
234 bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
235 free (bbs);
238 else
240 /* Ordinary basic block. */
241 if (!fix_bb_placement (from))
242 continue;
243 target_loop = from->loop_father;
244 if (loop_closed_ssa_invalidated)
245 bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
248 FOR_EACH_EDGE (e, ei, from->succs)
250 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
251 *irred_invalidated = true;
254 /* Something has changed, insert predecessors into queue. */
255 FOR_EACH_EDGE (e, ei, from->preds)
257 basic_block pred = e->src;
258 class loop *nca;
260 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
261 *irred_invalidated = true;
263 if (bitmap_bit_p (in_queue, pred->index))
264 continue;
266 /* If it is subloop, then it either was not moved, or
267 the path up the loop tree from base_loop do not contain
268 it. */
269 nca = find_common_loop (pred->loop_father, base_loop);
270 if (pred->loop_father != base_loop
271 && (nca == base_loop
272 || nca != pred->loop_father))
273 pred = pred->loop_father->header;
274 else if (!flow_loop_nested_p (target_loop, pred->loop_father))
276 /* If PRED is already higher in the loop hierarchy than the
277 TARGET_LOOP to that we moved FROM, the change of the position
278 of FROM does not affect the position of PRED, so there is no
279 point in processing it. */
280 continue;
283 if (bitmap_bit_p (in_queue, pred->index))
284 continue;
286 /* Schedule the basic block. */
287 *qend = pred;
288 qend++;
289 if (qend == qtop)
290 qend = queue;
291 bitmap_set_bit (in_queue, pred->index);
294 free (queue);
297 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
298 and update loop structures and dominators. Return true if we were able
299 to remove the path, false otherwise (and nothing is affected then). */
300 bool
301 remove_path (edge e, bool *irred_invalidated,
302 bitmap loop_closed_ssa_invalidated)
304 edge ae;
305 basic_block *rem_bbs, *bord_bbs, from, bb;
306 vec<basic_block> dom_bbs;
307 int i, nrem, n_bord_bbs;
308 bool local_irred_invalidated = false;
309 edge_iterator ei;
310 class loop *l, *f;
312 if (! irred_invalidated)
313 irred_invalidated = &local_irred_invalidated;
315 if (!can_remove_branch_p (e))
316 return false;
318 /* Keep track of whether we need to update information about irreducible
319 regions. This is the case if the removed area is a part of the
320 irreducible region, or if the set of basic blocks that belong to a loop
321 that is inside an irreducible region is changed, or if such a loop is
322 removed. */
323 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
324 *irred_invalidated = true;
326 /* We need to check whether basic blocks are dominated by the edge
327 e, but we only have basic block dominators. This is easy to
328 fix -- when e->dest has exactly one predecessor, this corresponds
329 to blocks dominated by e->dest, if not, split the edge. */
330 if (!single_pred_p (e->dest))
331 e = single_pred_edge (split_edge (e));
333 /* It may happen that by removing path we remove one or more loops
334 we belong to. In this case first unloop the loops, then proceed
335 normally. We may assume that e->dest is not a header of any loop,
336 as it now has exactly one predecessor. */
337 for (l = e->src->loop_father; loop_outer (l); l = f)
339 f = loop_outer (l);
340 if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
341 unloop (l, irred_invalidated, loop_closed_ssa_invalidated);
344 /* Identify the path. */
345 nrem = find_path (e, &rem_bbs);
347 n_bord_bbs = 0;
348 bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
349 auto_sbitmap seen (last_basic_block_for_fn (cfun));
350 bitmap_clear (seen);
352 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
353 for (i = 0; i < nrem; i++)
354 bitmap_set_bit (seen, rem_bbs[i]->index);
355 if (!*irred_invalidated)
356 FOR_EACH_EDGE (ae, ei, e->src->succs)
357 if (ae != e && ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
358 && !bitmap_bit_p (seen, ae->dest->index)
359 && ae->flags & EDGE_IRREDUCIBLE_LOOP)
361 *irred_invalidated = true;
362 break;
365 for (i = 0; i < nrem; i++)
367 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
368 if (ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
369 && !bitmap_bit_p (seen, ae->dest->index))
371 bitmap_set_bit (seen, ae->dest->index);
372 bord_bbs[n_bord_bbs++] = ae->dest;
374 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
375 *irred_invalidated = true;
379 /* Remove the path. */
380 from = e->src;
381 remove_branch (e);
382 dom_bbs.create (0);
384 /* Cancel loops contained in the path. */
385 for (i = 0; i < nrem; i++)
386 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
387 cancel_loop_tree (rem_bbs[i]->loop_father);
389 remove_bbs (rem_bbs, nrem);
390 free (rem_bbs);
392 /* Find blocks whose dominators may be affected. */
393 bitmap_clear (seen);
394 for (i = 0; i < n_bord_bbs; i++)
396 basic_block ldom;
398 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
399 if (bitmap_bit_p (seen, bb->index))
400 continue;
401 bitmap_set_bit (seen, bb->index);
403 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
404 ldom;
405 ldom = next_dom_son (CDI_DOMINATORS, ldom))
406 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
407 dom_bbs.safe_push (ldom);
410 /* Recount dominators. */
411 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
412 dom_bbs.release ();
413 free (bord_bbs);
415 /* Fix placements of basic blocks inside loops and the placement of
416 loops in the loop tree. */
417 fix_bb_placements (from, irred_invalidated, loop_closed_ssa_invalidated);
418 fix_loop_placements (from->loop_father, irred_invalidated,
419 loop_closed_ssa_invalidated);
421 if (local_irred_invalidated
422 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
423 mark_irreducible_loops ();
425 return true;
428 /* Creates place for a new LOOP in loops structure of FN. */
430 void
431 place_new_loop (struct function *fn, class loop *loop)
433 loop->num = number_of_loops (fn);
434 vec_safe_push (loops_for_fn (fn)->larray, loop);
437 /* Given LOOP structure with filled header and latch, find the body of the
438 corresponding loop and add it to loops tree. Insert the LOOP as a son of
439 outer. */
441 void
442 add_loop (class loop *loop, class loop *outer)
444 basic_block *bbs;
445 int i, n;
446 class loop *subloop;
447 edge e;
448 edge_iterator ei;
450 /* Add it to loop structure. */
451 place_new_loop (cfun, loop);
452 flow_loop_tree_node_add (outer, loop);
454 /* Find its nodes. */
455 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
456 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
458 for (i = 0; i < n; i++)
460 if (bbs[i]->loop_father == outer)
462 remove_bb_from_loops (bbs[i]);
463 add_bb_to_loop (bbs[i], loop);
464 continue;
467 loop->num_nodes++;
469 /* If we find a direct subloop of OUTER, move it to LOOP. */
470 subloop = bbs[i]->loop_father;
471 if (loop_outer (subloop) == outer
472 && subloop->header == bbs[i])
474 flow_loop_tree_node_remove (subloop);
475 flow_loop_tree_node_add (loop, subloop);
479 /* Update the information about loop exit edges. */
480 for (i = 0; i < n; i++)
482 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
484 rescan_loop_exit (e, false, false);
488 free (bbs);
491 /* Scale profile of loop by P. */
493 void
494 scale_loop_frequencies (class loop *loop, profile_probability p)
496 basic_block *bbs;
498 bbs = get_loop_body (loop);
499 scale_bbs_frequencies (bbs, loop->num_nodes, p);
500 free (bbs);
503 /* Scales the frequencies of all basic blocks in LOOP that are strictly
504 dominated by BB by NUM/DEN. */
506 void
507 scale_dominated_blocks_in_loop (class loop *loop, basic_block bb,
508 profile_count num, profile_count den)
510 basic_block son;
512 if (!den.nonzero_p () && !(num == profile_count::zero ()))
513 return;
514 auto_vec <basic_block, 8> worklist;
515 worklist.safe_push (bb);
517 while (!worklist.is_empty ())
518 for (son = first_dom_son (CDI_DOMINATORS, worklist.pop ());
519 son;
520 son = next_dom_son (CDI_DOMINATORS, son))
522 if (!flow_bb_inside_loop_p (loop, son))
523 continue;
524 son->count = son->count.apply_scale (num, den);
525 worklist.safe_push (son);
529 /* Return exit that suitable for update when loop iterations
530 changed. */
532 static edge
533 loop_exit_for_scaling (class loop *loop)
535 edge exit_edge = single_exit (loop);
536 if (!exit_edge)
538 auto_vec<edge> exits = get_loop_exit_edges (loop);
539 exit_edge = single_likely_exit (loop, exits);
541 return exit_edge;
544 /* Assume that loop's entry count and profile up to a given EXIT_EDGE is
545 consistent. Update exit probability so loop exists with PROFILE_COUNT
546 and rescale profile of basic blocks inside loop dominated by EXIT_EDGE->src.
548 This is useful after number of iteraitons of loop has changed.
549 If EXIT_EDGE is NULL, the function will try to identify suitable exit.
550 If DESIRED_COUNT is NULL, loop entry count will be used.
551 In consistent profile usually loop exists as many times as it is entred.
553 Return updated exit if successfull and NULL otherwise. */
555 edge
556 update_loop_exit_probability_scale_dom_bbs (class loop *loop,
557 edge exit_edge,
558 profile_count desired_count)
560 if (!exit_edge)
561 exit_edge = loop_exit_for_scaling (loop);
562 if (!exit_edge)
564 if (dump_file && (dump_flags & TDF_DETAILS))
566 fprintf (dump_file, ";; Not updating exit probability of loop %i;"
567 " it has no single exit\n",
568 loop->num);
570 return NULL;
572 /* If exit is inside another loop, adjusting its probability will also
573 adjust number of the inner loop iterations. Just do noting for now. */
574 if (!just_once_each_iteration_p (loop, exit_edge->src))
576 if (dump_file && (dump_flags & TDF_DETAILS))
578 fprintf (dump_file, ";; Not updating exit probability of loop %i;"
579 " exit is inside inner loop\n",
580 loop->num);
582 return NULL;
584 /* Normal loops exit as many times as they are entered. */
585 if (!desired_count.initialized_p ())
586 desired_count = loop_count_in (loop);
587 /* See if everything is already perfect. */
588 if (desired_count == exit_edge->count ())
589 return exit_edge;
590 profile_count old_exit_count = exit_edge->count ();
591 /* See if update is possible.
592 Avoid turning probability to 0 or 1 just trying to reach impossible
593 value.
595 Natural profile update after some loop will happily scale header count to
596 be less than count of entering the loop. This is bad idea and they should
597 special case maybe_flat_loop_profile.
599 It may also happen that the source basic block of the exit edge is
600 inside in-loop condition:
602 +-> header
604 | B1
605 | / \
606 | | B2--exit_edge-->
607 | \ /
608 | B3
609 +__/
611 If B2 count is smaller than desired exit edge count
612 the profile was inconsistent with the newly discovered upper bound.
613 Probablity of edge B1->B2 is too low. We do not attempt to fix
614 that (as it is hard in general). */
615 if (desired_count > exit_edge->src->count
616 && exit_edge->src->count.differs_from_p (desired_count))
618 if (dump_file)
620 fprintf (dump_file, ";; Source bb of loop %i has count ",
621 loop->num);
622 exit_edge->src->count.dump (dump_file, cfun);
623 fprintf (dump_file,
624 " which is smaller then desired count of exitting loop ");
625 desired_count.dump (dump_file, cfun);
626 fprintf (dump_file, ". Profile update is impossible.\n");
628 /* Drop quality of probability since we know it likely
629 bad. */
630 exit_edge->probability = exit_edge->probability.guessed ();
631 return NULL;
633 if (!exit_edge->src->count.nonzero_p ())
635 if (dump_file)
637 fprintf (dump_file, ";; Not updating exit edge probability"
638 " in loop %i since profile is zero ",
639 loop->num);
641 return NULL;
643 set_edge_probability_and_rescale_others
644 (exit_edge, desired_count.probability_in (exit_edge->src->count));
645 /* Rescale the remaining edge probabilities and see if there is only
646 one. */
647 edge other_edge = NULL;
648 bool found = false;
649 edge e;
650 edge_iterator ei;
651 FOR_EACH_EDGE (e, ei, exit_edge->src->succs)
652 if (!(e->flags & EDGE_FAKE)
653 && !loop_exit_edge_p (loop, e))
655 if (found)
657 other_edge = NULL;
658 break;
660 other_edge = e;
661 found = true;
663 /* If there is only loop latch after other edge,
664 update its profile. This is tiny bit more precise
665 than scaling. */
666 if (other_edge && other_edge->dest == loop->latch)
668 if (single_pred_p (loop->latch))
669 loop->latch->count = loop->latch->count
670 + old_exit_count - exit_edge->count ();
672 else
673 /* If there are multiple blocks, just scale. */
674 scale_dominated_blocks_in_loop (loop, exit_edge->src,
675 exit_edge->src->count - exit_edge->count (),
676 exit_edge->src->count - old_exit_count);
677 return exit_edge;
680 /* Scale profile in LOOP by P.
681 If ITERATION_BOUND is not -1, scale even further if loop is predicted
682 to iterate too many times.
683 Before caling this function, preheader block profile should be already
684 scaled to final count. This is necessary because loop iterations are
685 determined by comparing header edge count to latch ege count and thus
686 they need to be scaled synchronously. */
688 void
689 scale_loop_profile (class loop *loop, profile_probability p,
690 gcov_type iteration_bound)
692 if (!(p == profile_probability::always ()))
694 if (dump_file && (dump_flags & TDF_DETAILS))
696 fprintf (dump_file, ";; Scaling loop %i with scale ",
697 loop->num);
698 p.dump (dump_file);
699 fprintf (dump_file, "\n");
702 /* Scale the probabilities. */
703 scale_loop_frequencies (loop, p);
706 if (iteration_bound == -1)
707 return;
709 sreal iterations;
710 if (!expected_loop_iterations_by_profile (loop, &iterations))
711 return;
713 if (dump_file && (dump_flags & TDF_DETAILS))
715 fprintf (dump_file,
716 ";; Guessed iterations of loop %i is %f. New upper bound %i.\n",
717 loop->num,
718 iterations.to_double (),
719 (int)iteration_bound);
722 /* See if loop is predicted to iterate too many times. */
723 if (iterations <= (sreal)iteration_bound)
724 return;
726 profile_count count_in = loop_count_in (loop);
728 /* Now scale the loop body so header count is
729 count_in * (iteration_bound + 1) */
730 profile_probability scale_prob
731 = (count_in * (iteration_bound + 1)).probability_in (loop->header->count);
732 if (dump_file && (dump_flags & TDF_DETAILS))
734 fprintf (dump_file, ";; Scaling loop %i with scale ",
735 loop->num);
736 scale_prob.dump (dump_file);
737 fprintf (dump_file, " to reach upper bound %i\n",
738 (int)iteration_bound);
740 /* Finally attempt to fix exit edge probability. */
741 edge exit_edge = loop_exit_for_scaling (loop);
743 /* In a consistent profile unadjusted_exit_count should be same as count_in,
744 however to preserve as much of the original info, avoid recomputing
745 it. */
746 profile_count unadjusted_exit_count = profile_count::uninitialized ();
747 if (exit_edge)
748 unadjusted_exit_count = exit_edge->count ();
749 scale_loop_frequencies (loop, scale_prob);
750 update_loop_exit_probability_scale_dom_bbs (loop, exit_edge,
751 unadjusted_exit_count);
754 /* Recompute dominance information for basic blocks outside LOOP. */
756 static void
757 update_dominators_in_loop (class loop *loop)
759 vec<basic_block> dom_bbs = vNULL;
760 basic_block *body;
761 unsigned i;
763 auto_sbitmap seen (last_basic_block_for_fn (cfun));
764 bitmap_clear (seen);
765 body = get_loop_body (loop);
767 for (i = 0; i < loop->num_nodes; i++)
768 bitmap_set_bit (seen, body[i]->index);
770 for (i = 0; i < loop->num_nodes; i++)
772 basic_block ldom;
774 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
775 ldom;
776 ldom = next_dom_son (CDI_DOMINATORS, ldom))
777 if (!bitmap_bit_p (seen, ldom->index))
779 bitmap_set_bit (seen, ldom->index);
780 dom_bbs.safe_push (ldom);
784 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
785 free (body);
786 dom_bbs.release ();
789 /* Creates an if region as shown above. CONDITION is used to create
790 the test for the if.
793 | ------------- -------------
794 | | pred_bb | | pred_bb |
795 | ------------- -------------
796 | | |
797 | | | ENTRY_EDGE
798 | | ENTRY_EDGE V
799 | | ====> -------------
800 | | | cond_bb |
801 | | | CONDITION |
802 | | -------------
803 | V / \
804 | ------------- e_false / \ e_true
805 | | succ_bb | V V
806 | ------------- ----------- -----------
807 | | false_bb | | true_bb |
808 | ----------- -----------
809 | \ /
810 | \ /
811 | V V
812 | -------------
813 | | join_bb |
814 | -------------
815 | | exit_edge (result)
817 | -----------
818 | | succ_bb |
819 | -----------
823 edge
824 create_empty_if_region_on_edge (edge entry_edge, tree condition)
827 basic_block cond_bb, true_bb, false_bb, join_bb;
828 edge e_true, e_false, exit_edge;
829 gcond *cond_stmt;
830 tree simple_cond;
831 gimple_stmt_iterator gsi;
833 cond_bb = split_edge (entry_edge);
835 /* Insert condition in cond_bb. */
836 gsi = gsi_last_bb (cond_bb);
837 simple_cond =
838 force_gimple_operand_gsi (&gsi, condition, true, NULL,
839 false, GSI_NEW_STMT);
840 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
841 gsi = gsi_last_bb (cond_bb);
842 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
844 join_bb = split_edge (single_succ_edge (cond_bb));
846 e_true = single_succ_edge (cond_bb);
847 true_bb = split_edge (e_true);
849 e_false = make_edge (cond_bb, join_bb, 0);
850 false_bb = split_edge (e_false);
852 e_true->flags &= ~EDGE_FALLTHRU;
853 e_true->flags |= EDGE_TRUE_VALUE;
854 e_false->flags &= ~EDGE_FALLTHRU;
855 e_false->flags |= EDGE_FALSE_VALUE;
857 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
858 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
859 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
860 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
862 exit_edge = single_succ_edge (join_bb);
864 if (single_pred_p (exit_edge->dest))
865 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
867 return exit_edge;
870 /* create_empty_loop_on_edge
872 | - pred_bb - ------ pred_bb ------
873 | | | | iv0 = initial_value |
874 | -----|----- ---------|-----------
875 | | ______ | entry_edge
876 | | entry_edge / | |
877 | | ====> | -V---V- loop_header -------------
878 | V | | iv_before = phi (iv0, iv_after) |
879 | - succ_bb - | ---|-----------------------------
880 | | | | |
881 | ----------- | ---V--- loop_body ---------------
882 | | | iv_after = iv_before + stride |
883 | | | if (iv_before < upper_bound) |
884 | | ---|--------------\--------------
885 | | | \ exit_e
886 | | V \
887 | | - loop_latch - V- succ_bb -
888 | | | | | |
889 | | /------------- -----------
890 | \ ___ /
892 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
893 that is used before the increment of IV. IV_BEFORE should be used for
894 adding code to the body that uses the IV. OUTER is the outer loop in
895 which the new loop should be inserted.
897 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
898 inserted on the loop entry edge. This implies that this function
899 should be used only when the UPPER_BOUND expression is a loop
900 invariant. */
902 class loop *
903 create_empty_loop_on_edge (edge entry_edge,
904 tree initial_value,
905 tree stride, tree upper_bound,
906 tree iv,
907 tree *iv_before,
908 tree *iv_after,
909 class loop *outer)
911 basic_block loop_header, loop_latch, succ_bb, pred_bb;
912 class loop *loop;
913 gimple_stmt_iterator gsi;
914 gimple_seq stmts;
915 gcond *cond_expr;
916 tree exit_test;
917 edge exit_e;
919 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
921 /* Create header, latch and wire up the loop. */
922 pred_bb = entry_edge->src;
923 loop_header = split_edge (entry_edge);
924 loop_latch = split_edge (single_succ_edge (loop_header));
925 succ_bb = single_succ (loop_latch);
926 make_edge (loop_header, succ_bb, 0);
927 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
929 /* Set immediate dominator information. */
930 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
931 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
932 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
934 /* Initialize a loop structure and put it in a loop hierarchy. */
935 loop = alloc_loop ();
936 loop->header = loop_header;
937 loop->latch = loop_latch;
938 add_loop (loop, outer);
940 /* TODO: Fix counts. */
941 scale_loop_frequencies (loop, profile_probability::even ());
943 /* Update dominators. */
944 update_dominators_in_loop (loop);
946 /* Modify edge flags. */
947 exit_e = single_exit (loop);
948 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
949 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
951 /* Construct IV code in loop. */
952 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
953 if (stmts)
955 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
956 gsi_commit_edge_inserts ();
959 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
960 if (stmts)
962 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
963 gsi_commit_edge_inserts ();
966 gsi = gsi_last_bb (loop_header);
967 create_iv (initial_value, PLUS_EXPR, stride, iv, loop, &gsi, false,
968 iv_before, iv_after);
970 /* Insert loop exit condition. */
971 cond_expr = gimple_build_cond
972 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
974 exit_test = gimple_cond_lhs (cond_expr);
975 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
976 false, GSI_NEW_STMT);
977 gimple_cond_set_lhs (cond_expr, exit_test);
978 gsi = gsi_last_bb (exit_e->src);
979 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
981 split_block_after_labels (loop_header);
983 return loop;
986 /* Remove the latch edge of a LOOP and update loops to indicate that
987 the LOOP was removed. After this function, original loop latch will
988 have no successor, which caller is expected to fix somehow.
990 If this may cause the information about irreducible regions to become
991 invalid, IRRED_INVALIDATED is set to true.
993 LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
994 basic blocks that had non-trivial update on their loop_father.*/
996 void
997 unloop (class loop *loop, bool *irred_invalidated,
998 bitmap loop_closed_ssa_invalidated)
1000 basic_block *body;
1001 class loop *ploop;
1002 unsigned i, n;
1003 basic_block latch = loop->latch;
1004 bool dummy = false;
1006 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
1007 *irred_invalidated = true;
1009 /* This is relatively straightforward. The dominators are unchanged, as
1010 loop header dominates loop latch, so the only thing we have to care of
1011 is the placement of loops and basic blocks inside the loop tree. We
1012 move them all to the loop->outer, and then let fix_bb_placements do
1013 its work. */
1015 body = get_loop_body (loop);
1016 n = loop->num_nodes;
1017 for (i = 0; i < n; i++)
1018 if (body[i]->loop_father == loop)
1020 remove_bb_from_loops (body[i]);
1021 add_bb_to_loop (body[i], loop_outer (loop));
1023 free (body);
1025 while (loop->inner)
1027 ploop = loop->inner;
1028 flow_loop_tree_node_remove (ploop);
1029 flow_loop_tree_node_add (loop_outer (loop), ploop);
1032 /* Remove the loop and free its data. */
1033 delete_loop (loop);
1035 remove_edge (single_succ_edge (latch));
1037 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
1038 there is an irreducible region inside the cancelled loop, the flags will
1039 be still correct. */
1040 fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
1043 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
1044 condition stated in description of fix_loop_placement holds for them.
1045 It is used in case when we removed some edges coming out of LOOP, which
1046 may cause the right placement of LOOP inside loop tree to change.
1048 IRRED_INVALIDATED is set to true if a change in the loop structures might
1049 invalidate the information about irreducible regions. */
1051 static void
1052 fix_loop_placements (class loop *loop, bool *irred_invalidated,
1053 bitmap loop_closed_ssa_invalidated)
1055 class loop *outer;
1057 while (loop_outer (loop))
1059 outer = loop_outer (loop);
1060 if (!fix_loop_placement (loop, irred_invalidated))
1061 break;
1063 /* Changing the placement of a loop in the loop tree may alter the
1064 validity of condition 2) of the description of fix_bb_placement
1065 for its preheader, because the successor is the header and belongs
1066 to the loop. So call fix_bb_placements to fix up the placement
1067 of the preheader and (possibly) of its predecessors. */
1068 fix_bb_placements (loop_preheader_edge (loop)->src,
1069 irred_invalidated, loop_closed_ssa_invalidated);
1070 loop = outer;
1074 /* Duplicate loop bounds and other information we store about
1075 the loop into its duplicate. */
1077 void
1078 copy_loop_info (class loop *loop, class loop *target)
1080 gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
1081 target->any_upper_bound = loop->any_upper_bound;
1082 target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
1083 target->any_likely_upper_bound = loop->any_likely_upper_bound;
1084 target->nb_iterations_likely_upper_bound
1085 = loop->nb_iterations_likely_upper_bound;
1086 target->any_estimate = loop->any_estimate;
1087 target->nb_iterations_estimate = loop->nb_iterations_estimate;
1088 target->estimate_state = loop->estimate_state;
1089 target->safelen = loop->safelen;
1090 target->simdlen = loop->simdlen;
1091 target->constraints = loop->constraints;
1092 target->can_be_parallel = loop->can_be_parallel;
1093 target->warned_aggressive_loop_optimizations
1094 |= loop->warned_aggressive_loop_optimizations;
1095 target->dont_vectorize = loop->dont_vectorize;
1096 target->force_vectorize = loop->force_vectorize;
1097 target->in_oacc_kernels_region = loop->in_oacc_kernels_region;
1098 target->finite_p = loop->finite_p;
1099 target->unroll = loop->unroll;
1100 target->owned_clique = loop->owned_clique;
1103 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
1104 created loop into loops structure. If AFTER is non-null
1105 the new loop is added at AFTER->next, otherwise in front of TARGETs
1106 sibling list. */
1107 class loop *
1108 duplicate_loop (class loop *loop, class loop *target, class loop *after)
1110 class loop *cloop;
1111 cloop = alloc_loop ();
1112 place_new_loop (cfun, cloop);
1114 copy_loop_info (loop, cloop);
1116 /* Mark the new loop as copy of LOOP. */
1117 set_loop_copy (loop, cloop);
1119 /* Add it to target. */
1120 flow_loop_tree_node_add (target, cloop, after);
1122 return cloop;
1125 /* Copies structure of subloops of LOOP into TARGET loop, placing
1126 newly created loops into loop tree at the end of TARGETs sibling
1127 list in the original order. */
1128 void
1129 duplicate_subloops (class loop *loop, class loop *target)
1131 class loop *aloop, *cloop, *tail;
1133 for (tail = target->inner; tail && tail->next; tail = tail->next)
1135 for (aloop = loop->inner; aloop; aloop = aloop->next)
1137 cloop = duplicate_loop (aloop, target, tail);
1138 tail = cloop;
1139 gcc_assert(!tail->next);
1140 duplicate_subloops (aloop, cloop);
1144 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1145 into TARGET loop, placing newly created loops into loop tree adding
1146 them to TARGETs sibling list at the end in order. */
1147 static void
1148 copy_loops_to (class loop **copied_loops, int n, class loop *target)
1150 class loop *aloop, *tail;
1151 int i;
1153 for (tail = target->inner; tail && tail->next; tail = tail->next)
1155 for (i = 0; i < n; i++)
1157 aloop = duplicate_loop (copied_loops[i], target, tail);
1158 tail = aloop;
1159 gcc_assert(!tail->next);
1160 duplicate_subloops (copied_loops[i], aloop);
1164 /* Redirects edge E to basic block DEST. */
1165 static void
1166 loop_redirect_edge (edge e, basic_block dest)
1168 if (e->dest == dest)
1169 return;
1171 redirect_edge_and_branch_force (e, dest);
1174 /* Check whether LOOP's body can be duplicated. */
1175 bool
1176 can_duplicate_loop_p (const class loop *loop)
1178 int ret;
1179 basic_block *bbs = get_loop_body (loop);
1181 ret = can_copy_bbs_p (bbs, loop->num_nodes);
1182 free (bbs);
1184 return ret;
1187 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
1188 loop structure and dominators (order of inner subloops is retained).
1189 E's destination must be LOOP header for this to work, i.e. it must be entry
1190 or latch edge of this loop; these are unique, as the loops must have
1191 preheaders for this function to work correctly (in case E is latch, the
1192 function unrolls the loop, if E is entry edge, it peels the loop). Store
1193 edges created by copying ORIG edge from copies corresponding to set bits in
1194 WONT_EXIT bitmap (bit 0 corresponds to original LOOP body, the other copies
1195 are numbered in order given by control flow through them) into TO_REMOVE
1196 array. Returns false if duplication is
1197 impossible. */
1199 bool
1200 duplicate_loop_body_to_header_edge (class loop *loop, edge e,
1201 unsigned int ndupl, sbitmap wont_exit,
1202 edge orig, vec<edge> *to_remove, int flags)
1204 class loop *target, *aloop;
1205 class loop **orig_loops;
1206 unsigned n_orig_loops;
1207 basic_block header = loop->header, latch = loop->latch;
1208 basic_block *new_bbs, *bbs, *first_active;
1209 basic_block new_bb, bb, first_active_latch = NULL;
1210 edge ae, latch_edge;
1211 edge spec_edges[2], new_spec_edges[2];
1212 const int SE_LATCH = 0;
1213 const int SE_ORIG = 1;
1214 unsigned i, j, n;
1215 int is_latch = (latch == e->src);
1216 profile_probability *scale_step = NULL;
1217 profile_probability scale_main = profile_probability::always ();
1218 profile_probability scale_act = profile_probability::always ();
1219 profile_count after_exit_num = profile_count::zero (),
1220 after_exit_den = profile_count::zero ();
1221 bool scale_after_exit = false;
1222 int add_irreducible_flag;
1223 basic_block place_after;
1224 bitmap bbs_to_scale = NULL;
1225 bitmap_iterator bi;
1227 gcc_assert (e->dest == loop->header);
1228 gcc_assert (ndupl > 0);
1230 if (orig)
1232 /* Orig must be edge out of the loop. */
1233 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1234 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1237 n = loop->num_nodes;
1238 bbs = get_loop_body_in_dom_order (loop);
1239 gcc_assert (bbs[0] == loop->header);
1240 gcc_assert (bbs[n - 1] == loop->latch);
1242 /* Check whether duplication is possible. */
1243 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1245 free (bbs);
1246 return false;
1248 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1250 /* In case we are doing loop peeling and the loop is in the middle of
1251 irreducible region, the peeled copies will be inside it too. */
1252 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1253 gcc_assert (!is_latch || !add_irreducible_flag);
1255 /* Find edge from latch. */
1256 latch_edge = loop_latch_edge (loop);
1258 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1260 /* Calculate coefficients by that we have to scale counts
1261 of duplicated loop bodies. */
1262 profile_count count_in = header->count;
1263 profile_count count_le = latch_edge->count ();
1264 profile_count count_out_orig = orig ? orig->count () : count_in - count_le;
1265 profile_probability prob_pass_thru = count_le.probability_in (count_in);
1266 profile_count new_count_le = count_le + count_out_orig;
1268 if (orig && orig->probability.initialized_p ()
1269 && !(orig->probability == profile_probability::always ()))
1271 /* The blocks that are dominated by a removed exit edge ORIG have
1272 frequencies scaled by this. */
1273 if (orig->count ().initialized_p ())
1275 after_exit_num = orig->src->count;
1276 after_exit_den = after_exit_num - orig->count ();
1277 scale_after_exit = true;
1279 bbs_to_scale = BITMAP_ALLOC (NULL);
1280 for (i = 0; i < n; i++)
1282 if (bbs[i] != orig->src
1283 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1284 bitmap_set_bit (bbs_to_scale, i);
1286 /* Since we will scale up all basic blocks dominated by orig, exits
1287 will become more likely; compensate for that. */
1288 if (after_exit_den.nonzero_p ())
1290 auto_vec<edge> exits = get_loop_exit_edges (loop);
1291 for (edge ex : exits)
1292 if (ex != orig
1293 && dominated_by_p (CDI_DOMINATORS, ex->src, orig->src))
1294 new_count_le -= ex->count ().apply_scale (after_exit_num
1295 - after_exit_den,
1296 after_exit_den);
1299 profile_probability prob_pass_wont_exit =
1300 new_count_le.probability_in (count_in);
1301 /* If profile count is 0, the probability will be uninitialized.
1302 We can set probability to any initialized value to avoid
1303 precision loss. If profile is sane, all counts will be 0 anyway. */
1304 if (!count_in.nonzero_p ())
1306 prob_pass_thru
1307 = profile_probability::always ().apply_scale (1, 2);
1308 prob_pass_wont_exit
1309 = profile_probability::always ().apply_scale (1, 2);
1312 scale_step = XNEWVEC (profile_probability, ndupl);
1314 for (i = 1; i <= ndupl; i++)
1315 scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
1316 ? prob_pass_wont_exit
1317 : prob_pass_thru;
1319 /* Complete peeling is special as the probability of exit in last
1320 copy becomes 1. */
1321 if (!count_in.nonzero_p ())
1323 else if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1325 profile_count wanted_count = e->count ();
1327 gcc_assert (!is_latch);
1328 /* First copy has count of incoming edge. Each subsequent
1329 count should be reduced by prob_pass_wont_exit. Caller
1330 should've managed the flags so all except for original loop
1331 has won't exist set. */
1332 scale_act = wanted_count.probability_in (count_in);
1334 /* Now simulate the duplication adjustments and compute header
1335 frequency of the last copy. */
1336 for (i = 0; i < ndupl; i++)
1337 wanted_count = wanted_count.apply_probability (scale_step [i]);
1338 scale_main = wanted_count.probability_in (count_in);
1340 /* Here we insert loop bodies inside the loop itself (for loop unrolling).
1341 First iteration will be original loop followed by duplicated bodies.
1342 It is necessary to scale down the original so we get right overall
1343 number of iterations. */
1344 else if (is_latch)
1346 profile_probability prob_pass_main = bitmap_bit_p (wont_exit, 0)
1347 ? prob_pass_wont_exit
1348 : prob_pass_thru;
1349 if (!(flags & DLTHE_FLAG_FLAT_PROFILE))
1351 profile_probability p = prob_pass_main;
1352 profile_count scale_main_den = count_in;
1353 for (i = 0; i < ndupl; i++)
1355 scale_main_den += count_in.apply_probability (p);
1356 p = p * scale_step[i];
1358 /* If original loop is executed COUNT_IN times, the unrolled
1359 loop will account SCALE_MAIN_DEN times. */
1360 scale_main = count_in.probability_in (scale_main_den);
1362 else
1363 scale_main = profile_probability::always ();
1364 scale_act = scale_main * prob_pass_main;
1366 else
1368 profile_count preheader_count = e->count ();
1369 for (i = 0; i < ndupl; i++)
1370 scale_main = scale_main * scale_step[i];
1371 scale_act = preheader_count.probability_in (count_in);
1375 /* Loop the new bbs will belong to. */
1376 target = e->src->loop_father;
1378 /* Original loops. */
1379 n_orig_loops = 0;
1380 for (aloop = loop->inner; aloop; aloop = aloop->next)
1381 n_orig_loops++;
1382 orig_loops = XNEWVEC (class loop *, n_orig_loops);
1383 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1384 orig_loops[i] = aloop;
1386 set_loop_copy (loop, target);
1388 first_active = XNEWVEC (basic_block, n);
1389 if (is_latch)
1391 memcpy (first_active, bbs, n * sizeof (basic_block));
1392 first_active_latch = latch;
1395 spec_edges[SE_ORIG] = orig;
1396 spec_edges[SE_LATCH] = latch_edge;
1398 place_after = e->src;
1399 for (j = 0; j < ndupl; j++)
1401 /* Copy loops. */
1402 copy_loops_to (orig_loops, n_orig_loops, target);
1404 /* Copy bbs. */
1405 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1406 place_after, true);
1407 place_after = new_spec_edges[SE_LATCH]->src;
1409 if (flags & DLTHE_RECORD_COPY_NUMBER)
1410 for (i = 0; i < n; i++)
1412 gcc_assert (!new_bbs[i]->aux);
1413 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1416 /* Note whether the blocks and edges belong to an irreducible loop. */
1417 if (add_irreducible_flag)
1419 for (i = 0; i < n; i++)
1420 new_bbs[i]->flags |= BB_DUPLICATED;
1421 for (i = 0; i < n; i++)
1423 edge_iterator ei;
1424 new_bb = new_bbs[i];
1425 if (new_bb->loop_father == target)
1426 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1428 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1429 if ((ae->dest->flags & BB_DUPLICATED)
1430 && (ae->src->loop_father == target
1431 || ae->dest->loop_father == target))
1432 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1434 for (i = 0; i < n; i++)
1435 new_bbs[i]->flags &= ~BB_DUPLICATED;
1438 /* Redirect the special edges. */
1439 if (is_latch)
1441 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1442 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1443 loop->header);
1444 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1445 latch = loop->latch = new_bbs[n - 1];
1446 e = latch_edge = new_spec_edges[SE_LATCH];
1448 else
1450 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1451 loop->header);
1452 redirect_edge_and_branch_force (e, new_bbs[0]);
1453 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1454 e = new_spec_edges[SE_LATCH];
1457 /* Record exit edge in this copy. */
1458 if (orig && bitmap_bit_p (wont_exit, j + 1))
1460 if (to_remove)
1461 to_remove->safe_push (new_spec_edges[SE_ORIG]);
1462 force_edge_cold (new_spec_edges[SE_ORIG], true);
1464 /* Scale the frequencies of the blocks dominated by the exit. */
1465 if (bbs_to_scale && scale_after_exit)
1467 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1468 scale_bbs_frequencies_profile_count (new_bbs + i, 1, after_exit_num,
1469 after_exit_den);
1473 /* Record the first copy in the control flow order if it is not
1474 the original loop (i.e. in case of peeling). */
1475 if (!first_active_latch)
1477 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1478 first_active_latch = new_bbs[n - 1];
1481 /* Set counts and frequencies. */
1482 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1484 scale_bbs_frequencies (new_bbs, n, scale_act);
1485 scale_act = scale_act * scale_step[j];
1488 free (new_bbs);
1489 free (orig_loops);
1491 /* Record the exit edge in the original loop body, and update the frequencies. */
1492 if (orig && bitmap_bit_p (wont_exit, 0))
1494 if (to_remove)
1495 to_remove->safe_push (orig);
1496 force_edge_cold (orig, true);
1498 /* Scale the frequencies of the blocks dominated by the exit. */
1499 if (bbs_to_scale && scale_after_exit)
1501 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1502 scale_bbs_frequencies_profile_count (bbs + i, 1, after_exit_num,
1503 after_exit_den);
1507 /* Update the original loop. */
1508 if (!is_latch)
1509 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1510 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1512 scale_bbs_frequencies (bbs, n, scale_main);
1513 free (scale_step);
1516 /* Update dominators of outer blocks if affected. */
1517 for (i = 0; i < n; i++)
1519 basic_block dominated, dom_bb;
1520 unsigned j;
1522 bb = bbs[i];
1524 auto_vec<basic_block> dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1525 FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
1527 if (flow_bb_inside_loop_p (loop, dominated))
1528 continue;
1529 dom_bb = nearest_common_dominator (
1530 CDI_DOMINATORS, first_active[i], first_active_latch);
1531 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1534 free (first_active);
1536 free (bbs);
1537 BITMAP_FREE (bbs_to_scale);
1539 return true;
1542 /* A callback for make_forwarder block, to redirect all edges except for
1543 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1544 whether to redirect it. */
1546 edge mfb_kj_edge;
1547 bool
1548 mfb_keep_just (edge e)
1550 return e != mfb_kj_edge;
1553 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
1555 static bool
1556 has_preds_from_loop (basic_block block, class loop *loop)
1558 edge e;
1559 edge_iterator ei;
1561 FOR_EACH_EDGE (e, ei, block->preds)
1562 if (e->src->loop_father == loop)
1563 return true;
1564 return false;
1567 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1568 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1569 entry; otherwise we also force preheader block to have only one successor.
1570 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1571 to be a fallthru predecessor to the loop header and to have only
1572 predecessors from outside of the loop.
1573 The function also updates dominators. */
1575 basic_block
1576 create_preheader (class loop *loop, int flags)
1578 edge e;
1579 basic_block dummy;
1580 int nentry = 0;
1581 bool irred = false;
1582 bool latch_edge_was_fallthru;
1583 edge one_succ_pred = NULL, single_entry = NULL;
1584 edge_iterator ei;
1586 FOR_EACH_EDGE (e, ei, loop->header->preds)
1588 if (e->src == loop->latch)
1589 continue;
1590 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1591 nentry++;
1592 single_entry = e;
1593 if (single_succ_p (e->src))
1594 one_succ_pred = e;
1596 gcc_assert (nentry);
1597 if (nentry == 1)
1599 bool need_forwarder_block = false;
1601 /* We do not allow entry block to be the loop preheader, since we
1602 cannot emit code there. */
1603 if (single_entry->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1604 need_forwarder_block = true;
1605 else
1607 /* If we want simple preheaders, also force the preheader to have
1608 just a single successor and a normal edge. */
1609 if ((flags & CP_SIMPLE_PREHEADERS)
1610 && ((single_entry->flags & EDGE_COMPLEX)
1611 || !single_succ_p (single_entry->src)))
1612 need_forwarder_block = true;
1613 /* If we want fallthru preheaders, also create forwarder block when
1614 preheader ends with a jump or has predecessors from loop. */
1615 else if ((flags & CP_FALLTHRU_PREHEADERS)
1616 && (JUMP_P (BB_END (single_entry->src))
1617 || has_preds_from_loop (single_entry->src, loop)))
1618 need_forwarder_block = true;
1620 if (! need_forwarder_block)
1621 return NULL;
1624 mfb_kj_edge = loop_latch_edge (loop);
1625 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1626 if (nentry == 1
1627 && ((flags & CP_FALLTHRU_PREHEADERS) == 0
1628 || (single_entry->flags & EDGE_CROSSING) == 0))
1629 dummy = split_edge (single_entry);
1630 else
1632 edge fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1633 dummy = fallthru->src;
1634 loop->header = fallthru->dest;
1637 /* Try to be clever in placing the newly created preheader. The idea is to
1638 avoid breaking any "fallthruness" relationship between blocks.
1640 The preheader was created just before the header and all incoming edges
1641 to the header were redirected to the preheader, except the latch edge.
1642 So the only problematic case is when this latch edge was a fallthru
1643 edge: it is not anymore after the preheader creation so we have broken
1644 the fallthruness. We're therefore going to look for a better place. */
1645 if (latch_edge_was_fallthru)
1647 if (one_succ_pred)
1648 e = one_succ_pred;
1649 else
1650 e = EDGE_PRED (dummy, 0);
1652 move_block_after (dummy, e->src);
1655 if (irred)
1657 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1658 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1661 if (dump_file)
1662 fprintf (dump_file, "Created preheader block for loop %i\n",
1663 loop->num);
1665 if (flags & CP_FALLTHRU_PREHEADERS)
1666 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1667 && !JUMP_P (BB_END (dummy)));
1669 return dummy;
1672 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1674 void
1675 create_preheaders (int flags)
1677 if (!current_loops)
1678 return;
1680 for (auto loop : loops_list (cfun, 0))
1681 create_preheader (loop, flags);
1682 loops_state_set (LOOPS_HAVE_PREHEADERS);
1685 /* Forces all loop latches to have only single successor. */
1687 void
1688 force_single_succ_latches (void)
1690 edge e;
1692 for (auto loop : loops_list (cfun, 0))
1694 if (loop->latch != loop->header && single_succ_p (loop->latch))
1695 continue;
1697 e = find_edge (loop->latch, loop->header);
1698 gcc_checking_assert (e != NULL);
1700 split_edge (e);
1702 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1705 /* This function is called from loop_version. It splits the entry edge
1706 of the loop we want to version, adds the versioning condition, and
1707 adjust the edges to the two versions of the loop appropriately.
1708 e is an incoming edge. Returns the basic block containing the
1709 condition.
1711 --- edge e ---- > [second_head]
1713 Split it and insert new conditional expression and adjust edges.
1715 --- edge e ---> [cond expr] ---> [first_head]
1717 +---------> [second_head]
1719 THEN_PROB is the probability of then branch of the condition.
1720 ELSE_PROB is the probability of else branch. Note that they may be both
1721 REG_BR_PROB_BASE when condition is IFN_LOOP_VECTORIZED or
1722 IFN_LOOP_DIST_ALIAS. */
1724 static basic_block
1725 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1726 edge e, void *cond_expr,
1727 profile_probability then_prob,
1728 profile_probability else_prob)
1730 basic_block new_head = NULL;
1731 edge e1;
1733 gcc_assert (e->dest == second_head);
1735 /* Split edge 'e'. This will create a new basic block, where we can
1736 insert conditional expr. */
1737 new_head = split_edge (e);
1739 lv_add_condition_to_bb (first_head, second_head, new_head,
1740 cond_expr);
1742 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1743 e = single_succ_edge (new_head);
1744 e1 = make_edge (new_head, first_head,
1745 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1746 e1->probability = then_prob;
1747 e->probability = else_prob;
1749 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1750 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1752 /* Adjust loop header phi nodes. */
1753 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1755 return new_head;
1758 /* Main entry point for Loop Versioning transformation.
1760 This transformation given a condition and a loop, creates
1761 -if (condition) { loop_copy1 } else { loop_copy2 },
1762 where loop_copy1 is the loop transformed in one way, and loop_copy2
1763 is the loop transformed in another way (or unchanged). COND_EXPR
1764 may be a run time test for things that were not resolved by static
1765 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1767 If non-NULL, CONDITION_BB is set to the basic block containing the
1768 condition.
1770 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1771 is the ratio by that the frequencies in the original loop should
1772 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1773 new loop should be scaled.
1775 If PLACE_AFTER is true, we place the new loop after LOOP in the
1776 instruction stream, otherwise it is placed before LOOP. */
1778 class loop *
1779 loop_version (class loop *loop,
1780 void *cond_expr, basic_block *condition_bb,
1781 profile_probability then_prob, profile_probability else_prob,
1782 profile_probability then_scale, profile_probability else_scale,
1783 bool place_after)
1785 basic_block first_head, second_head;
1786 edge entry, latch_edge;
1787 int irred_flag;
1788 class loop *nloop;
1789 basic_block cond_bb;
1791 /* Record entry and latch edges for the loop */
1792 entry = loop_preheader_edge (loop);
1793 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1794 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1796 /* Note down head of loop as first_head. */
1797 first_head = entry->dest;
1799 /* 1) Duplicate loop on the entry edge. */
1800 if (!cfg_hook_duplicate_loop_body_to_header_edge (loop, entry, 1, NULL, NULL,
1801 NULL, 0))
1803 entry->flags |= irred_flag;
1804 return NULL;
1807 /* 2) loopify the duplicated new loop. */
1808 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1809 nloop = alloc_loop ();
1810 class loop *outer = loop_outer (latch_edge->dest->loop_father);
1811 edge new_header_edge = single_pred_edge (get_bb_copy (loop->header));
1812 nloop->header = new_header_edge->dest;
1813 nloop->latch = latch_edge->src;
1814 loop_redirect_edge (latch_edge, nloop->header);
1816 /* Compute new loop. */
1817 add_loop (nloop, outer);
1818 copy_loop_info (loop, nloop);
1819 set_loop_copy (loop, nloop);
1821 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1822 lv_flush_pending_stmts (latch_edge);
1824 /* After duplication entry edge now points to new loop head block.
1825 Note down new head as second_head. */
1826 second_head = entry->dest;
1828 /* 3) Split loop entry edge and insert new block with cond expr. */
1829 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1830 entry, cond_expr, then_prob, else_prob);
1831 if (condition_bb)
1832 *condition_bb = cond_bb;
1834 if (!cond_bb)
1836 entry->flags |= irred_flag;
1837 return NULL;
1840 /* Add cond_bb to appropriate loop. */
1841 if (cond_bb->loop_father)
1842 remove_bb_from_loops (cond_bb);
1843 add_bb_to_loop (cond_bb, outer);
1845 /* 4) Scale the original loop and new loop frequency. */
1846 scale_loop_frequencies (loop, then_scale);
1847 scale_loop_frequencies (nloop, else_scale);
1848 update_dominators_in_loop (loop);
1849 update_dominators_in_loop (nloop);
1851 /* Adjust irreducible flag. */
1852 if (irred_flag)
1854 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1855 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1856 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1857 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1860 if (place_after)
1862 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1863 unsigned i;
1865 after = loop->latch;
1867 for (i = 0; i < nloop->num_nodes; i++)
1869 move_block_after (bbs[i], after);
1870 after = bbs[i];
1872 free (bbs);
1875 /* At this point condition_bb is loop preheader with two successors,
1876 first_head and second_head. Make sure that loop preheader has only
1877 one successor. */
1878 split_edge (loop_preheader_edge (loop));
1879 split_edge (loop_preheader_edge (nloop));
1881 return nloop;