libcpp, c, middle-end: Optimize initializers using #embed in C
[official-gcc.git] / gcc / df-core.cc
blob8fd778a86183f3fc0906fc25be3c3038a8be52ff
1 /* Allocation for dataflow support routines.
2 Copyright (C) 1999-2024 Free Software Foundation, Inc.
3 Originally contributed by Michael P. Hayes
4 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
5 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
6 and Kenneth Zadeck (zadeck@naturalbridge.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
25 OVERVIEW:
27 The files in this collection (df*.c,df.h) provide a general framework
28 for solving dataflow problems. The global dataflow is performed using
29 a good implementation of iterative dataflow analysis.
31 The file df-problems.cc provides problem instance for the most common
32 dataflow problems: reaching defs, upward exposed uses, live variables,
33 uninitialized variables, def-use chains, and use-def chains. However,
34 the interface allows other dataflow problems to be defined as well.
36 Dataflow analysis is available in most of the rtl backend (the parts
37 between pass_df_initialize and pass_df_finish). It is quite likely
38 that these boundaries will be expanded in the future. The only
39 requirement is that there be a correct control flow graph.
41 There are three variations of the live variable problem that are
42 available whenever dataflow is available. The LR problem finds the
43 areas that can reach a use of a variable, the UR problems finds the
44 areas that can be reached from a definition of a variable. The LIVE
45 problem finds the intersection of these two areas.
47 There are several optional problems. These can be enabled when they
48 are needed and disabled when they are not needed.
50 Dataflow problems are generally solved in three layers. The bottom
51 layer is called scanning where a data structure is built for each rtl
52 insn that describes the set of defs and uses of that insn. Scanning
53 is generally kept up to date, i.e. as the insns changes, the scanned
54 version of that insn changes also. There are various mechanisms for
55 making this happen and are described in the INCREMENTAL SCANNING
56 section.
58 In the middle layer, basic blocks are scanned to produce transfer
59 functions which describe the effects of that block on the global
60 dataflow solution. The transfer functions are only rebuilt if the
61 some instruction within the block has changed.
63 The top layer is the dataflow solution itself. The dataflow solution
64 is computed by using an efficient iterative solver and the transfer
65 functions. The dataflow solution must be recomputed whenever the
66 control changes or if one of the transfer function changes.
69 USAGE:
71 Here is an example of using the dataflow routines.
73 df_[chain,live,note,rd]_add_problem (flags);
75 df_set_blocks (blocks);
77 df_analyze ();
79 df_dump (stderr);
81 df_finish_pass (false);
83 DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
84 instance to struct df_problem, to the set of problems solved in this
85 instance of df. All calls to add a problem for a given instance of df
86 must occur before the first call to DF_ANALYZE.
88 Problems can be dependent on other problems. For instance, solving
89 def-use or use-def chains is dependent on solving reaching
90 definitions. As long as these dependencies are listed in the problem
91 definition, the order of adding the problems is not material.
92 Otherwise, the problems will be solved in the order of calls to
93 df_add_problem. Note that it is not necessary to have a problem. In
94 that case, df will just be used to do the scanning.
98 DF_SET_BLOCKS is an optional call used to define a region of the
99 function on which the analysis will be performed. The normal case is
100 to analyze the entire function and no call to df_set_blocks is made.
101 DF_SET_BLOCKS only effects the blocks that are effected when computing
102 the transfer functions and final solution. The insn level information
103 is always kept up to date.
105 When a subset is given, the analysis behaves as if the function only
106 contains those blocks and any edges that occur directly between the
107 blocks in the set. Care should be taken to call df_set_blocks right
108 before the call to analyze in order to eliminate the possibility that
109 optimizations that reorder blocks invalidate the bitvector.
111 DF_ANALYZE causes all of the defined problems to be (re)solved. When
112 DF_ANALYZE is completes, the IN and OUT sets for each basic block
113 contain the computer information. The DF_*_BB_INFO macros can be used
114 to access these bitvectors. All deferred rescannings are down before
115 the transfer functions are recomputed.
117 DF_DUMP can then be called to dump the information produce to some
118 file. This calls DF_DUMP_START, to print the information that is not
119 basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
120 for each block to print the basic specific information. These parts
121 can all be called separately as part of a larger dump function.
124 DF_FINISH_PASS causes df_remove_problem to be called on all of the
125 optional problems. It also causes any insns whose scanning has been
126 deferred to be rescanned as well as clears all of the changeable flags.
127 Setting the pass manager TODO_df_finish flag causes this function to
128 be run. However, the pass manager will call df_finish_pass AFTER the
129 pass dumping has been done, so if you want to see the results of the
130 optional problems in the pass dumps, use the TODO flag rather than
131 calling the function yourself.
133 INCREMENTAL SCANNING
135 There are four ways of doing the incremental scanning:
137 1) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
138 df_bb_delete, df_insn_change_bb have been added to most of
139 the low level service functions that maintain the cfg and change
140 rtl. Calling and of these routines many cause some number of insns
141 to be rescanned.
143 For most modern rtl passes, this is certainly the easiest way to
144 manage rescanning the insns. This technique also has the advantage
145 that the scanning information is always correct and can be relied
146 upon even after changes have been made to the instructions. This
147 technique is contra indicated in several cases:
149 a) If def-use chains OR use-def chains (but not both) are built,
150 using this is SIMPLY WRONG. The problem is that when a ref is
151 deleted that is the target of an edge, there is not enough
152 information to efficiently find the source of the edge and
153 delete the edge. This leaves a dangling reference that may
154 cause problems.
156 b) If def-use chains AND use-def chains are built, this may
157 produce unexpected results. The problem is that the incremental
158 scanning of an insn does not know how to repair the chains that
159 point into an insn when the insn changes. So the incremental
160 scanning just deletes the chains that enter and exit the insn
161 being changed. The dangling reference issue in (a) is not a
162 problem here, but if the pass is depending on the chains being
163 maintained after insns have been modified, this technique will
164 not do the correct thing.
166 c) If the pass modifies insns several times, this incremental
167 updating may be expensive.
169 d) If the pass modifies all of the insns, as does register
170 allocation, it is simply better to rescan the entire function.
172 2) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
173 df_insn_delete do not immediately change the insn but instead make
174 a note that the insn needs to be rescanned. The next call to
175 df_analyze, df_finish_pass, or df_process_deferred_rescans will
176 cause all of the pending rescans to be processed.
178 This is the technique of choice if either 1a, 1b, or 1c are issues
179 in the pass. In the case of 1a or 1b, a call to df_finish_pass
180 (either manually or via TODO_df_finish) should be made before the
181 next call to df_analyze or df_process_deferred_rescans.
183 This mode is also used by a few passes that still rely on note_uses,
184 note_stores and rtx iterators instead of using the DF data. This
185 can be said to fall under case 1c.
187 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
188 (This mode can be cleared by calling df_clear_flags
189 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
190 be rescanned.
192 3) Total rescanning - In this mode the rescanning is disabled.
193 Only when insns are deleted is the df information associated with
194 it also deleted. At the end of the pass, a call must be made to
195 df_insn_rescan_all. This method is used by the register allocator
196 since it generally changes each insn multiple times (once for each ref)
197 and does not need to make use of the updated scanning information.
199 4) Do it yourself - In this mechanism, the pass updates the insns
200 itself using the low level df primitives. Currently no pass does
201 this, but it has the advantage that it is quite efficient given
202 that the pass generally has exact knowledge of what it is changing.
204 DATA STRUCTURES
206 Scanning produces a `struct df_ref' data structure (ref) is allocated
207 for every register reference (def or use) and this records the insn
208 and bb the ref is found within. The refs are linked together in
209 chains of uses and defs for each insn and for each register. Each ref
210 also has a chain field that links all the use refs for a def or all
211 the def refs for a use. This is used to create use-def or def-use
212 chains.
214 Different optimizations have different needs. Ultimately, only
215 register allocation and schedulers should be using the bitmaps
216 produced for the live register and uninitialized register problems.
217 The rest of the backend should be upgraded to using and maintaining
218 the linked information such as def use or use def chains.
221 PHILOSOPHY:
223 While incremental bitmaps are not worthwhile to maintain, incremental
224 chains may be perfectly reasonable. The fastest way to build chains
225 from scratch or after significant modifications is to build reaching
226 definitions (RD) and build the chains from this.
228 However, general algorithms for maintaining use-def or def-use chains
229 are not practical. The amount of work to recompute the chain any
230 chain after an arbitrary change is large. However, with a modest
231 amount of work it is generally possible to have the application that
232 uses the chains keep them up to date. The high level knowledge of
233 what is really happening is essential to crafting efficient
234 incremental algorithms.
236 As for the bit vector problems, there is no interface to give a set of
237 blocks over with to resolve the iteration. In general, restarting a
238 dataflow iteration is difficult and expensive. Again, the best way to
239 keep the dataflow information up to data (if this is really what is
240 needed) it to formulate a problem specific solution.
242 There are fine grained calls for creating and deleting references from
243 instructions in df-scan.cc. However, these are not currently connected
244 to the engine that resolves the dataflow equations.
247 DATA STRUCTURES:
249 The basic object is a DF_REF (reference) and this may either be a
250 DEF (definition) or a USE of a register.
252 These are linked into a variety of lists; namely reg-def, reg-use,
253 insn-def, insn-use, def-use, and use-def lists. For example, the
254 reg-def lists contain all the locations that define a given register
255 while the insn-use lists contain all the locations that use a
256 register.
258 Note that the reg-def and reg-use chains are generally short for
259 pseudos and long for the hard registers.
261 ACCESSING INSNS:
263 1) The df insn information is kept in an array of DF_INSN_INFO objects.
264 The array is indexed by insn uid, and every DF_REF points to the
265 DF_INSN_INFO object of the insn that contains the reference.
267 2) Each insn has three sets of refs, which are linked into one of three
268 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
269 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
270 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
271 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
272 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
273 The latter list are the list of references in REG_EQUAL or REG_EQUIV
274 notes. These macros produce a ref (or NULL), the rest of the list
275 can be obtained by traversal of the NEXT_REF field (accessed by the
276 DF_REF_NEXT_REF macro.) There is no significance to the ordering of
277 the uses or refs in an instruction.
279 3) Each insn has a logical uid field (LUID) which is stored in the
280 DF_INSN_INFO object for the insn. The LUID field is accessed by
281 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
282 When properly set, the LUID is an integer that numbers each insn in
283 the basic block, in order from the start of the block.
284 The numbers are only correct after a call to df_analyze. They will
285 rot after insns are added deleted or moved round.
287 ACCESSING REFS:
289 There are 4 ways to obtain access to refs:
291 1) References are divided into two categories, REAL and ARTIFICIAL.
293 REAL refs are associated with instructions.
295 ARTIFICIAL refs are associated with basic blocks. The heads of
296 these lists can be accessed by calling df_get_artificial_defs or
297 df_get_artificial_uses for the particular basic block.
299 Artificial defs and uses occur both at the beginning and ends of blocks.
301 For blocks that are at the destination of eh edges, the
302 artificial uses and defs occur at the beginning. The defs relate
303 to the registers specified in EH_RETURN_DATA_REGNO and the uses
304 relate to the registers specified in EH_USES. Logically these
305 defs and uses should really occur along the eh edge, but there is
306 no convenient way to do this. Artificial defs that occur at the
307 beginning of the block have the DF_REF_AT_TOP flag set.
309 Artificial uses occur at the end of all blocks. These arise from
310 the hard registers that are always live, such as the stack
311 register and are put there to keep the code from forgetting about
312 them.
314 Artificial defs occur at the end of the entry block. These arise
315 from registers that are live at entry to the function.
317 2) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
318 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
320 All of the eq_uses, uses and defs associated with each pseudo or
321 hard register may be linked in a bidirectional chain. These are
322 called reg-use or reg_def chains. If the changeable flag
323 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
324 treated like uses. If it is not set they are ignored.
326 The first use, eq_use or def for a register can be obtained using
327 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
328 macros. Subsequent uses for the same regno can be obtained by
329 following the next_reg field of the ref. The number of elements in
330 each of the chains can be found by using the DF_REG_USE_COUNT,
331 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
333 In previous versions of this code, these chains were ordered. It
334 has not been practical to continue this practice.
336 3) If def-use or use-def chains are built, these can be traversed to
337 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
338 include the eq_uses. Otherwise these are ignored when building the
339 chains.
341 4) An array of all of the uses (and an array of all of the defs) can
342 be built. These arrays are indexed by the value in the id
343 structure. These arrays are only lazily kept up to date, and that
344 process can be expensive. To have these arrays built, call
345 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
346 has been set the array will contain the eq_uses. Otherwise these
347 are ignored when building the array and assigning the ids. Note
348 that the values in the id field of a ref may change across calls to
349 df_analyze or df_reorganize_defs or df_reorganize_uses.
351 If the only use of this array is to find all of the refs, it is
352 better to traverse all of the registers and then traverse all of
353 reg-use or reg-def chains.
355 NOTES:
357 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
358 both a use and a def. These are both marked read/write to show that they
359 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
360 will generate a use of reg 42 followed by a def of reg 42 (both marked
361 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
362 generates a use of reg 41 then a def of reg 41 (both marked read/write),
363 even though reg 41 is decremented before it is used for the memory
364 address in this second example.
366 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
367 for which the number of word_mode units covered by the outer mode is
368 smaller than that covered by the inner mode, invokes a read-modify-write
369 operation. We generate both a use and a def and again mark them
370 read/write.
372 Paradoxical subreg writes do not leave a trace of the old content, so they
373 are write-only operations.
377 #include "config.h"
378 #include "system.h"
379 #include "coretypes.h"
380 #include "backend.h"
381 #include "rtl.h"
382 #include "df.h"
383 #include "memmodel.h"
384 #include "emit-rtl.h"
385 #include "cfganal.h"
386 #include "tree-pass.h"
387 #include "cfgloop.h"
389 static void *df_get_bb_info (struct dataflow *, unsigned int);
390 static void df_set_bb_info (struct dataflow *, unsigned int, void *);
391 static void df_clear_bb_info (struct dataflow *, unsigned int);
392 #ifdef DF_DEBUG_CFG
393 static void df_set_clean_cfg (void);
394 #endif
396 /* The obstack on which regsets are allocated. */
397 struct bitmap_obstack reg_obstack;
399 /* An obstack for bitmap not related to specific dataflow problems.
400 This obstack should e.g. be used for bitmaps with a short life time
401 such as temporary bitmaps. */
403 bitmap_obstack df_bitmap_obstack;
406 /*----------------------------------------------------------------------------
407 Functions to create, destroy and manipulate an instance of df.
408 ----------------------------------------------------------------------------*/
410 class df_d *df;
412 /* Add PROBLEM (and any dependent problems) to the DF instance. */
414 void
415 df_add_problem (const struct df_problem *problem)
417 struct dataflow *dflow;
418 int i;
420 /* First try to add the dependent problem. */
421 if (problem->dependent_problem)
422 df_add_problem (problem->dependent_problem);
424 /* Check to see if this problem has already been defined. If it
425 has, just return that instance, if not, add it to the end of the
426 vector. */
427 dflow = df->problems_by_index[problem->id];
428 if (dflow)
429 return;
431 /* Make a new one and add it to the end. */
432 dflow = XCNEW (struct dataflow);
433 dflow->problem = problem;
434 dflow->computed = false;
435 dflow->solutions_dirty = true;
436 df->problems_by_index[dflow->problem->id] = dflow;
438 /* Keep the defined problems ordered by index. This solves the
439 problem that RI will use the information from UREC if UREC has
440 been defined, or from LIVE if LIVE is defined and otherwise LR.
441 However for this to work, the computation of RI must be pushed
442 after which ever of those problems is defined, but we do not
443 require any of those except for LR to have actually been
444 defined. */
445 df->num_problems_defined++;
446 for (i = df->num_problems_defined - 2; i >= 0; i--)
448 if (problem->id < df->problems_in_order[i]->problem->id)
449 df->problems_in_order[i+1] = df->problems_in_order[i];
450 else
452 df->problems_in_order[i+1] = dflow;
453 return;
456 df->problems_in_order[0] = dflow;
460 /* Set the MASK flags in the DFLOW problem. The old flags are
461 returned. If a flag is not allowed to be changed this will fail if
462 checking is enabled. */
464 df_set_flags (int changeable_flags)
466 int old_flags = df->changeable_flags;
467 df->changeable_flags |= changeable_flags;
468 return old_flags;
472 /* Clear the MASK flags in the DFLOW problem. The old flags are
473 returned. If a flag is not allowed to be changed this will fail if
474 checking is enabled. */
476 df_clear_flags (int changeable_flags)
478 int old_flags = df->changeable_flags;
479 df->changeable_flags &= ~changeable_flags;
480 return old_flags;
484 /* Set the blocks that are to be considered for analysis. If this is
485 not called or is called with null, the entire function in
486 analyzed. */
488 void
489 df_set_blocks (bitmap blocks)
491 if (blocks)
493 if (dump_file)
494 bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
495 if (df->blocks_to_analyze)
497 /* This block is called to change the focus from one subset
498 to another. */
499 int p;
500 auto_bitmap diff (&df_bitmap_obstack);
501 bitmap_and_compl (diff, df->blocks_to_analyze, blocks);
502 for (p = 0; p < df->num_problems_defined; p++)
504 struct dataflow *dflow = df->problems_in_order[p];
505 if (dflow->optional_p && dflow->problem->reset_fun)
506 dflow->problem->reset_fun (df->blocks_to_analyze);
507 else if (dflow->problem->free_blocks_on_set_blocks)
509 bitmap_iterator bi;
510 unsigned int bb_index;
512 EXECUTE_IF_SET_IN_BITMAP (diff, 0, bb_index, bi)
514 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
515 if (bb)
517 void *bb_info = df_get_bb_info (dflow, bb_index);
518 dflow->problem->free_bb_fun (bb, bb_info);
519 df_clear_bb_info (dflow, bb_index);
525 else
527 /* This block of code is executed to change the focus from
528 the entire function to a subset. */
529 bitmap_head blocks_to_reset;
530 bool initialized = false;
531 int p;
532 for (p = 0; p < df->num_problems_defined; p++)
534 struct dataflow *dflow = df->problems_in_order[p];
535 if (dflow->optional_p && dflow->problem->reset_fun)
537 if (!initialized)
539 basic_block bb;
540 bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
541 FOR_ALL_BB_FN (bb, cfun)
543 bitmap_set_bit (&blocks_to_reset, bb->index);
546 dflow->problem->reset_fun (&blocks_to_reset);
549 if (initialized)
550 bitmap_clear (&blocks_to_reset);
552 df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
554 bitmap_copy (df->blocks_to_analyze, blocks);
555 df->analyze_subset = true;
557 else
559 /* This block is executed to reset the focus to the entire
560 function. */
561 if (dump_file)
562 fprintf (dump_file, "clearing blocks_to_analyze\n");
563 if (df->blocks_to_analyze)
565 BITMAP_FREE (df->blocks_to_analyze);
566 df->blocks_to_analyze = NULL;
568 df->analyze_subset = false;
571 /* Setting the blocks causes the refs to be unorganized since only
572 the refs in the blocks are seen. */
573 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
574 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
575 df_mark_solutions_dirty ();
579 /* Delete a DFLOW problem (and any problems that depend on this
580 problem). */
582 void
583 df_remove_problem (struct dataflow *dflow)
585 const struct df_problem *problem;
586 int i;
588 if (!dflow)
589 return;
591 problem = dflow->problem;
592 gcc_assert (problem->remove_problem_fun);
594 /* Delete any problems that depended on this problem first. */
595 for (i = 0; i < df->num_problems_defined; i++)
596 if (df->problems_in_order[i]->problem->dependent_problem == problem)
597 df_remove_problem (df->problems_in_order[i]);
599 /* Now remove this problem. */
600 for (i = 0; i < df->num_problems_defined; i++)
601 if (df->problems_in_order[i] == dflow)
603 int j;
604 for (j = i + 1; j < df->num_problems_defined; j++)
605 df->problems_in_order[j-1] = df->problems_in_order[j];
606 df->problems_in_order[j-1] = NULL;
607 df->num_problems_defined--;
608 break;
611 (problem->remove_problem_fun) ();
612 df->problems_by_index[problem->id] = NULL;
616 /* Remove all of the problems that are not permanent. Scanning, LR
617 and (at -O2 or higher) LIVE are permanent, the rest are removable.
618 Also clear all of the changeable_flags. */
620 void
621 df_finish_pass (bool verify ATTRIBUTE_UNUSED)
623 int i;
625 #ifdef ENABLE_DF_CHECKING
626 int saved_flags;
627 #endif
629 if (!df)
630 return;
632 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
633 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
635 #ifdef ENABLE_DF_CHECKING
636 saved_flags = df->changeable_flags;
637 #endif
639 /* We iterate over problems by index as each problem removed will
640 lead to problems_in_order to be reordered. */
641 for (i = 0; i < DF_LAST_PROBLEM_PLUS1; i++)
643 struct dataflow *dflow = df->problems_by_index[i];
645 if (dflow && dflow->optional_p)
646 df_remove_problem (dflow);
649 /* Clear all of the flags. */
650 df->changeable_flags = 0;
651 df_process_deferred_rescans ();
653 /* Set the focus back to the whole function. */
654 if (df->blocks_to_analyze)
656 BITMAP_FREE (df->blocks_to_analyze);
657 df->blocks_to_analyze = NULL;
658 df_mark_solutions_dirty ();
659 df->analyze_subset = false;
662 #ifdef ENABLE_DF_CHECKING
663 /* Verification will fail in DF_NO_INSN_RESCAN. */
664 if (!(saved_flags & DF_NO_INSN_RESCAN))
666 df_lr_verify_transfer_functions ();
667 if (df_live)
668 df_live_verify_transfer_functions ();
671 #ifdef DF_DEBUG_CFG
672 df_set_clean_cfg ();
673 #endif
674 #endif
676 if (flag_checking && verify)
677 df->changeable_flags |= DF_VERIFY_SCHEDULED;
681 /* Set up the dataflow instance for the entire back end. */
683 static unsigned int
684 rest_of_handle_df_initialize (void)
686 gcc_assert (!df);
687 df = XCNEW (class df_d);
688 df->changeable_flags = 0;
690 bitmap_obstack_initialize (&df_bitmap_obstack);
692 /* Set this to a conservative value. Stack_ptr_mod will compute it
693 correctly later. */
694 crtl->sp_is_unchanging = 0;
696 df_scan_add_problem ();
697 df_scan_alloc (NULL);
699 /* These three problems are permanent. */
700 df_lr_add_problem ();
701 if (optimize > 1)
702 df_live_add_problem ();
704 df->hard_regs_live_count = XCNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
706 df_hard_reg_init ();
707 /* After reload, some ports add certain bits to regs_ever_live so
708 this cannot be reset. */
709 df_compute_regs_ever_live (true);
710 df_scan_blocks ();
711 df_compute_regs_ever_live (false);
712 return 0;
716 namespace {
718 const pass_data pass_data_df_initialize_opt =
720 RTL_PASS, /* type */
721 "dfinit", /* name */
722 OPTGROUP_NONE, /* optinfo_flags */
723 TV_DF_SCAN, /* tv_id */
724 0, /* properties_required */
725 0, /* properties_provided */
726 0, /* properties_destroyed */
727 0, /* todo_flags_start */
728 0, /* todo_flags_finish */
731 class pass_df_initialize_opt : public rtl_opt_pass
733 public:
734 pass_df_initialize_opt (gcc::context *ctxt)
735 : rtl_opt_pass (pass_data_df_initialize_opt, ctxt)
738 /* opt_pass methods: */
739 bool gate (function *) final override { return optimize > 0; }
740 unsigned int execute (function *) final override
742 return rest_of_handle_df_initialize ();
745 }; // class pass_df_initialize_opt
747 } // anon namespace
749 rtl_opt_pass *
750 make_pass_df_initialize_opt (gcc::context *ctxt)
752 return new pass_df_initialize_opt (ctxt);
756 namespace {
758 const pass_data pass_data_df_initialize_no_opt =
760 RTL_PASS, /* type */
761 "no-opt dfinit", /* name */
762 OPTGROUP_NONE, /* optinfo_flags */
763 TV_DF_SCAN, /* tv_id */
764 0, /* properties_required */
765 0, /* properties_provided */
766 0, /* properties_destroyed */
767 0, /* todo_flags_start */
768 0, /* todo_flags_finish */
771 class pass_df_initialize_no_opt : public rtl_opt_pass
773 public:
774 pass_df_initialize_no_opt (gcc::context *ctxt)
775 : rtl_opt_pass (pass_data_df_initialize_no_opt, ctxt)
778 /* opt_pass methods: */
779 bool gate (function *) final override { return optimize == 0; }
780 unsigned int execute (function *) final override
782 return rest_of_handle_df_initialize ();
785 }; // class pass_df_initialize_no_opt
787 } // anon namespace
789 rtl_opt_pass *
790 make_pass_df_initialize_no_opt (gcc::context *ctxt)
792 return new pass_df_initialize_no_opt (ctxt);
796 /* Free all the dataflow info and the DF structure. This should be
797 called from the df_finish macro which also NULLs the parm. */
799 static unsigned int
800 rest_of_handle_df_finish (void)
802 int i;
804 gcc_assert (df);
806 for (i = 0; i < df->num_problems_defined; i++)
808 struct dataflow *dflow = df->problems_in_order[i];
809 if (dflow->problem->free_fun)
810 dflow->problem->free_fun ();
813 free (df->postorder);
814 free (df->postorder_inverted);
815 free (df->hard_regs_live_count);
816 free (df);
817 df = NULL;
819 bitmap_obstack_release (&df_bitmap_obstack);
820 return 0;
824 namespace {
826 const pass_data pass_data_df_finish =
828 RTL_PASS, /* type */
829 "dfinish", /* name */
830 OPTGROUP_NONE, /* optinfo_flags */
831 TV_NONE, /* tv_id */
832 0, /* properties_required */
833 0, /* properties_provided */
834 0, /* properties_destroyed */
835 0, /* todo_flags_start */
836 0, /* todo_flags_finish */
839 class pass_df_finish : public rtl_opt_pass
841 public:
842 pass_df_finish (gcc::context *ctxt)
843 : rtl_opt_pass (pass_data_df_finish, ctxt)
846 /* opt_pass methods: */
847 unsigned int execute (function *) final override
849 return rest_of_handle_df_finish ();
852 }; // class pass_df_finish
854 } // anon namespace
856 rtl_opt_pass *
857 make_pass_df_finish (gcc::context *ctxt)
859 return new pass_df_finish (ctxt);
866 /*----------------------------------------------------------------------------
867 The general data flow analysis engine.
868 ----------------------------------------------------------------------------*/
870 /* Helper function for df_worklist_dataflow.
871 Propagate the dataflow forward.
872 Given a BB_INDEX, do the dataflow propagation
873 and set bits on for successors in PENDING for earlier
874 and WORKLIST for later in bbindex_to_postorder
875 if the out set of the dataflow has changed.
877 AGE specify time when BB was visited last time.
878 AGE of 0 means we are visiting for first time and need to
879 compute transfer function to initialize datastructures.
880 Otherwise we re-do transfer function only if something change
881 while computing confluence functions.
882 We need to compute confluence only of basic block that are younger
883 then last visit of the BB.
885 Return true if BB info has changed. This is always the case
886 in the first visit. */
888 static bool
889 df_worklist_propagate_forward (struct dataflow *dataflow,
890 unsigned bb_index,
891 unsigned *bbindex_to_postorder,
892 bitmap worklist,
893 bitmap pending,
894 sbitmap considered,
895 vec<int> &last_change_age,
896 int age)
898 edge e;
899 edge_iterator ei;
900 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
901 bool changed = !age;
903 /* Calculate <conf_op> of incoming edges. */
904 if (EDGE_COUNT (bb->preds) > 0)
905 FOR_EACH_EDGE (e, ei, bb->preds)
907 if (bbindex_to_postorder[e->src->index] < last_change_age.length ()
908 && age <= last_change_age[bbindex_to_postorder[e->src->index]]
909 && bitmap_bit_p (considered, e->src->index))
910 changed |= dataflow->problem->con_fun_n (e);
912 else if (dataflow->problem->con_fun_0)
913 dataflow->problem->con_fun_0 (bb);
915 if (changed
916 && dataflow->problem->trans_fun (bb_index))
918 /* The out set of this block has changed.
919 Propagate to the outgoing blocks. */
920 FOR_EACH_EDGE (e, ei, bb->succs)
922 unsigned ob_index = e->dest->index;
924 if (bitmap_bit_p (considered, ob_index))
926 if (bbindex_to_postorder[bb_index]
927 < bbindex_to_postorder[ob_index])
928 bitmap_set_bit (worklist, bbindex_to_postorder[ob_index]);
929 else
930 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
933 return true;
935 return false;
939 /* Helper function for df_worklist_dataflow.
940 Propagate the dataflow backward. */
942 static bool
943 df_worklist_propagate_backward (struct dataflow *dataflow,
944 unsigned bb_index,
945 unsigned *bbindex_to_postorder,
946 bitmap worklist,
947 bitmap pending,
948 sbitmap considered,
949 vec<int> &last_change_age,
950 int age)
952 edge e;
953 edge_iterator ei;
954 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
955 bool changed = !age;
957 /* Calculate <conf_op> of incoming edges. */
958 if (EDGE_COUNT (bb->succs) > 0)
959 FOR_EACH_EDGE (e, ei, bb->succs)
961 if (bbindex_to_postorder[e->dest->index] < last_change_age.length ()
962 && age <= last_change_age[bbindex_to_postorder[e->dest->index]]
963 && bitmap_bit_p (considered, e->dest->index))
964 changed |= dataflow->problem->con_fun_n (e);
966 else if (dataflow->problem->con_fun_0)
967 dataflow->problem->con_fun_0 (bb);
969 if (changed
970 && dataflow->problem->trans_fun (bb_index))
972 /* The out set of this block has changed.
973 Propagate to the outgoing blocks. */
974 FOR_EACH_EDGE (e, ei, bb->preds)
976 unsigned ob_index = e->src->index;
978 if (bitmap_bit_p (considered, ob_index))
980 if (bbindex_to_postorder[bb_index]
981 < bbindex_to_postorder[ob_index])
982 bitmap_set_bit (worklist, bbindex_to_postorder[ob_index]);
983 else
984 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
987 return true;
989 return false;
992 /* Main dataflow solver loop.
994 DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
995 need to visit.
996 BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
997 BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder position.
998 PENDING will be freed.
1000 The worklists are bitmaps indexed by postorder positions.
1002 The function implements standard algorithm for dataflow solving with two
1003 worklists (we are processing WORKLIST and storing new BBs to visit in
1004 PENDING).
1006 As an optimization we maintain ages when BB was changed (stored in
1007 last_change_age) and when it was last visited (stored in last_visit_age).
1008 This avoids need to re-do confluence function for edges to basic blocks
1009 whose source did not change since destination was visited last time. */
1011 static void
1012 df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
1013 bitmap pending,
1014 sbitmap considered,
1015 int *blocks_in_postorder,
1016 unsigned *bbindex_to_postorder,
1017 int n_blocks)
1019 enum df_flow_dir dir = dataflow->problem->dir;
1020 int dcount = 0;
1021 bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
1022 int age = 0;
1023 bool changed;
1024 vec<int> last_visit_age = vNULL;
1025 vec<int> last_change_age = vNULL;
1026 int prev_age;
1028 last_visit_age.safe_grow_cleared (n_blocks, true);
1029 last_change_age.safe_grow_cleared (n_blocks, true);
1031 /* Double-queueing. Worklist is for the current iteration,
1032 and pending is for the next. */
1033 while (!bitmap_empty_p (pending))
1035 std::swap (pending, worklist);
1039 unsigned index = bitmap_clear_first_set_bit (worklist);
1041 unsigned bb_index;
1042 dcount++;
1044 bb_index = blocks_in_postorder[index];
1045 prev_age = last_visit_age[index];
1046 if (dir == DF_FORWARD)
1047 changed = df_worklist_propagate_forward (dataflow, bb_index,
1048 bbindex_to_postorder,
1049 worklist, pending,
1050 considered,
1051 last_change_age,
1052 prev_age);
1053 else
1054 changed = df_worklist_propagate_backward (dataflow, bb_index,
1055 bbindex_to_postorder,
1056 worklist, pending,
1057 considered,
1058 last_change_age,
1059 prev_age);
1060 last_visit_age[index] = ++age;
1061 if (changed)
1062 last_change_age[index] = age;
1064 while (!bitmap_empty_p (worklist));
1067 BITMAP_FREE (worklist);
1068 BITMAP_FREE (pending);
1069 last_visit_age.release ();
1070 last_change_age.release ();
1072 /* Dump statistics. */
1073 if (dump_file)
1074 fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
1075 " n_basic_blocks %d n_edges %d"
1076 " count %d (%5.2g)\n",
1077 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
1078 dcount, dcount / (double)n_basic_blocks_for_fn (cfun));
1081 /* Worklist-based dataflow solver. It uses sbitmap as a worklist,
1082 with "n"-th bit representing the n-th block in the reverse-postorder order.
1083 The solver is a double-queue algorithm similar to the "double stack" solver
1084 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1085 The only significant difference is that the worklist in this implementation
1086 is always sorted in RPO of the CFG visiting direction. */
1088 void
1089 df_worklist_dataflow (struct dataflow *dataflow,
1090 bitmap blocks_to_consider,
1091 int *blocks_in_postorder,
1092 int n_blocks)
1094 bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
1095 bitmap_iterator bi;
1096 unsigned int *bbindex_to_postorder;
1097 int i;
1098 unsigned int index;
1099 enum df_flow_dir dir = dataflow->problem->dir;
1101 gcc_assert (dir != DF_NONE);
1103 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
1104 bbindex_to_postorder = XNEWVEC (unsigned int,
1105 last_basic_block_for_fn (cfun));
1107 /* Initialize the array to an out-of-bound value. */
1108 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
1109 bbindex_to_postorder[i] = last_basic_block_for_fn (cfun);
1111 /* Initialize the considered map. */
1112 auto_sbitmap considered (last_basic_block_for_fn (cfun));
1113 bitmap_clear (considered);
1114 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
1116 bitmap_set_bit (considered, index);
1119 /* Initialize the mapping of block index to postorder. */
1120 for (i = 0; i < n_blocks; i++)
1122 bbindex_to_postorder[blocks_in_postorder[i]] = i;
1123 /* Add all blocks to the worklist. */
1124 bitmap_set_bit (pending, i);
1127 /* Initialize the problem. */
1128 if (dataflow->problem->init_fun)
1129 dataflow->problem->init_fun (blocks_to_consider);
1131 /* Solve it. */
1132 df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1133 blocks_in_postorder,
1134 bbindex_to_postorder,
1135 n_blocks);
1136 free (bbindex_to_postorder);
1140 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1141 the order of the remaining entries. Returns the length of the resulting
1142 list. */
1144 static unsigned
1145 df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1147 unsigned act, last;
1149 for (act = 0, last = 0; act < len; act++)
1150 if (bitmap_bit_p (blocks, list[act]))
1151 list[last++] = list[act];
1153 return last;
1157 /* Execute dataflow analysis on a single dataflow problem.
1159 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1160 examined or will be computed. For calls from DF_ANALYZE, this is
1161 the set of blocks that has been passed to DF_SET_BLOCKS.
1164 void
1165 df_analyze_problem (struct dataflow *dflow,
1166 bitmap blocks_to_consider,
1167 int *postorder, int n_blocks)
1169 timevar_push (dflow->problem->tv_id);
1171 /* (Re)Allocate the datastructures necessary to solve the problem. */
1172 if (dflow->problem->alloc_fun)
1173 dflow->problem->alloc_fun (blocks_to_consider);
1175 #ifdef ENABLE_DF_CHECKING
1176 if (dflow->problem->verify_start_fun)
1177 dflow->problem->verify_start_fun ();
1178 #endif
1180 /* Set up the problem and compute the local information. */
1181 if (dflow->problem->local_compute_fun)
1182 dflow->problem->local_compute_fun (blocks_to_consider);
1184 /* Solve the equations. */
1185 if (dflow->problem->dataflow_fun)
1186 dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1187 postorder, n_blocks);
1189 /* Massage the solution. */
1190 if (dflow->problem->finalize_fun)
1191 dflow->problem->finalize_fun (blocks_to_consider);
1193 #ifdef ENABLE_DF_CHECKING
1194 if (dflow->problem->verify_end_fun)
1195 dflow->problem->verify_end_fun ();
1196 #endif
1198 timevar_pop (dflow->problem->tv_id);
1200 dflow->computed = true;
1204 /* Analyze dataflow info. */
1206 static void
1207 df_analyze_1 (void)
1209 int i;
1211 /* We need to do this before the df_verify_all because this is
1212 not kept incrementally up to date. */
1213 df_compute_regs_ever_live (false);
1214 df_process_deferred_rescans ();
1216 if (dump_file)
1217 fprintf (dump_file, "df_analyze called\n");
1219 #ifndef ENABLE_DF_CHECKING
1220 if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1221 #endif
1222 df_verify ();
1224 /* Skip over the DF_SCAN problem. */
1225 for (i = 1; i < df->num_problems_defined; i++)
1227 struct dataflow *dflow = df->problems_in_order[i];
1228 if (dflow->solutions_dirty)
1230 if (dflow->problem->dir == DF_FORWARD)
1231 df_analyze_problem (dflow,
1232 df->blocks_to_analyze,
1233 df->postorder_inverted,
1234 df->n_blocks);
1235 else
1236 df_analyze_problem (dflow,
1237 df->blocks_to_analyze,
1238 df->postorder,
1239 df->n_blocks);
1243 if (!df->analyze_subset)
1245 BITMAP_FREE (df->blocks_to_analyze);
1246 df->blocks_to_analyze = NULL;
1249 #ifdef DF_DEBUG_CFG
1250 df_set_clean_cfg ();
1251 #endif
1254 /* Analyze dataflow info. */
1256 void
1257 df_analyze (void)
1259 bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1261 free (df->postorder);
1262 free (df->postorder_inverted);
1263 /* For DF_FORWARD use a RPO on the forward graph. Since we want to
1264 have unreachable blocks deleted use post_order_compute and reverse
1265 the order. */
1266 df->postorder_inverted = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
1267 df->n_blocks = post_order_compute (df->postorder_inverted, true, true);
1268 for (int i = 0; i < df->n_blocks / 2; ++i)
1269 std::swap (df->postorder_inverted[i],
1270 df->postorder_inverted[df->n_blocks - 1 - i]);
1271 /* For DF_BACKWARD use a RPO on the reverse graph. */
1272 df->postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
1273 int n = inverted_rev_post_order_compute (cfun, df->postorder);
1274 gcc_assert (n == df->n_blocks);
1276 for (int i = 0; i < df->n_blocks; i++)
1277 bitmap_set_bit (current_all_blocks, df->postorder[i]);
1279 if (flag_checking)
1281 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1282 the ENTRY block. */
1283 for (int i = 0; i < df->n_blocks; i++)
1284 gcc_assert (bitmap_bit_p (current_all_blocks,
1285 df->postorder_inverted[i]));
1288 /* Make sure that we have pruned any unreachable blocks from these
1289 sets. */
1290 if (df->analyze_subset)
1292 bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
1293 unsigned int newlen = df_prune_to_subcfg (df->postorder, df->n_blocks,
1294 df->blocks_to_analyze);
1295 df_prune_to_subcfg (df->postorder_inverted, df->n_blocks,
1296 df->blocks_to_analyze);
1297 df->n_blocks = newlen;
1298 BITMAP_FREE (current_all_blocks);
1300 else
1302 df->blocks_to_analyze = current_all_blocks;
1303 current_all_blocks = NULL;
1306 df_analyze_1 ();
1309 /* Compute the reverse top sort order of the sub-CFG specified by LOOP.
1310 Returns the number of blocks which is always loop->num_nodes. */
1312 static int
1313 loop_rev_post_order_compute (int *post_order, class loop *loop)
1315 edge_iterator *stack;
1316 int sp;
1317 int post_order_num = loop->num_nodes - 1;
1319 /* Allocate stack for back-tracking up CFG. */
1320 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1321 sp = 0;
1323 /* Allocate bitmap to track nodes that have been visited. */
1324 auto_bitmap visited;
1326 /* Push the first edge on to the stack. */
1327 stack[sp++] = ei_start (loop_preheader_edge (loop)->src->succs);
1329 while (sp)
1331 edge_iterator ei;
1332 basic_block src;
1333 basic_block dest;
1335 /* Look at the edge on the top of the stack. */
1336 ei = stack[sp - 1];
1337 src = ei_edge (ei)->src;
1338 dest = ei_edge (ei)->dest;
1340 /* Check if the edge destination has been visited yet and mark it
1341 if not so. */
1342 if (flow_bb_inside_loop_p (loop, dest)
1343 && bitmap_set_bit (visited, dest->index))
1345 if (EDGE_COUNT (dest->succs) > 0)
1346 /* Since the DEST node has been visited for the first
1347 time, check its successors. */
1348 stack[sp++] = ei_start (dest->succs);
1349 else
1350 post_order[post_order_num--] = dest->index;
1352 else
1354 if (ei_one_before_end_p (ei)
1355 && src != loop_preheader_edge (loop)->src)
1356 post_order[post_order_num--] = src->index;
1358 if (!ei_one_before_end_p (ei))
1359 ei_next (&stack[sp - 1]);
1360 else
1361 sp--;
1365 free (stack);
1367 return loop->num_nodes;
1370 /* Compute the reverse top sort order of the inverted sub-CFG specified
1371 by LOOP. Returns the number of blocks which is always loop->num_nodes. */
1373 static int
1374 loop_inverted_rev_post_order_compute (int *post_order, class loop *loop)
1376 basic_block bb;
1377 edge_iterator *stack;
1378 int sp;
1379 int post_order_num = loop->num_nodes - 1;
1381 /* Allocate stack for back-tracking up CFG. */
1382 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1383 sp = 0;
1385 /* Allocate bitmap to track nodes that have been visited. */
1386 auto_bitmap visited;
1388 /* Put all latches into the initial work list. In theory we'd want
1389 to start from loop exits but then we'd have the special case of
1390 endless loops. It doesn't really matter for DF iteration order and
1391 handling latches last is probably even better. */
1392 stack[sp++] = ei_start (loop->header->preds);
1393 bitmap_set_bit (visited, loop->header->index);
1395 /* The inverted traversal loop. */
1396 while (sp)
1398 edge_iterator ei;
1399 basic_block pred;
1401 /* Look at the edge on the top of the stack. */
1402 ei = stack[sp - 1];
1403 bb = ei_edge (ei)->dest;
1404 pred = ei_edge (ei)->src;
1406 /* Check if the predecessor has been visited yet and mark it
1407 if not so. */
1408 if (flow_bb_inside_loop_p (loop, pred)
1409 && bitmap_set_bit (visited, pred->index))
1411 if (EDGE_COUNT (pred->preds) > 0)
1412 /* Since the predecessor node has been visited for the first
1413 time, check its predecessors. */
1414 stack[sp++] = ei_start (pred->preds);
1415 else
1416 post_order[post_order_num--] = pred->index;
1418 else
1420 if (flow_bb_inside_loop_p (loop, bb)
1421 && ei_one_before_end_p (ei))
1422 post_order[post_order_num--] = bb->index;
1424 if (!ei_one_before_end_p (ei))
1425 ei_next (&stack[sp - 1]);
1426 else
1427 sp--;
1431 free (stack);
1432 return loop->num_nodes;
1436 /* Analyze dataflow info for the basic blocks contained in LOOP. */
1438 void
1439 df_analyze_loop (class loop *loop)
1441 free (df->postorder);
1442 free (df->postorder_inverted);
1444 df->postorder = XNEWVEC (int, loop->num_nodes);
1445 df->postorder_inverted = XNEWVEC (int, loop->num_nodes);
1446 df->n_blocks = loop_rev_post_order_compute (df->postorder_inverted, loop);
1447 int n = loop_inverted_rev_post_order_compute (df->postorder, loop);
1448 gcc_assert ((unsigned) df->n_blocks == loop->num_nodes);
1449 gcc_assert ((unsigned) n == loop->num_nodes);
1451 bitmap blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1452 for (int i = 0; i < df->n_blocks; ++i)
1453 bitmap_set_bit (blocks, df->postorder[i]);
1454 df_set_blocks (blocks);
1455 BITMAP_FREE (blocks);
1457 df_analyze_1 ();
1461 /* Return the number of basic blocks from the last call to df_analyze. */
1464 df_get_n_blocks (enum df_flow_dir dir)
1466 gcc_assert (dir != DF_NONE);
1468 if (dir == DF_FORWARD)
1470 gcc_assert (df->postorder_inverted);
1471 return df->n_blocks;
1474 gcc_assert (df->postorder);
1475 return df->n_blocks;
1479 /* Return a pointer to the array of basic blocks in the reverse postorder.
1480 Depending on the direction of the dataflow problem,
1481 it returns either the usual reverse postorder array
1482 or the reverse postorder of inverted traversal. */
1483 int *
1484 df_get_postorder (enum df_flow_dir dir)
1486 gcc_assert (dir != DF_NONE);
1488 if (dir == DF_FORWARD)
1490 gcc_assert (df->postorder_inverted);
1491 return df->postorder_inverted;
1493 gcc_assert (df->postorder);
1494 return df->postorder;
1497 static struct df_problem user_problem;
1498 static struct dataflow user_dflow;
1500 /* Interface for calling iterative dataflow with user defined
1501 confluence and transfer functions. All that is necessary is to
1502 supply DIR, a direction, CONF_FUN_0, a confluence function for
1503 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1504 confluence function, TRANS_FUN, the basic block transfer function,
1505 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1506 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1508 void
1509 df_simple_dataflow (enum df_flow_dir dir,
1510 df_init_function init_fun,
1511 df_confluence_function_0 con_fun_0,
1512 df_confluence_function_n con_fun_n,
1513 df_transfer_function trans_fun,
1514 bitmap blocks, int * postorder, int n_blocks)
1516 memset (&user_problem, 0, sizeof (struct df_problem));
1517 user_problem.dir = dir;
1518 user_problem.init_fun = init_fun;
1519 user_problem.con_fun_0 = con_fun_0;
1520 user_problem.con_fun_n = con_fun_n;
1521 user_problem.trans_fun = trans_fun;
1522 user_dflow.problem = &user_problem;
1523 df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1528 /*----------------------------------------------------------------------------
1529 Functions to support limited incremental change.
1530 ----------------------------------------------------------------------------*/
1533 /* Get basic block info. */
1535 static void *
1536 df_get_bb_info (struct dataflow *dflow, unsigned int index)
1538 if (dflow->block_info == NULL)
1539 return NULL;
1540 if (index >= dflow->block_info_size)
1541 return NULL;
1542 return (void *)((char *)dflow->block_info
1543 + index * dflow->problem->block_info_elt_size);
1547 /* Set basic block info. */
1549 static void
1550 df_set_bb_info (struct dataflow *dflow, unsigned int index,
1551 void *bb_info)
1553 gcc_assert (dflow->block_info);
1554 memcpy ((char *)dflow->block_info
1555 + index * dflow->problem->block_info_elt_size,
1556 bb_info, dflow->problem->block_info_elt_size);
1560 /* Clear basic block info. */
1562 static void
1563 df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1565 gcc_assert (dflow->block_info);
1566 gcc_assert (dflow->block_info_size > index);
1567 memset ((char *)dflow->block_info
1568 + index * dflow->problem->block_info_elt_size,
1569 0, dflow->problem->block_info_elt_size);
1573 /* Mark the solutions as being out of date. */
1575 void
1576 df_mark_solutions_dirty (void)
1578 if (df)
1580 int p;
1581 for (p = 1; p < df->num_problems_defined; p++)
1582 df->problems_in_order[p]->solutions_dirty = true;
1587 /* Return true if BB needs it's transfer functions recomputed. */
1589 bool
1590 df_get_bb_dirty (basic_block bb)
1592 return bitmap_bit_p ((df_live
1593 ? df_live : df_lr)->out_of_date_transfer_functions,
1594 bb->index);
1598 /* Mark BB as needing it's transfer functions as being out of
1599 date. */
1601 void
1602 df_set_bb_dirty (basic_block bb)
1604 bb->flags |= BB_MODIFIED;
1605 if (df)
1607 int p;
1608 for (p = 1; p < df->num_problems_defined; p++)
1610 struct dataflow *dflow = df->problems_in_order[p];
1611 if (dflow->out_of_date_transfer_functions)
1612 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1614 df_mark_solutions_dirty ();
1619 /* Grow the bb_info array. */
1621 void
1622 df_grow_bb_info (struct dataflow *dflow)
1624 unsigned int new_size = last_basic_block_for_fn (cfun) + 1;
1625 if (dflow->block_info_size < new_size)
1627 new_size += new_size / 4;
1628 dflow->block_info
1629 = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1630 new_size
1631 * dflow->problem->block_info_elt_size);
1632 memset ((char *)dflow->block_info
1633 + dflow->block_info_size
1634 * dflow->problem->block_info_elt_size,
1636 (new_size - dflow->block_info_size)
1637 * dflow->problem->block_info_elt_size);
1638 dflow->block_info_size = new_size;
1643 /* Clear the dirty bits. This is called from places that delete
1644 blocks. */
1645 static void
1646 df_clear_bb_dirty (basic_block bb)
1648 int p;
1649 for (p = 1; p < df->num_problems_defined; p++)
1651 struct dataflow *dflow = df->problems_in_order[p];
1652 if (dflow->out_of_date_transfer_functions)
1653 bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1657 /* Called from the rtl_compact_blocks to reorganize the problems basic
1658 block info. */
1660 void
1661 df_compact_blocks (void)
1663 int i, p;
1664 basic_block bb;
1665 void *problem_temps;
1667 auto_bitmap tmp (&df_bitmap_obstack);
1668 for (p = 0; p < df->num_problems_defined; p++)
1670 struct dataflow *dflow = df->problems_in_order[p];
1672 /* Need to reorganize the out_of_date_transfer_functions for the
1673 dflow problem. */
1674 if (dflow->out_of_date_transfer_functions)
1676 bitmap_copy (tmp, dflow->out_of_date_transfer_functions);
1677 bitmap_clear (dflow->out_of_date_transfer_functions);
1678 if (bitmap_bit_p (tmp, ENTRY_BLOCK))
1679 bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
1680 if (bitmap_bit_p (tmp, EXIT_BLOCK))
1681 bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1683 i = NUM_FIXED_BLOCKS;
1684 FOR_EACH_BB_FN (bb, cfun)
1686 if (bitmap_bit_p (tmp, bb->index))
1687 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1688 i++;
1692 /* Now shuffle the block info for the problem. */
1693 if (dflow->problem->free_bb_fun)
1695 int size = (last_basic_block_for_fn (cfun)
1696 * dflow->problem->block_info_elt_size);
1697 problem_temps = XNEWVAR (char, size);
1698 df_grow_bb_info (dflow);
1699 memcpy (problem_temps, dflow->block_info, size);
1701 /* Copy the bb info from the problem tmps to the proper
1702 place in the block_info vector. Null out the copied
1703 item. The entry and exit blocks never move. */
1704 i = NUM_FIXED_BLOCKS;
1705 FOR_EACH_BB_FN (bb, cfun)
1707 df_set_bb_info (dflow, i,
1708 (char *)problem_temps
1709 + bb->index * dflow->problem->block_info_elt_size);
1710 i++;
1712 memset ((char *)dflow->block_info
1713 + i * dflow->problem->block_info_elt_size, 0,
1714 (last_basic_block_for_fn (cfun) - i)
1715 * dflow->problem->block_info_elt_size);
1716 free (problem_temps);
1720 /* Shuffle the bits in the basic_block indexed arrays. */
1722 if (df->blocks_to_analyze)
1724 if (bitmap_bit_p (tmp, ENTRY_BLOCK))
1725 bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
1726 if (bitmap_bit_p (tmp, EXIT_BLOCK))
1727 bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
1728 bitmap_copy (tmp, df->blocks_to_analyze);
1729 bitmap_clear (df->blocks_to_analyze);
1730 i = NUM_FIXED_BLOCKS;
1731 FOR_EACH_BB_FN (bb, cfun)
1733 if (bitmap_bit_p (tmp, bb->index))
1734 bitmap_set_bit (df->blocks_to_analyze, i);
1735 i++;
1739 i = NUM_FIXED_BLOCKS;
1740 FOR_EACH_BB_FN (bb, cfun)
1742 SET_BASIC_BLOCK_FOR_FN (cfun, i, bb);
1743 bb->index = i;
1744 i++;
1747 gcc_assert (i == n_basic_blocks_for_fn (cfun));
1749 for (; i < last_basic_block_for_fn (cfun); i++)
1750 SET_BASIC_BLOCK_FOR_FN (cfun, i, NULL);
1752 #ifdef DF_DEBUG_CFG
1753 if (!df_lr->solutions_dirty)
1754 df_set_clean_cfg ();
1755 #endif
1759 /* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
1760 block. There is no excuse for people to do this kind of thing. */
1762 void
1763 df_bb_replace (int old_index, basic_block new_block)
1765 int new_block_index = new_block->index;
1766 int p;
1768 if (dump_file)
1769 fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1771 gcc_assert (df);
1772 gcc_assert (BASIC_BLOCK_FOR_FN (cfun, old_index) == NULL);
1774 for (p = 0; p < df->num_problems_defined; p++)
1776 struct dataflow *dflow = df->problems_in_order[p];
1777 if (dflow->block_info)
1779 df_grow_bb_info (dflow);
1780 df_set_bb_info (dflow, old_index,
1781 df_get_bb_info (dflow, new_block_index));
1785 df_clear_bb_dirty (new_block);
1786 SET_BASIC_BLOCK_FOR_FN (cfun, old_index, new_block);
1787 new_block->index = old_index;
1788 df_set_bb_dirty (BASIC_BLOCK_FOR_FN (cfun, old_index));
1789 SET_BASIC_BLOCK_FOR_FN (cfun, new_block_index, NULL);
1793 /* Free all of the per basic block dataflow from all of the problems.
1794 This is typically called before a basic block is deleted and the
1795 problem will be reanalyzed. */
1797 void
1798 df_bb_delete (int bb_index)
1800 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1801 int i;
1803 if (!df)
1804 return;
1806 for (i = 0; i < df->num_problems_defined; i++)
1808 struct dataflow *dflow = df->problems_in_order[i];
1809 if (dflow->problem->free_bb_fun)
1811 void *bb_info = df_get_bb_info (dflow, bb_index);
1812 if (bb_info)
1814 dflow->problem->free_bb_fun (bb, bb_info);
1815 df_clear_bb_info (dflow, bb_index);
1819 df_clear_bb_dirty (bb);
1820 df_mark_solutions_dirty ();
1824 /* Verify that there is a place for everything and everything is in
1825 its place. This is too expensive to run after every pass in the
1826 mainline. However this is an excellent debugging tool if the
1827 dataflow information is not being updated properly. You can just
1828 sprinkle calls in until you find the place that is changing an
1829 underlying structure without calling the proper updating
1830 routine. */
1832 void
1833 df_verify (void)
1835 df_scan_verify ();
1836 #ifdef ENABLE_DF_CHECKING
1837 df_lr_verify_transfer_functions ();
1838 if (df_live)
1839 df_live_verify_transfer_functions ();
1840 #endif
1841 df->changeable_flags &= ~DF_VERIFY_SCHEDULED;
1844 #ifdef DF_DEBUG_CFG
1846 /* Compute an array of ints that describes the cfg. This can be used
1847 to discover places where the cfg is modified by the appropriate
1848 calls have not been made to the keep df informed. The internals of
1849 this are unexciting, the key is that two instances of this can be
1850 compared to see if any changes have been made to the cfg. */
1852 static int *
1853 df_compute_cfg_image (void)
1855 basic_block bb;
1856 int size = 2 + (2 * n_basic_blocks_for_fn (cfun));
1857 int i;
1858 int * map;
1860 FOR_ALL_BB_FN (bb, cfun)
1862 size += EDGE_COUNT (bb->succs);
1865 map = XNEWVEC (int, size);
1866 map[0] = size;
1867 i = 1;
1868 FOR_ALL_BB_FN (bb, cfun)
1870 edge_iterator ei;
1871 edge e;
1873 map[i++] = bb->index;
1874 FOR_EACH_EDGE (e, ei, bb->succs)
1875 map[i++] = e->dest->index;
1876 map[i++] = -1;
1878 map[i] = -1;
1879 return map;
1882 static int *saved_cfg = NULL;
1885 /* This function compares the saved version of the cfg with the
1886 current cfg and aborts if the two are identical. The function
1887 silently returns if the cfg has been marked as dirty or the two are
1888 the same. */
1890 void
1891 df_check_cfg_clean (void)
1893 int *new_map;
1895 if (!df)
1896 return;
1898 if (df_lr->solutions_dirty)
1899 return;
1901 if (saved_cfg == NULL)
1902 return;
1904 new_map = df_compute_cfg_image ();
1905 gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1906 free (new_map);
1910 /* This function builds a cfg fingerprint and squirrels it away in
1911 saved_cfg. */
1913 static void
1914 df_set_clean_cfg (void)
1916 free (saved_cfg);
1917 saved_cfg = df_compute_cfg_image ();
1920 #endif /* DF_DEBUG_CFG */
1921 /*----------------------------------------------------------------------------
1922 PUBLIC INTERFACES TO QUERY INFORMATION.
1923 ----------------------------------------------------------------------------*/
1926 /* Return first def of REGNO within BB. */
1928 df_ref
1929 df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
1931 rtx_insn *insn;
1932 df_ref def;
1934 FOR_BB_INSNS (bb, insn)
1936 if (!INSN_P (insn))
1937 continue;
1939 FOR_EACH_INSN_DEF (def, insn)
1940 if (DF_REF_REGNO (def) == regno)
1941 return def;
1943 return NULL;
1947 /* Return last def of REGNO within BB. */
1949 df_ref
1950 df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
1952 rtx_insn *insn;
1953 df_ref def;
1955 FOR_BB_INSNS_REVERSE (bb, insn)
1957 if (!INSN_P (insn))
1958 continue;
1960 FOR_EACH_INSN_DEF (def, insn)
1961 if (DF_REF_REGNO (def) == regno)
1962 return def;
1965 return NULL;
1968 /* Return the one and only def of REGNO within BB. If there is no def or
1969 there are multiple defs, return NULL. */
1971 df_ref
1972 df_bb_regno_only_def_find (basic_block bb, unsigned int regno)
1974 df_ref temp = df_bb_regno_first_def_find (bb, regno);
1975 if (!temp)
1976 return NULL;
1977 else if (temp == df_bb_regno_last_def_find (bb, regno))
1978 return temp;
1979 else
1980 return NULL;
1983 /* Finds the reference corresponding to the definition of REG in INSN.
1984 DF is the dataflow object. */
1986 df_ref
1987 df_find_def (rtx_insn *insn, rtx reg)
1989 df_ref def;
1991 if (GET_CODE (reg) == SUBREG)
1992 reg = SUBREG_REG (reg);
1993 gcc_assert (REG_P (reg));
1995 FOR_EACH_INSN_DEF (def, insn)
1996 if (DF_REF_REGNO (def) == REGNO (reg))
1997 return def;
1999 return NULL;
2003 /* Return true if REG is defined in INSN, zero otherwise. */
2005 bool
2006 df_reg_defined (rtx_insn *insn, rtx reg)
2008 return df_find_def (insn, reg) != NULL;
2012 /* Finds the reference corresponding to the use of REG in INSN.
2013 DF is the dataflow object. */
2015 df_ref
2016 df_find_use (rtx_insn *insn, rtx reg)
2018 df_ref use;
2020 if (GET_CODE (reg) == SUBREG)
2021 reg = SUBREG_REG (reg);
2022 gcc_assert (REG_P (reg));
2024 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2025 FOR_EACH_INSN_INFO_USE (use, insn_info)
2026 if (DF_REF_REGNO (use) == REGNO (reg))
2027 return use;
2028 if (df->changeable_flags & DF_EQ_NOTES)
2029 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
2030 if (DF_REF_REGNO (use) == REGNO (reg))
2031 return use;
2032 return NULL;
2036 /* Return true if REG is referenced in INSN, zero otherwise. */
2038 bool
2039 df_reg_used (rtx_insn *insn, rtx reg)
2041 return df_find_use (insn, reg) != NULL;
2044 /* If REG has a single definition, return its known value, otherwise return
2045 null. */
2048 df_find_single_def_src (rtx reg)
2050 rtx src = NULL_RTX;
2052 /* Don't look through unbounded number of single definition REG copies,
2053 there might be loops for sources with uninitialized variables. */
2054 for (int cnt = 0; cnt < 128; cnt++)
2056 df_ref adef = DF_REG_DEF_CHAIN (REGNO (reg));
2057 if (adef == NULL || DF_REF_NEXT_REG (adef) != NULL
2058 || DF_REF_IS_ARTIFICIAL (adef)
2059 || (DF_REF_FLAGS (adef)
2060 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
2061 return NULL_RTX;
2063 rtx set = single_set (DF_REF_INSN (adef));
2064 if (set == NULL || !rtx_equal_p (SET_DEST (set), reg))
2065 return NULL_RTX;
2067 rtx note = find_reg_equal_equiv_note (DF_REF_INSN (adef));
2068 if (note && function_invariant_p (XEXP (note, 0)))
2069 return XEXP (note, 0);
2070 src = SET_SRC (set);
2072 if (REG_P (src))
2074 reg = src;
2075 continue;
2077 break;
2079 if (!function_invariant_p (src))
2080 return NULL_RTX;
2082 return src;
2086 /*----------------------------------------------------------------------------
2087 Debugging and printing functions.
2088 ----------------------------------------------------------------------------*/
2090 /* Write information about registers and basic blocks into FILE.
2091 This is part of making a debugging dump. */
2093 void
2094 dump_regset (regset r, FILE *outf)
2096 unsigned i;
2097 reg_set_iterator rsi;
2099 if (r == NULL)
2101 fputs (" (nil)", outf);
2102 return;
2105 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
2107 fprintf (outf, " %d", i);
2108 if (i < FIRST_PSEUDO_REGISTER)
2109 fprintf (outf, " [%s]",
2110 reg_names[i]);
2114 /* Print a human-readable representation of R on the standard error
2115 stream. This function is designed to be used from within the
2116 debugger. */
2117 extern void debug_regset (regset);
2118 DEBUG_FUNCTION void
2119 debug_regset (regset r)
2121 dump_regset (r, stderr);
2122 putc ('\n', stderr);
2125 /* Write information about registers and basic blocks into FILE.
2126 This is part of making a debugging dump. */
2128 void
2129 df_print_regset (FILE *file, const_bitmap r)
2131 unsigned int i;
2132 bitmap_iterator bi;
2134 if (r == NULL)
2135 fputs (" (nil)", file);
2136 else
2138 EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
2140 fprintf (file, " %d", i);
2141 if (i < FIRST_PSEUDO_REGISTER)
2142 fprintf (file, " [%s]", reg_names[i]);
2145 fprintf (file, "\n");
2149 /* Write information about registers and basic blocks into FILE. The
2150 bitmap is in the form used by df_byte_lr. This is part of making a
2151 debugging dump. */
2153 void
2154 df_print_word_regset (FILE *file, const_bitmap r)
2156 unsigned int max_reg = max_reg_num ();
2158 if (r == NULL)
2159 fputs (" (nil)", file);
2160 else
2162 unsigned int i;
2163 for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
2165 bool found = (bitmap_bit_p (r, 2 * i)
2166 || bitmap_bit_p (r, 2 * i + 1));
2167 if (found)
2169 int word;
2170 const char * sep = "";
2171 fprintf (file, " %d", i);
2172 fprintf (file, "(");
2173 for (word = 0; word < 2; word++)
2174 if (bitmap_bit_p (r, 2 * i + word))
2176 fprintf (file, "%s%d", sep, word);
2177 sep = ", ";
2179 fprintf (file, ")");
2183 fprintf (file, "\n");
2187 /* Dump dataflow info. */
2189 void
2190 df_dump (FILE *file)
2192 basic_block bb;
2193 df_dump_start (file);
2195 FOR_ALL_BB_FN (bb, cfun)
2197 df_print_bb_index (bb, file);
2198 df_dump_top (bb, file);
2199 df_dump_bottom (bb, file);
2202 fprintf (file, "\n");
2206 /* Dump dataflow info for df->blocks_to_analyze. */
2208 void
2209 df_dump_region (FILE *file)
2211 if (df->blocks_to_analyze)
2213 bitmap_iterator bi;
2214 unsigned int bb_index;
2216 fprintf (file, "\n\nstarting region dump\n");
2217 df_dump_start (file);
2219 EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
2221 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
2222 dump_bb (file, bb, 0, TDF_DETAILS);
2224 fprintf (file, "\n");
2226 else
2227 df_dump (file);
2231 /* Dump the introductory information for each problem defined. */
2233 void
2234 df_dump_start (FILE *file)
2236 int i;
2238 if (!df || !file)
2239 return;
2241 fprintf (file, "\n\n%s\n", current_function_name ());
2242 fprintf (file, "\nDataflow summary:\n");
2243 if (df->blocks_to_analyze)
2244 fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2245 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
2247 for (i = 0; i < df->num_problems_defined; i++)
2249 struct dataflow *dflow = df->problems_in_order[i];
2250 if (dflow->computed)
2252 df_dump_problem_function fun = dflow->problem->dump_start_fun;
2253 if (fun)
2254 fun (file);
2260 /* Dump the top or bottom of the block information for BB. */
2261 static void
2262 df_dump_bb_problem_data (basic_block bb, FILE *file, bool top)
2264 int i;
2266 if (!df || !file)
2267 return;
2269 for (i = 0; i < df->num_problems_defined; i++)
2271 struct dataflow *dflow = df->problems_in_order[i];
2272 if (dflow->computed)
2274 df_dump_bb_problem_function bbfun;
2276 if (top)
2277 bbfun = dflow->problem->dump_top_fun;
2278 else
2279 bbfun = dflow->problem->dump_bottom_fun;
2281 if (bbfun)
2282 bbfun (bb, file);
2287 /* Dump the top of the block information for BB. */
2289 void
2290 df_dump_top (basic_block bb, FILE *file)
2292 df_dump_bb_problem_data (bb, file, /*top=*/true);
2295 /* Dump the bottom of the block information for BB. */
2297 void
2298 df_dump_bottom (basic_block bb, FILE *file)
2300 df_dump_bb_problem_data (bb, file, /*top=*/false);
2304 /* Dump information about INSN just before or after dumping INSN itself. */
2305 static void
2306 df_dump_insn_problem_data (const rtx_insn *insn, FILE *file, bool top)
2308 int i;
2310 if (!df || !file)
2311 return;
2313 for (i = 0; i < df->num_problems_defined; i++)
2315 struct dataflow *dflow = df->problems_in_order[i];
2316 if (dflow->computed)
2318 df_dump_insn_problem_function insnfun;
2320 if (top)
2321 insnfun = dflow->problem->dump_insn_top_fun;
2322 else
2323 insnfun = dflow->problem->dump_insn_bottom_fun;
2325 if (insnfun)
2326 insnfun (insn, file);
2331 /* Dump information about INSN before dumping INSN itself. */
2333 void
2334 df_dump_insn_top (const rtx_insn *insn, FILE *file)
2336 df_dump_insn_problem_data (insn, file, /*top=*/true);
2339 /* Dump information about INSN after dumping INSN itself. */
2341 void
2342 df_dump_insn_bottom (const rtx_insn *insn, FILE *file)
2344 df_dump_insn_problem_data (insn, file, /*top=*/false);
2348 static void
2349 df_ref_dump (df_ref ref, FILE *file)
2351 fprintf (file, "%c%d(%d)",
2352 DF_REF_REG_DEF_P (ref)
2353 ? 'd'
2354 : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2355 DF_REF_ID (ref),
2356 DF_REF_REGNO (ref));
2359 void
2360 df_refs_chain_dump (df_ref ref, bool follow_chain, FILE *file)
2362 fprintf (file, "{ ");
2363 for (; ref; ref = DF_REF_NEXT_LOC (ref))
2365 df_ref_dump (ref, file);
2366 if (follow_chain)
2367 df_chain_dump (DF_REF_CHAIN (ref), file);
2369 fprintf (file, "}");
2373 /* Dump either a ref-def or reg-use chain. */
2375 void
2376 df_regs_chain_dump (df_ref ref, FILE *file)
2378 fprintf (file, "{ ");
2379 while (ref)
2381 df_ref_dump (ref, file);
2382 ref = DF_REF_NEXT_REG (ref);
2384 fprintf (file, "}");
2388 static void
2389 df_mws_dump (struct df_mw_hardreg *mws, FILE *file)
2391 for (; mws; mws = DF_MWS_NEXT (mws))
2392 fprintf (file, "mw %c r[%d..%d]\n",
2393 DF_MWS_REG_DEF_P (mws) ? 'd' : 'u',
2394 mws->start_regno, mws->end_regno);
2398 static void
2399 df_insn_uid_debug (unsigned int uid,
2400 bool follow_chain, FILE *file)
2402 fprintf (file, "insn %d luid %d",
2403 uid, DF_INSN_UID_LUID (uid));
2405 if (DF_INSN_UID_DEFS (uid))
2407 fprintf (file, " defs ");
2408 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
2411 if (DF_INSN_UID_USES (uid))
2413 fprintf (file, " uses ");
2414 df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2417 if (DF_INSN_UID_EQ_USES (uid))
2419 fprintf (file, " eq uses ");
2420 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
2423 if (DF_INSN_UID_MWS (uid))
2425 fprintf (file, " mws ");
2426 df_mws_dump (DF_INSN_UID_MWS (uid), file);
2428 fprintf (file, "\n");
2432 DEBUG_FUNCTION void
2433 df_insn_debug (rtx_insn *insn, bool follow_chain, FILE *file)
2435 df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
2438 DEBUG_FUNCTION void
2439 df_insn_debug_regno (rtx_insn *insn, FILE *file)
2441 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2443 fprintf (file, "insn %d bb %d luid %d defs ",
2444 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2445 DF_INSN_INFO_LUID (insn_info));
2446 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
2448 fprintf (file, " uses ");
2449 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
2451 fprintf (file, " eq_uses ");
2452 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
2453 fprintf (file, "\n");
2456 DEBUG_FUNCTION void
2457 df_regno_debug (unsigned int regno, FILE *file)
2459 fprintf (file, "reg %d defs ", regno);
2460 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
2461 fprintf (file, " uses ");
2462 df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2463 fprintf (file, " eq_uses ");
2464 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
2465 fprintf (file, "\n");
2469 DEBUG_FUNCTION void
2470 df_ref_debug (df_ref ref, FILE *file)
2472 fprintf (file, "%c%d ",
2473 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2474 DF_REF_ID (ref));
2475 fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
2476 DF_REF_REGNO (ref),
2477 DF_REF_BBNO (ref),
2478 DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
2479 DF_REF_FLAGS (ref),
2480 DF_REF_TYPE (ref));
2481 if (DF_REF_LOC (ref))
2483 if (flag_dump_noaddr)
2484 fprintf (file, "loc #(#) chain ");
2485 else
2486 fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2487 (void *)*DF_REF_LOC (ref));
2489 else
2490 fprintf (file, "chain ");
2491 df_chain_dump (DF_REF_CHAIN (ref), file);
2492 fprintf (file, "\n");
2495 /* Functions for debugging from GDB. */
2497 DEBUG_FUNCTION void
2498 debug_df_insn (rtx_insn *insn)
2500 df_insn_debug (insn, true, stderr);
2501 debug_rtx (insn);
2505 DEBUG_FUNCTION void
2506 debug_df_reg (rtx reg)
2508 df_regno_debug (REGNO (reg), stderr);
2512 DEBUG_FUNCTION void
2513 debug_df_regno (unsigned int regno)
2515 df_regno_debug (regno, stderr);
2519 DEBUG_FUNCTION void
2520 debug_df_ref (df_ref ref)
2522 df_ref_debug (ref, stderr);
2526 DEBUG_FUNCTION void
2527 debug_df_defno (unsigned int defno)
2529 df_ref_debug (DF_DEFS_GET (defno), stderr);
2533 DEBUG_FUNCTION void
2534 debug_df_useno (unsigned int defno)
2536 df_ref_debug (DF_USES_GET (defno), stderr);
2540 DEBUG_FUNCTION void
2541 debug_df_chain (struct df_link *link)
2543 df_chain_dump (link, stderr);
2544 fputc ('\n', stderr);