1 /* RTL dead store elimination.
2 Copyright (C) 2005-2024 Free Software Foundation, Inc.
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
27 #include "coretypes.h"
37 #include "gimple-ssa.h"
43 #include "stor-layout.h"
46 #include "tree-pass.h"
51 #include "cfgcleanup.h"
54 /* This file contains three techniques for performing Dead Store
57 * The first technique performs dse locally on any base address. It
58 is based on the cselib which is a local value numbering technique.
59 This technique is local to a basic block but deals with a fairly
62 * The second technique performs dse globally but is restricted to
63 base addresses that are either constant or are relative to the
66 * The third technique, (which is only done after register allocation)
67 processes the spill slots. This differs from the second
68 technique because it takes advantage of the fact that spilling is
69 completely free from the effects of aliasing.
71 Logically, dse is a backwards dataflow problem. A store can be
72 deleted if it if cannot be reached in the backward direction by any
73 use of the value being stored. However, the local technique uses a
74 forwards scan of the basic block because cselib requires that the
75 block be processed in that order.
77 The pass is logically broken into 7 steps:
81 1) The local algorithm, as well as scanning the insns for the two
84 2) Analysis to see if the global algs are necessary. In the case
85 of stores base on a constant address, there must be at least two
86 stores to that address, to make it possible to delete some of the
87 stores. In the case of stores off of the frame or spill related
88 stores, only one store to an address is necessary because those
89 stores die at the end of the function.
91 3) Set up the global dataflow equations based on processing the
92 info parsed in the first step.
94 4) Solve the dataflow equations.
96 5) Delete the insns that the global analysis has indicated are
99 6) Delete insns that store the same value as preceding store
100 where the earlier store couldn't be eliminated.
104 This step uses cselib and canon_rtx to build the largest expression
105 possible for each address. This pass is a forwards pass through
106 each basic block. From the point of view of the global technique,
107 the first pass could examine a block in either direction. The
108 forwards ordering is to accommodate cselib.
110 We make a simplifying assumption: addresses fall into four broad
113 1) base has rtx_varies_p == false, offset is constant.
114 2) base has rtx_varies_p == false, offset variable.
115 3) base has rtx_varies_p == true, offset constant.
116 4) base has rtx_varies_p == true, offset variable.
118 The local passes are able to process all 4 kinds of addresses. The
119 global pass only handles 1).
121 The global problem is formulated as follows:
123 A store, S1, to address A, where A is not relative to the stack
124 frame, can be eliminated if all paths from S1 to the end of the
125 function contain another store to A before a read to A.
127 If the address A is relative to the stack frame, a store S2 to A
128 can be eliminated if there are no paths from S2 that reach the
129 end of the function that read A before another store to A. In
130 this case S2 can be deleted if there are paths from S2 to the
131 end of the function that have no reads or writes to A. This
132 second case allows stores to the stack frame to be deleted that
133 would otherwise die when the function returns. This cannot be
134 done if stores_off_frame_dead_at_return is not true. See the doc
135 for that variable for when this variable is false.
137 The global problem is formulated as a backwards set union
138 dataflow problem where the stores are the gens and reads are the
139 kills. Set union problems are rare and require some special
140 handling given our representation of bitmaps. A straightforward
141 implementation requires a lot of bitmaps filled with 1s.
142 These are expensive and cumbersome in our bitmap formulation so
143 care has been taken to avoid large vectors filled with 1s. See
144 the comments in bb_info and in the dataflow confluence functions
147 There are two places for further enhancements to this algorithm:
149 1) The original dse which was embedded in a pass called flow also
150 did local address forwarding. For example in
155 flow would replace the right hand side of the second insn with a
156 reference to r100. Most of the information is available to add this
157 to this pass. It has not done it because it is a lot of work in
158 the case that either r100 is assigned to between the first and
159 second insn and/or the second insn is a load of part of the value
160 stored by the first insn.
162 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
163 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
164 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
165 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
167 2) The cleaning up of spill code is quite profitable. It currently
168 depends on reading tea leaves and chicken entrails left by reload.
169 This pass depends on reload creating a singleton alias set for each
170 spill slot and telling the next dse pass which of these alias sets
171 are the singletons. Rather than analyze the addresses of the
172 spills, dse's spill processing just does analysis of the loads and
173 stores that use those alias sets. There are three cases where this
176 a) Reload sometimes creates the slot for one mode of access, and
177 then inserts loads and/or stores for a smaller mode. In this
178 case, the current code just punts on the slot. The proper thing
179 to do is to back out and use one bit vector position for each
180 byte of the entity associated with the slot. This depends on
181 KNOWING that reload always generates the accesses for each of the
182 bytes in some canonical (read that easy to understand several
183 passes after reload happens) way.
185 b) Reload sometimes decides that spill slot it allocated was not
186 large enough for the mode and goes back and allocates more slots
187 with the same mode and alias set. The backout in this case is a
188 little more graceful than (a). In this case the slot is unmarked
189 as being a spill slot and if final address comes out to be based
190 off the frame pointer, the global algorithm handles this slot.
192 c) For any pass that may prespill, there is currently no
193 mechanism to tell the dse pass that the slot being used has the
194 special properties that reload uses. It may be that all that is
195 required is to have those passes make the same calls that reload
196 does, assuming that the alias sets can be manipulated in the same
199 /* There are limits to the size of constant offsets we model for the
200 global problem. There are certainly test cases, that exceed this
201 limit, however, it is unlikely that there are important programs
202 that really have constant offsets this size. */
203 #define MAX_OFFSET (64 * 1024)
205 /* Obstack for the DSE dataflow bitmaps. We don't want to put these
206 on the default obstack because these bitmaps can grow quite large
207 (~2GB for the small (!) test case of PR54146) and we'll hold on to
208 all that memory until the end of the compiler run.
209 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
210 releasing the whole obstack. */
211 static bitmap_obstack dse_bitmap_obstack
;
213 /* Obstack for other data. As for above: Kinda nice to be able to
214 throw it all away at the end in one big sweep. */
215 static struct obstack dse_obstack
;
217 /* Scratch bitmap for cselib's cselib_expand_value_rtx. */
218 static bitmap scratch
= NULL
;
220 struct insn_info_type
;
222 /* This structure holds information about a candidate store. */
227 /* False means this is a clobber. */
230 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
233 /* The id of the mem group of the base address. If rtx_varies_p is
234 true, this is -1. Otherwise, it is the index into the group
238 /* This is the cselib value. */
239 cselib_val
*cse_base
;
241 /* This canonized mem. */
244 /* Canonized MEM address for use by canon_true_dependence. */
247 /* The offset of the first byte associated with the operation. */
250 /* The number of bytes covered by the operation. This is always exact
251 and known (rather than -1). */
254 /* The address space that the memory reference uses. */
255 unsigned char addrspace
;
259 /* A bitmask as wide as the number of bytes in the word that
260 contains a 1 if the byte may be needed. The store is unused if
261 all of the bits are 0. This is used if IS_LARGE is false. */
262 unsigned HOST_WIDE_INT small_bitmask
;
266 /* A bitmap with one bit per byte, or null if the number of
267 bytes isn't known at compile time. A cleared bit means
268 the position is needed. Used if IS_LARGE is true. */
271 /* When BITMAP is nonnull, this counts the number of set bits
272 (i.e. unneeded bytes) in the bitmap. If it is equal to
273 WIDTH, the whole store is unused.
276 - the store is definitely not needed when COUNT == 1
277 - all the store is needed when COUNT == 0 and RHS is nonnull
278 - otherwise we don't know which parts of the store are needed. */
283 /* The next store info for this insn. */
284 class store_info
*next
;
286 /* The right hand side of the store. This is used if there is a
287 subsequent reload of the mems address somewhere later in the
291 /* If rhs is or holds a constant, this contains that constant,
295 /* Set if this store stores the same constant value as REDUNDANT_REASON
296 insn stored. These aren't eliminated early, because doing that
297 might prevent the earlier larger store to be eliminated. */
298 struct insn_info_type
*redundant_reason
;
301 /* Return a bitmask with the first N low bits set. */
303 static unsigned HOST_WIDE_INT
304 lowpart_bitmask (int n
)
306 unsigned HOST_WIDE_INT mask
= HOST_WIDE_INT_M1U
;
307 return mask
>> (HOST_BITS_PER_WIDE_INT
- n
);
310 static object_allocator
<store_info
> cse_store_info_pool ("cse_store_info_pool");
312 static object_allocator
<store_info
> rtx_store_info_pool ("rtx_store_info_pool");
314 /* This structure holds information about a load. These are only
315 built for rtx bases. */
319 /* The id of the mem group of the base address. */
322 /* The offset of the first byte associated with the operation. */
325 /* The number of bytes covered by the operation, or -1 if not known. */
328 /* The mem being read. */
331 /* The next read_info for this insn. */
332 class read_info_type
*next
;
334 typedef class read_info_type
*read_info_t
;
336 static object_allocator
<read_info_type
> read_info_type_pool ("read_info_pool");
338 /* One of these records is created for each insn. */
340 struct insn_info_type
342 /* Set true if the insn contains a store but the insn itself cannot
343 be deleted. This is set if the insn is a parallel and there is
344 more than one non dead output or if the insn is in some way
348 /* This field is only used by the global algorithm. It is set true
349 if the insn contains any read of mem except for a (1). This is
350 also set if the insn is a call or has a clobber mem. If the insn
351 contains a wild read, the use_rec will be null. */
354 /* This is true only for CALL instructions which could potentially read
355 any non-frame memory location. This field is used by the global
357 bool non_frame_wild_read
;
359 /* This field is only used for the processing of const functions.
360 These functions cannot read memory, but they can read the stack
361 because that is where they may get their parms. We need to be
362 this conservative because, like the store motion pass, we don't
363 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
364 Moreover, we need to distinguish two cases:
365 1. Before reload (register elimination), the stores related to
366 outgoing arguments are stack pointer based and thus deemed
367 of non-constant base in this pass. This requires special
368 handling but also means that the frame pointer based stores
369 need not be killed upon encountering a const function call.
370 2. After reload, the stores related to outgoing arguments can be
371 either stack pointer or hard frame pointer based. This means
372 that we have no other choice than also killing all the frame
373 pointer based stores upon encountering a const function call.
374 This field is set after reload for const function calls and before
375 reload for const tail function calls on targets where arg pointer
376 is the frame pointer. Having this set is less severe than a wild
377 read, it just means that all the frame related stores are killed
378 rather than all the stores. */
381 /* This field is only used for the processing of const functions.
382 It is set if the insn may contain a stack pointer based store. */
383 bool stack_pointer_based
;
385 /* This is true if any of the sets within the store contains a
386 cselib base. Such stores can only be deleted by the local
388 bool contains_cselib_groups
;
393 /* The list of mem sets or mem clobbers that are contained in this
394 insn. If the insn is deletable, it contains only one mem set.
395 But it could also contain clobbers. Insns that contain more than
396 one mem set are not deletable, but each of those mems are here in
397 order to provide info to delete other insns. */
398 store_info
*store_rec
;
400 /* The linked list of mem uses in this insn. Only the reads from
401 rtx bases are listed here. The reads to cselib bases are
402 completely processed during the first scan and so are never
404 read_info_t read_rec
;
406 /* The live fixed registers. We assume only fixed registers can
407 cause trouble by being clobbered from an expanded pattern;
408 storing only the live fixed registers (rather than all registers)
409 means less memory needs to be allocated / copied for the individual
411 regset fixed_regs_live
;
413 /* The prev insn in the basic block. */
414 struct insn_info_type
* prev_insn
;
416 /* The linked list of insns that are in consideration for removal in
417 the forwards pass through the basic block. This pointer may be
418 trash as it is not cleared when a wild read occurs. The only
419 time it is guaranteed to be correct is when the traversal starts
420 at active_local_stores. */
421 struct insn_info_type
* next_local_store
;
423 typedef struct insn_info_type
*insn_info_t
;
425 static object_allocator
<insn_info_type
> insn_info_type_pool ("insn_info_pool");
427 /* The linked list of stores that are under consideration in this
429 static insn_info_t active_local_stores
;
430 static int active_local_stores_len
;
432 struct dse_bb_info_type
434 /* Pointer to the insn info for the last insn in the block. These
435 are linked so this is how all of the insns are reached. During
436 scanning this is the current insn being scanned. */
437 insn_info_t last_insn
;
439 /* The info for the global dataflow problem. */
442 /* This is set if the transfer function should and in the wild_read
443 bitmap before applying the kill and gen sets. That vector knocks
444 out most of the bits in the bitmap and thus speeds up the
446 bool apply_wild_read
;
448 /* The following 4 bitvectors hold information about which positions
449 of which stores are live or dead. They are indexed by
452 /* The set of store positions that exist in this block before a wild read. */
455 /* The set of load positions that exist in this block above the
456 same position of a store. */
459 /* The set of stores that reach the top of the block without being
462 Do not represent the in if it is all ones. Note that this is
463 what the bitvector should logically be initialized to for a set
464 intersection problem. However, like the kill set, this is too
465 expensive. So initially, the in set will only be created for the
466 exit block and any block that contains a wild read. */
469 /* The set of stores that reach the bottom of the block from it's
472 Do not represent the in if it is all ones. Note that this is
473 what the bitvector should logically be initialized to for a set
474 intersection problem. However, like the kill and in set, this is
475 too expensive. So what is done is that the confluence operator
476 just initializes the vector from one of the out sets of the
477 successors of the block. */
480 /* The following bitvector is indexed by the reg number. It
481 contains the set of regs that are live at the current instruction
482 being processed. While it contains info for all of the
483 registers, only the hard registers are actually examined. It is used
484 to assure that shift and/or add sequences that are inserted do not
485 accidentally clobber live hard regs. */
489 typedef struct dse_bb_info_type
*bb_info_t
;
491 static object_allocator
<dse_bb_info_type
> dse_bb_info_type_pool
494 /* Table to hold all bb_infos. */
495 static bb_info_t
*bb_table
;
497 /* There is a group_info for each rtx base that is used to reference
498 memory. There are also not many of the rtx bases because they are
499 very limited in scope. */
503 /* The actual base of the address. */
506 /* The sequential id of the base. This allows us to have a
507 canonical ordering of these that is not based on addresses. */
510 /* True if there are any positions that are to be processed
512 bool process_globally
;
514 /* True if the base of this group is either the frame_pointer or
515 hard_frame_pointer. */
518 /* A mem wrapped around the base pointer for the group in order to do
519 read dependency. It must be given BLKmode in order to encompass all
520 the possible offsets from the base. */
523 /* Canonized version of base_mem's address. */
526 /* These two sets of two bitmaps are used to keep track of how many
527 stores are actually referencing that position from this base. We
528 only do this for rtx bases as this will be used to assign
529 positions in the bitmaps for the global problem. Bit N is set in
530 store1 on the first store for offset N. Bit N is set in store2
531 for the second store to offset N. This is all we need since we
532 only care about offsets that have two or more stores for them.
534 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
535 for 0 and greater offsets.
537 There is one special case here, for stores into the stack frame,
538 we will or store1 into store2 before deciding which stores look
539 at globally. This is because stores to the stack frame that have
540 no other reads before the end of the function can also be
542 bitmap store1_n
, store1_p
, store2_n
, store2_p
;
544 /* These bitmaps keep track of offsets in this group escape this function.
545 An offset escapes if it corresponds to a named variable whose
546 addressable flag is set. */
547 bitmap escaped_n
, escaped_p
;
549 /* The positions in this bitmap have the same assignments as the in,
550 out, gen and kill bitmaps. This bitmap is all zeros except for
551 the positions that are occupied by stores for this group. */
554 /* The offset_map is used to map the offsets from this base into
555 positions in the global bitmaps. It is only created after all of
556 the all of stores have been scanned and we know which ones we
558 int *offset_map_n
, *offset_map_p
;
559 int offset_map_size_n
, offset_map_size_p
;
562 static object_allocator
<group_info
> group_info_pool ("rtx_group_info_pool");
564 /* Index into the rtx_group_vec. */
565 static int rtx_group_next_id
;
568 static vec
<group_info
*> rtx_group_vec
;
571 /* This structure holds the set of changes that are being deferred
572 when removing read operation. See replace_read. */
573 struct deferred_change
576 /* The mem that is being replaced. */
579 /* The reg it is being replaced with. */
582 struct deferred_change
*next
;
585 static object_allocator
<deferred_change
> deferred_change_pool
586 ("deferred_change_pool");
588 static deferred_change
*deferred_change_list
= NULL
;
590 /* This is true except if cfun->stdarg -- i.e. we cannot do
591 this for vararg functions because they play games with the frame. */
592 static bool stores_off_frame_dead_at_return
;
594 /* Counter for stats. */
595 static int globally_deleted
;
596 static int locally_deleted
;
598 static bitmap all_blocks
;
600 /* Locations that are killed by calls in the global phase. */
601 static bitmap kill_on_calls
;
603 /* The number of bits used in the global bitmaps. */
604 static unsigned int current_position
;
606 /* Print offset range [OFFSET, OFFSET + WIDTH) to FILE. */
609 print_range (FILE *file
, poly_int64 offset
, poly_int64 width
)
612 print_dec (offset
, file
, SIGNED
);
613 fprintf (file
, "..");
614 print_dec (offset
+ width
, file
, SIGNED
);
618 /*----------------------------------------------------------------------------
622 ----------------------------------------------------------------------------*/
625 /* Hashtable callbacks for maintaining the "bases" field of
626 store_group_info, given that the addresses are function invariants. */
628 struct invariant_group_base_hasher
: nofree_ptr_hash
<group_info
>
630 static inline hashval_t
hash (const group_info
*);
631 static inline bool equal (const group_info
*, const group_info
*);
635 invariant_group_base_hasher::equal (const group_info
*gi1
,
636 const group_info
*gi2
)
638 return rtx_equal_p (gi1
->rtx_base
, gi2
->rtx_base
);
642 invariant_group_base_hasher::hash (const group_info
*gi
)
645 return hash_rtx (gi
->rtx_base
, Pmode
, &do_not_record
, NULL
, false);
648 /* Tables of group_info structures, hashed by base value. */
649 static hash_table
<invariant_group_base_hasher
> *rtx_group_table
;
652 /* Get the GROUP for BASE. Add a new group if it is not there. */
655 get_group_info (rtx base
)
657 struct group_info tmp_gi
;
661 gcc_assert (base
!= NULL_RTX
);
663 /* Find the store_base_info structure for BASE, creating a new one
665 tmp_gi
.rtx_base
= base
;
666 slot
= rtx_group_table
->find_slot (&tmp_gi
, INSERT
);
671 *slot
= gi
= group_info_pool
.allocate ();
673 gi
->id
= rtx_group_next_id
++;
674 gi
->base_mem
= gen_rtx_MEM (BLKmode
, base
);
675 gi
->canon_base_addr
= canon_rtx (base
);
676 gi
->store1_n
= BITMAP_ALLOC (&dse_bitmap_obstack
);
677 gi
->store1_p
= BITMAP_ALLOC (&dse_bitmap_obstack
);
678 gi
->store2_n
= BITMAP_ALLOC (&dse_bitmap_obstack
);
679 gi
->store2_p
= BITMAP_ALLOC (&dse_bitmap_obstack
);
680 gi
->escaped_p
= BITMAP_ALLOC (&dse_bitmap_obstack
);
681 gi
->escaped_n
= BITMAP_ALLOC (&dse_bitmap_obstack
);
682 gi
->group_kill
= BITMAP_ALLOC (&dse_bitmap_obstack
);
683 gi
->process_globally
= false;
685 (base
== frame_pointer_rtx
) || (base
== hard_frame_pointer_rtx
)
686 || (base
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]);
687 gi
->offset_map_size_n
= 0;
688 gi
->offset_map_size_p
= 0;
689 gi
->offset_map_n
= NULL
;
690 gi
->offset_map_p
= NULL
;
691 rtx_group_vec
.safe_push (gi
);
698 /* Initialization of data structures. */
704 globally_deleted
= 0;
706 bitmap_obstack_initialize (&dse_bitmap_obstack
);
707 gcc_obstack_init (&dse_obstack
);
709 scratch
= BITMAP_ALLOC (®_obstack
);
710 kill_on_calls
= BITMAP_ALLOC (&dse_bitmap_obstack
);
713 rtx_group_table
= new hash_table
<invariant_group_base_hasher
> (11);
715 bb_table
= XNEWVEC (bb_info_t
, last_basic_block_for_fn (cfun
));
716 rtx_group_next_id
= 0;
718 stores_off_frame_dead_at_return
= !cfun
->stdarg
;
720 init_alias_analysis ();
725 /*----------------------------------------------------------------------------
728 Scan all of the insns. Any random ordering of the blocks is fine.
729 Each block is scanned in forward order to accommodate cselib which
730 is used to remove stores with non-constant bases.
731 ----------------------------------------------------------------------------*/
733 /* Delete all of the store_info recs from INSN_INFO. */
736 free_store_info (insn_info_t insn_info
)
738 store_info
*cur
= insn_info
->store_rec
;
741 store_info
*next
= cur
->next
;
743 BITMAP_FREE (cur
->positions_needed
.large
.bmap
);
745 cse_store_info_pool
.remove (cur
);
747 rtx_store_info_pool
.remove (cur
);
751 insn_info
->cannot_delete
= true;
752 insn_info
->contains_cselib_groups
= false;
753 insn_info
->store_rec
= NULL
;
756 struct note_add_store_info
758 rtx_insn
*first
, *current
;
759 regset fixed_regs_live
;
763 /* Callback for emit_inc_dec_insn_before via note_stores.
764 Check if a register is clobbered which is live afterwards. */
767 note_add_store (rtx loc
, const_rtx expr ATTRIBUTE_UNUSED
, void *data
)
770 note_add_store_info
*info
= (note_add_store_info
*) data
;
775 /* If this register is referenced by the current or an earlier insn,
776 that's OK. E.g. this applies to the register that is being incremented
777 with this addition. */
778 for (insn
= info
->first
;
779 insn
!= NEXT_INSN (info
->current
);
780 insn
= NEXT_INSN (insn
))
781 if (reg_referenced_p (loc
, PATTERN (insn
)))
784 /* If we come here, we have a clobber of a register that's only OK
785 if that register is not live. If we don't have liveness information
786 available, fail now. */
787 if (!info
->fixed_regs_live
)
789 info
->failure
= true;
792 /* Now check if this is a live fixed register. */
793 unsigned int end_regno
= END_REGNO (loc
);
794 for (unsigned int regno
= REGNO (loc
); regno
< end_regno
; ++regno
)
795 if (REGNO_REG_SET_P (info
->fixed_regs_live
, regno
))
796 info
->failure
= true;
799 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
800 SRC + SRCOFF before insn ARG. */
803 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED
,
804 rtx op ATTRIBUTE_UNUSED
,
805 rtx dest
, rtx src
, rtx srcoff
, void *arg
)
807 insn_info_t insn_info
= (insn_info_t
) arg
;
808 rtx_insn
*insn
= insn_info
->insn
, *new_insn
, *cur
;
809 note_add_store_info info
;
811 /* We can reuse all operands without copying, because we are about
812 to delete the insn that contained it. */
816 emit_insn (gen_add3_insn (dest
, src
, srcoff
));
817 new_insn
= get_insns ();
821 new_insn
= gen_move_insn (dest
, src
);
822 info
.first
= new_insn
;
823 info
.fixed_regs_live
= insn_info
->fixed_regs_live
;
824 info
.failure
= false;
825 for (cur
= new_insn
; cur
; cur
= NEXT_INSN (cur
))
828 note_stores (cur
, note_add_store
, &info
);
831 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
832 return it immediately, communicating the failure to its caller. */
836 emit_insn_before (new_insn
, insn
);
841 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
842 is there, is split into a separate insn.
843 Return true on success (or if there was nothing to do), false on failure. */
846 check_for_inc_dec_1 (insn_info_t insn_info
)
848 rtx_insn
*insn
= insn_info
->insn
;
849 rtx note
= find_reg_note (insn
, REG_INC
, NULL_RTX
);
851 return for_each_inc_dec (PATTERN (insn
), emit_inc_dec_insn_before
,
854 /* Punt on stack pushes, those don't have REG_INC notes and we are
855 unprepared to deal with distribution of REG_ARGS_SIZE notes etc. */
856 subrtx_iterator::array_type array
;
857 FOR_EACH_SUBRTX (iter
, array
, PATTERN (insn
), NONCONST
)
860 if (GET_RTX_CLASS (GET_CODE (x
)) == RTX_AUTOINC
)
868 /* Entry point for postreload. If you work on reload_cse, or you need this
869 anywhere else, consider if you can provide register liveness information
870 and add a parameter to this function so that it can be passed down in
871 insn_info.fixed_regs_live. */
873 check_for_inc_dec (rtx_insn
*insn
)
875 insn_info_type insn_info
;
878 insn_info
.insn
= insn
;
879 insn_info
.fixed_regs_live
= NULL
;
880 note
= find_reg_note (insn
, REG_INC
, NULL_RTX
);
882 return for_each_inc_dec (PATTERN (insn
), emit_inc_dec_insn_before
,
885 /* Punt on stack pushes, those don't have REG_INC notes and we are
886 unprepared to deal with distribution of REG_ARGS_SIZE notes etc. */
887 subrtx_iterator::array_type array
;
888 FOR_EACH_SUBRTX (iter
, array
, PATTERN (insn
), NONCONST
)
891 if (GET_RTX_CLASS (GET_CODE (x
)) == RTX_AUTOINC
)
898 /* Delete the insn and free all of the fields inside INSN_INFO. */
901 delete_dead_store_insn (insn_info_t insn_info
)
903 read_info_t read_info
;
908 if (!check_for_inc_dec_1 (insn_info
))
910 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
911 fprintf (dump_file
, "Locally deleting insn %d\n",
912 INSN_UID (insn_info
->insn
));
914 free_store_info (insn_info
);
915 read_info
= insn_info
->read_rec
;
919 read_info_t next
= read_info
->next
;
920 read_info_type_pool
.remove (read_info
);
923 insn_info
->read_rec
= NULL
;
925 delete_insn (insn_info
->insn
);
927 insn_info
->insn
= NULL
;
929 insn_info
->wild_read
= false;
932 /* Return whether DECL, a local variable, can possibly escape the current
936 local_variable_can_escape (tree decl
)
938 if (TREE_ADDRESSABLE (decl
))
941 /* If this is a partitioned variable, we need to consider all the variables
942 in the partition. This is necessary because a store into one of them can
943 be replaced with a store into another and this may not change the outcome
944 of the escape analysis. */
945 if (cfun
->gimple_df
->decls_to_pointers
!= NULL
)
947 tree
*namep
= cfun
->gimple_df
->decls_to_pointers
->get (decl
);
949 return TREE_ADDRESSABLE (*namep
);
955 /* Return whether EXPR can possibly escape the current function scope. */
958 can_escape (tree expr
)
963 base
= get_base_address (expr
);
965 && !may_be_aliased (base
)
967 && !DECL_EXTERNAL (base
)
968 && !TREE_STATIC (base
)
969 && local_variable_can_escape (base
)))
974 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
978 set_usage_bits (group_info
*group
, poly_int64 offset
, poly_int64 width
,
981 /* Non-constant offsets and widths act as global kills, so there's no point
982 trying to use them to derive global DSE candidates. */
983 HOST_WIDE_INT i
, const_offset
, const_width
;
984 bool expr_escapes
= can_escape (expr
);
985 if (offset
.is_constant (&const_offset
)
986 && width
.is_constant (&const_width
)
987 && const_offset
> -MAX_OFFSET
988 && const_offset
+ const_width
< MAX_OFFSET
)
989 for (i
= const_offset
; i
< const_offset
+ const_width
; ++i
)
997 store1
= group
->store1_n
;
998 store2
= group
->store2_n
;
999 escaped
= group
->escaped_n
;
1004 store1
= group
->store1_p
;
1005 store2
= group
->store2_p
;
1006 escaped
= group
->escaped_p
;
1010 if (!bitmap_set_bit (store1
, ai
))
1011 bitmap_set_bit (store2
, ai
);
1016 if (group
->offset_map_size_n
< ai
)
1017 group
->offset_map_size_n
= ai
;
1021 if (group
->offset_map_size_p
< ai
)
1022 group
->offset_map_size_p
= ai
;
1026 bitmap_set_bit (escaped
, ai
);
1031 reset_active_stores (void)
1033 active_local_stores
= NULL
;
1034 active_local_stores_len
= 0;
1037 /* Free all READ_REC of the LAST_INSN of BB_INFO. */
1040 free_read_records (bb_info_t bb_info
)
1042 insn_info_t insn_info
= bb_info
->last_insn
;
1043 read_info_t
*ptr
= &insn_info
->read_rec
;
1046 read_info_t next
= (*ptr
)->next
;
1047 read_info_type_pool
.remove (*ptr
);
1052 /* Set the BB_INFO so that the last insn is marked as a wild read. */
1055 add_wild_read (bb_info_t bb_info
)
1057 insn_info_t insn_info
= bb_info
->last_insn
;
1058 insn_info
->wild_read
= true;
1059 free_read_records (bb_info
);
1060 reset_active_stores ();
1063 /* Set the BB_INFO so that the last insn is marked as a wild read of
1064 non-frame locations. */
1067 add_non_frame_wild_read (bb_info_t bb_info
)
1069 insn_info_t insn_info
= bb_info
->last_insn
;
1070 insn_info
->non_frame_wild_read
= true;
1071 free_read_records (bb_info
);
1072 reset_active_stores ();
1075 /* Return true if X is a constant or one of the registers that behave
1076 as a constant over the life of a function. This is equivalent to
1077 !rtx_varies_p for memory addresses. */
1080 const_or_frame_p (rtx x
)
1085 if (GET_CODE (x
) == REG
)
1087 /* Note that we have to test for the actual rtx used for the frame
1088 and arg pointers and not just the register number in case we have
1089 eliminated the frame and/or arg pointer and are using it
1091 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
1092 /* The arg pointer varies if it is not a fixed register. */
1093 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
])
1094 || x
== pic_offset_table_rtx
)
1102 /* Take all reasonable action to put the address of MEM into the form
1103 that we can do analysis on.
1105 The gold standard is to get the address into the form: address +
1106 OFFSET where address is something that rtx_varies_p considers a
1107 constant. When we can get the address in this form, we can do
1108 global analysis on it. Note that for constant bases, address is
1109 not actually returned, only the group_id. The address can be
1112 If that fails, we try cselib to get a value we can at least use
1113 locally. If that fails we return false.
1115 The GROUP_ID is set to -1 for cselib bases and the index of the
1116 group for non_varying bases.
1118 FOR_READ is true if this is a mem read and false if not. */
1121 canon_address (rtx mem
,
1126 machine_mode address_mode
= get_address_mode (mem
);
1127 rtx mem_address
= XEXP (mem
, 0);
1128 rtx expanded_address
, address
;
1131 cselib_lookup (mem_address
, address_mode
, 1, GET_MODE (mem
));
1133 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1135 fprintf (dump_file
, " mem: ");
1136 print_inline_rtx (dump_file
, mem_address
, 0);
1137 fprintf (dump_file
, "\n");
1140 /* First see if just canon_rtx (mem_address) is const or frame,
1141 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1143 for (expanded
= 0; expanded
< 2; expanded
++)
1147 /* Use cselib to replace all of the reg references with the full
1148 expression. This will take care of the case where we have
1150 r_x = base + offset;
1155 val = *(base + offset); */
1157 expanded_address
= cselib_expand_value_rtx (mem_address
,
1160 /* If this fails, just go with the address from first
1162 if (!expanded_address
)
1166 expanded_address
= mem_address
;
1168 /* Split the address into canonical BASE + OFFSET terms. */
1169 address
= canon_rtx (expanded_address
);
1173 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1177 fprintf (dump_file
, "\n after cselib_expand address: ");
1178 print_inline_rtx (dump_file
, expanded_address
, 0);
1179 fprintf (dump_file
, "\n");
1182 fprintf (dump_file
, "\n after canon_rtx address: ");
1183 print_inline_rtx (dump_file
, address
, 0);
1184 fprintf (dump_file
, "\n");
1187 if (GET_CODE (address
) == CONST
)
1188 address
= XEXP (address
, 0);
1190 address
= strip_offset_and_add (address
, offset
);
1192 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem
))
1193 && const_or_frame_p (address
))
1195 group_info
*group
= get_group_info (address
);
1197 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1199 fprintf (dump_file
, " gid=%d offset=", group
->id
);
1200 print_dec (*offset
, dump_file
);
1201 fprintf (dump_file
, "\n");
1204 *group_id
= group
->id
;
1209 *base
= cselib_lookup (address
, address_mode
, true, GET_MODE (mem
));
1214 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1215 fprintf (dump_file
, " no cselib val - should be a wild read.\n");
1218 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1220 fprintf (dump_file
, " varying cselib base=%u:%u offset = ",
1221 (*base
)->uid
, (*base
)->hash
);
1222 print_dec (*offset
, dump_file
);
1223 fprintf (dump_file
, "\n");
1229 /* Clear the rhs field from the active_local_stores array. */
1232 clear_rhs_from_active_local_stores (void)
1234 insn_info_t ptr
= active_local_stores
;
1238 store_info
*store_info
= ptr
->store_rec
;
1239 /* Skip the clobbers. */
1240 while (!store_info
->is_set
)
1241 store_info
= store_info
->next
;
1243 store_info
->rhs
= NULL
;
1244 store_info
->const_rhs
= NULL
;
1246 ptr
= ptr
->next_local_store
;
1251 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1254 set_position_unneeded (store_info
*s_info
, int pos
)
1256 if (UNLIKELY (s_info
->is_large
))
1258 if (bitmap_set_bit (s_info
->positions_needed
.large
.bmap
, pos
))
1259 s_info
->positions_needed
.large
.count
++;
1262 s_info
->positions_needed
.small_bitmask
1263 &= ~(HOST_WIDE_INT_1U
<< pos
);
1266 /* Mark the whole store S_INFO as unneeded. */
1269 set_all_positions_unneeded (store_info
*s_info
)
1271 if (UNLIKELY (s_info
->is_large
))
1273 HOST_WIDE_INT width
;
1274 if (s_info
->width
.is_constant (&width
))
1276 bitmap_set_range (s_info
->positions_needed
.large
.bmap
, 0, width
);
1277 s_info
->positions_needed
.large
.count
= width
;
1281 gcc_checking_assert (!s_info
->positions_needed
.large
.bmap
);
1282 s_info
->positions_needed
.large
.count
= 1;
1286 s_info
->positions_needed
.small_bitmask
= HOST_WIDE_INT_0U
;
1289 /* Return TRUE if any bytes from S_INFO store are needed. */
1292 any_positions_needed_p (store_info
*s_info
)
1294 if (UNLIKELY (s_info
->is_large
))
1296 HOST_WIDE_INT width
;
1297 if (s_info
->width
.is_constant (&width
))
1299 gcc_checking_assert (s_info
->positions_needed
.large
.bmap
);
1300 return s_info
->positions_needed
.large
.count
< width
;
1304 gcc_checking_assert (!s_info
->positions_needed
.large
.bmap
);
1305 return s_info
->positions_needed
.large
.count
== 0;
1309 return (s_info
->positions_needed
.small_bitmask
!= HOST_WIDE_INT_0U
);
1312 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1313 store are known to be needed. */
1316 all_positions_needed_p (store_info
*s_info
, poly_int64 start
,
1319 gcc_assert (s_info
->rhs
);
1320 if (!s_info
->width
.is_constant ())
1322 gcc_assert (s_info
->is_large
1323 && !s_info
->positions_needed
.large
.bmap
);
1324 return s_info
->positions_needed
.large
.count
== 0;
1327 /* Otherwise, if START and WIDTH are non-constant, we're asking about
1328 a non-constant region of a constant-sized store. We can't say for
1329 sure that all positions are needed. */
1330 HOST_WIDE_INT const_start
, const_width
;
1331 if (!start
.is_constant (&const_start
)
1332 || !width
.is_constant (&const_width
))
1335 if (UNLIKELY (s_info
->is_large
))
1337 for (HOST_WIDE_INT i
= const_start
; i
< const_start
+ const_width
; ++i
)
1338 if (bitmap_bit_p (s_info
->positions_needed
.large
.bmap
, i
))
1344 unsigned HOST_WIDE_INT mask
1345 = lowpart_bitmask (const_width
) << const_start
;
1346 return (s_info
->positions_needed
.small_bitmask
& mask
) == mask
;
1351 static rtx
get_stored_val (store_info
*, machine_mode
, poly_int64
,
1352 poly_int64
, basic_block
, bool);
1355 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1356 there is a candidate store, after adding it to the appropriate
1357 local store group if so. */
1360 record_store (rtx body
, bb_info_t bb_info
)
1362 rtx mem
, rhs
, const_rhs
, mem_addr
;
1363 poly_int64 offset
= 0;
1364 poly_int64 width
= 0;
1365 insn_info_t insn_info
= bb_info
->last_insn
;
1366 store_info
*store_info
= NULL
;
1368 cselib_val
*base
= NULL
;
1369 insn_info_t ptr
, last
, redundant_reason
;
1370 bool store_is_unused
;
1372 if (GET_CODE (body
) != SET
&& GET_CODE (body
) != CLOBBER
)
1375 mem
= SET_DEST (body
);
1377 /* If this is not used, then this cannot be used to keep the insn
1378 from being deleted. On the other hand, it does provide something
1379 that can be used to prove that another store is dead. */
1381 = (find_reg_note (insn_info
->insn
, REG_UNUSED
, mem
) != NULL
);
1383 /* Check whether that value is a suitable memory location. */
1386 /* If the set or clobber is unused, then it does not effect our
1387 ability to get rid of the entire insn. */
1388 if (!store_is_unused
)
1389 insn_info
->cannot_delete
= true;
1393 /* At this point we know mem is a mem. */
1394 if (GET_MODE (mem
) == BLKmode
)
1396 HOST_WIDE_INT const_size
;
1397 if (GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
1399 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1400 fprintf (dump_file
, " adding wild read for (clobber (mem:BLK (scratch))\n");
1401 add_wild_read (bb_info
);
1402 insn_info
->cannot_delete
= true;
1405 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1406 as memset (addr, 0, 36); */
1407 else if (!MEM_SIZE_KNOWN_P (mem
)
1408 || maybe_le (MEM_SIZE (mem
), 0)
1409 /* This is a limit on the bitmap size, which is only relevant
1410 for constant-sized MEMs. */
1411 || (MEM_SIZE (mem
).is_constant (&const_size
)
1412 && const_size
> MAX_OFFSET
)
1413 || GET_CODE (body
) != SET
1414 || !CONST_INT_P (SET_SRC (body
)))
1416 if (!store_is_unused
)
1418 /* If the set or clobber is unused, then it does not effect our
1419 ability to get rid of the entire insn. */
1420 insn_info
->cannot_delete
= true;
1421 clear_rhs_from_active_local_stores ();
1427 /* We can still process a volatile mem, we just cannot delete it. */
1428 if (MEM_VOLATILE_P (mem
))
1429 insn_info
->cannot_delete
= true;
1431 if (!canon_address (mem
, &group_id
, &offset
, &base
))
1433 clear_rhs_from_active_local_stores ();
1437 if (GET_MODE (mem
) == BLKmode
)
1438 width
= MEM_SIZE (mem
);
1440 width
= GET_MODE_SIZE (GET_MODE (mem
));
1442 if (!endpoint_representable_p (offset
, width
))
1444 clear_rhs_from_active_local_stores ();
1448 if (known_eq (width
, 0))
1453 /* In the restrictive case where the base is a constant or the
1454 frame pointer we can do global analysis. */
1457 = rtx_group_vec
[group_id
];
1458 tree expr
= MEM_EXPR (mem
);
1460 store_info
= rtx_store_info_pool
.allocate ();
1461 set_usage_bits (group
, offset
, width
, expr
);
1463 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1465 fprintf (dump_file
, " processing const base store gid=%d",
1467 print_range (dump_file
, offset
, width
);
1468 fprintf (dump_file
, "\n");
1473 if (may_be_sp_based_p (XEXP (mem
, 0)))
1474 insn_info
->stack_pointer_based
= true;
1475 insn_info
->contains_cselib_groups
= true;
1477 store_info
= cse_store_info_pool
.allocate ();
1480 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1482 fprintf (dump_file
, " processing cselib store ");
1483 print_range (dump_file
, offset
, width
);
1484 fprintf (dump_file
, "\n");
1488 const_rhs
= rhs
= NULL_RTX
;
1489 if (GET_CODE (body
) == SET
1490 /* No place to keep the value after ra. */
1491 && !reload_completed
1492 && (REG_P (SET_SRC (body
))
1493 || GET_CODE (SET_SRC (body
)) == SUBREG
1494 || CONSTANT_P (SET_SRC (body
)))
1495 && !MEM_VOLATILE_P (mem
)
1496 /* Sometimes the store and reload is used for truncation and
1498 && !(FLOAT_MODE_P (GET_MODE (mem
)) && (flag_float_store
)))
1500 rhs
= SET_SRC (body
);
1501 if (CONSTANT_P (rhs
))
1503 else if (body
== PATTERN (insn_info
->insn
))
1505 rtx tem
= find_reg_note (insn_info
->insn
, REG_EQUAL
, NULL_RTX
);
1506 if (tem
&& CONSTANT_P (XEXP (tem
, 0)))
1507 const_rhs
= XEXP (tem
, 0);
1509 if (const_rhs
== NULL_RTX
&& REG_P (rhs
))
1511 rtx tem
= cselib_expand_value_rtx (rhs
, scratch
, 5);
1513 if (tem
&& CONSTANT_P (tem
))
1517 /* If RHS is set only once to a constant, set CONST_RHS
1519 rtx def_src
= df_find_single_def_src (rhs
);
1520 if (def_src
!= nullptr && CONSTANT_P (def_src
))
1521 const_rhs
= def_src
;
1526 /* Check to see if this stores causes some other stores to be
1528 ptr
= active_local_stores
;
1530 redundant_reason
= NULL
;
1531 unsigned char addrspace
= MEM_ADDR_SPACE (mem
);
1532 mem
= canon_rtx (mem
);
1535 mem_addr
= base
->val_rtx
;
1538 group_info
*group
= rtx_group_vec
[group_id
];
1539 mem_addr
= group
->canon_base_addr
;
1541 if (maybe_ne (offset
, 0))
1542 mem_addr
= plus_constant (get_address_mode (mem
), mem_addr
, offset
);
1546 insn_info_t next
= ptr
->next_local_store
;
1547 class store_info
*s_info
= ptr
->store_rec
;
1550 /* Skip the clobbers. We delete the active insn if this insn
1551 shadows the set. To have been put on the active list, it
1552 has exactly on set. */
1553 while (!s_info
->is_set
)
1554 s_info
= s_info
->next
;
1556 if (s_info
->group_id
== group_id
1557 && s_info
->cse_base
== base
1558 && s_info
->addrspace
== addrspace
)
1561 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1563 fprintf (dump_file
, " trying store in insn=%d gid=%d",
1564 INSN_UID (ptr
->insn
), s_info
->group_id
);
1565 print_range (dump_file
, s_info
->offset
, s_info
->width
);
1566 fprintf (dump_file
, "\n");
1569 /* Even if PTR won't be eliminated as unneeded, if both
1570 PTR and this insn store the same constant value, we might
1571 eliminate this insn instead. */
1572 if (s_info
->const_rhs
1574 && known_subrange_p (offset
, width
,
1575 s_info
->offset
, s_info
->width
)
1576 && all_positions_needed_p (s_info
, offset
- s_info
->offset
,
1578 /* We can only remove the later store if the earlier aliases
1579 at least all accesses the later one. */
1580 && mems_same_for_tbaa_p (s_info
->mem
, mem
))
1582 if (GET_MODE (mem
) == BLKmode
)
1584 if (GET_MODE (s_info
->mem
) == BLKmode
1585 && s_info
->const_rhs
== const_rhs
)
1586 redundant_reason
= ptr
;
1588 else if (s_info
->const_rhs
== const0_rtx
1589 && const_rhs
== const0_rtx
)
1590 redundant_reason
= ptr
;
1595 val
= get_stored_val (s_info
, GET_MODE (mem
), offset
, width
,
1596 BLOCK_FOR_INSN (insn_info
->insn
),
1598 if (get_insns () != NULL
)
1601 if (val
&& rtx_equal_p (val
, const_rhs
))
1602 redundant_reason
= ptr
;
1606 HOST_WIDE_INT begin_unneeded
, const_s_width
, const_width
;
1607 if (known_subrange_p (s_info
->offset
, s_info
->width
, offset
, width
))
1608 /* The new store touches every byte that S_INFO does. */
1609 set_all_positions_unneeded (s_info
);
1610 else if ((offset
- s_info
->offset
).is_constant (&begin_unneeded
)
1611 && s_info
->width
.is_constant (&const_s_width
)
1612 && width
.is_constant (&const_width
))
1614 HOST_WIDE_INT end_unneeded
= begin_unneeded
+ const_width
;
1615 begin_unneeded
= MAX (begin_unneeded
, 0);
1616 end_unneeded
= MIN (end_unneeded
, const_s_width
);
1617 for (i
= begin_unneeded
; i
< end_unneeded
; ++i
)
1618 set_position_unneeded (s_info
, i
);
1622 /* We don't know which parts of S_INFO are needed and
1623 which aren't, so invalidate the RHS. */
1625 s_info
->const_rhs
= NULL
;
1628 else if (s_info
->rhs
)
1629 /* Need to see if it is possible for this store to overwrite
1630 the value of store_info. If it is, set the rhs to NULL to
1631 keep it from being used to remove a load. */
1633 if (canon_output_dependence (s_info
->mem
, true,
1634 mem
, GET_MODE (mem
),
1638 s_info
->const_rhs
= NULL
;
1642 /* An insn can be deleted if every position of every one of
1643 its s_infos is zero. */
1644 if (any_positions_needed_p (s_info
))
1649 insn_info_t insn_to_delete
= ptr
;
1651 active_local_stores_len
--;
1653 last
->next_local_store
= ptr
->next_local_store
;
1655 active_local_stores
= ptr
->next_local_store
;
1657 if (!insn_to_delete
->cannot_delete
)
1658 delete_dead_store_insn (insn_to_delete
);
1666 /* Finish filling in the store_info. */
1667 store_info
->next
= insn_info
->store_rec
;
1668 insn_info
->store_rec
= store_info
;
1669 store_info
->mem
= mem
;
1670 store_info
->mem_addr
= mem_addr
;
1671 store_info
->cse_base
= base
;
1672 HOST_WIDE_INT const_width
;
1673 if (!width
.is_constant (&const_width
))
1675 store_info
->is_large
= true;
1676 store_info
->positions_needed
.large
.count
= 0;
1677 store_info
->positions_needed
.large
.bmap
= NULL
;
1679 else if (const_width
> HOST_BITS_PER_WIDE_INT
)
1681 store_info
->is_large
= true;
1682 store_info
->positions_needed
.large
.count
= 0;
1683 store_info
->positions_needed
.large
.bmap
= BITMAP_ALLOC (&dse_bitmap_obstack
);
1687 store_info
->is_large
= false;
1688 store_info
->positions_needed
.small_bitmask
1689 = lowpart_bitmask (const_width
);
1691 store_info
->group_id
= group_id
;
1692 store_info
->offset
= offset
;
1693 store_info
->width
= width
;
1694 store_info
->is_set
= GET_CODE (body
) == SET
;
1695 store_info
->rhs
= rhs
;
1696 store_info
->const_rhs
= const_rhs
;
1697 store_info
->redundant_reason
= redundant_reason
;
1698 store_info
->addrspace
= addrspace
;
1700 /* If this is a clobber, we return 0. We will only be able to
1701 delete this insn if there is only one store USED store, but we
1702 can use the clobber to delete other stores earlier. */
1703 return store_info
->is_set
? 1 : 0;
1708 dump_insn_info (const char * start
, insn_info_t insn_info
)
1710 fprintf (dump_file
, "%s insn=%d %s\n", start
,
1711 INSN_UID (insn_info
->insn
),
1712 insn_info
->store_rec
? "has store" : "naked");
1716 /* If the modes are different and the value's source and target do not
1717 line up, we need to extract the value from lower part of the rhs of
1718 the store, shift it, and then put it into a form that can be shoved
1719 into the read_insn. This function generates a right SHIFT of a
1720 value that is at least ACCESS_BYTES bytes wide of READ_MODE. The
1721 shift sequence is returned or NULL if we failed to find a
1725 find_shift_sequence (poly_int64 access_bytes
,
1726 store_info
*store_info
,
1727 machine_mode read_mode
,
1728 poly_int64 shift
, bool speed
, bool require_cst
)
1730 machine_mode store_mode
= GET_MODE (store_info
->mem
);
1731 scalar_int_mode new_mode
;
1732 rtx read_reg
= NULL
;
1734 /* If a constant was stored into memory, try to simplify it here,
1735 otherwise the cost of the shift might preclude this optimization
1736 e.g. at -Os, even when no actual shift will be needed. */
1737 auto access_bits
= access_bytes
* BITS_PER_UNIT
;
1738 if (store_info
->const_rhs
1739 && known_le (access_bytes
, GET_MODE_SIZE (MAX_MODE_INT
))
1740 && smallest_int_mode_for_size (access_bits
).exists (&new_mode
))
1742 auto byte
= subreg_lowpart_offset (new_mode
, store_mode
);
1744 = simplify_subreg (new_mode
, store_info
->const_rhs
, store_mode
, byte
);
1745 if (ret
&& CONSTANT_P (ret
))
1747 rtx shift_rtx
= gen_int_shift_amount (new_mode
, shift
);
1748 ret
= simplify_const_binary_operation (LSHIFTRT
, new_mode
, ret
,
1750 if (ret
&& CONSTANT_P (ret
))
1752 byte
= subreg_lowpart_offset (read_mode
, new_mode
);
1753 ret
= simplify_subreg (read_mode
, ret
, new_mode
, byte
);
1754 if (ret
&& CONSTANT_P (ret
)
1755 && (set_src_cost (ret
, read_mode
, speed
)
1756 <= COSTS_N_INSNS (1)))
1765 /* Some machines like the x86 have shift insns for each size of
1766 operand. Other machines like the ppc or the ia-64 may only have
1767 shift insns that shift values within 32 or 64 bit registers.
1768 This loop tries to find the smallest shift insn that will right
1769 justify the value we want to read but is available in one insn on
1772 opt_scalar_int_mode new_mode_iter
;
1773 FOR_EACH_MODE_IN_CLASS (new_mode_iter
, MODE_INT
)
1775 rtx target
, new_reg
, new_lhs
;
1776 rtx_insn
*shift_seq
, *insn
;
1779 new_mode
= new_mode_iter
.require ();
1780 if (GET_MODE_BITSIZE (new_mode
) > BITS_PER_WORD
)
1782 if (maybe_lt (GET_MODE_SIZE (new_mode
), GET_MODE_SIZE (read_mode
)))
1785 /* Try a wider mode if truncating the store mode to NEW_MODE
1786 requires a real instruction. */
1787 if (maybe_lt (GET_MODE_SIZE (new_mode
), GET_MODE_SIZE (store_mode
))
1788 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode
, store_mode
))
1791 /* Also try a wider mode if the necessary punning is either not
1792 desirable or not possible. */
1793 if (!CONSTANT_P (store_info
->rhs
)
1794 && !targetm
.modes_tieable_p (new_mode
, store_mode
))
1797 if (multiple_p (shift
, GET_MODE_BITSIZE (new_mode
))
1798 && known_le (GET_MODE_SIZE (new_mode
), GET_MODE_SIZE (store_mode
)))
1800 /* Try to implement the shift using a subreg. */
1802 = subreg_offset_from_lsb (new_mode
, store_mode
, shift
);
1803 rtx rhs_subreg
= simplify_gen_subreg (new_mode
, store_info
->rhs
,
1804 store_mode
, offset
);
1808 = extract_low_bits (read_mode
, new_mode
, copy_rtx (rhs_subreg
));
1813 if (maybe_lt (GET_MODE_SIZE (new_mode
), access_bytes
))
1816 new_reg
= gen_reg_rtx (new_mode
);
1820 /* In theory we could also check for an ashr. Ian Taylor knows
1821 of one dsp where the cost of these two was not the same. But
1822 this really is a rare case anyway. */
1823 target
= expand_binop (new_mode
, lshr_optab
, new_reg
,
1824 gen_int_shift_amount (new_mode
, shift
),
1825 new_reg
, 1, OPTAB_DIRECT
);
1827 shift_seq
= get_insns ();
1830 if (target
!= new_reg
|| shift_seq
== NULL
)
1834 for (insn
= shift_seq
; insn
!= NULL_RTX
; insn
= NEXT_INSN (insn
))
1836 cost
+= insn_cost (insn
, speed
);
1838 /* The computation up to here is essentially independent
1839 of the arguments and could be precomputed. It may
1840 not be worth doing so. We could precompute if
1841 worthwhile or at least cache the results. The result
1842 technically depends on both SHIFT and ACCESS_BYTES,
1843 but in practice the answer will depend only on ACCESS_BYTES. */
1845 if (cost
> COSTS_N_INSNS (1))
1848 new_lhs
= extract_low_bits (new_mode
, store_mode
,
1849 copy_rtx (store_info
->rhs
));
1850 if (new_lhs
== NULL_RTX
)
1853 /* We found an acceptable shift. Generate a move to
1854 take the value from the store and put it into the
1855 shift pseudo, then shift it, then generate another
1856 move to put in into the target of the read. */
1857 emit_move_insn (new_reg
, new_lhs
);
1858 emit_insn (shift_seq
);
1859 read_reg
= extract_low_bits (read_mode
, new_mode
, new_reg
);
1867 /* Call back for note_stores to find the hard regs set or clobbered by
1868 insn. Data is a bitmap of the hardregs set so far. */
1871 look_for_hardregs (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
1873 bitmap regs_set
= (bitmap
) data
;
1876 && HARD_REGISTER_P (x
))
1877 bitmap_set_range (regs_set
, REGNO (x
), REG_NREGS (x
));
1880 /* Helper function for replace_read and record_store.
1881 Attempt to return a value of mode READ_MODE stored in STORE_INFO,
1882 consisting of READ_WIDTH bytes starting from READ_OFFSET. Return NULL
1883 if not successful. If REQUIRE_CST is true, return always constant. */
1886 get_stored_val (store_info
*store_info
, machine_mode read_mode
,
1887 poly_int64 read_offset
, poly_int64 read_width
,
1888 basic_block bb
, bool require_cst
)
1890 machine_mode store_mode
= GET_MODE (store_info
->mem
);
1894 /* To get here the read is within the boundaries of the write so
1895 shift will never be negative. Start out with the shift being in
1897 if (store_mode
== BLKmode
)
1899 else if (BYTES_BIG_ENDIAN
)
1900 gap
= ((store_info
->offset
+ store_info
->width
)
1901 - (read_offset
+ read_width
));
1903 gap
= read_offset
- store_info
->offset
;
1905 if (maybe_ne (gap
, 0))
1907 if (!gap
.is_constant ())
1910 poly_int64 shift
= gap
* BITS_PER_UNIT
;
1911 poly_int64 access_size
= GET_MODE_SIZE (read_mode
) + gap
;
1912 read_reg
= find_shift_sequence (access_size
, store_info
, read_mode
,
1913 shift
, optimize_bb_for_speed_p (bb
),
1916 else if (store_mode
== BLKmode
)
1918 /* The store is a memset (addr, const_val, const_size). */
1919 gcc_assert (CONST_INT_P (store_info
->rhs
));
1920 scalar_int_mode int_store_mode
;
1921 if (!int_mode_for_mode (read_mode
).exists (&int_store_mode
))
1922 read_reg
= NULL_RTX
;
1923 else if (store_info
->rhs
== const0_rtx
)
1924 read_reg
= extract_low_bits (read_mode
, int_store_mode
, const0_rtx
);
1925 else if (GET_MODE_BITSIZE (int_store_mode
) > HOST_BITS_PER_WIDE_INT
1926 || BITS_PER_UNIT
>= HOST_BITS_PER_WIDE_INT
)
1927 read_reg
= NULL_RTX
;
1930 unsigned HOST_WIDE_INT c
1931 = INTVAL (store_info
->rhs
)
1932 & ((HOST_WIDE_INT_1
<< BITS_PER_UNIT
) - 1);
1933 int shift
= BITS_PER_UNIT
;
1934 while (shift
< HOST_BITS_PER_WIDE_INT
)
1939 read_reg
= gen_int_mode (c
, int_store_mode
);
1940 read_reg
= extract_low_bits (read_mode
, int_store_mode
, read_reg
);
1943 else if (store_info
->const_rhs
1945 || GET_MODE_CLASS (read_mode
) != GET_MODE_CLASS (store_mode
)))
1946 read_reg
= extract_low_bits (read_mode
, store_mode
,
1947 copy_rtx (store_info
->const_rhs
));
1948 else if (VECTOR_MODE_P (read_mode
) && VECTOR_MODE_P (store_mode
)
1949 && known_le (GET_MODE_BITSIZE (read_mode
), GET_MODE_BITSIZE (store_mode
))
1950 && targetm
.modes_tieable_p (read_mode
, store_mode
)
1951 && validate_subreg (read_mode
, store_mode
, copy_rtx (store_info
->rhs
),
1952 subreg_lowpart_offset (read_mode
, store_mode
)))
1953 read_reg
= gen_lowpart (read_mode
, copy_rtx (store_info
->rhs
));
1955 read_reg
= extract_low_bits (read_mode
, store_mode
,
1956 copy_rtx (store_info
->rhs
));
1957 if (require_cst
&& read_reg
&& !CONSTANT_P (read_reg
))
1958 read_reg
= NULL_RTX
;
1962 /* Take a sequence of:
1985 Depending on the alignment and the mode of the store and
1989 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1990 and READ_INSN are for the read. Return true if the replacement
1994 replace_read (store_info
*store_info
, insn_info_t store_insn
,
1995 read_info_t read_info
, insn_info_t read_insn
, rtx
*loc
)
1997 machine_mode store_mode
= GET_MODE (store_info
->mem
);
1998 machine_mode read_mode
= GET_MODE (read_info
->mem
);
1999 rtx_insn
*insns
, *this_insn
;
2006 /* Create a sequence of instructions to set up the read register.
2007 This sequence goes immediately before the store and its result
2008 is read by the load.
2010 We need to keep this in perspective. We are replacing a read
2011 with a sequence of insns, but the read will almost certainly be
2012 in cache, so it is not going to be an expensive one. Thus, we
2013 are not willing to do a multi insn shift or worse a subroutine
2014 call to get rid of the read. */
2015 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2016 fprintf (dump_file
, "trying to replace %smode load in insn %d"
2017 " from %smode store in insn %d\n",
2018 GET_MODE_NAME (read_mode
), INSN_UID (read_insn
->insn
),
2019 GET_MODE_NAME (store_mode
), INSN_UID (store_insn
->insn
));
2021 bb
= BLOCK_FOR_INSN (read_insn
->insn
);
2022 read_reg
= get_stored_val (store_info
,
2023 read_mode
, read_info
->offset
, read_info
->width
,
2025 if (read_reg
== NULL_RTX
)
2028 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2029 fprintf (dump_file
, " -- could not extract bits of stored value\n");
2032 /* Force the value into a new register so that it won't be clobbered
2033 between the store and the load. */
2034 if (WORD_REGISTER_OPERATIONS
2035 && GET_CODE (read_reg
) == SUBREG
2036 && REG_P (SUBREG_REG (read_reg
))
2037 && GET_MODE (SUBREG_REG (read_reg
)) == word_mode
)
2039 /* For WORD_REGISTER_OPERATIONS with subreg of word_mode register
2040 force SUBREG_REG into a new register rather than the SUBREG. */
2041 rtx r
= copy_to_mode_reg (word_mode
, SUBREG_REG (read_reg
));
2042 read_reg
= shallow_copy_rtx (read_reg
);
2043 SUBREG_REG (read_reg
) = r
;
2046 read_reg
= copy_to_mode_reg (read_mode
, read_reg
);
2047 insns
= get_insns ();
2050 if (insns
!= NULL_RTX
)
2052 /* Now we have to scan the set of new instructions to see if the
2053 sequence contains and sets of hardregs that happened to be
2054 live at this point. For instance, this can happen if one of
2055 the insns sets the CC and the CC happened to be live at that
2056 point. This does occasionally happen, see PR 37922. */
2057 bitmap regs_set
= BITMAP_ALLOC (®_obstack
);
2059 for (this_insn
= insns
;
2060 this_insn
!= NULL_RTX
; this_insn
= NEXT_INSN (this_insn
))
2062 if (insn_invalid_p (this_insn
, false))
2064 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2066 fprintf (dump_file
, " -- replacing the loaded MEM with ");
2067 print_simple_rtl (dump_file
, read_reg
);
2068 fprintf (dump_file
, " led to an invalid instruction\n");
2070 BITMAP_FREE (regs_set
);
2073 note_stores (this_insn
, look_for_hardregs
, regs_set
);
2076 if (store_insn
->fixed_regs_live
)
2077 bitmap_and_into (regs_set
, store_insn
->fixed_regs_live
);
2078 if (!bitmap_empty_p (regs_set
))
2080 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2082 fprintf (dump_file
, "abandoning replacement because sequence "
2083 "clobbers live hardregs:");
2084 df_print_regset (dump_file
, regs_set
);
2087 BITMAP_FREE (regs_set
);
2090 BITMAP_FREE (regs_set
);
2093 subrtx_iterator::array_type array
;
2094 FOR_EACH_SUBRTX (iter
, array
, *loc
, NONCONST
)
2096 const_rtx x
= *iter
;
2097 if (GET_RTX_CLASS (GET_CODE (x
)) == RTX_AUTOINC
)
2099 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2100 fprintf (dump_file
, " -- replacing the MEM failed due to address "
2106 if (validate_change (read_insn
->insn
, loc
, read_reg
, 0))
2108 deferred_change
*change
= deferred_change_pool
.allocate ();
2110 /* Insert this right before the store insn where it will be safe
2111 from later insns that might change it before the read. */
2112 emit_insn_before (insns
, store_insn
->insn
);
2114 /* And now for the kludge part: cselib croaks if you just
2115 return at this point. There are two reasons for this:
2117 1) Cselib has an idea of how many pseudos there are and
2118 that does not include the new ones we just added.
2120 2) Cselib does not know about the move insn we added
2121 above the store_info, and there is no way to tell it
2122 about it, because it has "moved on".
2124 Problem (1) is fixable with a certain amount of engineering.
2125 Problem (2) is requires starting the bb from scratch. This
2128 So we are just going to have to lie. The move/extraction
2129 insns are not really an issue, cselib did not see them. But
2130 the use of the new pseudo read_insn is a real problem because
2131 cselib has not scanned this insn. The way that we solve this
2132 problem is that we are just going to put the mem back for now
2133 and when we are finished with the block, we undo this. We
2134 keep a table of mems to get rid of. At the end of the basic
2135 block we can put them back. */
2137 *loc
= read_info
->mem
;
2138 change
->next
= deferred_change_list
;
2139 deferred_change_list
= change
;
2141 change
->reg
= read_reg
;
2143 /* Get rid of the read_info, from the point of view of the
2144 rest of dse, play like this read never happened. */
2145 read_insn
->read_rec
= read_info
->next
;
2146 read_info_type_pool
.remove (read_info
);
2147 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2149 fprintf (dump_file
, " -- replaced the loaded MEM with ");
2150 print_simple_rtl (dump_file
, read_reg
);
2151 fprintf (dump_file
, "\n");
2157 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2159 fprintf (dump_file
, " -- replacing the loaded MEM with ");
2160 print_simple_rtl (dump_file
, read_reg
);
2161 fprintf (dump_file
, " led to an invalid instruction\n");
2167 /* Check the address of MEM *LOC and kill any appropriate stores that may
2171 check_mem_read_rtx (rtx
*loc
, bb_info_t bb_info
, bool used_in_call
= false)
2173 rtx mem
= *loc
, mem_addr
;
2174 insn_info_t insn_info
;
2175 poly_int64 offset
= 0;
2176 poly_int64 width
= 0;
2177 cselib_val
*base
= NULL
;
2179 read_info_t read_info
;
2181 insn_info
= bb_info
->last_insn
;
2183 if ((MEM_ALIAS_SET (mem
) == ALIAS_SET_MEMORY_BARRIER
)
2184 || MEM_VOLATILE_P (mem
))
2186 if (crtl
->stack_protect_guard
2187 && (MEM_EXPR (mem
) == crtl
->stack_protect_guard
2188 || (crtl
->stack_protect_guard_decl
2189 && MEM_EXPR (mem
) == crtl
->stack_protect_guard_decl
))
2190 && MEM_VOLATILE_P (mem
))
2192 /* This is either the stack protector canary on the stack,
2193 which ought to be written by a MEM_VOLATILE_P store and
2194 thus shouldn't be deleted and is read at the very end of
2195 function, but shouldn't conflict with any other store.
2196 Or it is __stack_chk_guard variable or TLS or whatever else
2197 MEM holding the canary value, which really shouldn't be
2198 ever modified in -fstack-protector* protected functions,
2199 otherwise the prologue store wouldn't match the epilogue
2201 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2202 fprintf (dump_file
, " stack protector canary read ignored.\n");
2203 insn_info
->cannot_delete
= true;
2207 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2208 fprintf (dump_file
, " adding wild read, volatile or barrier.\n");
2209 add_wild_read (bb_info
);
2210 insn_info
->cannot_delete
= true;
2214 /* If it is reading readonly mem, then there can be no conflict with
2216 if (MEM_READONLY_P (mem
))
2219 if (!canon_address (mem
, &group_id
, &offset
, &base
))
2221 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2222 fprintf (dump_file
, " adding wild read, canon_address failure.\n");
2223 add_wild_read (bb_info
);
2227 if (GET_MODE (mem
) == BLKmode
)
2230 width
= GET_MODE_SIZE (GET_MODE (mem
));
2232 if (!endpoint_representable_p (offset
, known_eq (width
, -1) ? 1 : width
))
2234 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2235 fprintf (dump_file
, " adding wild read, due to overflow.\n");
2236 add_wild_read (bb_info
);
2240 read_info
= read_info_type_pool
.allocate ();
2241 read_info
->group_id
= group_id
;
2242 read_info
->mem
= mem
;
2243 read_info
->offset
= offset
;
2244 read_info
->width
= width
;
2245 read_info
->next
= insn_info
->read_rec
;
2246 insn_info
->read_rec
= read_info
;
2248 mem_addr
= base
->val_rtx
;
2251 group_info
*group
= rtx_group_vec
[group_id
];
2252 mem_addr
= group
->canon_base_addr
;
2254 if (maybe_ne (offset
, 0))
2255 mem_addr
= plus_constant (get_address_mode (mem
), mem_addr
, offset
);
2256 /* Avoid passing VALUE RTXen as mem_addr to canon_true_dependence
2257 which will over and over re-create proper RTL and re-apply the
2258 offset above. See PR80960 where we almost allocate 1.6GB of PLUS
2260 mem_addr
= get_addr (mem_addr
);
2264 /* This is the restricted case where the base is a constant or
2265 the frame pointer and offset is a constant. */
2266 insn_info_t i_ptr
= active_local_stores
;
2267 insn_info_t last
= NULL
;
2269 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2271 if (!known_size_p (width
))
2272 fprintf (dump_file
, " processing const load gid=%d[BLK]\n",
2276 fprintf (dump_file
, " processing const load gid=%d", group_id
);
2277 print_range (dump_file
, offset
, width
);
2278 fprintf (dump_file
, "\n");
2284 bool remove
= false;
2285 store_info
*store_info
= i_ptr
->store_rec
;
2287 /* Skip the clobbers. */
2288 while (!store_info
->is_set
)
2289 store_info
= store_info
->next
;
2291 /* There are three cases here. */
2292 if (store_info
->group_id
< 0)
2293 /* We have a cselib store followed by a read from a
2296 = canon_true_dependence (store_info
->mem
,
2297 GET_MODE (store_info
->mem
),
2298 store_info
->mem_addr
,
2301 else if (group_id
== store_info
->group_id
)
2303 /* This is a block mode load. We may get lucky and
2304 canon_true_dependence may save the day. */
2305 if (!known_size_p (width
))
2307 = canon_true_dependence (store_info
->mem
,
2308 GET_MODE (store_info
->mem
),
2309 store_info
->mem_addr
,
2312 /* If this read is just reading back something that we just
2313 stored, rewrite the read. */
2318 && known_subrange_p (offset
, width
, store_info
->offset
,
2320 && all_positions_needed_p (store_info
,
2321 offset
- store_info
->offset
,
2323 && replace_read (store_info
, i_ptr
, read_info
,
2327 /* The bases are the same, just see if the offsets
2329 if (ranges_maybe_overlap_p (offset
, width
,
2337 The else case that is missing here is that the
2338 bases are constant but different. There is nothing
2339 to do here because there is no overlap. */
2343 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2344 dump_insn_info ("removing from active", i_ptr
);
2346 active_local_stores_len
--;
2348 last
->next_local_store
= i_ptr
->next_local_store
;
2350 active_local_stores
= i_ptr
->next_local_store
;
2354 i_ptr
= i_ptr
->next_local_store
;
2359 insn_info_t i_ptr
= active_local_stores
;
2360 insn_info_t last
= NULL
;
2361 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2363 fprintf (dump_file
, " processing cselib load mem:");
2364 print_inline_rtx (dump_file
, mem
, 0);
2365 fprintf (dump_file
, "\n");
2370 bool remove
= false;
2371 store_info
*store_info
= i_ptr
->store_rec
;
2373 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2374 fprintf (dump_file
, " processing cselib load against insn %d\n",
2375 INSN_UID (i_ptr
->insn
));
2377 /* Skip the clobbers. */
2378 while (!store_info
->is_set
)
2379 store_info
= store_info
->next
;
2381 /* If this read is just reading back something that we just
2382 stored, rewrite the read. */
2385 && store_info
->group_id
== -1
2386 && store_info
->cse_base
== base
2387 && known_subrange_p (offset
, width
, store_info
->offset
,
2389 && all_positions_needed_p (store_info
,
2390 offset
- store_info
->offset
, width
)
2391 && replace_read (store_info
, i_ptr
, read_info
, insn_info
, loc
))
2394 remove
= canon_true_dependence (store_info
->mem
,
2395 GET_MODE (store_info
->mem
),
2396 store_info
->mem_addr
,
2401 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2402 dump_insn_info ("removing from active", i_ptr
);
2404 active_local_stores_len
--;
2406 last
->next_local_store
= i_ptr
->next_local_store
;
2408 active_local_stores
= i_ptr
->next_local_store
;
2412 i_ptr
= i_ptr
->next_local_store
;
2417 /* A note_uses callback in which DATA points the INSN_INFO for
2418 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2419 true for any part of *LOC. */
2422 check_mem_read_use (rtx
*loc
, void *data
)
2424 subrtx_ptr_iterator::array_type array
;
2425 FOR_EACH_SUBRTX_PTR (iter
, array
, loc
, NONCONST
)
2429 check_mem_read_rtx (loc
, (bb_info_t
) data
);
2434 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2435 So far it only handles arguments passed in registers. */
2438 get_call_args (rtx call_insn
, tree fn
, rtx
*args
, int nargs
)
2440 CUMULATIVE_ARGS args_so_far_v
;
2441 cumulative_args_t args_so_far
;
2445 INIT_CUMULATIVE_ARGS (args_so_far_v
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
2446 args_so_far
= pack_cumulative_args (&args_so_far_v
);
2448 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
2450 arg
!= void_list_node
&& idx
< nargs
;
2451 arg
= TREE_CHAIN (arg
), idx
++)
2453 scalar_int_mode mode
;
2456 if (!is_int_mode (TYPE_MODE (TREE_VALUE (arg
)), &mode
))
2459 function_arg_info
arg (mode
, /*named=*/true);
2460 reg
= targetm
.calls
.function_arg (args_so_far
, arg
);
2461 if (!reg
|| !REG_P (reg
) || GET_MODE (reg
) != mode
)
2464 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
);
2466 link
= XEXP (link
, 1))
2467 if (GET_CODE (XEXP (link
, 0)) == USE
)
2469 scalar_int_mode arg_mode
;
2470 args
[idx
] = XEXP (XEXP (link
, 0), 0);
2471 if (REG_P (args
[idx
])
2472 && REGNO (args
[idx
]) == REGNO (reg
)
2473 && (GET_MODE (args
[idx
]) == mode
2474 || (is_int_mode (GET_MODE (args
[idx
]), &arg_mode
)
2475 && (GET_MODE_SIZE (arg_mode
) <= UNITS_PER_WORD
)
2476 && (GET_MODE_SIZE (arg_mode
) > GET_MODE_SIZE (mode
)))))
2482 tmp
= cselib_expand_value_rtx (args
[idx
], scratch
, 5);
2483 if (GET_MODE (args
[idx
]) != mode
)
2485 if (!tmp
|| !CONST_INT_P (tmp
))
2487 tmp
= gen_int_mode (INTVAL (tmp
), mode
);
2492 targetm
.calls
.function_arg_advance (args_so_far
, arg
);
2494 if (arg
!= void_list_node
|| idx
!= nargs
)
2499 /* Return a bitmap of the fixed registers contained in IN. */
2502 copy_fixed_regs (const_bitmap in
)
2506 ret
= ALLOC_REG_SET (NULL
);
2507 bitmap_and (ret
, in
, bitmap_view
<HARD_REG_SET
> (fixed_reg_set
));
2511 /* Apply record_store to all candidate stores in INSN. Mark INSN
2512 if some part of it is not a candidate store and assigns to a
2513 non-register target. */
2516 scan_insn (bb_info_t bb_info
, rtx_insn
*insn
, int max_active_local_stores
)
2519 insn_info_type
*insn_info
= insn_info_type_pool
.allocate ();
2521 memset (insn_info
, 0, sizeof (struct insn_info_type
));
2523 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2524 fprintf (dump_file
, "\n**scanning insn=%d\n",
2527 insn_info
->prev_insn
= bb_info
->last_insn
;
2528 insn_info
->insn
= insn
;
2529 bb_info
->last_insn
= insn_info
;
2531 if (DEBUG_INSN_P (insn
))
2533 insn_info
->cannot_delete
= true;
2537 /* Look at all of the uses in the insn. */
2538 note_uses (&PATTERN (insn
), check_mem_read_use
, bb_info
);
2544 tree memset_call
= NULL_TREE
;
2546 insn_info
->cannot_delete
= true;
2548 /* Const functions cannot do anything bad i.e. read memory,
2549 however, they can read their parameters which may have
2550 been pushed onto the stack.
2551 memset and bzero don't read memory either. */
2552 const_call
= RTL_CONST_CALL_P (insn
);
2554 && (call
= get_call_rtx_from (insn
))
2555 && (sym
= XEXP (XEXP (call
, 0), 0))
2556 && GET_CODE (sym
) == SYMBOL_REF
2557 && SYMBOL_REF_DECL (sym
)
2558 && TREE_CODE (SYMBOL_REF_DECL (sym
)) == FUNCTION_DECL
2559 && fndecl_built_in_p (SYMBOL_REF_DECL (sym
), BUILT_IN_MEMSET
))
2560 memset_call
= SYMBOL_REF_DECL (sym
);
2562 if (const_call
|| memset_call
)
2564 insn_info_t i_ptr
= active_local_stores
;
2565 insn_info_t last
= NULL
;
2567 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2568 fprintf (dump_file
, "%s call %d\n",
2569 const_call
? "const" : "memset", INSN_UID (insn
));
2571 /* See the head comment of the frame_read field. */
2572 if (reload_completed
2573 /* Tail calls are storing their arguments using
2574 arg pointer. If it is a frame pointer on the target,
2575 even before reload we need to kill frame pointer based
2577 || (SIBLING_CALL_P (insn
)
2578 && HARD_FRAME_POINTER_IS_ARG_POINTER
))
2579 insn_info
->frame_read
= true;
2581 /* Loop over the active stores and remove those which are
2582 killed by the const function call. */
2585 bool remove_store
= false;
2587 /* The stack pointer based stores are always killed. */
2588 if (i_ptr
->stack_pointer_based
)
2589 remove_store
= true;
2591 /* If the frame is read, the frame related stores are killed. */
2592 else if (insn_info
->frame_read
)
2594 store_info
*store_info
= i_ptr
->store_rec
;
2596 /* Skip the clobbers. */
2597 while (!store_info
->is_set
)
2598 store_info
= store_info
->next
;
2600 if (store_info
->group_id
>= 0
2601 && rtx_group_vec
[store_info
->group_id
]->frame_related
)
2602 remove_store
= true;
2607 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2608 dump_insn_info ("removing from active", i_ptr
);
2610 active_local_stores_len
--;
2612 last
->next_local_store
= i_ptr
->next_local_store
;
2614 active_local_stores
= i_ptr
->next_local_store
;
2619 i_ptr
= i_ptr
->next_local_store
;
2625 if (get_call_args (insn
, memset_call
, args
, 3)
2626 && CONST_INT_P (args
[1])
2627 && CONST_INT_P (args
[2])
2628 && INTVAL (args
[2]) > 0)
2630 rtx mem
= gen_rtx_MEM (BLKmode
, args
[0]);
2631 set_mem_size (mem
, INTVAL (args
[2]));
2632 body
= gen_rtx_SET (mem
, args
[1]);
2633 mems_found
+= record_store (body
, bb_info
);
2634 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2635 fprintf (dump_file
, "handling memset as BLKmode store\n");
2636 if (mems_found
== 1)
2638 if (active_local_stores_len
++ >= max_active_local_stores
)
2640 active_local_stores_len
= 1;
2641 active_local_stores
= NULL
;
2643 insn_info
->fixed_regs_live
2644 = copy_fixed_regs (bb_info
->regs_live
);
2645 insn_info
->next_local_store
= active_local_stores
;
2646 active_local_stores
= insn_info
;
2650 clear_rhs_from_active_local_stores ();
2653 else if (SIBLING_CALL_P (insn
)
2654 && (reload_completed
|| HARD_FRAME_POINTER_IS_ARG_POINTER
))
2655 /* Arguments for a sibling call that are pushed to memory are passed
2656 using the incoming argument pointer of the current function. After
2657 reload that might be (and likely is) frame pointer based. And, if
2658 it is a frame pointer on the target, even before reload we need to
2659 kill frame pointer based stores. */
2660 add_wild_read (bb_info
);
2662 /* Every other call, including pure functions, may read any memory
2663 that is not relative to the frame. */
2664 add_non_frame_wild_read (bb_info
);
2666 for (rtx link
= CALL_INSN_FUNCTION_USAGE (insn
);
2668 link
= XEXP (link
, 1))
2669 if (GET_CODE (XEXP (link
, 0)) == USE
&& MEM_P (XEXP (XEXP (link
, 0),0)))
2670 check_mem_read_rtx (&XEXP (XEXP (link
, 0),0), bb_info
, true);
2675 /* Assuming that there are sets in these insns, we cannot delete
2677 if ((GET_CODE (PATTERN (insn
)) == CLOBBER
)
2678 || volatile_refs_p (PATTERN (insn
))
2679 || (!cfun
->can_delete_dead_exceptions
&& !insn_nothrow_p (insn
))
2680 || (RTX_FRAME_RELATED_P (insn
))
2681 || find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
))
2682 insn_info
->cannot_delete
= true;
2684 body
= PATTERN (insn
);
2685 if (GET_CODE (body
) == PARALLEL
)
2688 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
2689 mems_found
+= record_store (XVECEXP (body
, 0, i
), bb_info
);
2692 mems_found
+= record_store (body
, bb_info
);
2694 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2695 fprintf (dump_file
, "mems_found = %d, cannot_delete = %s\n",
2696 mems_found
, insn_info
->cannot_delete
? "true" : "false");
2698 /* If we found some sets of mems, add it into the active_local_stores so
2699 that it can be locally deleted if found dead or used for
2700 replace_read and redundant constant store elimination. Otherwise mark
2701 it as cannot delete. This simplifies the processing later. */
2702 if (mems_found
== 1)
2704 if (active_local_stores_len
++ >= max_active_local_stores
)
2706 active_local_stores_len
= 1;
2707 active_local_stores
= NULL
;
2709 insn_info
->fixed_regs_live
= copy_fixed_regs (bb_info
->regs_live
);
2710 insn_info
->next_local_store
= active_local_stores
;
2711 active_local_stores
= insn_info
;
2714 insn_info
->cannot_delete
= true;
2718 /* Remove BASE from the set of active_local_stores. This is a
2719 callback from cselib that is used to get rid of the stores in
2720 active_local_stores. */
2723 remove_useless_values (cselib_val
*base
)
2725 insn_info_t insn_info
= active_local_stores
;
2726 insn_info_t last
= NULL
;
2730 store_info
*store_info
= insn_info
->store_rec
;
2733 /* If ANY of the store_infos match the cselib group that is
2734 being deleted, then the insn cannot be deleted. */
2737 if ((store_info
->group_id
== -1)
2738 && (store_info
->cse_base
== base
))
2743 store_info
= store_info
->next
;
2748 active_local_stores_len
--;
2750 last
->next_local_store
= insn_info
->next_local_store
;
2752 active_local_stores
= insn_info
->next_local_store
;
2753 free_store_info (insn_info
);
2758 insn_info
= insn_info
->next_local_store
;
2763 /* Do all of step 1. */
2769 bitmap regs_live
= BITMAP_ALLOC (®_obstack
);
2772 all_blocks
= BITMAP_ALLOC (NULL
);
2773 bitmap_set_bit (all_blocks
, ENTRY_BLOCK
);
2774 bitmap_set_bit (all_blocks
, EXIT_BLOCK
);
2776 /* For -O1 reduce the maximum number of active local stores for RTL DSE
2777 since this can consume huge amounts of memory (PR89115). */
2778 int max_active_local_stores
= param_max_dse_active_local_stores
;
2780 max_active_local_stores
/= 10;
2782 FOR_ALL_BB_FN (bb
, cfun
)
2785 bb_info_t bb_info
= dse_bb_info_type_pool
.allocate ();
2787 memset (bb_info
, 0, sizeof (dse_bb_info_type
));
2788 bitmap_set_bit (all_blocks
, bb
->index
);
2789 bb_info
->regs_live
= regs_live
;
2791 bitmap_copy (regs_live
, DF_LR_IN (bb
));
2792 df_simulate_initialize_forwards (bb
, regs_live
);
2794 bb_table
[bb
->index
] = bb_info
;
2795 cselib_discard_hook
= remove_useless_values
;
2797 if (bb
->index
>= NUM_FIXED_BLOCKS
)
2801 active_local_stores
= NULL
;
2802 active_local_stores_len
= 0;
2803 cselib_clear_table ();
2805 /* Scan the insns. */
2806 FOR_BB_INSNS (bb
, insn
)
2809 scan_insn (bb_info
, insn
, max_active_local_stores
);
2810 cselib_process_insn (insn
);
2812 df_simulate_one_insn_forwards (bb
, insn
, regs_live
);
2815 /* This is something of a hack, because the global algorithm
2816 is supposed to take care of the case where stores go dead
2817 at the end of the function. However, the global
2818 algorithm must take a more conservative view of block
2819 mode reads than the local alg does. So to get the case
2820 where you have a store to the frame followed by a non
2821 overlapping block more read, we look at the active local
2822 stores at the end of the function and delete all of the
2823 frame and spill based ones. */
2824 if (stores_off_frame_dead_at_return
2825 && (EDGE_COUNT (bb
->succs
) == 0
2826 || (single_succ_p (bb
)
2827 && single_succ (bb
) == EXIT_BLOCK_PTR_FOR_FN (cfun
)
2828 && ! crtl
->calls_eh_return
)))
2830 insn_info_t i_ptr
= active_local_stores
;
2833 store_info
*store_info
= i_ptr
->store_rec
;
2835 /* Skip the clobbers. */
2836 while (!store_info
->is_set
)
2837 store_info
= store_info
->next
;
2838 if (store_info
->group_id
>= 0)
2840 group_info
*group
= rtx_group_vec
[store_info
->group_id
];
2841 if (group
->frame_related
&& !i_ptr
->cannot_delete
)
2842 delete_dead_store_insn (i_ptr
);
2845 i_ptr
= i_ptr
->next_local_store
;
2849 /* Get rid of the loads that were discovered in
2850 replace_read. Cselib is finished with this block. */
2851 while (deferred_change_list
)
2853 deferred_change
*next
= deferred_change_list
->next
;
2855 /* There is no reason to validate this change. That was
2857 *deferred_change_list
->loc
= deferred_change_list
->reg
;
2858 deferred_change_pool
.remove (deferred_change_list
);
2859 deferred_change_list
= next
;
2862 /* Get rid of all of the cselib based store_infos in this
2863 block and mark the containing insns as not being
2865 ptr
= bb_info
->last_insn
;
2868 if (ptr
->contains_cselib_groups
)
2870 store_info
*s_info
= ptr
->store_rec
;
2871 while (s_info
&& !s_info
->is_set
)
2872 s_info
= s_info
->next
;
2874 && s_info
->redundant_reason
2875 && s_info
->redundant_reason
->insn
2876 && !ptr
->cannot_delete
)
2878 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2879 fprintf (dump_file
, "Locally deleting insn %d "
2880 "because insn %d stores the "
2881 "same value and couldn't be "
2883 INSN_UID (ptr
->insn
),
2884 INSN_UID (s_info
->redundant_reason
->insn
));
2885 delete_dead_store_insn (ptr
);
2887 free_store_info (ptr
);
2893 /* Free at least positions_needed bitmaps. */
2894 for (s_info
= ptr
->store_rec
; s_info
; s_info
= s_info
->next
)
2895 if (s_info
->is_large
)
2897 BITMAP_FREE (s_info
->positions_needed
.large
.bmap
);
2898 s_info
->is_large
= false;
2901 ptr
= ptr
->prev_insn
;
2904 cse_store_info_pool
.release ();
2906 bb_info
->regs_live
= NULL
;
2909 BITMAP_FREE (regs_live
);
2911 rtx_group_table
->empty ();
2915 /*----------------------------------------------------------------------------
2918 Assign each byte position in the stores that we are going to
2919 analyze globally to a position in the bitmaps. Returns true if
2920 there are any bit positions assigned.
2921 ----------------------------------------------------------------------------*/
2924 dse_step2_init (void)
2929 FOR_EACH_VEC_ELT (rtx_group_vec
, i
, group
)
2931 /* For all non stack related bases, we only consider a store to
2932 be deletable if there are two or more stores for that
2933 position. This is because it takes one store to make the
2934 other store redundant. However, for the stores that are
2935 stack related, we consider them if there is only one store
2936 for the position. We do this because the stack related
2937 stores can be deleted if their is no read between them and
2938 the end of the function.
2940 To make this work in the current framework, we take the stack
2941 related bases add all of the bits from store1 into store2.
2942 This has the effect of making the eligible even if there is
2945 if (stores_off_frame_dead_at_return
&& group
->frame_related
)
2947 bitmap_ior_into (group
->store2_n
, group
->store1_n
);
2948 bitmap_ior_into (group
->store2_p
, group
->store1_p
);
2949 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2950 fprintf (dump_file
, "group %d is frame related ", i
);
2953 group
->offset_map_size_n
++;
2954 group
->offset_map_n
= XOBNEWVEC (&dse_obstack
, int,
2955 group
->offset_map_size_n
);
2956 group
->offset_map_size_p
++;
2957 group
->offset_map_p
= XOBNEWVEC (&dse_obstack
, int,
2958 group
->offset_map_size_p
);
2959 group
->process_globally
= false;
2960 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2962 fprintf (dump_file
, "group %d(%d+%d): ", i
,
2963 (int)bitmap_count_bits (group
->store2_n
),
2964 (int)bitmap_count_bits (group
->store2_p
));
2965 bitmap_print (dump_file
, group
->store2_n
, "n ", " ");
2966 bitmap_print (dump_file
, group
->store2_p
, "p ", "\n");
2972 /* Init the offset tables. */
2979 /* Position 0 is unused because 0 is used in the maps to mean
2981 current_position
= 1;
2982 FOR_EACH_VEC_ELT (rtx_group_vec
, i
, group
)
2987 memset (group
->offset_map_n
, 0, sizeof (int) * group
->offset_map_size_n
);
2988 memset (group
->offset_map_p
, 0, sizeof (int) * group
->offset_map_size_p
);
2989 bitmap_clear (group
->group_kill
);
2991 EXECUTE_IF_SET_IN_BITMAP (group
->store2_n
, 0, j
, bi
)
2993 bitmap_set_bit (group
->group_kill
, current_position
);
2994 if (bitmap_bit_p (group
->escaped_n
, j
))
2995 bitmap_set_bit (kill_on_calls
, current_position
);
2996 group
->offset_map_n
[j
] = current_position
++;
2997 group
->process_globally
= true;
2999 EXECUTE_IF_SET_IN_BITMAP (group
->store2_p
, 0, j
, bi
)
3001 bitmap_set_bit (group
->group_kill
, current_position
);
3002 if (bitmap_bit_p (group
->escaped_p
, j
))
3003 bitmap_set_bit (kill_on_calls
, current_position
);
3004 group
->offset_map_p
[j
] = current_position
++;
3005 group
->process_globally
= true;
3008 return current_position
!= 1;
3013 /*----------------------------------------------------------------------------
3016 Build the bit vectors for the transfer functions.
3017 ----------------------------------------------------------------------------*/
3020 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
3024 get_bitmap_index (group_info
*group_info
, HOST_WIDE_INT offset
)
3028 HOST_WIDE_INT offset_p
= -offset
;
3029 if (offset_p
>= group_info
->offset_map_size_n
)
3031 return group_info
->offset_map_n
[offset_p
];
3035 if (offset
>= group_info
->offset_map_size_p
)
3037 return group_info
->offset_map_p
[offset
];
3042 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3046 scan_stores (store_info
*store_info
, bitmap gen
, bitmap kill
)
3050 HOST_WIDE_INT i
, offset
, width
;
3051 group_info
*group_info
3052 = rtx_group_vec
[store_info
->group_id
];
3053 /* We can (conservatively) ignore stores whose bounds aren't known;
3054 they simply don't generate new global dse opportunities. */
3055 if (group_info
->process_globally
3056 && store_info
->offset
.is_constant (&offset
)
3057 && store_info
->width
.is_constant (&width
))
3059 HOST_WIDE_INT end
= offset
+ width
;
3060 for (i
= offset
; i
< end
; i
++)
3062 int index
= get_bitmap_index (group_info
, i
);
3065 bitmap_set_bit (gen
, index
);
3067 bitmap_clear_bit (kill
, index
);
3071 store_info
= store_info
->next
;
3076 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3080 scan_reads (insn_info_t insn_info
, bitmap gen
, bitmap kill
)
3082 read_info_t read_info
= insn_info
->read_rec
;
3086 /* If this insn reads the frame, kill all the frame related stores. */
3087 if (insn_info
->frame_read
)
3089 FOR_EACH_VEC_ELT (rtx_group_vec
, i
, group
)
3090 if (group
->process_globally
&& group
->frame_related
)
3093 bitmap_ior_into (kill
, group
->group_kill
);
3094 bitmap_and_compl_into (gen
, group
->group_kill
);
3097 if (insn_info
->non_frame_wild_read
)
3099 /* Kill all non-frame related stores. Kill all stores of variables that
3102 bitmap_ior_into (kill
, kill_on_calls
);
3103 bitmap_and_compl_into (gen
, kill_on_calls
);
3104 FOR_EACH_VEC_ELT (rtx_group_vec
, i
, group
)
3105 if (group
->process_globally
&& !group
->frame_related
)
3108 bitmap_ior_into (kill
, group
->group_kill
);
3109 bitmap_and_compl_into (gen
, group
->group_kill
);
3114 FOR_EACH_VEC_ELT (rtx_group_vec
, i
, group
)
3116 if (group
->process_globally
)
3118 if (i
== read_info
->group_id
)
3120 HOST_WIDE_INT offset
, width
;
3121 /* Reads with non-constant size kill all DSE opportunities
3123 if (!read_info
->offset
.is_constant (&offset
)
3124 || !read_info
->width
.is_constant (&width
)
3125 || !known_size_p (width
))
3127 /* Handle block mode reads. */
3129 bitmap_ior_into (kill
, group
->group_kill
);
3130 bitmap_and_compl_into (gen
, group
->group_kill
);
3134 /* The groups are the same, just process the
3137 HOST_WIDE_INT end
= offset
+ width
;
3138 for (j
= offset
; j
< end
; j
++)
3140 int index
= get_bitmap_index (group
, j
);
3144 bitmap_set_bit (kill
, index
);
3145 bitmap_clear_bit (gen
, index
);
3152 /* The groups are different, if the alias sets
3153 conflict, clear the entire group. We only need
3154 to apply this test if the read_info is a cselib
3155 read. Anything with a constant base cannot alias
3156 something else with a different constant
3158 if ((read_info
->group_id
< 0)
3159 && canon_true_dependence (group
->base_mem
,
3160 GET_MODE (group
->base_mem
),
3161 group
->canon_base_addr
,
3162 read_info
->mem
, NULL_RTX
))
3165 bitmap_ior_into (kill
, group
->group_kill
);
3166 bitmap_and_compl_into (gen
, group
->group_kill
);
3172 read_info
= read_info
->next
;
3177 /* Return the insn in BB_INFO before the first wild read or if there
3178 are no wild reads in the block, return the last insn. */
3181 find_insn_before_first_wild_read (bb_info_t bb_info
)
3183 insn_info_t insn_info
= bb_info
->last_insn
;
3184 insn_info_t last_wild_read
= NULL
;
3188 if (insn_info
->wild_read
)
3190 last_wild_read
= insn_info
->prev_insn
;
3191 /* Block starts with wild read. */
3192 if (!last_wild_read
)
3196 insn_info
= insn_info
->prev_insn
;
3200 return last_wild_read
;
3202 return bb_info
->last_insn
;
3206 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3207 the block in order to build the gen and kill sets for the block.
3208 We start at ptr which may be the last insn in the block or may be
3209 the first insn with a wild read. In the latter case we are able to
3210 skip the rest of the block because it just does not matter:
3211 anything that happens is hidden by the wild read. */
3214 dse_step3_scan (basic_block bb
)
3216 bb_info_t bb_info
= bb_table
[bb
->index
];
3217 insn_info_t insn_info
;
3219 insn_info
= find_insn_before_first_wild_read (bb_info
);
3221 /* In the spill case or in the no_spill case if there is no wild
3222 read in the block, we will need a kill set. */
3223 if (insn_info
== bb_info
->last_insn
)
3226 bitmap_clear (bb_info
->kill
);
3228 bb_info
->kill
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3232 BITMAP_FREE (bb_info
->kill
);
3236 /* There may have been code deleted by the dce pass run before
3238 if (insn_info
->insn
&& INSN_P (insn_info
->insn
))
3240 scan_stores (insn_info
->store_rec
, bb_info
->gen
, bb_info
->kill
);
3241 scan_reads (insn_info
, bb_info
->gen
, bb_info
->kill
);
3244 insn_info
= insn_info
->prev_insn
;
3249 /* Set the gen set of the exit block, and also any block with no
3250 successors that does not have a wild read. */
3253 dse_step3_exit_block_scan (bb_info_t bb_info
)
3255 /* The gen set is all 0's for the exit block except for the
3256 frame_pointer_group. */
3258 if (stores_off_frame_dead_at_return
)
3263 FOR_EACH_VEC_ELT (rtx_group_vec
, i
, group
)
3265 if (group
->process_globally
&& group
->frame_related
)
3266 bitmap_ior_into (bb_info
->gen
, group
->group_kill
);
3272 /* Find all of the blocks that are not backwards reachable from the
3273 exit block or any block with no successors (BB). These are the
3274 infinite loops or infinite self loops. These blocks will still
3275 have their bits set in UNREACHABLE_BLOCKS. */
3278 mark_reachable_blocks (sbitmap unreachable_blocks
, basic_block bb
)
3283 if (bitmap_bit_p (unreachable_blocks
, bb
->index
))
3285 bitmap_clear_bit (unreachable_blocks
, bb
->index
);
3286 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3288 mark_reachable_blocks (unreachable_blocks
, e
->src
);
3293 /* Build the transfer functions for the function. */
3299 sbitmap_iterator sbi
;
3300 bitmap all_ones
= NULL
;
3303 auto_sbitmap
unreachable_blocks (last_basic_block_for_fn (cfun
));
3304 bitmap_ones (unreachable_blocks
);
3306 FOR_ALL_BB_FN (bb
, cfun
)
3308 bb_info_t bb_info
= bb_table
[bb
->index
];
3310 bitmap_clear (bb_info
->gen
);
3312 bb_info
->gen
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3314 if (bb
->index
== ENTRY_BLOCK
)
3316 else if (bb
->index
== EXIT_BLOCK
)
3317 dse_step3_exit_block_scan (bb_info
);
3319 dse_step3_scan (bb
);
3320 if (EDGE_COUNT (bb
->succs
) == 0)
3321 mark_reachable_blocks (unreachable_blocks
, bb
);
3323 /* If this is the second time dataflow is run, delete the old
3326 BITMAP_FREE (bb_info
->in
);
3328 BITMAP_FREE (bb_info
->out
);
3331 /* For any block in an infinite loop, we must initialize the out set
3332 to all ones. This could be expensive, but almost never occurs in
3333 practice. However, it is common in regression tests. */
3334 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks
, 0, i
, sbi
)
3336 if (bitmap_bit_p (all_blocks
, i
))
3338 bb_info_t bb_info
= bb_table
[i
];
3344 all_ones
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3345 FOR_EACH_VEC_ELT (rtx_group_vec
, j
, group
)
3346 bitmap_ior_into (all_ones
, group
->group_kill
);
3350 bb_info
->out
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3351 bitmap_copy (bb_info
->out
, all_ones
);
3357 BITMAP_FREE (all_ones
);
3362 /*----------------------------------------------------------------------------
3365 Solve the bitvector equations.
3366 ----------------------------------------------------------------------------*/
3369 /* Confluence function for blocks with no successors. Create an out
3370 set from the gen set of the exit block. This block logically has
3371 the exit block as a successor. */
3376 dse_confluence_0 (basic_block bb
)
3378 bb_info_t bb_info
= bb_table
[bb
->index
];
3380 if (bb
->index
== EXIT_BLOCK
)
3385 bb_info
->out
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3386 bitmap_copy (bb_info
->out
, bb_table
[EXIT_BLOCK
]->gen
);
3390 /* Propagate the information from the in set of the dest of E to the
3391 out set of the src of E. If the various in or out sets are not
3392 there, that means they are all ones. */
3395 dse_confluence_n (edge e
)
3397 bb_info_t src_info
= bb_table
[e
->src
->index
];
3398 bb_info_t dest_info
= bb_table
[e
->dest
->index
];
3403 bitmap_and_into (src_info
->out
, dest_info
->in
);
3406 src_info
->out
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3407 bitmap_copy (src_info
->out
, dest_info
->in
);
3414 /* Propagate the info from the out to the in set of BB_INDEX's basic
3415 block. There are three cases:
3417 1) The block has no kill set. In this case the kill set is all
3418 ones. It does not matter what the out set of the block is, none of
3419 the info can reach the top. The only thing that reaches the top is
3420 the gen set and we just copy the set.
3422 2) There is a kill set but no out set and bb has successors. In
3423 this case we just return. Eventually an out set will be created and
3424 it is better to wait than to create a set of ones.
3426 3) There is both a kill and out set. We apply the obvious transfer
3431 dse_transfer_function (int bb_index
)
3433 bb_info_t bb_info
= bb_table
[bb_index
];
3441 return bitmap_ior_and_compl (bb_info
->in
, bb_info
->gen
,
3442 bb_info
->out
, bb_info
->kill
);
3445 bb_info
->in
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3446 bitmap_ior_and_compl (bb_info
->in
, bb_info
->gen
,
3447 bb_info
->out
, bb_info
->kill
);
3457 /* Case 1 above. If there is already an in set, nothing
3463 bb_info
->in
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3464 bitmap_copy (bb_info
->in
, bb_info
->gen
);
3470 /* Solve the dataflow equations. */
3475 df_simple_dataflow (DF_BACKWARD
, NULL
, dse_confluence_0
,
3476 dse_confluence_n
, dse_transfer_function
,
3477 all_blocks
, df_get_postorder (DF_BACKWARD
),
3478 df_get_n_blocks (DF_BACKWARD
));
3479 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3483 fprintf (dump_file
, "\n\n*** Global dataflow info after analysis.\n");
3484 FOR_ALL_BB_FN (bb
, cfun
)
3486 bb_info_t bb_info
= bb_table
[bb
->index
];
3488 df_print_bb_index (bb
, dump_file
);
3490 bitmap_print (dump_file
, bb_info
->in
, " in: ", "\n");
3492 fprintf (dump_file
, " in: *MISSING*\n");
3494 bitmap_print (dump_file
, bb_info
->gen
, " gen: ", "\n");
3496 fprintf (dump_file
, " gen: *MISSING*\n");
3498 bitmap_print (dump_file
, bb_info
->kill
, " kill: ", "\n");
3500 fprintf (dump_file
, " kill: *MISSING*\n");
3502 bitmap_print (dump_file
, bb_info
->out
, " out: ", "\n");
3504 fprintf (dump_file
, " out: *MISSING*\n\n");
3511 /*----------------------------------------------------------------------------
3514 Delete the stores that can only be deleted using the global information.
3515 ----------------------------------------------------------------------------*/
3522 FOR_EACH_BB_FN (bb
, cfun
)
3524 bb_info_t bb_info
= bb_table
[bb
->index
];
3525 insn_info_t insn_info
= bb_info
->last_insn
;
3526 bitmap v
= bb_info
->out
;
3530 bool deleted
= false;
3531 if (dump_file
&& insn_info
->insn
)
3533 fprintf (dump_file
, "starting to process insn %d\n",
3534 INSN_UID (insn_info
->insn
));
3535 bitmap_print (dump_file
, v
, " v: ", "\n");
3538 /* There may have been code deleted by the dce pass run before
3541 && INSN_P (insn_info
->insn
)
3542 && (!insn_info
->cannot_delete
)
3543 && (!bitmap_empty_p (v
)))
3545 store_info
*store_info
= insn_info
->store_rec
;
3547 /* Try to delete the current insn. */
3550 /* Skip the clobbers. */
3551 while (!store_info
->is_set
)
3552 store_info
= store_info
->next
;
3554 HOST_WIDE_INT i
, offset
, width
;
3555 group_info
*group_info
= rtx_group_vec
[store_info
->group_id
];
3557 if (!store_info
->offset
.is_constant (&offset
)
3558 || !store_info
->width
.is_constant (&width
))
3562 HOST_WIDE_INT end
= offset
+ width
;
3563 for (i
= offset
; i
< end
; i
++)
3565 int index
= get_bitmap_index (group_info
, i
);
3567 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3568 fprintf (dump_file
, "i = %d, index = %d\n",
3570 if (index
== 0 || !bitmap_bit_p (v
, index
))
3572 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3573 fprintf (dump_file
, "failing at i = %d\n",
3583 && check_for_inc_dec_1 (insn_info
))
3585 delete_insn (insn_info
->insn
);
3586 insn_info
->insn
= NULL
;
3591 /* We do want to process the local info if the insn was
3592 deleted. For instance, if the insn did a wild read, we
3593 no longer need to trash the info. */
3595 && INSN_P (insn_info
->insn
)
3598 scan_stores (insn_info
->store_rec
, v
, NULL
);
3599 if (insn_info
->wild_read
)
3601 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3602 fprintf (dump_file
, "wild read\n");
3605 else if (insn_info
->read_rec
3606 || insn_info
->non_frame_wild_read
3607 || insn_info
->frame_read
)
3609 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3611 if (!insn_info
->non_frame_wild_read
3612 && !insn_info
->frame_read
)
3613 fprintf (dump_file
, "regular read\n");
3614 if (insn_info
->non_frame_wild_read
)
3615 fprintf (dump_file
, "non-frame wild read\n");
3616 if (insn_info
->frame_read
)
3617 fprintf (dump_file
, "frame read\n");
3619 scan_reads (insn_info
, v
, NULL
);
3623 insn_info
= insn_info
->prev_insn
;
3630 /*----------------------------------------------------------------------------
3633 Delete stores made redundant by earlier stores (which store the same
3634 value) that couldn't be eliminated.
3635 ----------------------------------------------------------------------------*/
3642 FOR_ALL_BB_FN (bb
, cfun
)
3644 bb_info_t bb_info
= bb_table
[bb
->index
];
3645 insn_info_t insn_info
= bb_info
->last_insn
;
3649 /* There may have been code deleted by the dce pass run before
3652 && INSN_P (insn_info
->insn
)
3653 && !insn_info
->cannot_delete
)
3655 store_info
*s_info
= insn_info
->store_rec
;
3657 while (s_info
&& !s_info
->is_set
)
3658 s_info
= s_info
->next
;
3660 && s_info
->redundant_reason
3661 && s_info
->redundant_reason
->insn
3662 && INSN_P (s_info
->redundant_reason
->insn
))
3664 rtx_insn
*rinsn
= s_info
->redundant_reason
->insn
;
3665 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3666 fprintf (dump_file
, "Locally deleting insn %d "
3667 "because insn %d stores the "
3668 "same value and couldn't be "
3670 INSN_UID (insn_info
->insn
),
3672 delete_dead_store_insn (insn_info
);
3675 insn_info
= insn_info
->prev_insn
;
3680 /*----------------------------------------------------------------------------
3683 Destroy everything left standing.
3684 ----------------------------------------------------------------------------*/
3689 bitmap_obstack_release (&dse_bitmap_obstack
);
3690 obstack_free (&dse_obstack
, NULL
);
3692 end_alias_analysis ();
3694 delete rtx_group_table
;
3695 rtx_group_table
= NULL
;
3696 rtx_group_vec
.release ();
3697 BITMAP_FREE (all_blocks
);
3698 BITMAP_FREE (scratch
);
3700 rtx_store_info_pool
.release ();
3701 read_info_type_pool
.release ();
3702 insn_info_type_pool
.release ();
3703 dse_bb_info_type_pool
.release ();
3704 group_info_pool
.release ();
3705 deferred_change_pool
.release ();
3709 /* -------------------------------------------------------------------------
3711 ------------------------------------------------------------------------- */
3713 /* Callback for running pass_rtl_dse. */
3716 rest_of_handle_dse (void)
3718 df_set_flags (DF_DEFER_INSN_RESCAN
);
3720 /* Need the notes since we must track live hardregs in the forwards
3722 df_note_add_problem ();
3727 /* DSE can eliminate potentially-trapping MEMs.
3728 Remove any EH edges associated with them, since otherwise
3729 DF_LR_RUN_DCE will complain later. */
3730 if ((locally_deleted
|| globally_deleted
)
3731 && cfun
->can_throw_non_call_exceptions
3732 && purge_all_dead_edges ())
3734 free_dominance_info (CDI_DOMINATORS
);
3735 delete_unreachable_blocks ();
3740 df_set_flags (DF_LR_RUN_DCE
);
3742 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3743 fprintf (dump_file
, "doing global processing\n");
3753 fprintf (dump_file
, "dse: local deletions = %d, global deletions = %d\n",
3754 locally_deleted
, globally_deleted
);
3756 /* DSE can eliminate potentially-trapping MEMs.
3757 Remove any EH edges associated with them. */
3758 if ((locally_deleted
|| globally_deleted
)
3759 && cfun
->can_throw_non_call_exceptions
3760 && purge_all_dead_edges ())
3762 free_dominance_info (CDI_DOMINATORS
);
3771 const pass_data pass_data_rtl_dse1
=
3773 RTL_PASS
, /* type */
3775 OPTGROUP_NONE
, /* optinfo_flags */
3776 TV_DSE1
, /* tv_id */
3777 0, /* properties_required */
3778 0, /* properties_provided */
3779 0, /* properties_destroyed */
3780 0, /* todo_flags_start */
3781 TODO_df_finish
, /* todo_flags_finish */
3784 class pass_rtl_dse1
: public rtl_opt_pass
3787 pass_rtl_dse1 (gcc::context
*ctxt
)
3788 : rtl_opt_pass (pass_data_rtl_dse1
, ctxt
)
3791 /* opt_pass methods: */
3792 bool gate (function
*) final override
3794 return optimize
> 0 && flag_dse
&& dbg_cnt (dse1
);
3797 unsigned int execute (function
*) final override
3799 return rest_of_handle_dse ();
3802 }; // class pass_rtl_dse1
3807 make_pass_rtl_dse1 (gcc::context
*ctxt
)
3809 return new pass_rtl_dse1 (ctxt
);
3814 const pass_data pass_data_rtl_dse2
=
3816 RTL_PASS
, /* type */
3818 OPTGROUP_NONE
, /* optinfo_flags */
3819 TV_DSE2
, /* tv_id */
3820 0, /* properties_required */
3821 0, /* properties_provided */
3822 0, /* properties_destroyed */
3823 0, /* todo_flags_start */
3824 TODO_df_finish
, /* todo_flags_finish */
3827 class pass_rtl_dse2
: public rtl_opt_pass
3830 pass_rtl_dse2 (gcc::context
*ctxt
)
3831 : rtl_opt_pass (pass_data_rtl_dse2
, ctxt
)
3834 /* opt_pass methods: */
3835 bool gate (function
*) final override
3837 return optimize
> 0 && flag_dse
&& dbg_cnt (dse2
);
3840 unsigned int execute (function
*) final override
3842 return rest_of_handle_dse ();
3845 }; // class pass_rtl_dse2
3850 make_pass_rtl_dse2 (gcc::context
*ctxt
)
3852 return new pass_rtl_dse2 (ctxt
);