1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987-2024 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Work around tree-optimization/91825. */
22 #pragma GCC diagnostic warning "-Wmaybe-uninitialized"
26 #include "coretypes.h"
38 #include "diagnostic-core.h"
39 #include "fold-const.h"
40 #include "stor-layout.h"
44 #include "langhooks.h"
45 #include "tree-vector-builder.h"
48 struct target_expmed default_target_expmed
;
50 struct target_expmed
*this_target_expmed
= &default_target_expmed
;
53 static bool store_integral_bit_field (rtx
, opt_scalar_int_mode
,
54 unsigned HOST_WIDE_INT
,
55 unsigned HOST_WIDE_INT
,
56 poly_uint64
, poly_uint64
,
57 machine_mode
, rtx
, bool, bool);
58 static void store_fixed_bit_field (rtx
, opt_scalar_int_mode
,
59 unsigned HOST_WIDE_INT
,
60 unsigned HOST_WIDE_INT
,
61 poly_uint64
, poly_uint64
,
62 rtx
, scalar_int_mode
, bool);
63 static void store_fixed_bit_field_1 (rtx
, scalar_int_mode
,
64 unsigned HOST_WIDE_INT
,
65 unsigned HOST_WIDE_INT
,
66 rtx
, scalar_int_mode
, bool);
67 static void store_split_bit_field (rtx
, opt_scalar_int_mode
,
68 unsigned HOST_WIDE_INT
,
69 unsigned HOST_WIDE_INT
,
70 poly_uint64
, poly_uint64
,
71 rtx
, scalar_int_mode
, bool);
72 static rtx
extract_integral_bit_field (rtx
, opt_scalar_int_mode
,
73 unsigned HOST_WIDE_INT
,
74 unsigned HOST_WIDE_INT
, int, rtx
,
75 machine_mode
, machine_mode
, bool, bool);
76 static rtx
extract_fixed_bit_field (machine_mode
, rtx
, opt_scalar_int_mode
,
77 unsigned HOST_WIDE_INT
,
78 unsigned HOST_WIDE_INT
, rtx
, int, bool);
79 static rtx
extract_fixed_bit_field_1 (machine_mode
, rtx
, scalar_int_mode
,
80 unsigned HOST_WIDE_INT
,
81 unsigned HOST_WIDE_INT
, rtx
, int, bool);
82 static rtx
lshift_value (machine_mode
, unsigned HOST_WIDE_INT
, int);
83 static rtx
extract_split_bit_field (rtx
, opt_scalar_int_mode
,
84 unsigned HOST_WIDE_INT
,
85 unsigned HOST_WIDE_INT
, int, bool);
86 static void do_cmp_and_jump (rtx
, rtx
, enum rtx_code
, machine_mode
, rtx_code_label
*);
87 static rtx
expand_smod_pow2 (scalar_int_mode
, rtx
, HOST_WIDE_INT
);
88 static rtx
expand_sdiv_pow2 (scalar_int_mode
, rtx
, HOST_WIDE_INT
);
90 /* Return a constant integer mask value of mode MODE with BITSIZE ones
91 followed by BITPOS zeros, or the complement of that if COMPLEMENT.
92 The mask is truncated if necessary to the width of mode MODE. The
93 mask is zero-extended if BITSIZE+BITPOS is too small for MODE. */
96 mask_rtx (scalar_int_mode mode
, int bitpos
, int bitsize
, bool complement
)
98 return immed_wide_int_const
99 (wi::shifted_mask (bitpos
, bitsize
, complement
,
100 GET_MODE_PRECISION (mode
)), mode
);
103 /* Test whether a value is zero of a power of two. */
104 #define EXACT_POWER_OF_2_OR_ZERO_P(x) \
105 (((x) & ((x) - HOST_WIDE_INT_1U)) == 0)
107 struct init_expmed_rtl
128 rtx pow2
[MAX_BITS_PER_WORD
];
129 rtx cint
[MAX_BITS_PER_WORD
];
133 init_expmed_one_conv (struct init_expmed_rtl
*all
, scalar_int_mode to_mode
,
134 scalar_int_mode from_mode
, bool speed
)
136 int to_size
, from_size
;
139 to_size
= GET_MODE_PRECISION (to_mode
);
140 from_size
= GET_MODE_PRECISION (from_mode
);
142 /* Most partial integers have a precision less than the "full"
143 integer it requires for storage. In case one doesn't, for
144 comparison purposes here, reduce the bit size by one in that
146 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
147 && pow2p_hwi (to_size
))
149 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
150 && pow2p_hwi (from_size
))
153 /* Assume cost of zero-extend and sign-extend is the same. */
154 which
= (to_size
< from_size
? all
->trunc
: all
->zext
);
156 PUT_MODE (all
->reg
, from_mode
);
157 set_convert_cost (to_mode
, from_mode
, speed
,
158 set_src_cost (which
, to_mode
, speed
));
159 /* Restore all->reg's mode. */
160 PUT_MODE (all
->reg
, to_mode
);
164 init_expmed_one_mode (struct init_expmed_rtl
*all
,
165 machine_mode mode
, int speed
)
167 int m
, n
, mode_bitsize
;
168 machine_mode mode_from
;
170 mode_bitsize
= GET_MODE_UNIT_BITSIZE (mode
);
172 PUT_MODE (all
->reg
, mode
);
173 PUT_MODE (all
->plus
, mode
);
174 PUT_MODE (all
->neg
, mode
);
175 PUT_MODE (all
->mult
, mode
);
176 PUT_MODE (all
->sdiv
, mode
);
177 PUT_MODE (all
->udiv
, mode
);
178 PUT_MODE (all
->sdiv_32
, mode
);
179 PUT_MODE (all
->smod_32
, mode
);
180 PUT_MODE (all
->wide_trunc
, mode
);
181 PUT_MODE (all
->shift
, mode
);
182 PUT_MODE (all
->shift_mult
, mode
);
183 PUT_MODE (all
->shift_add
, mode
);
184 PUT_MODE (all
->shift_sub0
, mode
);
185 PUT_MODE (all
->shift_sub1
, mode
);
186 PUT_MODE (all
->zext
, mode
);
187 PUT_MODE (all
->trunc
, mode
);
189 set_add_cost (speed
, mode
, set_src_cost (all
->plus
, mode
, speed
));
190 set_neg_cost (speed
, mode
, set_src_cost (all
->neg
, mode
, speed
));
191 set_mul_cost (speed
, mode
, set_src_cost (all
->mult
, mode
, speed
));
192 set_sdiv_cost (speed
, mode
, set_src_cost (all
->sdiv
, mode
, speed
));
193 set_udiv_cost (speed
, mode
, set_src_cost (all
->udiv
, mode
, speed
));
195 set_sdiv_pow2_cheap (speed
, mode
, (set_src_cost (all
->sdiv_32
, mode
, speed
)
196 <= 2 * add_cost (speed
, mode
)));
197 set_smod_pow2_cheap (speed
, mode
, (set_src_cost (all
->smod_32
, mode
, speed
)
198 <= 4 * add_cost (speed
, mode
)));
200 set_shift_cost (speed
, mode
, 0, 0);
202 int cost
= add_cost (speed
, mode
);
203 set_shiftadd_cost (speed
, mode
, 0, cost
);
204 set_shiftsub0_cost (speed
, mode
, 0, cost
);
205 set_shiftsub1_cost (speed
, mode
, 0, cost
);
208 n
= MIN (MAX_BITS_PER_WORD
, mode_bitsize
);
209 for (m
= 1; m
< n
; m
++)
211 XEXP (all
->shift
, 1) = all
->cint
[m
];
212 XEXP (all
->shift_mult
, 1) = all
->pow2
[m
];
214 set_shift_cost (speed
, mode
, m
, set_src_cost (all
->shift
, mode
, speed
));
215 set_shiftadd_cost (speed
, mode
, m
, set_src_cost (all
->shift_add
, mode
,
217 set_shiftsub0_cost (speed
, mode
, m
, set_src_cost (all
->shift_sub0
, mode
,
219 set_shiftsub1_cost (speed
, mode
, m
, set_src_cost (all
->shift_sub1
, mode
,
223 scalar_int_mode int_mode_to
;
224 if (is_a
<scalar_int_mode
> (mode
, &int_mode_to
))
226 for (mode_from
= MIN_MODE_INT
; mode_from
<= MAX_MODE_INT
;
227 mode_from
= (machine_mode
)(mode_from
+ 1))
228 init_expmed_one_conv (all
, int_mode_to
,
229 as_a
<scalar_int_mode
> (mode_from
), speed
);
231 scalar_int_mode wider_mode
;
232 if (GET_MODE_CLASS (int_mode_to
) == MODE_INT
233 && GET_MODE_WIDER_MODE (int_mode_to
).exists (&wider_mode
))
235 PUT_MODE (all
->reg
, mode
);
236 PUT_MODE (all
->zext
, wider_mode
);
237 PUT_MODE (all
->wide_mult
, wider_mode
);
238 PUT_MODE (all
->wide_lshr
, wider_mode
);
239 XEXP (all
->wide_lshr
, 1)
240 = gen_int_shift_amount (wider_mode
, mode_bitsize
);
242 set_mul_widen_cost (speed
, wider_mode
,
243 set_src_cost (all
->wide_mult
, wider_mode
, speed
));
244 set_mul_highpart_cost (speed
, int_mode_to
,
245 set_src_cost (all
->wide_trunc
,
246 int_mode_to
, speed
));
254 struct init_expmed_rtl all
;
255 machine_mode mode
= QImode
;
258 memset (&all
, 0, sizeof all
);
259 for (m
= 1; m
< MAX_BITS_PER_WORD
; m
++)
261 all
.pow2
[m
] = GEN_INT (HOST_WIDE_INT_1
<< m
);
262 all
.cint
[m
] = GEN_INT (m
);
265 /* Avoid using hard regs in ways which may be unsupported. */
266 all
.reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
267 all
.plus
= gen_rtx_PLUS (mode
, all
.reg
, all
.reg
);
268 all
.neg
= gen_rtx_NEG (mode
, all
.reg
);
269 all
.mult
= gen_rtx_MULT (mode
, all
.reg
, all
.reg
);
270 all
.sdiv
= gen_rtx_DIV (mode
, all
.reg
, all
.reg
);
271 all
.udiv
= gen_rtx_UDIV (mode
, all
.reg
, all
.reg
);
272 all
.sdiv_32
= gen_rtx_DIV (mode
, all
.reg
, all
.pow2
[5]);
273 all
.smod_32
= gen_rtx_MOD (mode
, all
.reg
, all
.pow2
[5]);
274 all
.zext
= gen_rtx_ZERO_EXTEND (mode
, all
.reg
);
275 all
.wide_mult
= gen_rtx_MULT (mode
, all
.zext
, all
.zext
);
276 all
.wide_lshr
= gen_rtx_LSHIFTRT (mode
, all
.wide_mult
, all
.reg
);
277 all
.wide_trunc
= gen_rtx_TRUNCATE (mode
, all
.wide_lshr
);
278 all
.shift
= gen_rtx_ASHIFT (mode
, all
.reg
, all
.reg
);
279 all
.shift_mult
= gen_rtx_MULT (mode
, all
.reg
, all
.reg
);
280 all
.shift_add
= gen_rtx_PLUS (mode
, all
.shift_mult
, all
.reg
);
281 all
.shift_sub0
= gen_rtx_MINUS (mode
, all
.shift_mult
, all
.reg
);
282 all
.shift_sub1
= gen_rtx_MINUS (mode
, all
.reg
, all
.shift_mult
);
283 all
.trunc
= gen_rtx_TRUNCATE (mode
, all
.reg
);
285 for (speed
= 0; speed
< 2; speed
++)
287 crtl
->maybe_hot_insn_p
= speed
;
288 set_zero_cost (speed
, set_src_cost (const0_rtx
, mode
, speed
));
290 for (mode
= MIN_MODE_INT
; mode
<= MAX_MODE_INT
;
291 mode
= (machine_mode
)(mode
+ 1))
292 init_expmed_one_mode (&all
, mode
, speed
);
294 if (MIN_MODE_PARTIAL_INT
!= VOIDmode
)
295 for (mode
= MIN_MODE_PARTIAL_INT
; mode
<= MAX_MODE_PARTIAL_INT
;
296 mode
= (machine_mode
)(mode
+ 1))
297 init_expmed_one_mode (&all
, mode
, speed
);
299 if (MIN_MODE_VECTOR_INT
!= VOIDmode
)
300 for (mode
= MIN_MODE_VECTOR_INT
; mode
<= MAX_MODE_VECTOR_INT
;
301 mode
= (machine_mode
)(mode
+ 1))
302 init_expmed_one_mode (&all
, mode
, speed
);
305 if (alg_hash_used_p ())
307 struct alg_hash_entry
*p
= alg_hash_entry_ptr (0);
308 memset (p
, 0, sizeof (*p
) * NUM_ALG_HASH_ENTRIES
);
311 set_alg_hash_used_p (true);
312 default_rtl_profile ();
314 ggc_free (all
.trunc
);
315 ggc_free (all
.shift_sub1
);
316 ggc_free (all
.shift_sub0
);
317 ggc_free (all
.shift_add
);
318 ggc_free (all
.shift_mult
);
319 ggc_free (all
.shift
);
320 ggc_free (all
.wide_trunc
);
321 ggc_free (all
.wide_lshr
);
322 ggc_free (all
.wide_mult
);
324 ggc_free (all
.smod_32
);
325 ggc_free (all
.sdiv_32
);
334 /* Return an rtx representing minus the value of X.
335 MODE is the intended mode of the result,
336 useful if X is a CONST_INT. */
339 negate_rtx (machine_mode mode
, rtx x
)
341 rtx result
= simplify_unary_operation (NEG
, mode
, x
, mode
);
344 result
= expand_unop (mode
, neg_optab
, x
, NULL_RTX
, 0);
349 /* Whether reverse storage order is supported on the target. */
350 static int reverse_storage_order_supported
= -1;
352 /* Check whether reverse storage order is supported on the target. */
355 check_reverse_storage_order_support (void)
357 if (BYTES_BIG_ENDIAN
!= WORDS_BIG_ENDIAN
)
359 reverse_storage_order_supported
= 0;
360 sorry ("reverse scalar storage order");
363 reverse_storage_order_supported
= 1;
366 /* Whether reverse FP storage order is supported on the target. */
367 static int reverse_float_storage_order_supported
= -1;
369 /* Check whether reverse FP storage order is supported on the target. */
372 check_reverse_float_storage_order_support (void)
374 if (FLOAT_WORDS_BIG_ENDIAN
!= WORDS_BIG_ENDIAN
)
376 reverse_float_storage_order_supported
= 0;
377 sorry ("reverse floating-point scalar storage order");
380 reverse_float_storage_order_supported
= 1;
383 /* Return an rtx representing value of X with reverse storage order.
384 MODE is the intended mode of the result,
385 useful if X is a CONST_INT. */
388 flip_storage_order (machine_mode mode
, rtx x
)
390 scalar_int_mode int_mode
;
396 if (COMPLEX_MODE_P (mode
))
398 rtx real
= read_complex_part (x
, false);
399 rtx imag
= read_complex_part (x
, true);
401 real
= flip_storage_order (GET_MODE_INNER (mode
), real
);
402 imag
= flip_storage_order (GET_MODE_INNER (mode
), imag
);
404 return gen_rtx_CONCAT (mode
, real
, imag
);
407 if (UNLIKELY (reverse_storage_order_supported
< 0))
408 check_reverse_storage_order_support ();
410 if (!is_a
<scalar_int_mode
> (mode
, &int_mode
))
412 if (FLOAT_MODE_P (mode
)
413 && UNLIKELY (reverse_float_storage_order_supported
< 0))
414 check_reverse_float_storage_order_support ();
416 if (!int_mode_for_size (GET_MODE_PRECISION (mode
), 0).exists (&int_mode
)
417 || !targetm
.scalar_mode_supported_p (int_mode
))
419 sorry ("reverse storage order for %smode", GET_MODE_NAME (mode
));
422 x
= gen_lowpart (int_mode
, x
);
425 result
= simplify_unary_operation (BSWAP
, int_mode
, x
, int_mode
);
427 result
= expand_unop (int_mode
, bswap_optab
, x
, NULL_RTX
, 1);
429 if (int_mode
!= mode
)
430 result
= gen_lowpart (mode
, result
);
435 /* If MODE is set, adjust bitfield memory MEM so that it points to the
436 first unit of mode MODE that contains a bitfield of size BITSIZE at
437 bit position BITNUM. If MODE is not set, return a BLKmode reference
438 to every byte in the bitfield. Set *NEW_BITNUM to the bit position
439 of the field within the new memory. */
442 narrow_bit_field_mem (rtx mem
, opt_scalar_int_mode mode
,
443 unsigned HOST_WIDE_INT bitsize
,
444 unsigned HOST_WIDE_INT bitnum
,
445 unsigned HOST_WIDE_INT
*new_bitnum
)
447 scalar_int_mode imode
;
448 if (mode
.exists (&imode
))
450 unsigned int unit
= GET_MODE_BITSIZE (imode
);
451 *new_bitnum
= bitnum
% unit
;
452 HOST_WIDE_INT offset
= (bitnum
- *new_bitnum
) / BITS_PER_UNIT
;
453 return adjust_bitfield_address (mem
, imode
, offset
);
457 *new_bitnum
= bitnum
% BITS_PER_UNIT
;
458 HOST_WIDE_INT offset
= bitnum
/ BITS_PER_UNIT
;
459 HOST_WIDE_INT size
= ((*new_bitnum
+ bitsize
+ BITS_PER_UNIT
- 1)
461 return adjust_bitfield_address_size (mem
, BLKmode
, offset
, size
);
465 /* The caller wants to perform insertion or extraction PATTERN on a
466 bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
467 BITREGION_START and BITREGION_END are as for store_bit_field
468 and FIELDMODE is the natural mode of the field.
470 Search for a mode that is compatible with the memory access
471 restrictions and (where applicable) with a register insertion or
472 extraction. Return the new memory on success, storing the adjusted
473 bit position in *NEW_BITNUM. Return null otherwise. */
476 adjust_bit_field_mem_for_reg (enum extraction_pattern pattern
,
477 rtx op0
, HOST_WIDE_INT bitsize
,
478 HOST_WIDE_INT bitnum
,
479 poly_uint64 bitregion_start
,
480 poly_uint64 bitregion_end
,
481 machine_mode fieldmode
,
482 unsigned HOST_WIDE_INT
*new_bitnum
)
484 bit_field_mode_iterator
iter (bitsize
, bitnum
, bitregion_start
,
485 bitregion_end
, MEM_ALIGN (op0
),
486 MEM_VOLATILE_P (op0
));
487 scalar_int_mode best_mode
;
488 if (iter
.next_mode (&best_mode
))
490 /* We can use a memory in BEST_MODE. See whether this is true for
491 any wider modes. All other things being equal, we prefer to
492 use the widest mode possible because it tends to expose more
493 CSE opportunities. */
494 if (!iter
.prefer_smaller_modes ())
496 /* Limit the search to the mode required by the corresponding
497 register insertion or extraction instruction, if any. */
498 scalar_int_mode limit_mode
= word_mode
;
499 extraction_insn insn
;
500 if (get_best_reg_extraction_insn (&insn
, pattern
,
501 GET_MODE_BITSIZE (best_mode
),
503 limit_mode
= insn
.field_mode
;
505 scalar_int_mode wider_mode
;
506 while (iter
.next_mode (&wider_mode
)
507 && GET_MODE_SIZE (wider_mode
) <= GET_MODE_SIZE (limit_mode
))
508 best_mode
= wider_mode
;
510 return narrow_bit_field_mem (op0
, best_mode
, bitsize
, bitnum
,
516 /* Return true if a bitfield of size BITSIZE at bit number BITNUM within
517 a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
518 offset is then BITNUM / BITS_PER_UNIT. */
521 lowpart_bit_field_p (poly_uint64 bitnum
, poly_uint64 bitsize
,
522 machine_mode struct_mode
)
524 poly_uint64 regsize
= REGMODE_NATURAL_SIZE (struct_mode
);
525 if (BYTES_BIG_ENDIAN
)
526 return (multiple_p (bitnum
, BITS_PER_UNIT
)
527 && (known_eq (bitnum
+ bitsize
, GET_MODE_BITSIZE (struct_mode
))
528 || multiple_p (bitnum
+ bitsize
,
529 regsize
* BITS_PER_UNIT
)));
531 return multiple_p (bitnum
, regsize
* BITS_PER_UNIT
);
534 /* Return true if -fstrict-volatile-bitfields applies to an access of OP0
535 containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
536 Return false if the access would touch memory outside the range
537 BITREGION_START to BITREGION_END for conformance to the C++ memory
541 strict_volatile_bitfield_p (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
542 unsigned HOST_WIDE_INT bitnum
,
543 scalar_int_mode fieldmode
,
544 poly_uint64 bitregion_start
,
545 poly_uint64 bitregion_end
)
547 unsigned HOST_WIDE_INT modesize
= GET_MODE_BITSIZE (fieldmode
);
549 /* -fstrict-volatile-bitfields must be enabled and we must have a
552 || !MEM_VOLATILE_P (op0
)
553 || flag_strict_volatile_bitfields
<= 0)
556 /* The bit size must not be larger than the field mode, and
557 the field mode must not be larger than a word. */
558 if (bitsize
> modesize
|| modesize
> BITS_PER_WORD
)
561 /* Check for cases of unaligned fields that must be split. */
562 if (bitnum
% modesize
+ bitsize
> modesize
)
565 /* The memory must be sufficiently aligned for a MODESIZE access.
566 This condition guarantees, that the memory access will not
567 touch anything after the end of the structure. */
568 if (MEM_ALIGN (op0
) < modesize
)
571 /* Check for cases where the C++ memory model applies. */
572 if (maybe_ne (bitregion_end
, 0U)
573 && (maybe_lt (bitnum
- bitnum
% modesize
, bitregion_start
)
574 || maybe_gt (bitnum
- bitnum
% modesize
+ modesize
- 1,
581 /* Return true if OP is a memory and if a bitfield of size BITSIZE at
582 bit number BITNUM can be treated as a simple value of mode MODE.
583 Store the byte offset in *BYTENUM if so. */
586 simple_mem_bitfield_p (rtx op0
, poly_uint64 bitsize
, poly_uint64 bitnum
,
587 machine_mode mode
, poly_uint64
*bytenum
)
590 && multiple_p (bitnum
, BITS_PER_UNIT
, bytenum
)
591 && known_eq (bitsize
, GET_MODE_BITSIZE (mode
))
592 && (!targetm
.slow_unaligned_access (mode
, MEM_ALIGN (op0
))
593 || (multiple_p (bitnum
, GET_MODE_ALIGNMENT (mode
))
594 && MEM_ALIGN (op0
) >= GET_MODE_ALIGNMENT (mode
))));
597 /* Try to use instruction INSV to store VALUE into a field of OP0.
598 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is a
599 BLKmode MEM. VALUE_MODE is the mode of VALUE. BITSIZE and BITNUM
600 are as for store_bit_field. */
603 store_bit_field_using_insv (const extraction_insn
*insv
, rtx op0
,
604 opt_scalar_int_mode op0_mode
,
605 unsigned HOST_WIDE_INT bitsize
,
606 unsigned HOST_WIDE_INT bitnum
,
607 rtx value
, scalar_int_mode value_mode
)
609 class expand_operand ops
[4];
612 rtx_insn
*last
= get_last_insn ();
613 bool copy_back
= false;
615 scalar_int_mode op_mode
= insv
->field_mode
;
616 unsigned int unit
= GET_MODE_BITSIZE (op_mode
);
617 if (bitsize
== 0 || bitsize
> unit
)
621 /* Get a reference to the first byte of the field. */
622 xop0
= narrow_bit_field_mem (xop0
, insv
->struct_mode
, bitsize
, bitnum
,
626 /* Convert from counting within OP0 to counting in OP_MODE. */
627 if (BYTES_BIG_ENDIAN
)
628 bitnum
+= unit
- GET_MODE_BITSIZE (op0_mode
.require ());
630 /* If xop0 is a register, we need it in OP_MODE
631 to make it acceptable to the format of insv. */
632 if (GET_CODE (xop0
) == SUBREG
)
634 /* If such a SUBREG can't be created, give up. */
635 if (!validate_subreg (op_mode
, GET_MODE (SUBREG_REG (xop0
)),
636 SUBREG_REG (xop0
), SUBREG_BYTE (xop0
)))
638 /* We can't just change the mode, because this might clobber op0,
639 and we will need the original value of op0 if insv fails. */
640 xop0
= gen_rtx_SUBREG (op_mode
, SUBREG_REG (xop0
),
643 if (REG_P (xop0
) && GET_MODE (xop0
) != op_mode
)
644 xop0
= gen_lowpart_SUBREG (op_mode
, xop0
);
647 /* If the destination is a paradoxical subreg such that we need a
648 truncate to the inner mode, perform the insertion on a temporary and
649 truncate the result to the original destination. Note that we can't
650 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
651 X) 0)) is (reg:N X). */
652 if (GET_CODE (xop0
) == SUBREG
653 && REG_P (SUBREG_REG (xop0
))
654 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0
)),
657 rtx tem
= gen_reg_rtx (op_mode
);
658 emit_move_insn (tem
, xop0
);
663 /* There are similar overflow check at the start of store_bit_field_1,
664 but that only check the situation where the field lies completely
665 outside the register, while there do have situation where the field
666 lies partialy in the register, we need to adjust bitsize for this
667 partial overflow situation. Without this fix, pr48335-2.c on big-endian
668 will broken on those arch support bit insert instruction, like arm, aarch64
670 if (bitsize
+ bitnum
> unit
&& bitnum
< unit
)
672 warning (OPT_Wextra
, "write of %wu-bit data outside the bound of "
673 "destination object, data truncated into %wu-bit",
674 bitsize
, unit
- bitnum
);
675 bitsize
= unit
- bitnum
;
678 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
679 "backwards" from the size of the unit we are inserting into.
680 Otherwise, we count bits from the most significant on a
681 BYTES/BITS_BIG_ENDIAN machine. */
683 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
684 bitnum
= unit
- bitsize
- bitnum
;
686 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
688 if (value_mode
!= op_mode
)
690 if (GET_MODE_BITSIZE (value_mode
) >= bitsize
)
693 /* Optimization: Don't bother really extending VALUE
694 if it has all the bits we will actually use. However,
695 if we must narrow it, be sure we do it correctly. */
697 if (GET_MODE_SIZE (value_mode
) < GET_MODE_SIZE (op_mode
))
699 tmp
= simplify_subreg (op_mode
, value1
, value_mode
, 0);
701 tmp
= simplify_gen_subreg (op_mode
,
702 force_reg (value_mode
, value1
),
707 if (targetm
.mode_rep_extended (op_mode
, value_mode
) != UNKNOWN
)
708 tmp
= simplify_gen_unary (TRUNCATE
, op_mode
,
712 tmp
= gen_lowpart_if_possible (op_mode
, value1
);
714 tmp
= gen_lowpart (op_mode
, force_reg (value_mode
, value1
));
719 else if (CONST_INT_P (value
))
720 value1
= gen_int_mode (INTVAL (value
), op_mode
);
722 /* Parse phase is supposed to make VALUE's data type
723 match that of the component reference, which is a type
724 at least as wide as the field; so VALUE should have
725 a mode that corresponds to that type. */
726 gcc_assert (CONSTANT_P (value
));
729 create_fixed_operand (&ops
[0], xop0
);
730 create_integer_operand (&ops
[1], bitsize
);
731 create_integer_operand (&ops
[2], bitnum
);
732 create_input_operand (&ops
[3], value1
, op_mode
);
733 if (maybe_expand_insn (insv
->icode
, 4, ops
))
736 convert_move (op0
, xop0
, true);
739 delete_insns_since (last
);
743 /* A subroutine of store_bit_field, with the same arguments. Return true
744 if the operation could be implemented.
746 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
747 no other way of implementing the operation. If FALLBACK_P is false,
748 return false instead.
750 if UNDEFINED_P is true then STR_RTX is undefined and may be set using
754 store_bit_field_1 (rtx str_rtx
, poly_uint64 bitsize
, poly_uint64 bitnum
,
755 poly_uint64 bitregion_start
, poly_uint64 bitregion_end
,
756 machine_mode fieldmode
,
757 rtx value
, bool reverse
, bool fallback_p
, bool undefined_p
)
761 while (GET_CODE (op0
) == SUBREG
)
763 bitnum
+= subreg_memory_offset (op0
) * BITS_PER_UNIT
;
764 op0
= SUBREG_REG (op0
);
767 /* No action is needed if the target is a register and if the field
768 lies completely outside that register. This can occur if the source
769 code contains an out-of-bounds access to a small array. */
770 if (REG_P (op0
) && known_ge (bitnum
, GET_MODE_BITSIZE (GET_MODE (op0
))))
773 /* Use vec_set patterns for inserting parts of vectors whenever
775 machine_mode outermode
= GET_MODE (op0
);
776 scalar_mode innermode
= GET_MODE_INNER (outermode
);
778 if (VECTOR_MODE_P (outermode
)
780 && optab_handler (vec_set_optab
, outermode
) != CODE_FOR_nothing
781 && fieldmode
== innermode
782 && known_eq (bitsize
, GET_MODE_PRECISION (innermode
))
783 && multiple_p (bitnum
, GET_MODE_PRECISION (innermode
), &pos
))
785 class expand_operand ops
[3];
786 enum insn_code icode
= optab_handler (vec_set_optab
, outermode
);
788 create_fixed_operand (&ops
[0], op0
);
789 create_input_operand (&ops
[1], value
, innermode
);
790 create_integer_operand (&ops
[2], pos
);
791 if (maybe_expand_insn (icode
, 3, ops
))
795 /* If the target is a register, overwriting the entire object, or storing
796 a full-word or multi-word field can be done with just a SUBREG. */
798 && known_eq (bitsize
, GET_MODE_BITSIZE (fieldmode
)))
800 /* Use the subreg machinery either to narrow OP0 to the required
801 words or to cope with mode punning between equal-sized modes.
802 In the latter case, use subreg on the rhs side, not lhs. */
805 poly_uint64 regsize
= REGMODE_NATURAL_SIZE (GET_MODE (op0
));
806 if (known_eq (bitnum
, 0U)
807 && known_eq (bitsize
, GET_MODE_BITSIZE (GET_MODE (op0
))))
809 sub
= force_subreg (GET_MODE (op0
), value
, fieldmode
, 0);
813 sub
= flip_storage_order (GET_MODE (op0
), sub
);
814 emit_move_insn (op0
, sub
);
818 else if (multiple_p (bitnum
, BITS_PER_UNIT
, &bytenum
)
820 || (multiple_p (bitnum
, regsize
* BITS_PER_UNIT
)
821 && multiple_p (bitsize
, regsize
* BITS_PER_UNIT
)))
822 && known_ge (GET_MODE_BITSIZE (GET_MODE (op0
)), bitsize
))
824 sub
= simplify_gen_subreg (fieldmode
, op0
, GET_MODE (op0
), bytenum
);
828 value
= flip_storage_order (fieldmode
, value
);
829 emit_move_insn (sub
, value
);
835 /* If the target is memory, storing any naturally aligned field can be
836 done with a simple store. For targets that support fast unaligned
837 memory, any naturally sized, unit aligned field can be done directly. */
839 if (simple_mem_bitfield_p (op0
, bitsize
, bitnum
, fieldmode
, &bytenum
))
841 op0
= adjust_bitfield_address (op0
, fieldmode
, bytenum
);
843 value
= flip_storage_order (fieldmode
, value
);
844 emit_move_insn (op0
, value
);
848 /* It's possible we'll need to handle other cases here for
849 polynomial bitnum and bitsize. */
851 /* From here on we need to be looking at a fixed-size insertion. */
852 unsigned HOST_WIDE_INT ibitsize
= bitsize
.to_constant ();
853 unsigned HOST_WIDE_INT ibitnum
= bitnum
.to_constant ();
855 /* Make sure we are playing with integral modes. Pun with subregs
856 if we aren't. This must come after the entire register case above,
857 since that case is valid for any mode. The following cases are only
858 valid for integral modes. */
859 opt_scalar_int_mode op0_mode
= int_mode_for_mode (GET_MODE (op0
));
860 scalar_int_mode imode
;
861 if (!op0_mode
.exists (&imode
) || imode
!= GET_MODE (op0
))
864 op0
= adjust_bitfield_address_size (op0
, op0_mode
.else_blk (),
866 else if (!op0_mode
.exists ())
869 && known_eq (ibitsize
, GET_MODE_BITSIZE (GET_MODE (op0
)))
873 value
= adjust_address (value
, GET_MODE (op0
), 0);
874 emit_move_insn (op0
, value
);
879 rtx temp
= assign_stack_temp (GET_MODE (op0
),
880 GET_MODE_SIZE (GET_MODE (op0
)));
881 emit_move_insn (temp
, op0
);
882 store_bit_field_1 (temp
, bitsize
, bitnum
, 0, 0, fieldmode
, value
,
883 reverse
, fallback_p
, undefined_p
);
884 emit_move_insn (op0
, temp
);
888 op0
= gen_lowpart (op0_mode
.require (), op0
);
891 return store_integral_bit_field (op0
, op0_mode
, ibitsize
, ibitnum
,
892 bitregion_start
, bitregion_end
,
893 fieldmode
, value
, reverse
, fallback_p
);
896 /* Subroutine of store_bit_field_1, with the same arguments, except
897 that BITSIZE and BITNUM are constant. Handle cases specific to
898 integral modes. If OP0_MODE is defined, it is the mode of OP0,
899 otherwise OP0 is a BLKmode MEM. */
902 store_integral_bit_field (rtx op0
, opt_scalar_int_mode op0_mode
,
903 unsigned HOST_WIDE_INT bitsize
,
904 unsigned HOST_WIDE_INT bitnum
,
905 poly_uint64 bitregion_start
,
906 poly_uint64 bitregion_end
,
907 machine_mode fieldmode
,
908 rtx value
, bool reverse
, bool fallback_p
)
910 /* Storing an lsb-aligned field in a register
911 can be done with a movstrict instruction. */
915 && lowpart_bit_field_p (bitnum
, bitsize
, op0_mode
.require ())
916 && known_eq (bitsize
, GET_MODE_BITSIZE (fieldmode
))
917 && optab_handler (movstrict_optab
, fieldmode
) != CODE_FOR_nothing
)
919 class expand_operand ops
[2];
920 enum insn_code icode
= optab_handler (movstrict_optab
, fieldmode
);
922 unsigned HOST_WIDE_INT subreg_off
;
924 if (GET_CODE (arg0
) == SUBREG
)
926 /* Else we've got some float mode source being extracted into
927 a different float mode destination -- this combination of
928 subregs results in Severe Tire Damage. */
929 gcc_assert (GET_MODE (SUBREG_REG (arg0
)) == fieldmode
930 || GET_MODE_CLASS (fieldmode
) == MODE_INT
931 || GET_MODE_CLASS (fieldmode
) == MODE_PARTIAL_INT
);
932 arg0
= SUBREG_REG (arg0
);
935 subreg_off
= bitnum
/ BITS_PER_UNIT
;
936 if (validate_subreg (fieldmode
, GET_MODE (arg0
), arg0
, subreg_off
)
937 /* STRICT_LOW_PART must have a non-paradoxical subreg as
939 && !paradoxical_subreg_p (fieldmode
, GET_MODE (arg0
)))
941 arg0
= gen_rtx_SUBREG (fieldmode
, arg0
, subreg_off
);
943 create_fixed_operand (&ops
[0], arg0
);
944 /* Shrink the source operand to FIELDMODE. */
945 create_convert_operand_to (&ops
[1], value
, fieldmode
, false);
946 if (maybe_expand_insn (icode
, 2, ops
))
951 /* Handle fields bigger than a word. */
953 if (bitsize
> BITS_PER_WORD
)
955 /* Here we transfer the words of the field
956 in the order least significant first.
957 This is because the most significant word is the one which may
959 However, only do that if the value is not BLKmode. */
961 const bool backwards
= WORDS_BIG_ENDIAN
&& fieldmode
!= BLKmode
;
962 const int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
965 /* This is the mode we must force value to, so that there will be enough
966 subwords to extract. Note that fieldmode will often (always?) be
967 VOIDmode, because that is what store_field uses to indicate that this
968 is a bit field, but passing VOIDmode to operand_subword_force
971 The mode must be fixed-size, since insertions into variable-sized
972 objects are meant to be handled before calling this function. */
973 fixed_size_mode value_mode
= as_a
<fixed_size_mode
> (GET_MODE (value
));
974 if (value_mode
== VOIDmode
)
976 = smallest_int_mode_for_size (nwords
* BITS_PER_WORD
).require ();
978 last
= get_last_insn ();
979 for (int i
= 0; i
< nwords
; i
++)
981 /* Number of bits to be stored in this iteration, i.e. BITS_PER_WORD
982 except maybe for the last iteration. */
983 const unsigned HOST_WIDE_INT new_bitsize
984 = MIN (BITS_PER_WORD
, bitsize
- i
* BITS_PER_WORD
);
985 /* Bit offset from the starting bit number in the target. */
986 const unsigned int bit_offset
987 = backwards
^ reverse
988 ? MAX ((int) bitsize
- (i
+ 1) * BITS_PER_WORD
, 0)
991 /* No further action is needed if the target is a register and if
992 this field lies completely outside that register. */
993 if (REG_P (op0
) && known_ge (bitnum
+ bit_offset
,
994 GET_MODE_BITSIZE (GET_MODE (op0
))))
996 if (backwards
^ reverse
)
998 /* For forward operation we are finished. */
1002 /* Starting word number in the value. */
1003 const unsigned int wordnum
1005 ? GET_MODE_SIZE (value_mode
) / UNITS_PER_WORD
- (i
+ 1)
1007 /* The chunk of the value in word_mode. We use bit-field extraction
1008 in BLKmode to handle unaligned memory references and to shift the
1009 last chunk right on big-endian machines if need be. */
1011 = fieldmode
== BLKmode
1012 ? extract_bit_field (value
, new_bitsize
, wordnum
* BITS_PER_WORD
,
1013 1, NULL_RTX
, word_mode
, word_mode
, false,
1015 : operand_subword_force (value
, wordnum
, value_mode
);
1017 if (!store_bit_field_1 (op0
, new_bitsize
,
1018 bitnum
+ bit_offset
,
1019 bitregion_start
, bitregion_end
,
1021 value_word
, reverse
, fallback_p
, false))
1023 delete_insns_since (last
);
1030 /* If VALUE has a floating-point or complex mode, access it as an
1031 integer of the corresponding size. This can occur on a machine
1032 with 64 bit registers that uses SFmode for float. It can also
1033 occur for unaligned float or complex fields. */
1034 rtx orig_value
= value
;
1035 scalar_int_mode value_mode
;
1036 if (GET_MODE (value
) == VOIDmode
)
1037 /* By this point we've dealt with values that are bigger than a word,
1038 so word_mode is a conservatively correct choice. */
1039 value_mode
= word_mode
;
1040 else if (!is_a
<scalar_int_mode
> (GET_MODE (value
), &value_mode
))
1042 value_mode
= int_mode_for_mode (GET_MODE (value
)).require ();
1043 value
= gen_reg_rtx (value_mode
);
1044 emit_move_insn (gen_lowpart (GET_MODE (orig_value
), value
), orig_value
);
1047 /* If OP0 is a multi-word register, narrow it to the affected word.
1048 If the region spans two words, defer to store_split_bit_field.
1049 Don't do this if op0 is a single hard register wider than word
1050 such as a float or vector register. */
1052 && GET_MODE_SIZE (op0_mode
.require ()) > UNITS_PER_WORD
1054 || !HARD_REGISTER_P (op0
)
1055 || hard_regno_nregs (REGNO (op0
), op0_mode
.require ()) != 1))
1057 if (bitnum
% BITS_PER_WORD
+ bitsize
> BITS_PER_WORD
)
1062 store_split_bit_field (op0
, op0_mode
, bitsize
, bitnum
,
1063 bitregion_start
, bitregion_end
,
1064 value
, value_mode
, reverse
);
1067 op0
= simplify_gen_subreg (word_mode
, op0
, op0_mode
.require (),
1068 bitnum
/ BITS_PER_WORD
* UNITS_PER_WORD
);
1070 op0_mode
= word_mode
;
1071 bitnum
%= BITS_PER_WORD
;
1074 /* From here on we can assume that the field to be stored in fits
1075 within a word. If the destination is a register, it too fits
1078 extraction_insn insv
;
1081 && get_best_reg_extraction_insn (&insv
, EP_insv
,
1082 GET_MODE_BITSIZE (op0_mode
.require ()),
1084 && store_bit_field_using_insv (&insv
, op0
, op0_mode
,
1085 bitsize
, bitnum
, value
, value_mode
))
1088 /* If OP0 is a memory, try copying it to a register and seeing if a
1089 cheap register alternative is available. */
1090 if (MEM_P (op0
) && !reverse
)
1092 if (get_best_mem_extraction_insn (&insv
, EP_insv
, bitsize
, bitnum
,
1094 && store_bit_field_using_insv (&insv
, op0
, op0_mode
,
1095 bitsize
, bitnum
, value
, value_mode
))
1098 rtx_insn
*last
= get_last_insn ();
1100 /* Try loading part of OP0 into a register, inserting the bitfield
1101 into that, and then copying the result back to OP0. */
1102 unsigned HOST_WIDE_INT bitpos
;
1103 rtx xop0
= adjust_bit_field_mem_for_reg (EP_insv
, op0
, bitsize
, bitnum
,
1104 bitregion_start
, bitregion_end
,
1105 fieldmode
, &bitpos
);
1108 rtx tempreg
= copy_to_reg (xop0
);
1109 if (store_bit_field_1 (tempreg
, bitsize
, bitpos
,
1110 bitregion_start
, bitregion_end
,
1111 fieldmode
, orig_value
, reverse
, false, false))
1113 emit_move_insn (xop0
, tempreg
);
1116 delete_insns_since (last
);
1123 store_fixed_bit_field (op0
, op0_mode
, bitsize
, bitnum
, bitregion_start
,
1124 bitregion_end
, value
, value_mode
, reverse
);
1128 /* Generate code to store value from rtx VALUE
1129 into a bit-field within structure STR_RTX
1130 containing BITSIZE bits starting at bit BITNUM.
1132 BITREGION_START is bitpos of the first bitfield in this region.
1133 BITREGION_END is the bitpos of the ending bitfield in this region.
1134 These two fields are 0, if the C++ memory model does not apply,
1135 or we are not interested in keeping track of bitfield regions.
1137 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
1139 If REVERSE is true, the store is to be done in reverse order.
1141 If UNDEFINED_P is true then STR_RTX is currently undefined. */
1144 store_bit_field (rtx str_rtx
, poly_uint64 bitsize
, poly_uint64 bitnum
,
1145 poly_uint64 bitregion_start
, poly_uint64 bitregion_end
,
1146 machine_mode fieldmode
,
1147 rtx value
, bool reverse
, bool undefined_p
)
1149 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
1150 unsigned HOST_WIDE_INT ibitsize
= 0, ibitnum
= 0;
1151 scalar_int_mode int_mode
;
1152 if (bitsize
.is_constant (&ibitsize
)
1153 && bitnum
.is_constant (&ibitnum
)
1154 && is_a
<scalar_int_mode
> (fieldmode
, &int_mode
)
1155 && strict_volatile_bitfield_p (str_rtx
, ibitsize
, ibitnum
, int_mode
,
1156 bitregion_start
, bitregion_end
))
1158 /* Storing of a full word can be done with a simple store.
1159 We know here that the field can be accessed with one single
1160 instruction. For targets that support unaligned memory,
1161 an unaligned access may be necessary. */
1162 if (ibitsize
== GET_MODE_BITSIZE (int_mode
))
1164 str_rtx
= adjust_bitfield_address (str_rtx
, int_mode
,
1165 ibitnum
/ BITS_PER_UNIT
);
1167 value
= flip_storage_order (int_mode
, value
);
1168 gcc_assert (ibitnum
% BITS_PER_UNIT
== 0);
1169 emit_move_insn (str_rtx
, value
);
1175 str_rtx
= narrow_bit_field_mem (str_rtx
, int_mode
, ibitsize
,
1177 gcc_assert (ibitnum
+ ibitsize
<= GET_MODE_BITSIZE (int_mode
));
1178 temp
= copy_to_reg (str_rtx
);
1179 if (!store_bit_field_1 (temp
, ibitsize
, ibitnum
, 0, 0,
1180 int_mode
, value
, reverse
, true, undefined_p
))
1183 emit_move_insn (str_rtx
, temp
);
1189 /* Under the C++0x memory model, we must not touch bits outside the
1190 bit region. Adjust the address to start at the beginning of the
1192 if (MEM_P (str_rtx
) && maybe_ne (bitregion_start
, 0U))
1194 scalar_int_mode best_mode
;
1195 machine_mode addr_mode
= VOIDmode
;
1197 poly_uint64 offset
= exact_div (bitregion_start
, BITS_PER_UNIT
);
1198 bitnum
-= bitregion_start
;
1199 poly_int64 size
= bits_to_bytes_round_up (bitnum
+ bitsize
);
1200 bitregion_end
-= bitregion_start
;
1201 bitregion_start
= 0;
1202 if (bitsize
.is_constant (&ibitsize
)
1203 && bitnum
.is_constant (&ibitnum
)
1204 && get_best_mode (ibitsize
, ibitnum
,
1205 bitregion_start
, bitregion_end
,
1206 MEM_ALIGN (str_rtx
), INT_MAX
,
1207 MEM_VOLATILE_P (str_rtx
), &best_mode
))
1208 addr_mode
= best_mode
;
1209 str_rtx
= adjust_bitfield_address_size (str_rtx
, addr_mode
,
1213 if (!store_bit_field_1 (str_rtx
, bitsize
, bitnum
,
1214 bitregion_start
, bitregion_end
,
1215 fieldmode
, value
, reverse
, true, undefined_p
))
1219 /* Use shifts and boolean operations to store VALUE into a bit field of
1220 width BITSIZE in OP0, starting at bit BITNUM. If OP0_MODE is defined,
1221 it is the mode of OP0, otherwise OP0 is a BLKmode MEM. VALUE_MODE is
1224 If REVERSE is true, the store is to be done in reverse order. */
1227 store_fixed_bit_field (rtx op0
, opt_scalar_int_mode op0_mode
,
1228 unsigned HOST_WIDE_INT bitsize
,
1229 unsigned HOST_WIDE_INT bitnum
,
1230 poly_uint64 bitregion_start
, poly_uint64 bitregion_end
,
1231 rtx value
, scalar_int_mode value_mode
, bool reverse
)
1233 /* There is a case not handled here:
1234 a structure with a known alignment of just a halfword
1235 and a field split across two aligned halfwords within the structure.
1236 Or likewise a structure with a known alignment of just a byte
1237 and a field split across two bytes.
1238 Such cases are not supposed to be able to occur. */
1240 scalar_int_mode best_mode
;
1243 unsigned int max_bitsize
= BITS_PER_WORD
;
1244 scalar_int_mode imode
;
1245 if (op0_mode
.exists (&imode
) && GET_MODE_BITSIZE (imode
) < max_bitsize
)
1246 max_bitsize
= GET_MODE_BITSIZE (imode
);
1248 if (!get_best_mode (bitsize
, bitnum
, bitregion_start
, bitregion_end
,
1249 MEM_ALIGN (op0
), max_bitsize
, MEM_VOLATILE_P (op0
),
1252 /* The only way this should occur is if the field spans word
1254 store_split_bit_field (op0
, op0_mode
, bitsize
, bitnum
,
1255 bitregion_start
, bitregion_end
,
1256 value
, value_mode
, reverse
);
1260 op0
= narrow_bit_field_mem (op0
, best_mode
, bitsize
, bitnum
, &bitnum
);
1263 best_mode
= op0_mode
.require ();
1265 store_fixed_bit_field_1 (op0
, best_mode
, bitsize
, bitnum
,
1266 value
, value_mode
, reverse
);
1269 /* Helper function for store_fixed_bit_field, stores
1270 the bit field always using MODE, which is the mode of OP0. The other
1271 arguments are as for store_fixed_bit_field. */
1274 store_fixed_bit_field_1 (rtx op0
, scalar_int_mode mode
,
1275 unsigned HOST_WIDE_INT bitsize
,
1276 unsigned HOST_WIDE_INT bitnum
,
1277 rtx value
, scalar_int_mode value_mode
, bool reverse
)
1283 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1284 for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
1286 if (reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
1287 /* BITNUM is the distance between our msb
1288 and that of the containing datum.
1289 Convert it to the distance from the lsb. */
1290 bitnum
= GET_MODE_BITSIZE (mode
) - bitsize
- bitnum
;
1292 /* Now BITNUM is always the distance between our lsb
1295 /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
1296 we must first convert its mode to MODE. */
1298 if (CONST_INT_P (value
))
1300 unsigned HOST_WIDE_INT v
= UINTVAL (value
);
1302 if (bitsize
< HOST_BITS_PER_WIDE_INT
)
1303 v
&= (HOST_WIDE_INT_1U
<< bitsize
) - 1;
1307 else if ((bitsize
< HOST_BITS_PER_WIDE_INT
1308 && v
== (HOST_WIDE_INT_1U
<< bitsize
) - 1)
1309 || (bitsize
== HOST_BITS_PER_WIDE_INT
1310 && v
== HOST_WIDE_INT_M1U
))
1313 value
= lshift_value (mode
, v
, bitnum
);
1317 int must_and
= (GET_MODE_BITSIZE (value_mode
) != bitsize
1318 && bitnum
+ bitsize
!= GET_MODE_BITSIZE (mode
));
1320 if (value_mode
!= mode
)
1321 value
= convert_to_mode (mode
, value
, 1);
1324 value
= expand_binop (mode
, and_optab
, value
,
1325 mask_rtx (mode
, 0, bitsize
, 0),
1326 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1328 value
= expand_shift (LSHIFT_EXPR
, mode
, value
,
1329 bitnum
, NULL_RTX
, 1);
1333 value
= flip_storage_order (mode
, value
);
1335 /* Now clear the chosen bits in OP0,
1336 except that if VALUE is -1 we need not bother. */
1337 /* We keep the intermediates in registers to allow CSE to combine
1338 consecutive bitfield assignments. */
1340 temp
= force_reg (mode
, op0
);
1344 rtx mask
= mask_rtx (mode
, bitnum
, bitsize
, 1);
1346 mask
= flip_storage_order (mode
, mask
);
1347 temp
= expand_binop (mode
, and_optab
, temp
, mask
,
1348 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1349 temp
= force_reg (mode
, temp
);
1352 /* Now logical-or VALUE into OP0, unless it is zero. */
1356 temp
= expand_binop (mode
, ior_optab
, temp
, value
,
1357 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1358 temp
= force_reg (mode
, temp
);
1363 op0
= copy_rtx (op0
);
1364 emit_move_insn (op0
, temp
);
1368 /* Store a bit field that is split across multiple accessible memory objects.
1370 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1371 BITSIZE is the field width; BITPOS the position of its first bit
1373 VALUE is the value to store, which has mode VALUE_MODE.
1374 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
1377 If REVERSE is true, the store is to be done in reverse order.
1379 This does not yet handle fields wider than BITS_PER_WORD. */
1382 store_split_bit_field (rtx op0
, opt_scalar_int_mode op0_mode
,
1383 unsigned HOST_WIDE_INT bitsize
,
1384 unsigned HOST_WIDE_INT bitpos
,
1385 poly_uint64 bitregion_start
, poly_uint64 bitregion_end
,
1386 rtx value
, scalar_int_mode value_mode
, bool reverse
)
1388 unsigned int unit
, total_bits
, bitsdone
= 0;
1390 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1392 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1393 unit
= BITS_PER_WORD
;
1395 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
1397 /* If OP0 is a memory with a mode, then UNIT must not be larger than
1398 OP0's mode as well. Otherwise, store_fixed_bit_field will call us
1399 again, and we will mutually recurse forever. */
1400 if (MEM_P (op0
) && op0_mode
.exists ())
1401 unit
= MIN (unit
, GET_MODE_BITSIZE (op0_mode
.require ()));
1403 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1404 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1405 that VALUE might be a floating-point constant. */
1406 if (CONSTANT_P (value
) && !CONST_INT_P (value
))
1408 rtx word
= gen_lowpart_common (word_mode
, value
);
1410 if (word
&& (value
!= word
))
1413 value
= gen_lowpart_common (word_mode
, force_reg (value_mode
, value
));
1414 value_mode
= word_mode
;
1417 total_bits
= GET_MODE_BITSIZE (value_mode
);
1419 while (bitsdone
< bitsize
)
1421 unsigned HOST_WIDE_INT thissize
;
1422 unsigned HOST_WIDE_INT thispos
;
1423 unsigned HOST_WIDE_INT offset
;
1426 offset
= (bitpos
+ bitsdone
) / unit
;
1427 thispos
= (bitpos
+ bitsdone
) % unit
;
1429 /* When region of bytes we can touch is restricted, decrease
1430 UNIT close to the end of the region as needed. If op0 is a REG
1431 or SUBREG of REG, don't do this, as there can't be data races
1432 on a register and we can expand shorter code in some cases. */
1433 if (maybe_ne (bitregion_end
, 0U)
1434 && unit
> BITS_PER_UNIT
1435 && maybe_gt (bitpos
+ bitsdone
- thispos
+ unit
, bitregion_end
+ 1)
1437 && (GET_CODE (op0
) != SUBREG
|| !REG_P (SUBREG_REG (op0
))))
1443 /* THISSIZE must not overrun a word boundary. Otherwise,
1444 store_fixed_bit_field will call us again, and we will mutually
1446 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
1447 thissize
= MIN (thissize
, unit
- thispos
);
1449 if (reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
1451 /* Fetch successively less significant portions. */
1452 if (CONST_INT_P (value
))
1453 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1454 >> (bitsize
- bitsdone
- thissize
))
1455 & ((HOST_WIDE_INT_1
<< thissize
) - 1));
1456 /* Likewise, but the source is little-endian. */
1458 part
= extract_fixed_bit_field (word_mode
, value
, value_mode
,
1460 bitsize
- bitsdone
- thissize
,
1461 NULL_RTX
, 1, false);
1463 /* The args are chosen so that the last part includes the
1464 lsb. Give extract_bit_field the value it needs (with
1465 endianness compensation) to fetch the piece we want. */
1466 part
= extract_fixed_bit_field (word_mode
, value
, value_mode
,
1468 total_bits
- bitsize
+ bitsdone
,
1469 NULL_RTX
, 1, false);
1473 /* Fetch successively more significant portions. */
1474 if (CONST_INT_P (value
))
1475 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1477 & ((HOST_WIDE_INT_1
<< thissize
) - 1));
1478 /* Likewise, but the source is big-endian. */
1480 part
= extract_fixed_bit_field (word_mode
, value
, value_mode
,
1482 total_bits
- bitsdone
- thissize
,
1483 NULL_RTX
, 1, false);
1485 part
= extract_fixed_bit_field (word_mode
, value
, value_mode
,
1486 thissize
, bitsdone
, NULL_RTX
,
1490 /* If OP0 is a register, then handle OFFSET here. */
1491 rtx op0_piece
= op0
;
1492 opt_scalar_int_mode op0_piece_mode
= op0_mode
;
1493 if (SUBREG_P (op0
) || REG_P (op0
))
1495 scalar_int_mode imode
;
1496 if (op0_mode
.exists (&imode
)
1497 && GET_MODE_SIZE (imode
) < UNITS_PER_WORD
)
1500 op0_piece
= const0_rtx
;
1504 op0_piece
= operand_subword_force (op0
,
1505 offset
* unit
/ BITS_PER_WORD
,
1507 op0_piece_mode
= word_mode
;
1509 offset
&= BITS_PER_WORD
/ unit
- 1;
1512 /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
1513 it is just an out-of-bounds access. Ignore it. */
1514 if (op0_piece
!= const0_rtx
)
1515 store_fixed_bit_field (op0_piece
, op0_piece_mode
, thissize
,
1516 offset
* unit
+ thispos
, bitregion_start
,
1517 bitregion_end
, part
, word_mode
, reverse
);
1518 bitsdone
+= thissize
;
1522 /* A subroutine of extract_bit_field_1 that converts return value X
1523 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1524 to extract_bit_field. */
1527 convert_extracted_bit_field (rtx x
, machine_mode mode
,
1528 machine_mode tmode
, bool unsignedp
)
1530 if (GET_MODE (x
) == tmode
|| GET_MODE (x
) == mode
)
1533 /* If the x mode is not a scalar integral, first convert to the
1534 integer mode of that size and then access it as a floating-point
1535 value via a SUBREG. */
1536 if (!SCALAR_INT_MODE_P (tmode
))
1538 scalar_int_mode int_mode
= int_mode_for_mode (tmode
).require ();
1539 x
= convert_to_mode (int_mode
, x
, unsignedp
);
1540 x
= force_reg (int_mode
, x
);
1541 return gen_lowpart (tmode
, x
);
1544 return convert_to_mode (tmode
, x
, unsignedp
);
1547 /* Try to use an ext(z)v pattern to extract a field from OP0.
1548 Return the extracted value on success, otherwise return null.
1549 EXTV describes the extraction instruction to use. If OP0_MODE
1550 is defined, it is the mode of OP0, otherwise OP0 is a BLKmode MEM.
1551 The other arguments are as for extract_bit_field. */
1554 extract_bit_field_using_extv (const extraction_insn
*extv
, rtx op0
,
1555 opt_scalar_int_mode op0_mode
,
1556 unsigned HOST_WIDE_INT bitsize
,
1557 unsigned HOST_WIDE_INT bitnum
,
1558 int unsignedp
, rtx target
,
1559 machine_mode mode
, machine_mode tmode
)
1561 class expand_operand ops
[4];
1562 rtx spec_target
= target
;
1563 rtx spec_target_subreg
= 0;
1564 scalar_int_mode ext_mode
= extv
->field_mode
;
1565 unsigned unit
= GET_MODE_BITSIZE (ext_mode
);
1567 if (bitsize
== 0 || unit
< bitsize
)
1571 /* Get a reference to the first byte of the field. */
1572 op0
= narrow_bit_field_mem (op0
, extv
->struct_mode
, bitsize
, bitnum
,
1576 /* Convert from counting within OP0 to counting in EXT_MODE. */
1577 if (BYTES_BIG_ENDIAN
)
1578 bitnum
+= unit
- GET_MODE_BITSIZE (op0_mode
.require ());
1580 /* If op0 is a register, we need it in EXT_MODE to make it
1581 acceptable to the format of ext(z)v. */
1582 if (GET_CODE (op0
) == SUBREG
&& op0_mode
.require () != ext_mode
)
1584 if (REG_P (op0
) && op0_mode
.require () != ext_mode
)
1585 op0
= gen_lowpart_SUBREG (ext_mode
, op0
);
1588 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1589 "backwards" from the size of the unit we are extracting from.
1590 Otherwise, we count bits from the most significant on a
1591 BYTES/BITS_BIG_ENDIAN machine. */
1593 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
1594 bitnum
= unit
- bitsize
- bitnum
;
1597 target
= spec_target
= gen_reg_rtx (tmode
);
1599 if (GET_MODE (target
) != ext_mode
)
1602 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1603 between the mode of the extraction (word_mode) and the target
1604 mode. Instead, create a temporary and use convert_move to set
1607 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target
), ext_mode
)
1608 && (temp
= gen_lowpart_if_possible (ext_mode
, target
)))
1611 if (partial_subreg_p (GET_MODE (spec_target
), ext_mode
))
1612 spec_target_subreg
= target
;
1615 target
= gen_reg_rtx (ext_mode
);
1618 create_output_operand (&ops
[0], target
, ext_mode
);
1619 create_fixed_operand (&ops
[1], op0
);
1620 create_integer_operand (&ops
[2], bitsize
);
1621 create_integer_operand (&ops
[3], bitnum
);
1622 if (maybe_expand_insn (extv
->icode
, 4, ops
))
1624 target
= ops
[0].value
;
1625 if (target
== spec_target
)
1627 if (target
== spec_target_subreg
)
1629 return convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1634 /* See whether it would be valid to extract the part of OP0 with
1635 mode OP0_MODE described by BITNUM and BITSIZE into a value of
1636 mode MODE using a subreg operation.
1637 Return the subreg if so, otherwise return null. */
1640 extract_bit_field_as_subreg (machine_mode mode
, rtx op0
,
1641 machine_mode op0_mode
,
1642 poly_uint64 bitsize
, poly_uint64 bitnum
)
1644 poly_uint64 bytenum
;
1645 if (multiple_p (bitnum
, BITS_PER_UNIT
, &bytenum
)
1646 && known_eq (bitsize
, GET_MODE_BITSIZE (mode
))
1647 && lowpart_bit_field_p (bitnum
, bitsize
, op0_mode
)
1648 && TRULY_NOOP_TRUNCATION_MODES_P (mode
, op0_mode
))
1649 return force_subreg (mode
, op0
, op0_mode
, bytenum
);
1653 /* A subroutine of extract_bit_field, with the same arguments.
1654 If UNSIGNEDP is -1, the result need not be sign or zero extended.
1655 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1656 if we can find no other means of implementing the operation.
1657 if FALLBACK_P is false, return NULL instead. */
1660 extract_bit_field_1 (rtx str_rtx
, poly_uint64 bitsize
, poly_uint64 bitnum
,
1661 int unsignedp
, rtx target
, machine_mode mode
,
1662 machine_mode tmode
, bool reverse
, bool fallback_p
,
1668 if (tmode
== VOIDmode
)
1671 while (GET_CODE (op0
) == SUBREG
)
1673 bitnum
+= SUBREG_BYTE (op0
) * BITS_PER_UNIT
;
1674 op0
= SUBREG_REG (op0
);
1677 /* If we have an out-of-bounds access to a register, just return an
1678 uninitialized register of the required mode. This can occur if the
1679 source code contains an out-of-bounds access to a small array. */
1680 if (REG_P (op0
) && known_ge (bitnum
, GET_MODE_BITSIZE (GET_MODE (op0
))))
1681 return gen_reg_rtx (tmode
);
1684 && mode
== GET_MODE (op0
)
1685 && known_eq (bitnum
, 0U)
1686 && known_eq (bitsize
, GET_MODE_BITSIZE (GET_MODE (op0
))))
1689 op0
= flip_storage_order (mode
, op0
);
1690 /* We're trying to extract a full register from itself. */
1694 /* First try to check for vector from vector extractions. */
1695 if (VECTOR_MODE_P (GET_MODE (op0
))
1697 && VECTOR_MODE_P (tmode
)
1698 && known_eq (bitsize
, GET_MODE_PRECISION (tmode
))
1699 && maybe_gt (GET_MODE_SIZE (GET_MODE (op0
)), GET_MODE_SIZE (tmode
)))
1701 machine_mode new_mode
= GET_MODE (op0
);
1702 if (GET_MODE_INNER (new_mode
) != GET_MODE_INNER (tmode
))
1704 scalar_mode inner_mode
= GET_MODE_INNER (tmode
);
1706 if (!multiple_p (GET_MODE_BITSIZE (GET_MODE (op0
)),
1707 GET_MODE_UNIT_BITSIZE (tmode
), &nunits
)
1708 || !related_vector_mode (tmode
, inner_mode
,
1709 nunits
).exists (&new_mode
)
1710 || maybe_ne (GET_MODE_SIZE (new_mode
),
1711 GET_MODE_SIZE (GET_MODE (op0
))))
1712 new_mode
= VOIDmode
;
1715 if (new_mode
!= VOIDmode
1716 && (convert_optab_handler (vec_extract_optab
, new_mode
, tmode
)
1717 != CODE_FOR_nothing
)
1718 && multiple_p (bitnum
, GET_MODE_BITSIZE (tmode
), &pos
))
1720 class expand_operand ops
[3];
1721 machine_mode outermode
= new_mode
;
1722 machine_mode innermode
= tmode
;
1723 enum insn_code icode
1724 = convert_optab_handler (vec_extract_optab
, outermode
, innermode
);
1726 if (new_mode
!= GET_MODE (op0
))
1727 op0
= gen_lowpart (new_mode
, op0
);
1728 create_output_operand (&ops
[0], target
, innermode
);
1730 create_input_operand (&ops
[1], op0
, outermode
);
1731 create_integer_operand (&ops
[2], pos
);
1732 if (maybe_expand_insn (icode
, 3, ops
))
1734 if (alt_rtl
&& ops
[0].target
)
1736 target
= ops
[0].value
;
1737 if (GET_MODE (target
) != mode
)
1738 return gen_lowpart (tmode
, target
);
1744 /* See if we can get a better vector mode before extracting. */
1745 if (VECTOR_MODE_P (GET_MODE (op0
))
1747 && GET_MODE_INNER (GET_MODE (op0
)) != tmode
)
1749 machine_mode new_mode
;
1751 if (GET_MODE_CLASS (tmode
) == MODE_FLOAT
)
1752 new_mode
= MIN_MODE_VECTOR_FLOAT
;
1753 else if (GET_MODE_CLASS (tmode
) == MODE_FRACT
)
1754 new_mode
= MIN_MODE_VECTOR_FRACT
;
1755 else if (GET_MODE_CLASS (tmode
) == MODE_UFRACT
)
1756 new_mode
= MIN_MODE_VECTOR_UFRACT
;
1757 else if (GET_MODE_CLASS (tmode
) == MODE_ACCUM
)
1758 new_mode
= MIN_MODE_VECTOR_ACCUM
;
1759 else if (GET_MODE_CLASS (tmode
) == MODE_UACCUM
)
1760 new_mode
= MIN_MODE_VECTOR_UACCUM
;
1762 new_mode
= MIN_MODE_VECTOR_INT
;
1764 FOR_EACH_MODE_FROM (new_mode
, new_mode
)
1765 if (known_eq (GET_MODE_SIZE (new_mode
), GET_MODE_SIZE (GET_MODE (op0
)))
1766 && known_eq (GET_MODE_UNIT_SIZE (new_mode
), GET_MODE_SIZE (tmode
))
1767 && known_eq (bitsize
, GET_MODE_UNIT_PRECISION (new_mode
))
1768 && multiple_p (bitnum
, GET_MODE_UNIT_PRECISION (new_mode
))
1769 && targetm
.vector_mode_supported_p (new_mode
)
1770 && targetm
.modes_tieable_p (GET_MODE (op0
), new_mode
))
1772 if (new_mode
!= VOIDmode
)
1773 op0
= gen_lowpart (new_mode
, op0
);
1776 /* Use vec_extract patterns for extracting parts of vectors whenever
1777 available. If that fails, see whether the current modes and bitregion
1778 give a natural subreg. */
1779 machine_mode outermode
= GET_MODE (op0
);
1780 if (VECTOR_MODE_P (outermode
) && !MEM_P (op0
))
1782 scalar_mode innermode
= GET_MODE_INNER (outermode
);
1784 enum insn_code icode
1785 = convert_optab_handler (vec_extract_optab
, outermode
, innermode
);
1788 if (icode
!= CODE_FOR_nothing
1789 && known_eq (bitsize
, GET_MODE_PRECISION (innermode
))
1790 && multiple_p (bitnum
, GET_MODE_PRECISION (innermode
), &pos
))
1792 class expand_operand ops
[3];
1794 create_output_operand (&ops
[0], target
,
1795 insn_data
[icode
].operand
[0].mode
);
1797 create_input_operand (&ops
[1], op0
, outermode
);
1798 create_integer_operand (&ops
[2], pos
);
1799 if (maybe_expand_insn (icode
, 3, ops
))
1801 if (alt_rtl
&& ops
[0].target
)
1803 target
= ops
[0].value
;
1804 if (GET_MODE (target
) != mode
)
1805 return gen_lowpart (tmode
, target
);
1809 /* Using subregs is useful if we're extracting one register vector
1810 from a multi-register vector. extract_bit_field_as_subreg checks
1811 for valid bitsize and bitnum, so we don't need to do that here. */
1812 if (VECTOR_MODE_P (mode
))
1814 rtx sub
= extract_bit_field_as_subreg (mode
, op0
, outermode
,
1821 /* Make sure we are playing with integral modes. Pun with subregs
1823 opt_scalar_int_mode op0_mode
= int_mode_for_mode (GET_MODE (op0
));
1824 scalar_int_mode imode
;
1825 if (!op0_mode
.exists (&imode
) || imode
!= GET_MODE (op0
))
1828 op0
= adjust_bitfield_address_size (op0
, op0_mode
.else_blk (),
1830 else if (op0_mode
.exists (&imode
))
1832 op0
= gen_lowpart (imode
, op0
);
1834 /* If we got a SUBREG, force it into a register since we
1835 aren't going to be able to do another SUBREG on it. */
1836 if (GET_CODE (op0
) == SUBREG
)
1837 op0
= force_reg (imode
, op0
);
1841 poly_int64 size
= GET_MODE_SIZE (GET_MODE (op0
));
1842 rtx mem
= assign_stack_temp (GET_MODE (op0
), size
);
1843 emit_move_insn (mem
, op0
);
1844 op0
= adjust_bitfield_address_size (mem
, BLKmode
, 0, size
);
1848 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1849 If that's wrong, the solution is to test for it and set TARGET to 0
1852 /* Get the mode of the field to use for atomic access or subreg
1854 if (!SCALAR_INT_MODE_P (tmode
)
1855 || !mode_for_size (bitsize
, GET_MODE_CLASS (tmode
), 0).exists (&mode1
))
1857 gcc_assert (mode1
!= BLKmode
);
1859 /* Extraction of a full MODE1 value can be done with a subreg as long
1860 as the least significant bit of the value is the least significant
1861 bit of either OP0 or a word of OP0. */
1862 if (!MEM_P (op0
) && !reverse
&& op0_mode
.exists (&imode
))
1864 rtx sub
= extract_bit_field_as_subreg (mode1
, op0
, imode
,
1867 return convert_extracted_bit_field (sub
, mode
, tmode
, unsignedp
);
1870 /* Extraction of a full MODE1 value can be done with a load as long as
1871 the field is on a byte boundary and is sufficiently aligned. */
1872 poly_uint64 bytenum
;
1873 if (simple_mem_bitfield_p (op0
, bitsize
, bitnum
, mode1
, &bytenum
))
1875 op0
= adjust_bitfield_address (op0
, mode1
, bytenum
);
1877 op0
= flip_storage_order (mode1
, op0
);
1878 return convert_extracted_bit_field (op0
, mode
, tmode
, unsignedp
);
1881 /* If we have a memory source and a non-constant bit offset, restrict
1882 the memory to the referenced bytes. This is a worst-case fallback
1883 but is useful for things like vector booleans. */
1884 if (MEM_P (op0
) && !bitnum
.is_constant ())
1886 bytenum
= bits_to_bytes_round_down (bitnum
);
1887 bitnum
= num_trailing_bits (bitnum
);
1888 poly_uint64 bytesize
= bits_to_bytes_round_up (bitnum
+ bitsize
);
1889 op0
= adjust_bitfield_address_size (op0
, BLKmode
, bytenum
, bytesize
);
1890 op0_mode
= opt_scalar_int_mode ();
1893 /* It's possible we'll need to handle other cases here for
1894 polynomial bitnum and bitsize. */
1896 /* From here on we need to be looking at a fixed-size insertion. */
1897 return extract_integral_bit_field (op0
, op0_mode
, bitsize
.to_constant (),
1898 bitnum
.to_constant (), unsignedp
,
1899 target
, mode
, tmode
, reverse
, fallback_p
);
1902 /* Subroutine of extract_bit_field_1, with the same arguments, except
1903 that BITSIZE and BITNUM are constant. Handle cases specific to
1904 integral modes. If OP0_MODE is defined, it is the mode of OP0,
1905 otherwise OP0 is a BLKmode MEM. */
1908 extract_integral_bit_field (rtx op0
, opt_scalar_int_mode op0_mode
,
1909 unsigned HOST_WIDE_INT bitsize
,
1910 unsigned HOST_WIDE_INT bitnum
, int unsignedp
,
1911 rtx target
, machine_mode mode
, machine_mode tmode
,
1912 bool reverse
, bool fallback_p
)
1914 /* Handle fields bigger than a word. */
1916 if (bitsize
> BITS_PER_WORD
)
1918 /* Here we transfer the words of the field
1919 in the order least significant first.
1920 This is because the most significant word is the one which may
1921 be less than full. */
1923 const bool backwards
= WORDS_BIG_ENDIAN
;
1924 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
1928 if (target
== 0 || !REG_P (target
) || !valid_multiword_target_p (target
))
1929 target
= gen_reg_rtx (mode
);
1931 /* In case we're about to clobber a base register or something
1932 (see gcc.c-torture/execute/20040625-1.c). */
1933 if (reg_mentioned_p (target
, op0
))
1934 target
= gen_reg_rtx (mode
);
1936 /* Indicate for flow that the entire target reg is being set. */
1937 emit_clobber (target
);
1939 /* The mode must be fixed-size, since extract_bit_field_1 handles
1940 extractions from variable-sized objects before calling this
1942 unsigned int target_size
1943 = GET_MODE_SIZE (GET_MODE (target
)).to_constant ();
1944 last
= get_last_insn ();
1945 for (i
= 0; i
< nwords
; i
++)
1947 /* If I is 0, use the low-order word in both field and target;
1948 if I is 1, use the next to lowest word; and so on. */
1949 /* Word number in TARGET to use. */
1950 unsigned int wordnum
1951 = (backwards
? target_size
/ UNITS_PER_WORD
- i
- 1 : i
);
1952 /* Offset from start of field in OP0. */
1953 unsigned int bit_offset
= (backwards
^ reverse
1954 ? MAX ((int) bitsize
- ((int) i
+ 1)
1957 : (int) i
* BITS_PER_WORD
);
1958 rtx target_part
= operand_subword (target
, wordnum
, 1, VOIDmode
);
1960 = extract_bit_field_1 (op0
, MIN (BITS_PER_WORD
,
1961 bitsize
- i
* BITS_PER_WORD
),
1962 bitnum
+ bit_offset
,
1963 (unsignedp
? 1 : -1), target_part
,
1964 mode
, word_mode
, reverse
, fallback_p
, NULL
);
1966 gcc_assert (target_part
);
1969 delete_insns_since (last
);
1973 if (result_part
!= target_part
)
1974 emit_move_insn (target_part
, result_part
);
1979 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1980 need to be zero'd out. */
1981 if (target_size
> nwords
* UNITS_PER_WORD
)
1983 unsigned int i
, total_words
;
1985 total_words
= target_size
/ UNITS_PER_WORD
;
1986 for (i
= nwords
; i
< total_words
; i
++)
1988 (operand_subword (target
,
1989 backwards
? total_words
- i
- 1 : i
,
1996 /* Signed bit field: sign-extend with two arithmetic shifts. */
1997 target
= expand_shift (LSHIFT_EXPR
, mode
, target
,
1998 GET_MODE_BITSIZE (mode
) - bitsize
, NULL_RTX
, 0);
1999 return expand_shift (RSHIFT_EXPR
, mode
, target
,
2000 GET_MODE_BITSIZE (mode
) - bitsize
, NULL_RTX
, 0);
2003 /* If OP0 is a multi-word register, narrow it to the affected word.
2004 If the region spans two words, defer to extract_split_bit_field. */
2005 if (!MEM_P (op0
) && GET_MODE_SIZE (op0_mode
.require ()) > UNITS_PER_WORD
)
2007 if (bitnum
% BITS_PER_WORD
+ bitsize
> BITS_PER_WORD
)
2011 target
= extract_split_bit_field (op0
, op0_mode
, bitsize
, bitnum
,
2012 unsignedp
, reverse
);
2013 return convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
2015 /* If OP0 is a hard register, copy it to a pseudo before calling
2017 if (REG_P (op0
) && HARD_REGISTER_P (op0
))
2018 op0
= copy_to_reg (op0
);
2019 op0
= force_subreg (word_mode
, op0
, op0_mode
.require (),
2020 bitnum
/ BITS_PER_WORD
* UNITS_PER_WORD
);
2021 op0_mode
= word_mode
;
2022 bitnum
%= BITS_PER_WORD
;
2025 /* From here on we know the desired field is smaller than a word.
2026 If OP0 is a register, it too fits within a word. */
2027 enum extraction_pattern pattern
= unsignedp
? EP_extzv
: EP_extv
;
2028 extraction_insn extv
;
2031 /* ??? We could limit the structure size to the part of OP0 that
2032 contains the field, with appropriate checks for endianness
2033 and TARGET_TRULY_NOOP_TRUNCATION. */
2034 && get_best_reg_extraction_insn (&extv
, pattern
,
2035 GET_MODE_BITSIZE (op0_mode
.require ()),
2038 rtx result
= extract_bit_field_using_extv (&extv
, op0
, op0_mode
,
2040 unsignedp
, target
, mode
,
2046 /* If OP0 is a memory, try copying it to a register and seeing if a
2047 cheap register alternative is available. */
2048 if (MEM_P (op0
) & !reverse
)
2050 if (get_best_mem_extraction_insn (&extv
, pattern
, bitsize
, bitnum
,
2053 rtx result
= extract_bit_field_using_extv (&extv
, op0
, op0_mode
,
2055 unsignedp
, target
, mode
,
2061 rtx_insn
*last
= get_last_insn ();
2063 /* Try loading part of OP0 into a register and extracting the
2064 bitfield from that. */
2065 unsigned HOST_WIDE_INT bitpos
;
2066 rtx xop0
= adjust_bit_field_mem_for_reg (pattern
, op0
, bitsize
, bitnum
,
2067 0, 0, tmode
, &bitpos
);
2070 xop0
= copy_to_reg (xop0
);
2071 rtx result
= extract_bit_field_1 (xop0
, bitsize
, bitpos
,
2073 mode
, tmode
, reverse
, false, NULL
);
2076 delete_insns_since (last
);
2083 /* Find a correspondingly-sized integer field, so we can apply
2084 shifts and masks to it. */
2085 scalar_int_mode int_mode
;
2086 if (!int_mode_for_mode (tmode
).exists (&int_mode
))
2087 /* If this fails, we should probably push op0 out to memory and then
2089 int_mode
= int_mode_for_mode (mode
).require ();
2091 target
= extract_fixed_bit_field (int_mode
, op0
, op0_mode
, bitsize
,
2092 bitnum
, target
, unsignedp
, reverse
);
2094 /* Complex values must be reversed piecewise, so we need to undo the global
2095 reversal, convert to the complex mode and reverse again. */
2096 if (reverse
&& COMPLEX_MODE_P (tmode
))
2098 target
= flip_storage_order (int_mode
, target
);
2099 target
= convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
2100 target
= flip_storage_order (tmode
, target
);
2103 target
= convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
2108 /* Generate code to extract a byte-field from STR_RTX
2109 containing BITSIZE bits, starting at BITNUM,
2110 and put it in TARGET if possible (if TARGET is nonzero).
2111 Regardless of TARGET, we return the rtx for where the value is placed.
2113 STR_RTX is the structure containing the byte (a REG or MEM).
2114 UNSIGNEDP is nonzero if this is an unsigned bit field.
2115 MODE is the natural mode of the field value once extracted.
2116 TMODE is the mode the caller would like the value to have;
2117 but the value may be returned with type MODE instead.
2119 If REVERSE is true, the extraction is to be done in reverse order.
2121 If a TARGET is specified and we can store in it at no extra cost,
2122 we do so, and return TARGET.
2123 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
2124 if they are equally easy.
2126 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
2127 then *ALT_RTL is set to TARGET (before legitimziation). */
2130 extract_bit_field (rtx str_rtx
, poly_uint64 bitsize
, poly_uint64 bitnum
,
2131 int unsignedp
, rtx target
, machine_mode mode
,
2132 machine_mode tmode
, bool reverse
, rtx
*alt_rtl
)
2136 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
2137 if (maybe_ne (GET_MODE_BITSIZE (GET_MODE (str_rtx
)), 0))
2138 mode1
= GET_MODE (str_rtx
);
2139 else if (target
&& maybe_ne (GET_MODE_BITSIZE (GET_MODE (target
)), 0))
2140 mode1
= GET_MODE (target
);
2144 unsigned HOST_WIDE_INT ibitsize
, ibitnum
;
2145 scalar_int_mode int_mode
;
2146 if (bitsize
.is_constant (&ibitsize
)
2147 && bitnum
.is_constant (&ibitnum
)
2148 && is_a
<scalar_int_mode
> (mode1
, &int_mode
)
2149 && strict_volatile_bitfield_p (str_rtx
, ibitsize
, ibitnum
,
2152 /* Extraction of a full INT_MODE value can be done with a simple load.
2153 We know here that the field can be accessed with one single
2154 instruction. For targets that support unaligned memory,
2155 an unaligned access may be necessary. */
2156 if (ibitsize
== GET_MODE_BITSIZE (int_mode
))
2158 rtx result
= adjust_bitfield_address (str_rtx
, int_mode
,
2159 ibitnum
/ BITS_PER_UNIT
);
2161 result
= flip_storage_order (int_mode
, result
);
2162 gcc_assert (ibitnum
% BITS_PER_UNIT
== 0);
2163 return convert_extracted_bit_field (result
, mode
, tmode
, unsignedp
);
2166 str_rtx
= narrow_bit_field_mem (str_rtx
, int_mode
, ibitsize
, ibitnum
,
2168 gcc_assert (ibitnum
+ ibitsize
<= GET_MODE_BITSIZE (int_mode
));
2169 str_rtx
= copy_to_reg (str_rtx
);
2170 return extract_bit_field_1 (str_rtx
, ibitsize
, ibitnum
, unsignedp
,
2171 target
, mode
, tmode
, reverse
, true, alt_rtl
);
2174 return extract_bit_field_1 (str_rtx
, bitsize
, bitnum
, unsignedp
,
2175 target
, mode
, tmode
, reverse
, true, alt_rtl
);
2178 /* Use shifts and boolean operations to extract a field of BITSIZE bits
2179 from bit BITNUM of OP0. If OP0_MODE is defined, it is the mode of OP0,
2180 otherwise OP0 is a BLKmode MEM.
2182 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
2183 If REVERSE is true, the extraction is to be done in reverse order.
2185 If TARGET is nonzero, attempts to store the value there
2186 and return TARGET, but this is not guaranteed.
2187 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
2190 extract_fixed_bit_field (machine_mode tmode
, rtx op0
,
2191 opt_scalar_int_mode op0_mode
,
2192 unsigned HOST_WIDE_INT bitsize
,
2193 unsigned HOST_WIDE_INT bitnum
, rtx target
,
2194 int unsignedp
, bool reverse
)
2196 scalar_int_mode mode
;
2199 if (!get_best_mode (bitsize
, bitnum
, 0, 0, MEM_ALIGN (op0
),
2200 BITS_PER_WORD
, MEM_VOLATILE_P (op0
), &mode
))
2201 /* The only way this should occur is if the field spans word
2203 return extract_split_bit_field (op0
, op0_mode
, bitsize
, bitnum
,
2204 unsignedp
, reverse
);
2206 op0
= narrow_bit_field_mem (op0
, mode
, bitsize
, bitnum
, &bitnum
);
2209 mode
= op0_mode
.require ();
2211 return extract_fixed_bit_field_1 (tmode
, op0
, mode
, bitsize
, bitnum
,
2212 target
, unsignedp
, reverse
);
2215 /* Helper function for extract_fixed_bit_field, extracts
2216 the bit field always using MODE, which is the mode of OP0.
2217 If UNSIGNEDP is -1, the result need not be sign or zero extended.
2218 The other arguments are as for extract_fixed_bit_field. */
2221 extract_fixed_bit_field_1 (machine_mode tmode
, rtx op0
, scalar_int_mode mode
,
2222 unsigned HOST_WIDE_INT bitsize
,
2223 unsigned HOST_WIDE_INT bitnum
, rtx target
,
2224 int unsignedp
, bool reverse
)
2226 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
2227 for invalid input, such as extract equivalent of f5 from
2228 gcc.dg/pr48335-2.c. */
2230 if (reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
2231 /* BITNUM is the distance between our msb and that of OP0.
2232 Convert it to the distance from the lsb. */
2233 bitnum
= GET_MODE_BITSIZE (mode
) - bitsize
- bitnum
;
2235 /* Now BITNUM is always the distance between the field's lsb and that of OP0.
2236 We have reduced the big-endian case to the little-endian case. */
2238 op0
= flip_storage_order (mode
, op0
);
2244 /* If the field does not already start at the lsb,
2245 shift it so it does. */
2246 /* Maybe propagate the target for the shift. */
2247 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
2250 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
, bitnum
, subtarget
, 1);
2252 /* Convert the value to the desired mode. TMODE must also be a
2253 scalar integer for this conversion to make sense, since we
2254 shouldn't reinterpret the bits. */
2255 scalar_int_mode new_mode
= as_a
<scalar_int_mode
> (tmode
);
2256 if (mode
!= new_mode
)
2257 op0
= convert_to_mode (new_mode
, op0
, 1);
2259 /* Unless the msb of the field used to be the msb when we shifted,
2260 mask out the upper bits. */
2262 if (GET_MODE_BITSIZE (mode
) != bitnum
+ bitsize
2264 return expand_binop (new_mode
, and_optab
, op0
,
2265 mask_rtx (new_mode
, 0, bitsize
, 0),
2266 target
, 1, OPTAB_LIB_WIDEN
);
2270 /* To extract a signed bit-field, first shift its msb to the msb of the word,
2271 then arithmetic-shift its lsb to the lsb of the word. */
2272 op0
= force_reg (mode
, op0
);
2274 /* Find the narrowest integer mode that contains the field. */
2276 opt_scalar_int_mode mode_iter
;
2277 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
2278 if (GET_MODE_BITSIZE (mode_iter
.require ()) >= bitsize
+ bitnum
)
2281 mode
= mode_iter
.require ();
2282 op0
= convert_to_mode (mode
, op0
, 0);
2287 if (GET_MODE_BITSIZE (mode
) != (bitsize
+ bitnum
))
2289 int amount
= GET_MODE_BITSIZE (mode
) - (bitsize
+ bitnum
);
2290 /* Maybe propagate the target for the shift. */
2291 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
2292 op0
= expand_shift (LSHIFT_EXPR
, mode
, op0
, amount
, subtarget
, 1);
2295 return expand_shift (RSHIFT_EXPR
, mode
, op0
,
2296 GET_MODE_BITSIZE (mode
) - bitsize
, target
, 0);
2299 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
2303 lshift_value (machine_mode mode
, unsigned HOST_WIDE_INT value
,
2306 return immed_wide_int_const (wi::lshift (value
, bitpos
), mode
);
2309 /* Extract a bit field that is split across two words
2310 and return an RTX for the result.
2312 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
2313 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
2314 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend.
2315 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
2318 If REVERSE is true, the extraction is to be done in reverse order. */
2321 extract_split_bit_field (rtx op0
, opt_scalar_int_mode op0_mode
,
2322 unsigned HOST_WIDE_INT bitsize
,
2323 unsigned HOST_WIDE_INT bitpos
, int unsignedp
,
2327 unsigned int bitsdone
= 0;
2328 rtx result
= NULL_RTX
;
2331 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2333 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
2334 unit
= BITS_PER_WORD
;
2336 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
2338 while (bitsdone
< bitsize
)
2340 unsigned HOST_WIDE_INT thissize
;
2342 unsigned HOST_WIDE_INT thispos
;
2343 unsigned HOST_WIDE_INT offset
;
2345 offset
= (bitpos
+ bitsdone
) / unit
;
2346 thispos
= (bitpos
+ bitsdone
) % unit
;
2348 /* THISSIZE must not overrun a word boundary. Otherwise,
2349 extract_fixed_bit_field will call us again, and we will mutually
2351 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
2352 thissize
= MIN (thissize
, unit
- thispos
);
2354 /* If OP0 is a register, then handle OFFSET here. */
2355 rtx op0_piece
= op0
;
2356 opt_scalar_int_mode op0_piece_mode
= op0_mode
;
2357 if (SUBREG_P (op0
) || REG_P (op0
))
2359 op0_piece
= operand_subword_force (op0
, offset
, op0_mode
.require ());
2360 op0_piece_mode
= word_mode
;
2364 /* Extract the parts in bit-counting order,
2365 whose meaning is determined by BYTES_PER_UNIT.
2366 OFFSET is in UNITs, and UNIT is in bits. */
2367 part
= extract_fixed_bit_field (word_mode
, op0_piece
, op0_piece_mode
,
2368 thissize
, offset
* unit
+ thispos
,
2370 bitsdone
+= thissize
;
2372 /* Shift this part into place for the result. */
2373 if (reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
2375 if (bitsize
!= bitsdone
)
2376 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
2377 bitsize
- bitsdone
, 0, 1);
2381 if (bitsdone
!= thissize
)
2382 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
2383 bitsdone
- thissize
, 0, 1);
2389 /* Combine the parts with bitwise or. This works
2390 because we extracted each part as an unsigned bit field. */
2391 result
= expand_binop (word_mode
, ior_optab
, part
, result
, NULL_RTX
, 1,
2397 /* Unsigned bit field: we are done. */
2400 /* Signed bit field: sign-extend with two arithmetic shifts. */
2401 result
= expand_shift (LSHIFT_EXPR
, word_mode
, result
,
2402 BITS_PER_WORD
- bitsize
, NULL_RTX
, 0);
2403 return expand_shift (RSHIFT_EXPR
, word_mode
, result
,
2404 BITS_PER_WORD
- bitsize
, NULL_RTX
, 0);
2407 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2408 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
2409 MODE, fill the upper bits with zeros. Fail if the layout of either
2410 mode is unknown (as for CC modes) or if the extraction would involve
2411 unprofitable mode punning. Return the value on success, otherwise
2414 This is different from gen_lowpart* in these respects:
2416 - the returned value must always be considered an rvalue
2418 - when MODE is wider than SRC_MODE, the extraction involves
2421 - when MODE is smaller than SRC_MODE, the extraction involves
2422 a truncation (and is thus subject to TARGET_TRULY_NOOP_TRUNCATION).
2424 In other words, this routine performs a computation, whereas the
2425 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2429 extract_low_bits (machine_mode mode
, machine_mode src_mode
, rtx src
)
2431 scalar_int_mode int_mode
, src_int_mode
;
2433 if (mode
== src_mode
)
2436 if (CONSTANT_P (src
))
2438 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2439 fails, it will happily create (subreg (symbol_ref)) or similar
2441 poly_uint64 byte
= subreg_lowpart_offset (mode
, src_mode
);
2442 rtx ret
= simplify_subreg (mode
, src
, src_mode
, byte
);
2446 if (GET_MODE (src
) == VOIDmode
2447 || !validate_subreg (mode
, src_mode
, src
, byte
))
2450 src
= force_reg (GET_MODE (src
), src
);
2451 return gen_rtx_SUBREG (mode
, src
, byte
);
2454 if (GET_MODE_CLASS (mode
) == MODE_CC
|| GET_MODE_CLASS (src_mode
) == MODE_CC
)
2457 if (known_eq (GET_MODE_BITSIZE (mode
), GET_MODE_BITSIZE (src_mode
))
2458 && targetm
.modes_tieable_p (mode
, src_mode
))
2460 rtx x
= gen_lowpart_common (mode
, src
);
2465 if (!int_mode_for_mode (src_mode
).exists (&src_int_mode
)
2466 || !int_mode_for_mode (mode
).exists (&int_mode
))
2469 if (!targetm
.modes_tieable_p (src_int_mode
, src_mode
))
2471 if (!targetm
.modes_tieable_p (int_mode
, mode
))
2474 src
= gen_lowpart (src_int_mode
, src
);
2475 if (!validate_subreg (int_mode
, src_int_mode
, src
,
2476 subreg_lowpart_offset (int_mode
, src_int_mode
)))
2479 src
= convert_modes (int_mode
, src_int_mode
, src
, true);
2480 src
= gen_lowpart (mode
, src
);
2484 /* Add INC into TARGET. */
2487 expand_inc (rtx target
, rtx inc
)
2489 rtx value
= expand_binop (GET_MODE (target
), add_optab
,
2491 target
, 0, OPTAB_LIB_WIDEN
);
2492 if (value
!= target
)
2493 emit_move_insn (target
, value
);
2496 /* Subtract DEC from TARGET. */
2499 expand_dec (rtx target
, rtx dec
)
2501 rtx value
= expand_binop (GET_MODE (target
), sub_optab
,
2503 target
, 0, OPTAB_LIB_WIDEN
);
2504 if (value
!= target
)
2505 emit_move_insn (target
, value
);
2508 /* Output a shift instruction for expression code CODE,
2509 with SHIFTED being the rtx for the value to shift,
2510 and AMOUNT the rtx for the amount to shift by.
2511 Store the result in the rtx TARGET, if that is convenient.
2512 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2513 Return the rtx for where the value is.
2514 If that cannot be done, abort the compilation unless MAY_FAIL is true,
2515 in which case 0 is returned. */
2518 expand_shift_1 (enum tree_code code
, machine_mode mode
, rtx shifted
,
2519 rtx amount
, rtx target
, int unsignedp
, bool may_fail
= false)
2522 int left
= (code
== LSHIFT_EXPR
|| code
== LROTATE_EXPR
);
2523 int rotate
= (code
== LROTATE_EXPR
|| code
== RROTATE_EXPR
);
2524 optab lshift_optab
= ashl_optab
;
2525 optab rshift_arith_optab
= ashr_optab
;
2526 optab rshift_uns_optab
= lshr_optab
;
2527 optab lrotate_optab
= rotl_optab
;
2528 optab rrotate_optab
= rotr_optab
;
2529 machine_mode op1_mode
;
2530 scalar_mode scalar_mode
= GET_MODE_INNER (mode
);
2532 bool speed
= optimize_insn_for_speed_p ();
2535 op1_mode
= GET_MODE (op1
);
2537 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2538 shift amount is a vector, use the vector/vector shift patterns. */
2539 if (VECTOR_MODE_P (mode
) && VECTOR_MODE_P (op1_mode
))
2541 lshift_optab
= vashl_optab
;
2542 rshift_arith_optab
= vashr_optab
;
2543 rshift_uns_optab
= vlshr_optab
;
2544 lrotate_optab
= vrotl_optab
;
2545 rrotate_optab
= vrotr_optab
;
2548 /* Previously detected shift-counts computed by NEGATE_EXPR
2549 and shifted in the other direction; but that does not work
2552 if (SHIFT_COUNT_TRUNCATED
)
2554 if (CONST_INT_P (op1
)
2555 && ((unsigned HOST_WIDE_INT
) INTVAL (op1
) >=
2556 (unsigned HOST_WIDE_INT
) GET_MODE_BITSIZE (scalar_mode
)))
2557 op1
= gen_int_shift_amount (mode
,
2558 (unsigned HOST_WIDE_INT
) INTVAL (op1
)
2559 % GET_MODE_BITSIZE (scalar_mode
));
2560 else if (GET_CODE (op1
) == SUBREG
2561 && subreg_lowpart_p (op1
)
2562 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1
)))
2563 && SCALAR_INT_MODE_P (GET_MODE (op1
)))
2564 op1
= SUBREG_REG (op1
);
2567 /* Canonicalize rotates by constant amount. We may canonicalize
2568 to reduce the immediate or if the ISA can rotate by constants
2569 in only on direction. */
2570 if (rotate
&& reverse_rotate_by_imm_p (scalar_mode
, left
, op1
))
2572 op1
= gen_int_shift_amount (mode
, (GET_MODE_BITSIZE (scalar_mode
)
2575 code
= left
? LROTATE_EXPR
: RROTATE_EXPR
;
2578 /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi.
2579 Note that this is not the case for bigger values. For instance a rotation
2580 of 0x01020304 by 16 bits gives 0x03040102 which is different from
2581 0x04030201 (bswapsi). */
2583 && CONST_INT_P (op1
)
2584 && INTVAL (op1
) == BITS_PER_UNIT
2585 && GET_MODE_SIZE (scalar_mode
) == 2
2586 && optab_handler (bswap_optab
, mode
) != CODE_FOR_nothing
)
2587 return expand_unop (mode
, bswap_optab
, shifted
, NULL_RTX
, unsignedp
);
2589 if (op1
== const0_rtx
)
2592 /* Check whether its cheaper to implement a left shift by a constant
2593 bit count by a sequence of additions. */
2594 if (code
== LSHIFT_EXPR
2595 && CONST_INT_P (op1
)
2597 && INTVAL (op1
) < GET_MODE_PRECISION (scalar_mode
)
2598 && INTVAL (op1
) < MAX_BITS_PER_WORD
2599 && (shift_cost (speed
, mode
, INTVAL (op1
))
2600 > INTVAL (op1
) * add_cost (speed
, mode
))
2601 && shift_cost (speed
, mode
, INTVAL (op1
)) != MAX_COST
)
2604 for (i
= 0; i
< INTVAL (op1
); i
++)
2606 temp
= force_reg (mode
, shifted
);
2607 shifted
= expand_binop (mode
, add_optab
, temp
, temp
, NULL_RTX
,
2608 unsignedp
, OPTAB_LIB_WIDEN
);
2613 for (attempt
= 0; temp
== 0 && attempt
< 3; attempt
++)
2615 enum optab_methods methods
;
2618 methods
= OPTAB_DIRECT
;
2619 else if (attempt
== 1)
2620 methods
= OPTAB_WIDEN
;
2622 methods
= OPTAB_LIB_WIDEN
;
2626 /* Widening does not work for rotation. */
2627 if (methods
== OPTAB_WIDEN
)
2629 else if (methods
== OPTAB_LIB_WIDEN
)
2631 /* If we have been unable to open-code this by a rotation,
2632 do it as the IOR or PLUS of two shifts. I.e., to rotate
2633 A by N bits, compute
2634 (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
2635 where C is the bitsize of A. If N cannot be zero,
2636 use PLUS instead of IOR.
2638 It is theoretically possible that the target machine might
2639 not be able to perform either shift and hence we would
2640 be making two libcalls rather than just the one for the
2641 shift (similarly if IOR could not be done). We will allow
2642 this extremely unlikely lossage to avoid complicating the
2645 rtx subtarget
= target
== shifted
? 0 : target
;
2646 rtx new_amount
, other_amount
;
2650 if (op1
== const0_rtx
)
2652 else if (CONST_INT_P (op1
))
2653 other_amount
= gen_int_shift_amount
2654 (mode
, GET_MODE_BITSIZE (scalar_mode
) - INTVAL (op1
));
2658 = simplify_gen_unary (NEG
, GET_MODE (op1
),
2659 op1
, GET_MODE (op1
));
2660 HOST_WIDE_INT mask
= GET_MODE_PRECISION (scalar_mode
) - 1;
2662 = simplify_gen_binary (AND
, GET_MODE (op1
), other_amount
,
2663 gen_int_mode (mask
, GET_MODE (op1
)));
2666 shifted
= force_reg (mode
, shifted
);
2668 temp
= expand_shift_1 (left
? LSHIFT_EXPR
: RSHIFT_EXPR
,
2669 mode
, shifted
, new_amount
, 0, 1);
2670 temp1
= expand_shift_1 (left
? RSHIFT_EXPR
: LSHIFT_EXPR
,
2671 mode
, shifted
, other_amount
,
2673 return expand_binop (mode
,
2674 CONST_INT_P (op1
) ? add_optab
: ior_optab
,
2675 temp
, temp1
, target
, unsignedp
, methods
);
2678 temp
= expand_binop (mode
,
2679 left
? lrotate_optab
: rrotate_optab
,
2680 shifted
, op1
, target
, unsignedp
, methods
);
2683 temp
= expand_binop (mode
,
2684 left
? lshift_optab
: rshift_uns_optab
,
2685 shifted
, op1
, target
, unsignedp
, methods
);
2687 /* Do arithmetic shifts.
2688 Also, if we are going to widen the operand, we can just as well
2689 use an arithmetic right-shift instead of a logical one. */
2690 if (temp
== 0 && ! rotate
2691 && (! unsignedp
|| (! left
&& methods
== OPTAB_WIDEN
)))
2693 enum optab_methods methods1
= methods
;
2695 /* If trying to widen a log shift to an arithmetic shift,
2696 don't accept an arithmetic shift of the same size. */
2698 methods1
= OPTAB_MUST_WIDEN
;
2700 /* Arithmetic shift */
2702 temp
= expand_binop (mode
,
2703 left
? lshift_optab
: rshift_arith_optab
,
2704 shifted
, op1
, target
, unsignedp
, methods1
);
2707 /* We used to try extzv here for logical right shifts, but that was
2708 only useful for one machine, the VAX, and caused poor code
2709 generation there for lshrdi3, so the code was deleted and a
2710 define_expand for lshrsi3 was added to vax.md. */
2713 gcc_assert (temp
!= NULL_RTX
|| may_fail
);
2717 /* Output a shift instruction for expression code CODE,
2718 with SHIFTED being the rtx for the value to shift,
2719 and AMOUNT the amount to shift by.
2720 Store the result in the rtx TARGET, if that is convenient.
2721 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2722 Return the rtx for where the value is. */
2725 expand_shift (enum tree_code code
, machine_mode mode
, rtx shifted
,
2726 poly_int64 amount
, rtx target
, int unsignedp
)
2728 return expand_shift_1 (code
, mode
, shifted
,
2729 gen_int_shift_amount (mode
, amount
),
2733 /* Likewise, but return 0 if that cannot be done. */
2736 maybe_expand_shift (enum tree_code code
, machine_mode mode
, rtx shifted
,
2737 int amount
, rtx target
, int unsignedp
)
2739 return expand_shift_1 (code
, mode
,
2740 shifted
, GEN_INT (amount
), target
, unsignedp
, true);
2743 /* Output a shift instruction for expression code CODE,
2744 with SHIFTED being the rtx for the value to shift,
2745 and AMOUNT the tree for the amount to shift by.
2746 Store the result in the rtx TARGET, if that is convenient.
2747 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2748 Return the rtx for where the value is. */
2751 expand_variable_shift (enum tree_code code
, machine_mode mode
, rtx shifted
,
2752 tree amount
, rtx target
, int unsignedp
)
2754 return expand_shift_1 (code
, mode
,
2755 shifted
, expand_normal (amount
), target
, unsignedp
);
2759 static void synth_mult (struct algorithm
*, unsigned HOST_WIDE_INT
,
2760 const struct mult_cost
*, machine_mode mode
);
2761 static rtx
expand_mult_const (machine_mode
, rtx
, HOST_WIDE_INT
, rtx
,
2762 const struct algorithm
*, enum mult_variant
);
2763 static unsigned HOST_WIDE_INT
invert_mod2n (unsigned HOST_WIDE_INT
, int);
2764 static rtx
extract_high_half (scalar_int_mode
, rtx
);
2765 static rtx
expmed_mult_highpart (scalar_int_mode
, rtx
, rtx
, rtx
, int, int);
2767 /* Compute and return the best algorithm for multiplying by T.
2768 The algorithm must cost less than cost_limit
2769 If retval.cost >= COST_LIMIT, no algorithm was found and all
2770 other field of the returned struct are undefined.
2771 MODE is the machine mode of the multiplication. */
2774 synth_mult (struct algorithm
*alg_out
, unsigned HOST_WIDE_INT t
,
2775 const struct mult_cost
*cost_limit
, machine_mode mode
)
2778 struct algorithm
*alg_in
, *best_alg
;
2779 struct mult_cost best_cost
;
2780 struct mult_cost new_limit
;
2781 int op_cost
, op_latency
;
2782 unsigned HOST_WIDE_INT orig_t
= t
;
2783 unsigned HOST_WIDE_INT q
;
2784 int maxm
, hash_index
;
2785 bool cache_hit
= false;
2786 enum alg_code cache_alg
= alg_zero
;
2787 bool speed
= optimize_insn_for_speed_p ();
2788 scalar_int_mode imode
;
2789 struct alg_hash_entry
*entry_ptr
;
2791 /* Indicate that no algorithm is yet found. If no algorithm
2792 is found, this value will be returned and indicate failure. */
2793 alg_out
->cost
.cost
= cost_limit
->cost
+ 1;
2794 alg_out
->cost
.latency
= cost_limit
->latency
+ 1;
2796 if (cost_limit
->cost
< 0
2797 || (cost_limit
->cost
== 0 && cost_limit
->latency
<= 0))
2800 /* Be prepared for vector modes. */
2801 imode
= as_a
<scalar_int_mode
> (GET_MODE_INNER (mode
));
2803 maxm
= MIN (BITS_PER_WORD
, GET_MODE_BITSIZE (imode
));
2805 /* Restrict the bits of "t" to the multiplication's mode. */
2806 t
&= GET_MODE_MASK (imode
);
2808 /* t == 1 can be done in zero cost. */
2812 alg_out
->cost
.cost
= 0;
2813 alg_out
->cost
.latency
= 0;
2814 alg_out
->op
[0] = alg_m
;
2818 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2822 if (MULT_COST_LESS (cost_limit
, zero_cost (speed
)))
2827 alg_out
->cost
.cost
= zero_cost (speed
);
2828 alg_out
->cost
.latency
= zero_cost (speed
);
2829 alg_out
->op
[0] = alg_zero
;
2834 /* We'll be needing a couple extra algorithm structures now. */
2836 alg_in
= XALLOCA (struct algorithm
);
2837 best_alg
= XALLOCA (struct algorithm
);
2838 best_cost
= *cost_limit
;
2840 /* Compute the hash index. */
2841 hash_index
= (t
^ (unsigned int) mode
^ (speed
* 256)) % NUM_ALG_HASH_ENTRIES
;
2843 /* See if we already know what to do for T. */
2844 entry_ptr
= alg_hash_entry_ptr (hash_index
);
2845 if (entry_ptr
->t
== t
2846 && entry_ptr
->mode
== mode
2847 && entry_ptr
->speed
== speed
2848 && entry_ptr
->alg
!= alg_unknown
)
2850 cache_alg
= entry_ptr
->alg
;
2852 if (cache_alg
== alg_impossible
)
2854 /* The cache tells us that it's impossible to synthesize
2855 multiplication by T within entry_ptr->cost. */
2856 if (!CHEAPER_MULT_COST (&entry_ptr
->cost
, cost_limit
))
2857 /* COST_LIMIT is at least as restrictive as the one
2858 recorded in the hash table, in which case we have no
2859 hope of synthesizing a multiplication. Just
2863 /* If we get here, COST_LIMIT is less restrictive than the
2864 one recorded in the hash table, so we may be able to
2865 synthesize a multiplication. Proceed as if we didn't
2866 have the cache entry. */
2870 if (CHEAPER_MULT_COST (cost_limit
, &entry_ptr
->cost
))
2871 /* The cached algorithm shows that this multiplication
2872 requires more cost than COST_LIMIT. Just return. This
2873 way, we don't clobber this cache entry with
2874 alg_impossible but retain useful information. */
2886 goto do_alg_addsub_t_m2
;
2888 case alg_add_factor
:
2889 case alg_sub_factor
:
2890 goto do_alg_addsub_factor
;
2893 goto do_alg_add_t2_m
;
2896 goto do_alg_sub_t2_m
;
2904 /* If we have a group of zero bits at the low-order part of T, try
2905 multiplying by the remaining bits and then doing a shift. */
2910 m
= ctz_or_zero (t
); /* m = number of low zero bits */
2914 /* The function expand_shift will choose between a shift and
2915 a sequence of additions, so the observed cost is given as
2916 MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
2917 op_cost
= m
* add_cost (speed
, mode
);
2918 if (shift_cost (speed
, mode
, m
) < op_cost
)
2919 op_cost
= shift_cost (speed
, mode
, m
);
2920 new_limit
.cost
= best_cost
.cost
- op_cost
;
2921 new_limit
.latency
= best_cost
.latency
- op_cost
;
2922 synth_mult (alg_in
, q
, &new_limit
, mode
);
2924 alg_in
->cost
.cost
+= op_cost
;
2925 alg_in
->cost
.latency
+= op_cost
;
2926 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2928 best_cost
= alg_in
->cost
;
2929 std::swap (alg_in
, best_alg
);
2930 best_alg
->log
[best_alg
->ops
] = m
;
2931 best_alg
->op
[best_alg
->ops
] = alg_shift
;
2934 /* See if treating ORIG_T as a signed number yields a better
2935 sequence. Try this sequence only for a negative ORIG_T
2936 as it would be useless for a non-negative ORIG_T. */
2937 if ((HOST_WIDE_INT
) orig_t
< 0)
2939 /* Shift ORIG_T as follows because a right shift of a
2940 negative-valued signed type is implementation
2942 q
= ~(~orig_t
>> m
);
2943 /* The function expand_shift will choose between a shift
2944 and a sequence of additions, so the observed cost is
2945 given as MIN (m * add_cost(speed, mode),
2946 shift_cost(speed, mode, m)). */
2947 op_cost
= m
* add_cost (speed
, mode
);
2948 if (shift_cost (speed
, mode
, m
) < op_cost
)
2949 op_cost
= shift_cost (speed
, mode
, m
);
2950 new_limit
.cost
= best_cost
.cost
- op_cost
;
2951 new_limit
.latency
= best_cost
.latency
- op_cost
;
2952 synth_mult (alg_in
, q
, &new_limit
, mode
);
2954 alg_in
->cost
.cost
+= op_cost
;
2955 alg_in
->cost
.latency
+= op_cost
;
2956 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2958 best_cost
= alg_in
->cost
;
2959 std::swap (alg_in
, best_alg
);
2960 best_alg
->log
[best_alg
->ops
] = m
;
2961 best_alg
->op
[best_alg
->ops
] = alg_shift
;
2969 /* If we have an odd number, add or subtract one. */
2972 unsigned HOST_WIDE_INT w
;
2975 for (w
= 1; (w
& t
) != 0; w
<<= 1)
2977 /* If T was -1, then W will be zero after the loop. This is another
2978 case where T ends with ...111. Handling this with (T + 1) and
2979 subtract 1 produces slightly better code and results in algorithm
2980 selection much faster than treating it like the ...0111 case
2984 /* Reject the case where t is 3.
2985 Thus we prefer addition in that case. */
2988 /* T ends with ...111. Multiply by (T + 1) and subtract T. */
2990 op_cost
= add_cost (speed
, mode
);
2991 new_limit
.cost
= best_cost
.cost
- op_cost
;
2992 new_limit
.latency
= best_cost
.latency
- op_cost
;
2993 synth_mult (alg_in
, t
+ 1, &new_limit
, mode
);
2995 alg_in
->cost
.cost
+= op_cost
;
2996 alg_in
->cost
.latency
+= op_cost
;
2997 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2999 best_cost
= alg_in
->cost
;
3000 std::swap (alg_in
, best_alg
);
3001 best_alg
->log
[best_alg
->ops
] = 0;
3002 best_alg
->op
[best_alg
->ops
] = alg_sub_t_m2
;
3007 /* T ends with ...01 or ...011. Multiply by (T - 1) and add T. */
3009 op_cost
= add_cost (speed
, mode
);
3010 new_limit
.cost
= best_cost
.cost
- op_cost
;
3011 new_limit
.latency
= best_cost
.latency
- op_cost
;
3012 synth_mult (alg_in
, t
- 1, &new_limit
, mode
);
3014 alg_in
->cost
.cost
+= op_cost
;
3015 alg_in
->cost
.latency
+= op_cost
;
3016 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
3018 best_cost
= alg_in
->cost
;
3019 std::swap (alg_in
, best_alg
);
3020 best_alg
->log
[best_alg
->ops
] = 0;
3021 best_alg
->op
[best_alg
->ops
] = alg_add_t_m2
;
3025 /* We may be able to calculate a * -7, a * -15, a * -31, etc
3026 quickly with a - a * n for some appropriate constant n. */
3027 m
= exact_log2 (-orig_t
+ 1);
3028 if (m
>= 0 && m
< maxm
)
3030 op_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
3031 /* If the target has a cheap shift-and-subtract insn use
3032 that in preference to a shift insn followed by a sub insn.
3033 Assume that the shift-and-sub is "atomic" with a latency
3034 equal to it's cost, otherwise assume that on superscalar
3035 hardware the shift may be executed concurrently with the
3036 earlier steps in the algorithm. */
3037 if (shiftsub1_cost (speed
, mode
, m
) <= op_cost
)
3039 op_cost
= shiftsub1_cost (speed
, mode
, m
);
3040 op_latency
= op_cost
;
3043 op_latency
= add_cost (speed
, mode
);
3045 new_limit
.cost
= best_cost
.cost
- op_cost
;
3046 new_limit
.latency
= best_cost
.latency
- op_latency
;
3047 synth_mult (alg_in
, (unsigned HOST_WIDE_INT
) (-orig_t
+ 1) >> m
,
3050 alg_in
->cost
.cost
+= op_cost
;
3051 alg_in
->cost
.latency
+= op_latency
;
3052 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
3054 best_cost
= alg_in
->cost
;
3055 std::swap (alg_in
, best_alg
);
3056 best_alg
->log
[best_alg
->ops
] = m
;
3057 best_alg
->op
[best_alg
->ops
] = alg_sub_t_m2
;
3065 /* Look for factors of t of the form
3066 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
3067 If we find such a factor, we can multiply by t using an algorithm that
3068 multiplies by q, shift the result by m and add/subtract it to itself.
3070 We search for large factors first and loop down, even if large factors
3071 are less probable than small; if we find a large factor we will find a
3072 good sequence quickly, and therefore be able to prune (by decreasing
3073 COST_LIMIT) the search. */
3075 do_alg_addsub_factor
:
3076 for (m
= floor_log2 (t
- 1); m
>= 2; m
--)
3078 unsigned HOST_WIDE_INT d
;
3080 d
= (HOST_WIDE_INT_1U
<< m
) + 1;
3081 if (t
% d
== 0 && t
> d
&& m
< maxm
3082 && (!cache_hit
|| cache_alg
== alg_add_factor
))
3084 op_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
3085 if (shiftadd_cost (speed
, mode
, m
) <= op_cost
)
3086 op_cost
= shiftadd_cost (speed
, mode
, m
);
3088 op_latency
= op_cost
;
3091 new_limit
.cost
= best_cost
.cost
- op_cost
;
3092 new_limit
.latency
= best_cost
.latency
- op_latency
;
3093 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
3095 alg_in
->cost
.cost
+= op_cost
;
3096 alg_in
->cost
.latency
+= op_latency
;
3097 if (alg_in
->cost
.latency
< op_cost
)
3098 alg_in
->cost
.latency
= op_cost
;
3099 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
3101 best_cost
= alg_in
->cost
;
3102 std::swap (alg_in
, best_alg
);
3103 best_alg
->log
[best_alg
->ops
] = m
;
3104 best_alg
->op
[best_alg
->ops
] = alg_add_factor
;
3106 /* Other factors will have been taken care of in the recursion. */
3110 d
= (HOST_WIDE_INT_1U
<< m
) - 1;
3111 if (t
% d
== 0 && t
> d
&& m
< maxm
3112 && (!cache_hit
|| cache_alg
== alg_sub_factor
))
3114 op_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
3115 if (shiftsub0_cost (speed
, mode
, m
) <= op_cost
)
3116 op_cost
= shiftsub0_cost (speed
, mode
, m
);
3118 op_latency
= op_cost
;
3120 new_limit
.cost
= best_cost
.cost
- op_cost
;
3121 new_limit
.latency
= best_cost
.latency
- op_latency
;
3122 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
3124 alg_in
->cost
.cost
+= op_cost
;
3125 alg_in
->cost
.latency
+= op_latency
;
3126 if (alg_in
->cost
.latency
< op_cost
)
3127 alg_in
->cost
.latency
= op_cost
;
3128 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
3130 best_cost
= alg_in
->cost
;
3131 std::swap (alg_in
, best_alg
);
3132 best_alg
->log
[best_alg
->ops
] = m
;
3133 best_alg
->op
[best_alg
->ops
] = alg_sub_factor
;
3141 /* Try shift-and-add (load effective address) instructions,
3142 i.e. do a*3, a*5, a*9. */
3150 op_cost
= shiftadd_cost (speed
, mode
, m
);
3151 new_limit
.cost
= best_cost
.cost
- op_cost
;
3152 new_limit
.latency
= best_cost
.latency
- op_cost
;
3153 synth_mult (alg_in
, (t
- 1) >> m
, &new_limit
, mode
);
3155 alg_in
->cost
.cost
+= op_cost
;
3156 alg_in
->cost
.latency
+= op_cost
;
3157 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
3159 best_cost
= alg_in
->cost
;
3160 std::swap (alg_in
, best_alg
);
3161 best_alg
->log
[best_alg
->ops
] = m
;
3162 best_alg
->op
[best_alg
->ops
] = alg_add_t2_m
;
3173 op_cost
= shiftsub0_cost (speed
, mode
, m
);
3174 new_limit
.cost
= best_cost
.cost
- op_cost
;
3175 new_limit
.latency
= best_cost
.latency
- op_cost
;
3176 synth_mult (alg_in
, (t
+ 1) >> m
, &new_limit
, mode
);
3178 alg_in
->cost
.cost
+= op_cost
;
3179 alg_in
->cost
.latency
+= op_cost
;
3180 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
3182 best_cost
= alg_in
->cost
;
3183 std::swap (alg_in
, best_alg
);
3184 best_alg
->log
[best_alg
->ops
] = m
;
3185 best_alg
->op
[best_alg
->ops
] = alg_sub_t2_m
;
3193 /* If best_cost has not decreased, we have not found any algorithm. */
3194 if (!CHEAPER_MULT_COST (&best_cost
, cost_limit
))
3196 /* We failed to find an algorithm. Record alg_impossible for
3197 this case (that is, <T, MODE, COST_LIMIT>) so that next time
3198 we are asked to find an algorithm for T within the same or
3199 lower COST_LIMIT, we can immediately return to the
3202 entry_ptr
->mode
= mode
;
3203 entry_ptr
->speed
= speed
;
3204 entry_ptr
->alg
= alg_impossible
;
3205 entry_ptr
->cost
= *cost_limit
;
3209 /* Cache the result. */
3213 entry_ptr
->mode
= mode
;
3214 entry_ptr
->speed
= speed
;
3215 entry_ptr
->alg
= best_alg
->op
[best_alg
->ops
];
3216 entry_ptr
->cost
.cost
= best_cost
.cost
;
3217 entry_ptr
->cost
.latency
= best_cost
.latency
;
3220 /* If we are getting a too long sequence for `struct algorithm'
3221 to record, make this search fail. */
3222 if (best_alg
->ops
== MAX_BITS_PER_WORD
)
3225 /* Copy the algorithm from temporary space to the space at alg_out.
3226 We avoid using structure assignment because the majority of
3227 best_alg is normally undefined, and this is a critical function. */
3228 alg_out
->ops
= best_alg
->ops
+ 1;
3229 alg_out
->cost
= best_cost
;
3230 memcpy (alg_out
->op
, best_alg
->op
,
3231 alg_out
->ops
* sizeof *alg_out
->op
);
3232 memcpy (alg_out
->log
, best_alg
->log
,
3233 alg_out
->ops
* sizeof *alg_out
->log
);
3236 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
3237 Try three variations:
3239 - a shift/add sequence based on VAL itself
3240 - a shift/add sequence based on -VAL, followed by a negation
3241 - a shift/add sequence based on VAL - 1, followed by an addition.
3243 Return true if the cheapest of these cost less than MULT_COST,
3244 describing the algorithm in *ALG and final fixup in *VARIANT. */
3247 choose_mult_variant (machine_mode mode
, HOST_WIDE_INT val
,
3248 struct algorithm
*alg
, enum mult_variant
*variant
,
3251 struct algorithm alg2
;
3252 struct mult_cost limit
;
3254 bool speed
= optimize_insn_for_speed_p ();
3256 /* Fail quickly for impossible bounds. */
3260 /* Ensure that mult_cost provides a reasonable upper bound.
3261 Any constant multiplication can be performed with less
3262 than 2 * bits additions. */
3263 op_cost
= 2 * GET_MODE_UNIT_BITSIZE (mode
) * add_cost (speed
, mode
);
3264 if (mult_cost
> op_cost
)
3265 mult_cost
= op_cost
;
3267 *variant
= basic_variant
;
3268 limit
.cost
= mult_cost
;
3269 limit
.latency
= mult_cost
;
3270 synth_mult (alg
, val
, &limit
, mode
);
3272 /* This works only if the inverted value actually fits in an
3274 if (HOST_BITS_PER_INT
>= GET_MODE_UNIT_BITSIZE (mode
))
3276 op_cost
= neg_cost (speed
, mode
);
3277 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
3279 limit
.cost
= alg
->cost
.cost
- op_cost
;
3280 limit
.latency
= alg
->cost
.latency
- op_cost
;
3284 limit
.cost
= mult_cost
- op_cost
;
3285 limit
.latency
= mult_cost
- op_cost
;
3288 synth_mult (&alg2
, -val
, &limit
, mode
);
3289 alg2
.cost
.cost
+= op_cost
;
3290 alg2
.cost
.latency
+= op_cost
;
3291 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
3292 *alg
= alg2
, *variant
= negate_variant
;
3295 /* This proves very useful for division-by-constant. */
3296 op_cost
= add_cost (speed
, mode
);
3297 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
3299 limit
.cost
= alg
->cost
.cost
- op_cost
;
3300 limit
.latency
= alg
->cost
.latency
- op_cost
;
3304 limit
.cost
= mult_cost
- op_cost
;
3305 limit
.latency
= mult_cost
- op_cost
;
3308 if (val
!= HOST_WIDE_INT_MIN
3309 || GET_MODE_UNIT_PRECISION (mode
) == HOST_BITS_PER_WIDE_INT
)
3311 synth_mult (&alg2
, val
- HOST_WIDE_INT_1U
, &limit
, mode
);
3312 alg2
.cost
.cost
+= op_cost
;
3313 alg2
.cost
.latency
+= op_cost
;
3314 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
3315 *alg
= alg2
, *variant
= add_variant
;
3318 return MULT_COST_LESS (&alg
->cost
, mult_cost
);
3321 /* A subroutine of expand_mult, used for constant multiplications.
3322 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
3323 convenient. Use the shift/add sequence described by ALG and apply
3324 the final fixup specified by VARIANT. */
3327 expand_mult_const (machine_mode mode
, rtx op0
, HOST_WIDE_INT val
,
3328 rtx target
, const struct algorithm
*alg
,
3329 enum mult_variant variant
)
3331 unsigned HOST_WIDE_INT val_so_far
;
3337 /* Avoid referencing memory over and over and invalid sharing
3339 op0
= force_reg (mode
, op0
);
3341 /* ACCUM starts out either as OP0 or as a zero, depending on
3342 the first operation. */
3344 if (alg
->op
[0] == alg_zero
)
3346 accum
= copy_to_mode_reg (mode
, CONST0_RTX (mode
));
3349 else if (alg
->op
[0] == alg_m
)
3351 accum
= copy_to_mode_reg (mode
, op0
);
3357 for (opno
= 1; opno
< alg
->ops
; opno
++)
3359 int log
= alg
->log
[opno
];
3360 rtx shift_subtarget
= optimize
? 0 : accum
;
3362 = (opno
== alg
->ops
- 1 && target
!= 0 && variant
!= add_variant
3365 rtx accum_target
= optimize
? 0 : accum
;
3368 switch (alg
->op
[opno
])
3371 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
3372 /* REG_EQUAL note will be attached to the following insn. */
3373 emit_move_insn (accum
, tem
);
3378 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
, log
, NULL_RTX
, 0);
3379 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
3380 add_target
? add_target
: accum_target
);
3381 val_so_far
+= HOST_WIDE_INT_1U
<< log
;
3385 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
, log
, NULL_RTX
, 0);
3386 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, tem
),
3387 add_target
? add_target
: accum_target
);
3388 val_so_far
-= HOST_WIDE_INT_1U
<< log
;
3392 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
3393 log
, shift_subtarget
, 0);
3394 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
),
3395 add_target
? add_target
: accum_target
);
3396 val_so_far
= (val_so_far
<< log
) + 1;
3400 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
3401 log
, shift_subtarget
, 0);
3402 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, op0
),
3403 add_target
? add_target
: accum_target
);
3404 val_so_far
= (val_so_far
<< log
) - 1;
3407 case alg_add_factor
:
3408 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
3409 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
3410 add_target
? add_target
: accum_target
);
3411 val_so_far
+= val_so_far
<< log
;
3414 case alg_sub_factor
:
3415 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
3416 accum
= force_operand (gen_rtx_MINUS (mode
, tem
, accum
),
3418 ? add_target
: (optimize
? 0 : tem
)));
3419 val_so_far
= (val_so_far
<< log
) - val_so_far
;
3426 if (SCALAR_INT_MODE_P (mode
))
3428 /* Write a REG_EQUAL note on the last insn so that we can cse
3429 multiplication sequences. Note that if ACCUM is a SUBREG,
3430 we've set the inner register and must properly indicate that. */
3431 tem
= op0
, nmode
= mode
;
3432 accum_inner
= accum
;
3433 if (GET_CODE (accum
) == SUBREG
)
3435 accum_inner
= SUBREG_REG (accum
);
3436 nmode
= GET_MODE (accum_inner
);
3437 tem
= gen_lowpart (nmode
, op0
);
3440 /* Don't add a REG_EQUAL note if tem is a paradoxical SUBREG.
3441 In that case, only the low bits of accum would be guaranteed to
3442 be equal to the content of the REG_EQUAL note, the upper bits
3444 if (!paradoxical_subreg_p (tem
))
3446 insn
= get_last_insn ();
3447 wide_int wval_so_far
3448 = wi::uhwi (val_so_far
,
3449 GET_MODE_PRECISION (as_a
<scalar_mode
> (nmode
)));
3450 rtx c
= immed_wide_int_const (wval_so_far
, nmode
);
3451 set_dst_reg_note (insn
, REG_EQUAL
, gen_rtx_MULT (nmode
, tem
, c
),
3457 if (variant
== negate_variant
)
3459 val_so_far
= -val_so_far
;
3460 accum
= expand_unop (mode
, neg_optab
, accum
, target
, 0);
3462 else if (variant
== add_variant
)
3464 val_so_far
= val_so_far
+ 1;
3465 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
), target
);
3468 /* Compare only the bits of val and val_so_far that are significant
3469 in the result mode, to avoid sign-/zero-extension confusion. */
3470 nmode
= GET_MODE_INNER (mode
);
3471 val
&= GET_MODE_MASK (nmode
);
3472 val_so_far
&= GET_MODE_MASK (nmode
);
3473 gcc_assert (val
== (HOST_WIDE_INT
) val_so_far
);
3478 /* Perform a multiplication and return an rtx for the result.
3479 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3480 TARGET is a suggestion for where to store the result (an rtx).
3482 We check specially for a constant integer as OP1.
3483 If you want this check for OP0 as well, then before calling
3484 you should swap the two operands if OP0 would be constant. */
3487 expand_mult (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3488 int unsignedp
, bool no_libcall
)
3490 enum mult_variant variant
;
3491 struct algorithm algorithm
;
3494 bool speed
= optimize_insn_for_speed_p ();
3495 bool do_trapv
= flag_trapv
&& SCALAR_INT_MODE_P (mode
) && !unsignedp
;
3497 if (CONSTANT_P (op0
))
3498 std::swap (op0
, op1
);
3500 /* For vectors, there are several simplifications that can be made if
3501 all elements of the vector constant are identical. */
3502 scalar_op1
= unwrap_const_vec_duplicate (op1
);
3504 if (INTEGRAL_MODE_P (mode
))
3507 HOST_WIDE_INT coeff
;
3511 if (op1
== CONST0_RTX (mode
))
3513 if (op1
== CONST1_RTX (mode
))
3515 if (op1
== CONSTM1_RTX (mode
))
3516 return expand_unop (mode
, do_trapv
? negv_optab
: neg_optab
,
3522 /* If mode is integer vector mode, check if the backend supports
3523 vector lshift (by scalar or vector) at all. If not, we can't use
3524 synthetized multiply. */
3525 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
3526 && optab_handler (vashl_optab
, mode
) == CODE_FOR_nothing
3527 && optab_handler (ashl_optab
, mode
) == CODE_FOR_nothing
)
3530 /* These are the operations that are potentially turned into
3531 a sequence of shifts and additions. */
3532 mode_bitsize
= GET_MODE_UNIT_BITSIZE (mode
);
3534 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3535 less than or equal in size to `unsigned int' this doesn't matter.
3536 If the mode is larger than `unsigned int', then synth_mult works
3537 only if the constant value exactly fits in an `unsigned int' without
3538 any truncation. This means that multiplying by negative values does
3539 not work; results are off by 2^32 on a 32 bit machine. */
3540 if (CONST_INT_P (scalar_op1
))
3542 coeff
= INTVAL (scalar_op1
);
3545 #if TARGET_SUPPORTS_WIDE_INT
3546 else if (CONST_WIDE_INT_P (scalar_op1
))
3548 else if (CONST_DOUBLE_AS_INT_P (scalar_op1
))
3551 int shift
= wi::exact_log2 (rtx_mode_t (scalar_op1
, mode
));
3552 /* Perfect power of 2 (other than 1, which is handled above). */
3554 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3555 shift
, target
, unsignedp
);
3562 /* We used to test optimize here, on the grounds that it's better to
3563 produce a smaller program when -O is not used. But this causes
3564 such a terrible slowdown sometimes that it seems better to always
3567 /* Special case powers of two. */
3568 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
)
3569 && !(is_neg
&& mode_bitsize
> HOST_BITS_PER_WIDE_INT
))
3570 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3571 floor_log2 (coeff
), target
, unsignedp
);
3573 fake_reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
3575 /* Attempt to handle multiplication of DImode values by negative
3576 coefficients, by performing the multiplication by a positive
3577 multiplier and then inverting the result. */
3578 if (is_neg
&& mode_bitsize
> HOST_BITS_PER_WIDE_INT
)
3580 /* Its safe to use -coeff even for INT_MIN, as the
3581 result is interpreted as an unsigned coefficient.
3582 Exclude cost of op0 from max_cost to match the cost
3583 calculation of the synth_mult. */
3584 coeff
= -(unsigned HOST_WIDE_INT
) coeff
;
3585 max_cost
= (set_src_cost (gen_rtx_MULT (mode
, fake_reg
, op1
),
3587 - neg_cost (speed
, mode
));
3591 /* Special case powers of two. */
3592 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
))
3594 rtx temp
= expand_shift (LSHIFT_EXPR
, mode
, op0
,
3595 floor_log2 (coeff
), target
, unsignedp
);
3596 return expand_unop (mode
, neg_optab
, temp
, target
, 0);
3599 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
,
3602 rtx temp
= expand_mult_const (mode
, op0
, coeff
, NULL_RTX
,
3603 &algorithm
, variant
);
3604 return expand_unop (mode
, neg_optab
, temp
, target
, 0);
3609 /* Exclude cost of op0 from max_cost to match the cost
3610 calculation of the synth_mult. */
3611 max_cost
= set_src_cost (gen_rtx_MULT (mode
, fake_reg
, op1
), mode
, speed
);
3612 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
, max_cost
))
3613 return expand_mult_const (mode
, op0
, coeff
, target
,
3614 &algorithm
, variant
);
3618 /* Expand x*2.0 as x+x. */
3619 if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1
)
3620 && real_equal (CONST_DOUBLE_REAL_VALUE (scalar_op1
), &dconst2
))
3622 op0
= force_reg (GET_MODE (op0
), op0
);
3623 return expand_binop (mode
, add_optab
, op0
, op0
,
3625 no_libcall
? OPTAB_WIDEN
: OPTAB_LIB_WIDEN
);
3628 /* This used to use umul_optab if unsigned, but for non-widening multiply
3629 there is no difference between signed and unsigned. */
3630 op0
= expand_binop (mode
, do_trapv
? smulv_optab
: smul_optab
,
3631 op0
, op1
, target
, unsignedp
,
3632 no_libcall
? OPTAB_WIDEN
: OPTAB_LIB_WIDEN
);
3633 gcc_assert (op0
|| no_libcall
);
3637 /* Return a cost estimate for multiplying a register by the given
3638 COEFFicient in the given MODE and SPEED. */
3641 mult_by_coeff_cost (HOST_WIDE_INT coeff
, machine_mode mode
, bool speed
)
3644 struct algorithm algorithm
;
3645 enum mult_variant variant
;
3647 rtx fake_reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
3648 max_cost
= set_src_cost (gen_rtx_MULT (mode
, fake_reg
, fake_reg
),
3650 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
, max_cost
))
3651 return algorithm
.cost
.cost
;
3656 /* Perform a widening multiplication and return an rtx for the result.
3657 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3658 TARGET is a suggestion for where to store the result (an rtx).
3659 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3660 or smul_widen_optab.
3662 We check specially for a constant integer as OP1, comparing the
3663 cost of a widening multiply against the cost of a sequence of shifts
3667 expand_widening_mult (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3668 int unsignedp
, optab this_optab
)
3670 bool speed
= optimize_insn_for_speed_p ();
3673 if (CONST_INT_P (op1
)
3674 && GET_MODE (op0
) != VOIDmode
3675 && (cop1
= convert_modes (mode
, GET_MODE (op0
), op1
,
3676 this_optab
== umul_widen_optab
))
3677 && CONST_INT_P (cop1
)
3678 && (INTVAL (cop1
) >= 0
3679 || HWI_COMPUTABLE_MODE_P (mode
)))
3681 HOST_WIDE_INT coeff
= INTVAL (cop1
);
3683 enum mult_variant variant
;
3684 struct algorithm algorithm
;
3687 return CONST0_RTX (mode
);
3689 /* Special case powers of two. */
3690 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
))
3692 op0
= convert_to_mode (mode
, op0
, this_optab
== umul_widen_optab
);
3693 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3694 floor_log2 (coeff
), target
, unsignedp
);
3697 /* Exclude cost of op0 from max_cost to match the cost
3698 calculation of the synth_mult. */
3699 max_cost
= mul_widen_cost (speed
, mode
);
3700 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
,
3703 op0
= convert_to_mode (mode
, op0
, this_optab
== umul_widen_optab
);
3704 return expand_mult_const (mode
, op0
, coeff
, target
,
3705 &algorithm
, variant
);
3708 return expand_binop (mode
, this_optab
, op0
, op1
, target
,
3709 unsignedp
, OPTAB_LIB_WIDEN
);
3712 /* Choose a minimal N + 1 bit approximation to 2**K / D that can be used to
3713 replace division by D, put the least significant N bits of the result in
3714 *MULTIPLIER_PTR, the value K - N in *POST_SHIFT_PTR, and return the most
3717 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3718 needed precision is PRECISION (should be <= N).
3720 PRECISION should be as small as possible so this function can choose the
3721 multiplier more freely. If PRECISION is <= N - 1, the most significant
3722 bit returned by the function will be zero.
3724 Using this function, x / D is equal to (x*m) / 2**N >> (*POST_SHIFT_PTR),
3725 where m is the full N + 1 bit multiplier. */
3727 unsigned HOST_WIDE_INT
3728 choose_multiplier (unsigned HOST_WIDE_INT d
, int n
, int precision
,
3729 unsigned HOST_WIDE_INT
*multiplier_ptr
,
3730 int *post_shift_ptr
)
3732 int lgup
, post_shift
;
3735 /* lgup = ceil(log2(d)) */
3736 /* Assuming d > 1, we have d >= 2^(lgup-1) + 1 */
3737 lgup
= ceil_log2 (d
);
3739 gcc_assert (lgup
<= n
);
3740 gcc_assert (lgup
<= precision
);
3743 pow2
= n
+ lgup
- precision
;
3745 /* mlow = 2^(n + lgup)/d */
3746 /* Trivially from above we have mlow < 2^(n+1) */
3747 wide_int val
= wi::set_bit_in_zero (pow1
, HOST_BITS_PER_DOUBLE_INT
);
3748 wide_int mlow
= wi::udiv_trunc (val
, d
);
3750 /* mhigh = (2^(n + lgup) + 2^(n + lgup - precision))/d */
3751 /* From above we have mhigh < 2^(n+1) assuming lgup <= precision */
3752 /* From precision <= n, the difference between the numerators of mhigh and
3753 mlow is >= 2^lgup >= d. Therefore the difference of the quotients in
3754 the Euclidean division by d is at least 1, so we have mlow < mhigh and
3755 the exact value of 2^(n + lgup)/d lies in the interval [mlow; mhigh). */
3756 val
|= wi::set_bit_in_zero (pow2
, HOST_BITS_PER_DOUBLE_INT
);
3757 wide_int mhigh
= wi::udiv_trunc (val
, d
);
3759 /* Reduce to lowest terms. */
3760 /* If precision <= n - 1, then the difference between the numerators of
3761 mhigh and mlow is >= 2^(lgup + 1) >= 2 * 2^lgup >= 2 * d. Therefore
3762 the difference of the quotients in the Euclidean division by d is at
3763 least 2, which means that mhigh and mlow differ by at least one bit
3764 not in the last place. The conclusion is that the first iteration of
3765 the loop below completes and shifts mhigh and mlow by 1 bit, which in
3766 particular means that mhigh < 2^n, that is to say, the most significant
3767 bit in the n + 1 bit value is zero. */
3768 for (post_shift
= lgup
; post_shift
> 0; post_shift
--)
3770 unsigned HOST_WIDE_INT ml_lo
= wi::extract_uhwi (mlow
, 1,
3771 HOST_BITS_PER_WIDE_INT
);
3772 unsigned HOST_WIDE_INT mh_lo
= wi::extract_uhwi (mhigh
, 1,
3773 HOST_BITS_PER_WIDE_INT
);
3777 mlow
= wi::uhwi (ml_lo
, HOST_BITS_PER_DOUBLE_INT
);
3778 mhigh
= wi::uhwi (mh_lo
, HOST_BITS_PER_DOUBLE_INT
);
3781 *post_shift_ptr
= post_shift
;
3783 if (n
< HOST_BITS_PER_WIDE_INT
)
3785 unsigned HOST_WIDE_INT mask
= (HOST_WIDE_INT_1U
<< n
) - 1;
3786 *multiplier_ptr
= mhigh
.to_uhwi () & mask
;
3787 return mhigh
.to_uhwi () > mask
;
3791 *multiplier_ptr
= mhigh
.to_uhwi ();
3792 return wi::extract_uhwi (mhigh
, HOST_BITS_PER_WIDE_INT
, 1);
3796 /* Compute the inverse of X mod 2**N, i.e., find Y such that X * Y is congruent
3797 to 1 modulo 2**N, assuming that X is odd. Bézout's lemma guarantees that Y
3798 exists for any given positive N. */
3800 static unsigned HOST_WIDE_INT
3801 invert_mod2n (unsigned HOST_WIDE_INT x
, int n
)
3803 gcc_assert ((x
& 1) == 1);
3805 /* The algorithm notes that the choice Y = Z satisfies X*Y == 1 mod 2^3,
3806 since X is odd. Then each iteration doubles the number of bits of
3807 significance in Y. */
3809 const unsigned HOST_WIDE_INT mask
3810 = (n
== HOST_BITS_PER_WIDE_INT
3812 : (HOST_WIDE_INT_1U
<< n
) - 1);
3813 unsigned HOST_WIDE_INT y
= x
;
3818 y
= y
* (2 - x
*y
) & mask
; /* Modulo 2^N */
3825 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3826 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3827 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3828 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3831 The result is put in TARGET if that is convenient.
3833 MODE is the mode of operation. */
3836 expand_mult_highpart_adjust (scalar_int_mode mode
, rtx adj_operand
, rtx op0
,
3837 rtx op1
, rtx target
, int unsignedp
)
3840 enum rtx_code adj_code
= unsignedp
? PLUS
: MINUS
;
3842 tem
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
3843 GET_MODE_BITSIZE (mode
) - 1, NULL_RTX
, 0);
3844 tem
= expand_and (mode
, tem
, op1
, NULL_RTX
);
3846 = force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3849 tem
= expand_shift (RSHIFT_EXPR
, mode
, op1
,
3850 GET_MODE_BITSIZE (mode
) - 1, NULL_RTX
, 0);
3851 tem
= expand_and (mode
, tem
, op0
, NULL_RTX
);
3852 target
= force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3858 /* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
3861 extract_high_half (scalar_int_mode mode
, rtx op
)
3863 if (mode
== word_mode
)
3864 return gen_highpart (mode
, op
);
3866 scalar_int_mode wider_mode
= GET_MODE_WIDER_MODE (mode
).require ();
3868 op
= expand_shift (RSHIFT_EXPR
, wider_mode
, op
,
3869 GET_MODE_BITSIZE (mode
), 0, 1);
3870 return convert_modes (mode
, wider_mode
, op
, 0);
3873 /* Like expmed_mult_highpart, but only consider using multiplication optab. */
3876 expmed_mult_highpart_optab (scalar_int_mode mode
, rtx op0
, rtx op1
,
3877 rtx target
, int unsignedp
, int max_cost
)
3879 const scalar_int_mode wider_mode
= GET_MODE_WIDER_MODE (mode
).require ();
3880 const bool speed
= optimize_insn_for_speed_p ();
3881 const int size
= GET_MODE_BITSIZE (mode
);
3885 /* Firstly, try using a multiplication insn that only generates the needed
3886 high part of the product, and in the sign flavor of unsignedp. */
3887 if (mul_highpart_cost (speed
, mode
) < max_cost
)
3889 moptab
= unsignedp
? umul_highpart_optab
: smul_highpart_optab
;
3890 tem
= expand_binop (mode
, moptab
, op0
, op1
, target
, unsignedp
,
3896 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3897 Need to adjust the result after the multiplication. */
3898 if (size
- 1 < BITS_PER_WORD
3899 && (mul_highpart_cost (speed
, mode
)
3900 + 2 * shift_cost (speed
, mode
, size
-1)
3901 + 4 * add_cost (speed
, mode
) < max_cost
))
3903 moptab
= unsignedp
? smul_highpart_optab
: umul_highpart_optab
;
3904 tem
= expand_binop (mode
, moptab
, op0
, op1
, target
, !unsignedp
,
3907 /* We used the wrong signedness. Adjust the result. */
3908 return expand_mult_highpart_adjust (mode
, tem
, op0
, op1
, tem
,
3912 /* Try widening multiplication. */
3913 moptab
= unsignedp
? umul_widen_optab
: smul_widen_optab
;
3914 if (convert_optab_handler (moptab
, wider_mode
, mode
) != CODE_FOR_nothing
3915 && mul_widen_cost (speed
, wider_mode
) < max_cost
)
3917 tem
= expand_binop (wider_mode
, moptab
, op0
, op1
, NULL_RTX
, unsignedp
,
3920 return extract_high_half (mode
, tem
);
3923 /* Try widening the mode and perform a non-widening multiplication. */
3924 if (optab_handler (smul_optab
, wider_mode
) != CODE_FOR_nothing
3925 && size
- 1 < BITS_PER_WORD
3926 && (mul_cost (speed
, wider_mode
) + shift_cost (speed
, mode
, size
-1)
3932 /* We need to widen the operands, for example to ensure the
3933 constant multiplier is correctly sign or zero extended.
3934 Use a sequence to clean-up any instructions emitted by
3935 the conversions if things don't work out. */
3937 wop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
3938 wop1
= convert_modes (wider_mode
, mode
, op1
, unsignedp
);
3939 tem
= expand_binop (wider_mode
, smul_optab
, wop0
, wop1
, 0,
3940 unsignedp
, OPTAB_WIDEN
);
3941 insns
= get_insns ();
3947 return extract_high_half (mode
, tem
);
3951 /* Try widening multiplication of opposite signedness, and adjust. */
3952 moptab
= unsignedp
? smul_widen_optab
: umul_widen_optab
;
3953 if (convert_optab_handler (moptab
, wider_mode
, mode
) != CODE_FOR_nothing
3954 && size
- 1 < BITS_PER_WORD
3955 && (mul_widen_cost (speed
, wider_mode
)
3956 + 2 * shift_cost (speed
, mode
, size
-1)
3957 + 4 * add_cost (speed
, mode
) < max_cost
))
3959 tem
= expand_binop (wider_mode
, moptab
, op0
, op1
, NULL_RTX
, !unsignedp
,
3963 tem
= extract_high_half (mode
, tem
);
3964 /* We used the wrong signedness. Adjust the result. */
3965 return expand_mult_highpart_adjust (mode
, tem
, op0
, op1
, target
,
3973 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3974 putting the high half of the result in TARGET if that is convenient,
3975 and return where the result is. If the operation cannot be performed,
3978 MODE is the mode of operation and result.
3980 UNSIGNEDP nonzero means unsigned multiply.
3982 MAX_COST is the total allowed cost for the expanded RTL. */
3985 expmed_mult_highpart (scalar_int_mode mode
, rtx op0
, rtx op1
,
3986 rtx target
, int unsignedp
, int max_cost
)
3988 const bool speed
= optimize_insn_for_speed_p ();
3989 unsigned HOST_WIDE_INT cnst1
;
3991 bool sign_adjust
= false;
3992 enum mult_variant variant
;
3993 struct algorithm alg
;
3994 rtx narrow_op1
, tem
;
3996 /* We can't support modes wider than HOST_BITS_PER_INT. */
3997 gcc_assert (HWI_COMPUTABLE_MODE_P (mode
));
3999 cnst1
= INTVAL (op1
) & GET_MODE_MASK (mode
);
4000 narrow_op1
= gen_int_mode (INTVAL (op1
), mode
);
4002 /* We can't optimize modes wider than BITS_PER_WORD.
4003 ??? We might be able to perform double-word arithmetic if
4004 mode == word_mode, however all the cost calculations in
4005 synth_mult etc. assume single-word operations. */
4006 scalar_int_mode wider_mode
= GET_MODE_WIDER_MODE (mode
).require ();
4007 if (GET_MODE_BITSIZE (wider_mode
) > BITS_PER_WORD
)
4008 return expmed_mult_highpart_optab (mode
, op0
, narrow_op1
, target
,
4009 unsignedp
, max_cost
);
4011 extra_cost
= shift_cost (speed
, mode
, GET_MODE_BITSIZE (mode
) - 1);
4013 /* Check whether we try to multiply by a negative constant. */
4014 if (!unsignedp
&& ((cnst1
>> (GET_MODE_BITSIZE (mode
) - 1)) & 1))
4017 extra_cost
+= add_cost (speed
, mode
);
4020 /* See whether shift/add multiplication is cheap enough. */
4021 if (choose_mult_variant (wider_mode
, cnst1
, &alg
, &variant
,
4022 max_cost
- extra_cost
))
4024 /* See whether the specialized multiplication optabs are
4025 cheaper than the shift/add version. */
4026 tem
= expmed_mult_highpart_optab (mode
, op0
, narrow_op1
, target
,
4028 alg
.cost
.cost
+ extra_cost
);
4032 tem
= convert_to_mode (wider_mode
, op0
, unsignedp
);
4033 tem
= expand_mult_const (wider_mode
, tem
, cnst1
, 0, &alg
, variant
);
4034 tem
= extract_high_half (mode
, tem
);
4036 /* Adjust result for signedness. */
4038 tem
= force_operand (gen_rtx_MINUS (mode
, tem
, op0
), tem
);
4042 return expmed_mult_highpart_optab (mode
, op0
, narrow_op1
, target
,
4043 unsignedp
, max_cost
);
4047 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
4050 expand_smod_pow2 (scalar_int_mode mode
, rtx op0
, HOST_WIDE_INT d
)
4052 rtx result
, temp
, shift
;
4053 rtx_code_label
*label
;
4055 int prec
= GET_MODE_PRECISION (mode
);
4057 logd
= floor_log2 (d
);
4058 result
= gen_reg_rtx (mode
);
4060 /* Avoid conditional branches when they're expensive. */
4061 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
4062 && optimize_insn_for_speed_p ())
4064 rtx signmask
= emit_store_flag (result
, LT
, op0
, const0_rtx
,
4068 HOST_WIDE_INT masklow
= (HOST_WIDE_INT_1
<< logd
) - 1;
4069 signmask
= force_reg (mode
, signmask
);
4070 shift
= gen_int_shift_amount (mode
, GET_MODE_BITSIZE (mode
) - logd
);
4072 /* Use the rtx_cost of a LSHIFTRT instruction to determine
4073 which instruction sequence to use. If logical right shifts
4074 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
4075 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
4077 temp
= gen_rtx_LSHIFTRT (mode
, result
, shift
);
4078 if (optab_handler (lshr_optab
, mode
) == CODE_FOR_nothing
4079 || (set_src_cost (temp
, mode
, optimize_insn_for_speed_p ())
4080 > COSTS_N_INSNS (2)))
4082 temp
= expand_binop (mode
, xor_optab
, op0
, signmask
,
4083 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4084 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
4085 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4086 temp
= expand_binop (mode
, and_optab
, temp
,
4087 gen_int_mode (masklow
, mode
),
4088 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4089 temp
= expand_binop (mode
, xor_optab
, temp
, signmask
,
4090 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4091 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
4092 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4096 signmask
= expand_binop (mode
, lshr_optab
, signmask
, shift
,
4097 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4098 signmask
= force_reg (mode
, signmask
);
4100 temp
= expand_binop (mode
, add_optab
, op0
, signmask
,
4101 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4102 temp
= expand_binop (mode
, and_optab
, temp
,
4103 gen_int_mode (masklow
, mode
),
4104 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4105 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
4106 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4112 /* Mask contains the mode's signbit and the significant bits of the
4113 modulus. By including the signbit in the operation, many targets
4114 can avoid an explicit compare operation in the following comparison
4116 wide_int mask
= wi::mask (logd
, false, prec
);
4117 mask
= wi::set_bit (mask
, prec
- 1);
4119 temp
= expand_binop (mode
, and_optab
, op0
,
4120 immed_wide_int_const (mask
, mode
),
4121 result
, 1, OPTAB_LIB_WIDEN
);
4123 emit_move_insn (result
, temp
);
4125 label
= gen_label_rtx ();
4126 do_cmp_and_jump (result
, const0_rtx
, GE
, mode
, label
);
4128 temp
= expand_binop (mode
, sub_optab
, result
, const1_rtx
, result
,
4129 0, OPTAB_LIB_WIDEN
);
4131 mask
= wi::mask (logd
, true, prec
);
4132 temp
= expand_binop (mode
, ior_optab
, temp
,
4133 immed_wide_int_const (mask
, mode
),
4134 result
, 1, OPTAB_LIB_WIDEN
);
4135 temp
= expand_binop (mode
, add_optab
, temp
, const1_rtx
, result
,
4136 0, OPTAB_LIB_WIDEN
);
4138 emit_move_insn (result
, temp
);
4143 /* Expand signed division of OP0 by a power of two D in mode MODE.
4144 This routine is only called for positive values of D. */
4147 expand_sdiv_pow2 (scalar_int_mode mode
, rtx op0
, HOST_WIDE_INT d
)
4150 rtx_code_label
*label
;
4153 logd
= floor_log2 (d
);
4156 && BRANCH_COST (optimize_insn_for_speed_p (),
4159 temp
= gen_reg_rtx (mode
);
4160 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, 1);
4161 if (temp
!= NULL_RTX
)
4163 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
4164 0, OPTAB_LIB_WIDEN
);
4165 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
4169 if (HAVE_conditional_move
4170 && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2)
4175 temp2
= copy_to_mode_reg (mode
, op0
);
4176 temp
= expand_binop (mode
, add_optab
, temp2
, gen_int_mode (d
- 1, mode
),
4177 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
4178 temp
= force_reg (mode
, temp
);
4180 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
4181 temp2
= emit_conditional_move (temp2
, { LT
, temp2
, const0_rtx
, mode
},
4182 temp
, temp2
, mode
, 0);
4185 rtx_insn
*seq
= get_insns ();
4188 return expand_shift (RSHIFT_EXPR
, mode
, temp2
, logd
, NULL_RTX
, 0);
4193 if (BRANCH_COST (optimize_insn_for_speed_p (),
4196 int ushift
= GET_MODE_BITSIZE (mode
) - logd
;
4198 temp
= gen_reg_rtx (mode
);
4199 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, -1);
4200 if (temp
!= NULL_RTX
)
4202 if (GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
4203 || shift_cost (optimize_insn_for_speed_p (), mode
, ushift
)
4204 > COSTS_N_INSNS (1))
4205 temp
= expand_binop (mode
, and_optab
, temp
,
4206 gen_int_mode (d
- 1, mode
),
4207 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
4209 temp
= expand_shift (RSHIFT_EXPR
, mode
, temp
,
4210 ushift
, NULL_RTX
, 1);
4211 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
4212 0, OPTAB_LIB_WIDEN
);
4213 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
4217 label
= gen_label_rtx ();
4218 temp
= copy_to_mode_reg (mode
, op0
);
4219 do_cmp_and_jump (temp
, const0_rtx
, GE
, mode
, label
);
4220 expand_inc (temp
, gen_int_mode (d
- 1, mode
));
4222 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
4225 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
4226 if that is convenient, and returning where the result is.
4227 You may request either the quotient or the remainder as the result;
4228 specify REM_FLAG nonzero to get the remainder.
4230 CODE is the expression code for which kind of division this is;
4231 it controls how rounding is done. MODE is the machine mode to use.
4232 UNSIGNEDP nonzero means do unsigned division. */
4234 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
4235 and then correct it by or'ing in missing high bits
4236 if result of ANDI is nonzero.
4237 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
4238 This could optimize to a bfexts instruction.
4239 But C doesn't use these operations, so their optimizations are
4241 /* ??? For modulo, we don't actually need the highpart of the first product,
4242 the low part will do nicely. And for small divisors, the second multiply
4243 can also be a low-part only multiply or even be completely left out.
4244 E.g. to calculate the remainder of a division by 3 with a 32 bit
4245 multiply, multiply with 0x55555556 and extract the upper two bits;
4246 the result is exact for inputs up to 0x1fffffff.
4247 The input range can be reduced by using cross-sum rules.
4248 For odd divisors >= 3, the following table gives right shift counts
4249 so that if a number is shifted by an integer multiple of the given
4250 amount, the remainder stays the same:
4251 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
4252 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
4253 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
4254 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
4255 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
4257 Cross-sum rules for even numbers can be derived by leaving as many bits
4258 to the right alone as the divisor has zeros to the right.
4259 E.g. if x is an unsigned 32 bit number:
4260 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
4264 expand_divmod (int rem_flag
, enum tree_code code
, machine_mode mode
,
4265 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
4266 enum optab_methods methods
)
4268 machine_mode compute_mode
;
4270 rtx quotient
= 0, remainder
= 0;
4273 optab optab1
, optab2
;
4274 int op1_is_constant
, op1_is_pow2
= 0;
4275 int max_cost
, extra_cost
;
4276 static HOST_WIDE_INT last_div_const
= 0;
4277 bool speed
= optimize_insn_for_speed_p ();
4279 op1_is_constant
= CONST_INT_P (op1
);
4280 if (op1_is_constant
)
4282 wide_int ext_op1
= rtx_mode_t (op1
, mode
);
4283 op1_is_pow2
= (wi::popcount (ext_op1
) == 1
4285 && wi::popcount (wi::neg (ext_op1
)) == 1));
4289 This is the structure of expand_divmod:
4291 First comes code to fix up the operands so we can perform the operations
4292 correctly and efficiently.
4294 Second comes a switch statement with code specific for each rounding mode.
4295 For some special operands this code emits all RTL for the desired
4296 operation, for other cases, it generates only a quotient and stores it in
4297 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
4298 to indicate that it has not done anything.
4300 Last comes code that finishes the operation. If QUOTIENT is set and
4301 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
4302 QUOTIENT is not set, it is computed using trunc rounding.
4304 We try to generate special code for division and remainder when OP1 is a
4305 constant. If |OP1| = 2**n we can use shifts and some other fast
4306 operations. For other values of OP1, we compute a carefully selected
4307 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
4310 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
4311 half of the product. Different strategies for generating the product are
4312 implemented in expmed_mult_highpart.
4314 If what we actually want is the remainder, we generate that by another
4315 by-constant multiplication and a subtraction. */
4317 /* We shouldn't be called with OP1 == const1_rtx, but some of the
4318 code below will malfunction if we are, so check here and handle
4319 the special case if so. */
4320 if (op1
== const1_rtx
)
4321 return rem_flag
? const0_rtx
: op0
;
4323 /* When dividing by -1, we could get an overflow.
4324 negv_optab can handle overflows. */
4325 if (! unsignedp
&& op1
== constm1_rtx
)
4329 return expand_unop (mode
, flag_trapv
&& GET_MODE_CLASS (mode
) == MODE_INT
4330 ? negv_optab
: neg_optab
, op0
, target
, 0);
4334 /* Don't use the function value register as a target
4335 since we have to read it as well as write it,
4336 and function-inlining gets confused by this. */
4337 && ((REG_P (target
) && REG_FUNCTION_VALUE_P (target
))
4338 /* Don't clobber an operand while doing a multi-step calculation. */
4339 || ((rem_flag
|| op1_is_constant
)
4340 && (reg_mentioned_p (target
, op0
)
4341 || (MEM_P (op0
) && MEM_P (target
))))
4342 || reg_mentioned_p (target
, op1
)
4343 || (MEM_P (op1
) && MEM_P (target
))))
4346 /* Get the mode in which to perform this computation. Normally it will
4347 be MODE, but sometimes we can't do the desired operation in MODE.
4348 If so, pick a wider mode in which we can do the operation. Convert
4349 to that mode at the start to avoid repeated conversions.
4351 First see what operations we need. These depend on the expression
4352 we are evaluating. (We assume that divxx3 insns exist under the
4353 same conditions that modxx3 insns and that these insns don't normally
4354 fail. If these assumptions are not correct, we may generate less
4355 efficient code in some cases.)
4357 Then see if we find a mode in which we can open-code that operation
4358 (either a division, modulus, or shift). Finally, check for the smallest
4359 mode for which we can do the operation with a library call. */
4361 /* We might want to refine this now that we have division-by-constant
4362 optimization. Since expmed_mult_highpart tries so many variants, it is
4363 not straightforward to generalize this. Maybe we should make an array
4364 of possible modes in init_expmed? Save this for GCC 2.7. */
4366 optab1
= (op1_is_pow2
4367 ? (unsignedp
? lshr_optab
: ashr_optab
)
4368 : (unsignedp
? udiv_optab
: sdiv_optab
));
4369 optab2
= (op1_is_pow2
? optab1
4370 : (unsignedp
? udivmod_optab
: sdivmod_optab
));
4372 if (methods
== OPTAB_WIDEN
|| methods
== OPTAB_LIB_WIDEN
)
4374 FOR_EACH_MODE_FROM (compute_mode
, mode
)
4375 if (optab_handler (optab1
, compute_mode
) != CODE_FOR_nothing
4376 || optab_handler (optab2
, compute_mode
) != CODE_FOR_nothing
)
4379 if (compute_mode
== VOIDmode
&& methods
== OPTAB_LIB_WIDEN
)
4380 FOR_EACH_MODE_FROM (compute_mode
, mode
)
4381 if (optab_libfunc (optab1
, compute_mode
)
4382 || optab_libfunc (optab2
, compute_mode
))
4386 compute_mode
= mode
;
4388 /* If we still couldn't find a mode, use MODE, but expand_binop will
4390 if (compute_mode
== VOIDmode
)
4391 compute_mode
= mode
;
4393 if (target
&& GET_MODE (target
) == compute_mode
)
4396 tquotient
= gen_reg_rtx (compute_mode
);
4399 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
4400 (mode), and thereby get better code when OP1 is a constant. Do that
4401 later. It will require going over all usages of SIZE below. */
4402 size
= GET_MODE_BITSIZE (mode
);
4405 /* Only deduct something for a REM if the last divide done was
4406 for a different constant. Then set the constant of the last
4408 max_cost
= (unsignedp
4409 ? udiv_cost (speed
, compute_mode
)
4410 : sdiv_cost (speed
, compute_mode
));
4411 if (rem_flag
&& ! (last_div_const
!= 0 && op1_is_constant
4412 && INTVAL (op1
) == last_div_const
))
4413 max_cost
-= (mul_cost (speed
, compute_mode
)
4414 + add_cost (speed
, compute_mode
));
4416 last_div_const
= ! rem_flag
&& op1_is_constant
? INTVAL (op1
) : 0;
4418 /* Now convert to the best mode to use. */
4419 if (compute_mode
!= mode
)
4421 op0
= convert_modes (compute_mode
, mode
, op0
, unsignedp
);
4422 op1
= convert_modes (compute_mode
, mode
, op1
, unsignedp
);
4424 /* convert_modes may have placed op1 into a register, so we
4425 must recompute the following. */
4426 op1_is_constant
= CONST_INT_P (op1
);
4427 if (op1_is_constant
)
4429 wide_int ext_op1
= rtx_mode_t (op1
, compute_mode
);
4430 op1_is_pow2
= (wi::popcount (ext_op1
) == 1
4432 && wi::popcount (wi::neg (ext_op1
)) == 1));
4438 /* If one of the operands is a volatile MEM, copy it into a register. */
4440 if (MEM_P (op0
) && MEM_VOLATILE_P (op0
))
4441 op0
= force_reg (compute_mode
, op0
);
4442 if (MEM_P (op1
) && MEM_VOLATILE_P (op1
))
4443 op1
= force_reg (compute_mode
, op1
);
4445 /* If we need the remainder or if OP1 is constant, we need to
4446 put OP0 in a register in case it has any queued subexpressions. */
4447 if (rem_flag
|| op1_is_constant
)
4448 op0
= force_reg (compute_mode
, op0
);
4450 last
= get_last_insn ();
4452 /* Promote floor rounding to trunc rounding for unsigned operations. */
4455 if (code
== FLOOR_DIV_EXPR
)
4456 code
= TRUNC_DIV_EXPR
;
4457 if (code
== FLOOR_MOD_EXPR
)
4458 code
= TRUNC_MOD_EXPR
;
4459 if (code
== EXACT_DIV_EXPR
&& op1_is_pow2
)
4460 code
= TRUNC_DIV_EXPR
;
4463 if (op1
!= const0_rtx
)
4466 case TRUNC_MOD_EXPR
:
4467 case TRUNC_DIV_EXPR
:
4468 if (op1_is_constant
)
4470 scalar_int_mode int_mode
= as_a
<scalar_int_mode
> (compute_mode
);
4471 int size
= GET_MODE_BITSIZE (int_mode
);
4474 unsigned HOST_WIDE_INT mh
, ml
;
4475 int pre_shift
, post_shift
;
4476 wide_int wd
= rtx_mode_t (op1
, int_mode
);
4477 unsigned HOST_WIDE_INT d
= wd
.to_uhwi ();
4479 if (wi::popcount (wd
) == 1)
4481 pre_shift
= floor_log2 (d
);
4484 unsigned HOST_WIDE_INT mask
4485 = (HOST_WIDE_INT_1U
<< pre_shift
) - 1;
4487 = expand_binop (int_mode
, and_optab
, op0
,
4488 gen_int_mode (mask
, int_mode
),
4489 remainder
, 1, methods
);
4491 return gen_lowpart (mode
, remainder
);
4493 quotient
= expand_shift (RSHIFT_EXPR
, int_mode
, op0
,
4494 pre_shift
, tquotient
, 1);
4496 else if (size
<= HOST_BITS_PER_WIDE_INT
)
4498 if (d
>= (HOST_WIDE_INT_1U
<< (size
- 1)))
4500 /* Most significant bit of divisor is set; emit an scc
4502 quotient
= emit_store_flag_force (tquotient
, GEU
, op0
, op1
,
4507 /* Find a suitable multiplier and right shift count
4508 instead of directly dividing by D. */
4509 mh
= choose_multiplier (d
, size
, size
,
4512 /* If the suggested multiplier is more than SIZE bits,
4513 we can do better for even divisors, using an
4514 initial right shift. */
4515 if (mh
!= 0 && (d
& 1) == 0)
4517 pre_shift
= ctz_or_zero (d
);
4518 mh
= choose_multiplier (d
>> pre_shift
, size
,
4530 if (post_shift
- 1 >= BITS_PER_WORD
)
4534 = (shift_cost (speed
, int_mode
, post_shift
- 1)
4535 + shift_cost (speed
, int_mode
, 1)
4536 + 2 * add_cost (speed
, int_mode
));
4537 t1
= expmed_mult_highpart
4538 (int_mode
, op0
, gen_int_mode (ml
, int_mode
),
4539 NULL_RTX
, 1, max_cost
- extra_cost
);
4542 t2
= force_operand (gen_rtx_MINUS (int_mode
,
4545 t3
= expand_shift (RSHIFT_EXPR
, int_mode
,
4546 t2
, 1, NULL_RTX
, 1);
4547 t4
= force_operand (gen_rtx_PLUS (int_mode
,
4550 quotient
= expand_shift
4551 (RSHIFT_EXPR
, int_mode
, t4
,
4552 post_shift
- 1, tquotient
, 1);
4558 if (pre_shift
>= BITS_PER_WORD
4559 || post_shift
>= BITS_PER_WORD
)
4563 (RSHIFT_EXPR
, int_mode
, op0
,
4564 pre_shift
, NULL_RTX
, 1);
4566 = (shift_cost (speed
, int_mode
, pre_shift
)
4567 + shift_cost (speed
, int_mode
, post_shift
));
4568 t2
= expmed_mult_highpart
4570 gen_int_mode (ml
, int_mode
),
4571 NULL_RTX
, 1, max_cost
- extra_cost
);
4574 quotient
= expand_shift
4575 (RSHIFT_EXPR
, int_mode
, t2
,
4576 post_shift
, tquotient
, 1);
4580 else /* Too wide mode to use tricky code */
4583 insn
= get_last_insn ();
4585 set_dst_reg_note (insn
, REG_EQUAL
,
4586 gen_rtx_UDIV (int_mode
, op0
, op1
),
4589 else /* TRUNC_DIV, signed */
4591 unsigned HOST_WIDE_INT ml
;
4594 HOST_WIDE_INT d
= INTVAL (op1
);
4595 unsigned HOST_WIDE_INT abs_d
;
4597 /* Not prepared to handle division/remainder by
4598 0xffffffffffffffff8000000000000000 etc. */
4599 if (d
== HOST_WIDE_INT_MIN
&& size
> HOST_BITS_PER_WIDE_INT
)
4602 /* Since d might be INT_MIN, we have to cast to
4603 unsigned HOST_WIDE_INT before negating to avoid
4604 undefined signed overflow. */
4606 ? (unsigned HOST_WIDE_INT
) d
4607 : - (unsigned HOST_WIDE_INT
) d
);
4609 /* n rem d = n rem -d */
4610 if (rem_flag
&& d
< 0)
4613 op1
= gen_int_mode (abs_d
, int_mode
);
4619 quotient
= expand_unop (int_mode
, neg_optab
, op0
,
4621 else if (size
<= HOST_BITS_PER_WIDE_INT
4622 && abs_d
== HOST_WIDE_INT_1U
<< (size
- 1))
4624 /* This case is not handled correctly below. */
4625 quotient
= emit_store_flag (tquotient
, EQ
, op0
, op1
,
4630 else if (EXACT_POWER_OF_2_OR_ZERO_P (d
)
4631 && (size
<= HOST_BITS_PER_WIDE_INT
|| d
>= 0)
4633 ? smod_pow2_cheap (speed
, int_mode
)
4634 : sdiv_pow2_cheap (speed
, int_mode
))
4635 /* We assume that cheap metric is true if the
4636 optab has an expander for this mode. */
4637 && ((optab_handler ((rem_flag
? smod_optab
4640 != CODE_FOR_nothing
)
4641 || (optab_handler (sdivmod_optab
, int_mode
)
4642 != CODE_FOR_nothing
)))
4644 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d
))
4648 remainder
= expand_smod_pow2 (int_mode
, op0
, d
);
4650 return gen_lowpart (mode
, remainder
);
4653 if (sdiv_pow2_cheap (speed
, int_mode
)
4654 && ((optab_handler (sdiv_optab
, int_mode
)
4655 != CODE_FOR_nothing
)
4656 || (optab_handler (sdivmod_optab
, int_mode
)
4657 != CODE_FOR_nothing
)))
4658 quotient
= expand_divmod (0, TRUNC_DIV_EXPR
,
4660 gen_int_mode (abs_d
,
4664 quotient
= expand_sdiv_pow2 (int_mode
, op0
, abs_d
);
4666 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4667 negate the quotient. */
4670 insn
= get_last_insn ();
4672 && abs_d
< (HOST_WIDE_INT_1U
4673 << (HOST_BITS_PER_WIDE_INT
- 1)))
4674 set_dst_reg_note (insn
, REG_EQUAL
,
4675 gen_rtx_DIV (int_mode
, op0
,
4681 quotient
= expand_unop (int_mode
, neg_optab
,
4682 quotient
, quotient
, 0);
4685 else if (size
<= HOST_BITS_PER_WIDE_INT
)
4687 choose_multiplier (abs_d
, size
, size
- 1,
4689 if (ml
< HOST_WIDE_INT_1U
<< (size
- 1))
4693 if (post_shift
>= BITS_PER_WORD
4694 || size
- 1 >= BITS_PER_WORD
)
4697 extra_cost
= (shift_cost (speed
, int_mode
, post_shift
)
4698 + shift_cost (speed
, int_mode
, size
- 1)
4699 + add_cost (speed
, int_mode
));
4700 t1
= expmed_mult_highpart
4701 (int_mode
, op0
, gen_int_mode (ml
, int_mode
),
4702 NULL_RTX
, 0, max_cost
- extra_cost
);
4706 (RSHIFT_EXPR
, int_mode
, t1
,
4707 post_shift
, NULL_RTX
, 0);
4709 (RSHIFT_EXPR
, int_mode
, op0
,
4710 size
- 1, NULL_RTX
, 0);
4713 = force_operand (gen_rtx_MINUS (int_mode
, t3
, t2
),
4717 = force_operand (gen_rtx_MINUS (int_mode
, t2
, t3
),
4724 if (post_shift
>= BITS_PER_WORD
4725 || size
- 1 >= BITS_PER_WORD
)
4728 ml
|= HOST_WIDE_INT_M1U
<< (size
- 1);
4729 mlr
= gen_int_mode (ml
, int_mode
);
4730 extra_cost
= (shift_cost (speed
, int_mode
, post_shift
)
4731 + shift_cost (speed
, int_mode
, size
- 1)
4732 + 2 * add_cost (speed
, int_mode
));
4733 t1
= expmed_mult_highpart (int_mode
, op0
, mlr
,
4735 max_cost
- extra_cost
);
4738 t2
= force_operand (gen_rtx_PLUS (int_mode
, t1
, op0
),
4741 (RSHIFT_EXPR
, int_mode
, t2
,
4742 post_shift
, NULL_RTX
, 0);
4744 (RSHIFT_EXPR
, int_mode
, op0
,
4745 size
- 1, NULL_RTX
, 0);
4748 = force_operand (gen_rtx_MINUS (int_mode
, t4
, t3
),
4752 = force_operand (gen_rtx_MINUS (int_mode
, t3
, t4
),
4756 else /* Too wide mode to use tricky code */
4759 insn
= get_last_insn ();
4761 set_dst_reg_note (insn
, REG_EQUAL
,
4762 gen_rtx_DIV (int_mode
, op0
, op1
),
4768 delete_insns_since (last
);
4771 case FLOOR_DIV_EXPR
:
4772 case FLOOR_MOD_EXPR
:
4773 /* We will come here only for signed operations. */
4774 if (op1_is_constant
&& HWI_COMPUTABLE_MODE_P (compute_mode
))
4776 scalar_int_mode int_mode
= as_a
<scalar_int_mode
> (compute_mode
);
4777 int size
= GET_MODE_BITSIZE (int_mode
);
4778 unsigned HOST_WIDE_INT mh
, ml
;
4779 int pre_shift
, post_shift
;
4780 HOST_WIDE_INT d
= INTVAL (op1
);
4784 /* We could just as easily deal with negative constants here,
4785 but it does not seem worth the trouble for GCC 2.6. */
4786 if (EXACT_POWER_OF_2_OR_ZERO_P (d
))
4788 pre_shift
= floor_log2 (d
);
4791 unsigned HOST_WIDE_INT mask
4792 = (HOST_WIDE_INT_1U
<< pre_shift
) - 1;
4793 remainder
= expand_binop
4794 (int_mode
, and_optab
, op0
,
4795 gen_int_mode (mask
, int_mode
),
4796 remainder
, 0, methods
);
4798 return gen_lowpart (mode
, remainder
);
4800 quotient
= expand_shift
4801 (RSHIFT_EXPR
, int_mode
, op0
,
4802 pre_shift
, tquotient
, 0);
4808 mh
= choose_multiplier (d
, size
, size
- 1,
4812 if (post_shift
< BITS_PER_WORD
4813 && size
- 1 < BITS_PER_WORD
)
4816 (RSHIFT_EXPR
, int_mode
, op0
,
4817 size
- 1, NULL_RTX
, 0);
4818 t2
= expand_binop (int_mode
, xor_optab
, op0
, t1
,
4819 NULL_RTX
, 0, OPTAB_WIDEN
);
4820 extra_cost
= (shift_cost (speed
, int_mode
, post_shift
)
4821 + shift_cost (speed
, int_mode
, size
- 1)
4822 + 2 * add_cost (speed
, int_mode
));
4823 t3
= expmed_mult_highpart
4824 (int_mode
, t2
, gen_int_mode (ml
, int_mode
),
4825 NULL_RTX
, 1, max_cost
- extra_cost
);
4829 (RSHIFT_EXPR
, int_mode
, t3
,
4830 post_shift
, NULL_RTX
, 1);
4831 quotient
= expand_binop (int_mode
, xor_optab
,
4832 t4
, t1
, tquotient
, 0,
4840 rtx nsign
, t1
, t2
, t3
, t4
;
4841 t1
= force_operand (gen_rtx_PLUS (int_mode
,
4842 op0
, constm1_rtx
), NULL_RTX
);
4843 t2
= expand_binop (int_mode
, ior_optab
, op0
, t1
, NULL_RTX
,
4845 nsign
= expand_shift (RSHIFT_EXPR
, int_mode
, t2
,
4846 size
- 1, NULL_RTX
, 0);
4847 t3
= force_operand (gen_rtx_MINUS (int_mode
, t1
, nsign
),
4849 t4
= expand_divmod (0, TRUNC_DIV_EXPR
, int_mode
, t3
, op1
,
4854 t5
= expand_unop (int_mode
, one_cmpl_optab
, nsign
,
4856 quotient
= force_operand (gen_rtx_PLUS (int_mode
, t4
, t5
),
4864 delete_insns_since (last
);
4866 /* Try using an instruction that produces both the quotient and
4867 remainder, using truncation. We can easily compensate the quotient
4868 or remainder to get floor rounding, once we have the remainder.
4869 Notice that we compute also the final remainder value here,
4870 and return the result right away. */
4871 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4872 target
= gen_reg_rtx (compute_mode
);
4877 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4878 quotient
= gen_reg_rtx (compute_mode
);
4883 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4884 remainder
= gen_reg_rtx (compute_mode
);
4887 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
,
4888 quotient
, remainder
, 0))
4890 /* This could be computed with a branch-less sequence.
4891 Save that for later. */
4893 rtx_code_label
*label
= gen_label_rtx ();
4894 do_cmp_and_jump (remainder
, const0_rtx
, EQ
, compute_mode
, label
);
4895 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4896 NULL_RTX
, 0, OPTAB_WIDEN
);
4897 do_cmp_and_jump (tem
, const0_rtx
, GE
, compute_mode
, label
);
4898 expand_dec (quotient
, const1_rtx
);
4899 expand_inc (remainder
, op1
);
4901 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4904 /* No luck with division elimination or divmod. Have to do it
4905 by conditionally adjusting op0 *and* the result. */
4907 rtx_code_label
*label1
, *label2
, *label3
, *label4
, *label5
;
4911 quotient
= gen_reg_rtx (compute_mode
);
4912 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4913 label1
= gen_label_rtx ();
4914 label2
= gen_label_rtx ();
4915 label3
= gen_label_rtx ();
4916 label4
= gen_label_rtx ();
4917 label5
= gen_label_rtx ();
4918 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4919 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
, compute_mode
, label1
);
4920 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4921 quotient
, 0, methods
);
4922 if (tem
!= quotient
)
4923 emit_move_insn (quotient
, tem
);
4924 emit_jump_insn (targetm
.gen_jump (label5
));
4926 emit_label (label1
);
4927 expand_inc (adjusted_op0
, const1_rtx
);
4928 emit_jump_insn (targetm
.gen_jump (label4
));
4930 emit_label (label2
);
4931 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
, compute_mode
, label3
);
4932 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4933 quotient
, 0, methods
);
4934 if (tem
!= quotient
)
4935 emit_move_insn (quotient
, tem
);
4936 emit_jump_insn (targetm
.gen_jump (label5
));
4938 emit_label (label3
);
4939 expand_dec (adjusted_op0
, const1_rtx
);
4940 emit_label (label4
);
4941 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4942 quotient
, 0, methods
);
4943 if (tem
!= quotient
)
4944 emit_move_insn (quotient
, tem
);
4945 expand_dec (quotient
, const1_rtx
);
4946 emit_label (label5
);
4955 && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
4956 && (HWI_COMPUTABLE_MODE_P (compute_mode
)
4957 || INTVAL (op1
) >= 0))
4959 scalar_int_mode int_mode
4960 = as_a
<scalar_int_mode
> (compute_mode
);
4962 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4963 t1
= expand_shift (RSHIFT_EXPR
, int_mode
, op0
,
4964 floor_log2 (d
), tquotient
, 1);
4965 t2
= expand_binop (int_mode
, and_optab
, op0
,
4966 gen_int_mode (d
- 1, int_mode
),
4967 NULL_RTX
, 1, methods
);
4968 t3
= gen_reg_rtx (int_mode
);
4969 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
, int_mode
, 1, 1);
4972 rtx_code_label
*lab
;
4973 lab
= gen_label_rtx ();
4974 do_cmp_and_jump (t2
, const0_rtx
, EQ
, int_mode
, lab
);
4975 expand_inc (t1
, const1_rtx
);
4980 quotient
= force_operand (gen_rtx_PLUS (int_mode
, t1
, t3
),
4985 /* Try using an instruction that produces both the quotient and
4986 remainder, using truncation. We can easily compensate the
4987 quotient or remainder to get ceiling rounding, once we have the
4988 remainder. Notice that we compute also the final remainder
4989 value here, and return the result right away. */
4990 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4991 target
= gen_reg_rtx (compute_mode
);
4995 remainder
= (REG_P (target
)
4996 ? target
: gen_reg_rtx (compute_mode
));
4997 quotient
= gen_reg_rtx (compute_mode
);
5001 quotient
= (REG_P (target
)
5002 ? target
: gen_reg_rtx (compute_mode
));
5003 remainder
= gen_reg_rtx (compute_mode
);
5006 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
,
5009 /* This could be computed with a branch-less sequence.
5010 Save that for later. */
5011 rtx_code_label
*label
= gen_label_rtx ();
5012 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
5013 compute_mode
, label
);
5014 expand_inc (quotient
, const1_rtx
);
5015 expand_dec (remainder
, op1
);
5017 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
5020 /* No luck with division elimination or divmod. Have to do it
5021 by conditionally adjusting op0 *and* the result. */
5023 rtx_code_label
*label1
, *label2
;
5024 rtx adjusted_op0
, tem
;
5026 quotient
= gen_reg_rtx (compute_mode
);
5027 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
5028 label1
= gen_label_rtx ();
5029 label2
= gen_label_rtx ();
5030 do_cmp_and_jump (adjusted_op0
, const0_rtx
, NE
,
5031 compute_mode
, label1
);
5032 emit_move_insn (quotient
, const0_rtx
);
5033 emit_jump_insn (targetm
.gen_jump (label2
));
5035 emit_label (label1
);
5036 expand_dec (adjusted_op0
, const1_rtx
);
5037 tem
= expand_binop (compute_mode
, udiv_optab
, adjusted_op0
, op1
,
5038 quotient
, 1, methods
);
5039 if (tem
!= quotient
)
5040 emit_move_insn (quotient
, tem
);
5041 expand_inc (quotient
, const1_rtx
);
5042 emit_label (label2
);
5047 if (op1_is_constant
&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
5048 && INTVAL (op1
) >= 0)
5050 /* This is extremely similar to the code for the unsigned case
5051 above. For 2.7 we should merge these variants, but for
5052 2.6.1 I don't want to touch the code for unsigned since that
5053 get used in C. The signed case will only be used by other
5057 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
5058 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
5059 floor_log2 (d
), tquotient
, 0);
5060 t2
= expand_binop (compute_mode
, and_optab
, op0
,
5061 gen_int_mode (d
- 1, compute_mode
),
5062 NULL_RTX
, 1, methods
);
5063 t3
= gen_reg_rtx (compute_mode
);
5064 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
,
5065 compute_mode
, 1, 1);
5068 rtx_code_label
*lab
;
5069 lab
= gen_label_rtx ();
5070 do_cmp_and_jump (t2
, const0_rtx
, EQ
, compute_mode
, lab
);
5071 expand_inc (t1
, const1_rtx
);
5076 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
5082 /* Try using an instruction that produces both the quotient and
5083 remainder, using truncation. We can easily compensate the
5084 quotient or remainder to get ceiling rounding, once we have the
5085 remainder. Notice that we compute also the final remainder
5086 value here, and return the result right away. */
5087 if (target
== 0 || GET_MODE (target
) != compute_mode
)
5088 target
= gen_reg_rtx (compute_mode
);
5091 remainder
= (REG_P (target
)
5092 ? target
: gen_reg_rtx (compute_mode
));
5093 quotient
= gen_reg_rtx (compute_mode
);
5097 quotient
= (REG_P (target
)
5098 ? target
: gen_reg_rtx (compute_mode
));
5099 remainder
= gen_reg_rtx (compute_mode
);
5102 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
,
5105 /* This could be computed with a branch-less sequence.
5106 Save that for later. */
5108 rtx_code_label
*label
= gen_label_rtx ();
5109 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
5110 compute_mode
, label
);
5111 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
5112 NULL_RTX
, 0, OPTAB_WIDEN
);
5113 do_cmp_and_jump (tem
, const0_rtx
, LT
, compute_mode
, label
);
5114 expand_inc (quotient
, const1_rtx
);
5115 expand_dec (remainder
, op1
);
5117 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
5120 /* No luck with division elimination or divmod. Have to do it
5121 by conditionally adjusting op0 *and* the result. */
5123 rtx_code_label
*label1
, *label2
, *label3
, *label4
, *label5
;
5127 quotient
= gen_reg_rtx (compute_mode
);
5128 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
5129 label1
= gen_label_rtx ();
5130 label2
= gen_label_rtx ();
5131 label3
= gen_label_rtx ();
5132 label4
= gen_label_rtx ();
5133 label5
= gen_label_rtx ();
5134 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
5135 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
,
5136 compute_mode
, label1
);
5137 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
5138 quotient
, 0, methods
);
5139 if (tem
!= quotient
)
5140 emit_move_insn (quotient
, tem
);
5141 emit_jump_insn (targetm
.gen_jump (label5
));
5143 emit_label (label1
);
5144 expand_dec (adjusted_op0
, const1_rtx
);
5145 emit_jump_insn (targetm
.gen_jump (label4
));
5147 emit_label (label2
);
5148 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
,
5149 compute_mode
, label3
);
5150 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
5151 quotient
, 0, methods
);
5152 if (tem
!= quotient
)
5153 emit_move_insn (quotient
, tem
);
5154 emit_jump_insn (targetm
.gen_jump (label5
));
5156 emit_label (label3
);
5157 expand_inc (adjusted_op0
, const1_rtx
);
5158 emit_label (label4
);
5159 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
5160 quotient
, 0, methods
);
5161 if (tem
!= quotient
)
5162 emit_move_insn (quotient
, tem
);
5163 expand_inc (quotient
, const1_rtx
);
5164 emit_label (label5
);
5169 case EXACT_DIV_EXPR
:
5170 if (op1_is_constant
&& HWI_COMPUTABLE_MODE_P (compute_mode
))
5172 scalar_int_mode int_mode
= as_a
<scalar_int_mode
> (compute_mode
);
5173 int size
= GET_MODE_BITSIZE (int_mode
);
5174 HOST_WIDE_INT d
= INTVAL (op1
);
5175 unsigned HOST_WIDE_INT ml
;
5179 pre_shift
= ctz_or_zero (d
);
5180 ml
= invert_mod2n (d
>> pre_shift
, size
);
5181 t1
= expand_shift (RSHIFT_EXPR
, int_mode
, op0
,
5182 pre_shift
, NULL_RTX
, unsignedp
);
5183 quotient
= expand_mult (int_mode
, t1
, gen_int_mode (ml
, int_mode
),
5186 insn
= get_last_insn ();
5187 set_dst_reg_note (insn
, REG_EQUAL
,
5188 gen_rtx_fmt_ee (unsignedp
? UDIV
: DIV
,
5189 int_mode
, op0
, op1
),
5194 case ROUND_DIV_EXPR
:
5195 case ROUND_MOD_EXPR
:
5198 scalar_int_mode int_mode
= as_a
<scalar_int_mode
> (compute_mode
);
5200 rtx_code_label
*label
;
5201 label
= gen_label_rtx ();
5202 quotient
= gen_reg_rtx (int_mode
);
5203 remainder
= gen_reg_rtx (int_mode
);
5204 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
, remainder
, 1) == 0)
5207 quotient
= expand_binop (int_mode
, udiv_optab
, op0
, op1
,
5208 quotient
, 1, methods
);
5209 tem
= expand_mult (int_mode
, quotient
, op1
, NULL_RTX
, 1);
5210 remainder
= expand_binop (int_mode
, sub_optab
, op0
, tem
,
5211 remainder
, 1, methods
);
5213 tem
= plus_constant (int_mode
, op1
, -1);
5214 tem
= expand_shift (RSHIFT_EXPR
, int_mode
, tem
, 1, NULL_RTX
, 1);
5215 do_cmp_and_jump (remainder
, tem
, LEU
, int_mode
, label
);
5216 expand_inc (quotient
, const1_rtx
);
5217 expand_dec (remainder
, op1
);
5222 scalar_int_mode int_mode
= as_a
<scalar_int_mode
> (compute_mode
);
5223 int size
= GET_MODE_BITSIZE (int_mode
);
5224 rtx abs_rem
, abs_op1
, tem
, mask
;
5225 rtx_code_label
*label
;
5226 label
= gen_label_rtx ();
5227 quotient
= gen_reg_rtx (int_mode
);
5228 remainder
= gen_reg_rtx (int_mode
);
5229 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
, remainder
, 0) == 0)
5232 quotient
= expand_binop (int_mode
, sdiv_optab
, op0
, op1
,
5233 quotient
, 0, methods
);
5234 tem
= expand_mult (int_mode
, quotient
, op1
, NULL_RTX
, 0);
5235 remainder
= expand_binop (int_mode
, sub_optab
, op0
, tem
,
5236 remainder
, 0, methods
);
5238 abs_rem
= expand_abs (int_mode
, remainder
, NULL_RTX
, 1, 0);
5239 abs_op1
= expand_abs (int_mode
, op1
, NULL_RTX
, 1, 0);
5240 tem
= expand_shift (LSHIFT_EXPR
, int_mode
, abs_rem
,
5242 do_cmp_and_jump (tem
, abs_op1
, LTU
, int_mode
, label
);
5243 tem
= expand_binop (int_mode
, xor_optab
, op0
, op1
,
5244 NULL_RTX
, 0, OPTAB_WIDEN
);
5245 mask
= expand_shift (RSHIFT_EXPR
, int_mode
, tem
,
5246 size
- 1, NULL_RTX
, 0);
5247 tem
= expand_binop (int_mode
, xor_optab
, mask
, const1_rtx
,
5248 NULL_RTX
, 0, OPTAB_WIDEN
);
5249 tem
= expand_binop (int_mode
, sub_optab
, tem
, mask
,
5250 NULL_RTX
, 0, OPTAB_WIDEN
);
5251 expand_inc (quotient
, tem
);
5252 tem
= expand_binop (int_mode
, xor_optab
, mask
, op1
,
5253 NULL_RTX
, 0, OPTAB_WIDEN
);
5254 tem
= expand_binop (int_mode
, sub_optab
, tem
, mask
,
5255 NULL_RTX
, 0, OPTAB_WIDEN
);
5256 expand_dec (remainder
, tem
);
5259 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
5267 if (target
&& GET_MODE (target
) != compute_mode
)
5272 /* Try to produce the remainder without producing the quotient.
5273 If we seem to have a divmod pattern that does not require widening,
5274 don't try widening here. We should really have a WIDEN argument
5275 to expand_twoval_binop, since what we'd really like to do here is
5276 1) try a mod insn in compute_mode
5277 2) try a divmod insn in compute_mode
5278 3) try a div insn in compute_mode and multiply-subtract to get
5280 4) try the same things with widening allowed. */
5282 = sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
5285 ((optab_handler (optab2
, compute_mode
)
5286 != CODE_FOR_nothing
)
5287 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
5290 /* No luck there. Can we do remainder and divide at once
5291 without a library call? */
5292 remainder
= gen_reg_rtx (compute_mode
);
5293 if (! expand_twoval_binop ((unsignedp
5297 NULL_RTX
, remainder
, unsignedp
))
5302 return gen_lowpart (mode
, remainder
);
5305 /* Produce the quotient. Try a quotient insn, but not a library call.
5306 If we have a divmod in this mode, use it in preference to widening
5307 the div (for this test we assume it will not fail). Note that optab2
5308 is set to the one of the two optabs that the call below will use. */
5310 = sign_expand_binop (compute_mode
, udiv_optab
, sdiv_optab
,
5311 op0
, op1
, rem_flag
? NULL_RTX
: target
,
5313 ((optab_handler (optab2
, compute_mode
)
5314 != CODE_FOR_nothing
)
5315 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
5319 /* No luck there. Try a quotient-and-remainder insn,
5320 keeping the quotient alone. */
5321 quotient
= gen_reg_rtx (compute_mode
);
5322 if (! expand_twoval_binop (unsignedp
? udivmod_optab
: sdivmod_optab
,
5324 quotient
, NULL_RTX
, unsignedp
))
5328 /* Still no luck. If we are not computing the remainder,
5329 use a library call for the quotient. */
5330 quotient
= sign_expand_binop (compute_mode
,
5331 udiv_optab
, sdiv_optab
,
5333 unsignedp
, methods
);
5340 if (target
&& GET_MODE (target
) != compute_mode
)
5345 /* No divide instruction either. Use library for remainder. */
5346 remainder
= sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
5348 unsignedp
, methods
);
5349 /* No remainder function. Try a quotient-and-remainder
5350 function, keeping the remainder. */
5352 && (methods
== OPTAB_LIB
|| methods
== OPTAB_LIB_WIDEN
))
5354 remainder
= gen_reg_rtx (compute_mode
);
5355 if (!expand_twoval_binop_libfunc
5356 (unsignedp
? udivmod_optab
: sdivmod_optab
,
5358 NULL_RTX
, remainder
,
5359 unsignedp
? UMOD
: MOD
))
5360 remainder
= NULL_RTX
;
5365 /* We divided. Now finish doing X - Y * (X / Y). */
5366 remainder
= expand_mult (compute_mode
, quotient
, op1
,
5367 NULL_RTX
, unsignedp
);
5368 remainder
= expand_binop (compute_mode
, sub_optab
, op0
,
5369 remainder
, target
, unsignedp
,
5374 if (methods
!= OPTAB_LIB_WIDEN
5375 && (rem_flag
? remainder
: quotient
) == NULL_RTX
)
5378 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
5381 /* Return a tree node with data type TYPE, describing the value of X.
5382 Usually this is an VAR_DECL, if there is no obvious better choice.
5383 X may be an expression, however we only support those expressions
5384 generated by loop.c. */
5387 make_tree (tree type
, rtx x
)
5391 switch (GET_CODE (x
))
5394 case CONST_WIDE_INT
:
5395 t
= wide_int_to_tree (type
, rtx_mode_t (x
, TYPE_MODE (type
)));
5399 STATIC_ASSERT (HOST_BITS_PER_WIDE_INT
* 2 <= MAX_BITSIZE_MODE_ANY_INT
);
5400 if (TARGET_SUPPORTS_WIDE_INT
== 0 && GET_MODE (x
) == VOIDmode
)
5401 t
= wide_int_to_tree (type
,
5402 wide_int::from_array (&CONST_DOUBLE_LOW (x
), 2,
5403 HOST_BITS_PER_WIDE_INT
* 2));
5405 t
= build_real (type
, *CONST_DOUBLE_REAL_VALUE (x
));
5411 unsigned int npatterns
= CONST_VECTOR_NPATTERNS (x
);
5412 unsigned int nelts_per_pattern
= CONST_VECTOR_NELTS_PER_PATTERN (x
);
5413 tree itype
= TREE_TYPE (type
);
5415 /* Build a tree with vector elements. */
5416 tree_vector_builder
elts (type
, npatterns
, nelts_per_pattern
);
5417 unsigned int count
= elts
.encoded_nelts ();
5418 for (unsigned int i
= 0; i
< count
; ++i
)
5420 rtx elt
= CONST_VECTOR_ELT (x
, i
);
5421 elts
.quick_push (make_tree (itype
, elt
));
5424 return elts
.build ();
5428 return fold_build2 (PLUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5429 make_tree (type
, XEXP (x
, 1)));
5432 return fold_build2 (MINUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5433 make_tree (type
, XEXP (x
, 1)));
5436 return fold_build1 (NEGATE_EXPR
, type
, make_tree (type
, XEXP (x
, 0)));
5439 return fold_build2 (MULT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5440 make_tree (type
, XEXP (x
, 1)));
5443 return fold_build2 (LSHIFT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5444 make_tree (type
, XEXP (x
, 1)));
5447 t
= unsigned_type_for (type
);
5448 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
5449 make_tree (t
, XEXP (x
, 0)),
5450 make_tree (type
, XEXP (x
, 1))));
5453 t
= signed_type_for (type
);
5454 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
5455 make_tree (t
, XEXP (x
, 0)),
5456 make_tree (type
, XEXP (x
, 1))));
5459 if (TREE_CODE (type
) != REAL_TYPE
)
5460 t
= signed_type_for (type
);
5464 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
5465 make_tree (t
, XEXP (x
, 0)),
5466 make_tree (t
, XEXP (x
, 1))));
5468 t
= unsigned_type_for (type
);
5469 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
5470 make_tree (t
, XEXP (x
, 0)),
5471 make_tree (t
, XEXP (x
, 1))));
5475 t
= lang_hooks
.types
.type_for_mode (GET_MODE (XEXP (x
, 0)),
5476 GET_CODE (x
) == ZERO_EXTEND
);
5477 return fold_convert (type
, make_tree (t
, XEXP (x
, 0)));
5480 return make_tree (type
, XEXP (x
, 0));
5483 t
= SYMBOL_REF_DECL (x
);
5485 return fold_convert (type
, build_fold_addr_expr (t
));
5489 if (CONST_POLY_INT_P (x
))
5490 return wide_int_to_tree (t
, const_poly_int_value (x
));
5492 t
= build_decl (RTL_LOCATION (x
), VAR_DECL
, NULL_TREE
, type
);
5494 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5495 address mode to pointer mode. */
5496 if (POINTER_TYPE_P (type
))
5497 x
= convert_memory_address_addr_space
5498 (SCALAR_INT_TYPE_MODE (type
), x
, TYPE_ADDR_SPACE (TREE_TYPE (type
)));
5500 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5501 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5502 t
->decl_with_rtl
.rtl
= x
;
5508 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5509 and returning TARGET.
5511 If TARGET is 0, a pseudo-register or constant is returned. */
5514 expand_and (machine_mode mode
, rtx op0
, rtx op1
, rtx target
)
5518 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
5519 tem
= simplify_binary_operation (AND
, mode
, op0
, op1
);
5521 tem
= expand_binop (mode
, and_optab
, op0
, op1
, target
, 0, OPTAB_LIB_WIDEN
);
5525 else if (tem
!= target
)
5526 emit_move_insn (target
, tem
);
5530 /* Helper function for emit_store_flag. */
5532 emit_cstore (rtx target
, enum insn_code icode
, enum rtx_code code
,
5533 machine_mode mode
, machine_mode compare_mode
,
5534 int unsignedp
, rtx x
, rtx y
, int normalizep
,
5535 machine_mode target_mode
)
5537 class expand_operand ops
[4];
5538 rtx op0
, comparison
, subtarget
;
5540 scalar_int_mode result_mode
= targetm
.cstore_mode (icode
);
5541 scalar_int_mode int_target_mode
;
5543 last
= get_last_insn ();
5544 x
= prepare_operand (icode
, x
, 2, mode
, compare_mode
, unsignedp
);
5545 y
= prepare_operand (icode
, y
, 3, mode
, compare_mode
, unsignedp
);
5548 delete_insns_since (last
);
5552 if (target_mode
== VOIDmode
)
5553 int_target_mode
= result_mode
;
5555 int_target_mode
= as_a
<scalar_int_mode
> (target_mode
);
5557 target
= gen_reg_rtx (int_target_mode
);
5559 comparison
= gen_rtx_fmt_ee (code
, result_mode
, x
, y
);
5561 create_output_operand (&ops
[0], optimize
? NULL_RTX
: target
, result_mode
);
5562 create_fixed_operand (&ops
[1], comparison
);
5563 create_fixed_operand (&ops
[2], x
);
5564 create_fixed_operand (&ops
[3], y
);
5565 if (!maybe_expand_insn (icode
, 4, ops
))
5567 delete_insns_since (last
);
5570 subtarget
= ops
[0].value
;
5572 /* If we are converting to a wider mode, first convert to
5573 INT_TARGET_MODE, then normalize. This produces better combining
5574 opportunities on machines that have a SIGN_EXTRACT when we are
5575 testing a single bit. This mostly benefits the 68k.
5577 If STORE_FLAG_VALUE does not have the sign bit set when
5578 interpreted in MODE, we can do this conversion as unsigned, which
5579 is usually more efficient. */
5580 if (GET_MODE_PRECISION (int_target_mode
) > GET_MODE_PRECISION (result_mode
))
5582 gcc_assert (GET_MODE_PRECISION (result_mode
) != 1
5583 || STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1);
5585 bool unsignedp
= (STORE_FLAG_VALUE
>= 0);
5586 convert_move (target
, subtarget
, unsignedp
);
5589 result_mode
= int_target_mode
;
5594 /* If we want to keep subexpressions around, don't reuse our last
5599 /* Now normalize to the proper value in MODE. Sometimes we don't
5600 have to do anything. */
5601 if (normalizep
== 0 || normalizep
== STORE_FLAG_VALUE
)
5603 /* STORE_FLAG_VALUE might be the most negative number, so write
5604 the comparison this way to avoid a compiler-time warning. */
5605 else if (- normalizep
== STORE_FLAG_VALUE
)
5606 op0
= expand_unop (result_mode
, neg_optab
, op0
, subtarget
, 0);
5608 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5609 it hard to use a value of just the sign bit due to ANSI integer
5610 constant typing rules. */
5611 else if (val_signbit_known_set_p (result_mode
, STORE_FLAG_VALUE
))
5612 op0
= expand_shift (RSHIFT_EXPR
, result_mode
, op0
,
5613 GET_MODE_BITSIZE (result_mode
) - 1, subtarget
,
5617 gcc_assert (STORE_FLAG_VALUE
& 1);
5619 op0
= expand_and (result_mode
, op0
, const1_rtx
, subtarget
);
5620 if (normalizep
== -1)
5621 op0
= expand_unop (result_mode
, neg_optab
, op0
, op0
, 0);
5624 /* If we were converting to a smaller mode, do the conversion now. */
5625 if (int_target_mode
!= result_mode
)
5627 convert_move (target
, op0
, 0);
5635 /* A subroutine of emit_store_flag only including "tricks" that do not
5636 need a recursive call. These are kept separate to avoid infinite
5640 emit_store_flag_1 (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5641 machine_mode mode
, int unsignedp
, int normalizep
,
5642 machine_mode target_mode
)
5645 enum insn_code icode
;
5646 machine_mode compare_mode
;
5647 enum mode_class mclass
;
5650 code
= unsigned_condition (code
);
5652 /* If one operand is constant, make it the second one. Only do this
5653 if the other operand is not constant as well. */
5655 if (swap_commutative_operands_p (op0
, op1
))
5657 std::swap (op0
, op1
);
5658 code
= swap_condition (code
);
5661 if (mode
== VOIDmode
)
5662 mode
= GET_MODE (op0
);
5664 if (CONST_SCALAR_INT_P (op1
))
5665 canonicalize_comparison (mode
, &code
, &op1
);
5667 /* For some comparisons with 1 and -1, we can convert this to
5668 comparisons with zero. This will often produce more opportunities for
5669 store-flag insns. */
5674 if (op1
== const1_rtx
)
5675 op1
= const0_rtx
, code
= LE
;
5678 if (op1
== constm1_rtx
)
5679 op1
= const0_rtx
, code
= LT
;
5682 if (op1
== const1_rtx
)
5683 op1
= const0_rtx
, code
= GT
;
5686 if (op1
== constm1_rtx
)
5687 op1
= const0_rtx
, code
= GE
;
5690 if (op1
== const1_rtx
)
5691 op1
= const0_rtx
, code
= NE
;
5694 if (op1
== const1_rtx
)
5695 op1
= const0_rtx
, code
= EQ
;
5701 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5702 complement of A (for GE) and shifting the sign bit to the low bit. */
5703 scalar_int_mode int_mode
;
5704 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
5705 && is_int_mode (mode
, &int_mode
)
5706 && (normalizep
|| STORE_FLAG_VALUE
== 1
5707 || val_signbit_p (int_mode
, STORE_FLAG_VALUE
)))
5709 scalar_int_mode int_target_mode
;
5713 int_target_mode
= int_mode
;
5716 /* If the result is to be wider than OP0, it is best to convert it
5717 first. If it is to be narrower, it is *incorrect* to convert it
5719 int_target_mode
= as_a
<scalar_int_mode
> (target_mode
);
5720 if (GET_MODE_SIZE (int_target_mode
) > GET_MODE_SIZE (int_mode
))
5722 op0
= convert_modes (int_target_mode
, int_mode
, op0
, 0);
5723 int_mode
= int_target_mode
;
5727 if (int_target_mode
!= int_mode
)
5731 op0
= expand_unop (int_mode
, one_cmpl_optab
, op0
,
5732 ((STORE_FLAG_VALUE
== 1 || normalizep
)
5733 ? 0 : subtarget
), 0);
5735 if (STORE_FLAG_VALUE
== 1 || normalizep
)
5736 /* If we are supposed to produce a 0/1 value, we want to do
5737 a logical shift from the sign bit to the low-order bit; for
5738 a -1/0 value, we do an arithmetic shift. */
5739 op0
= expand_shift (RSHIFT_EXPR
, int_mode
, op0
,
5740 GET_MODE_BITSIZE (int_mode
) - 1,
5741 subtarget
, normalizep
!= -1);
5743 if (int_mode
!= int_target_mode
)
5744 op0
= convert_modes (int_target_mode
, int_mode
, op0
, 0);
5749 /* Next try expanding this via the backend's cstore<mode>4. */
5750 mclass
= GET_MODE_CLASS (mode
);
5751 FOR_EACH_WIDER_MODE_FROM (compare_mode
, mode
)
5753 machine_mode optab_mode
= mclass
== MODE_CC
? CCmode
: compare_mode
;
5754 icode
= optab_handler (cstore_optab
, optab_mode
);
5755 if (icode
!= CODE_FOR_nothing
)
5757 do_pending_stack_adjust ();
5758 rtx tem
= emit_cstore (target
, icode
, code
, mode
, compare_mode
,
5759 unsignedp
, op0
, op1
, normalizep
, target_mode
);
5763 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5765 enum rtx_code scode
= swap_condition (code
);
5767 tem
= emit_cstore (target
, icode
, scode
, mode
, compare_mode
,
5768 unsignedp
, op1
, op0
, normalizep
, target_mode
);
5776 /* If we are comparing a double-word integer with zero or -1, we can
5777 convert the comparison into one involving a single word. */
5778 if (is_int_mode (mode
, &int_mode
)
5779 && GET_MODE_BITSIZE (int_mode
) == BITS_PER_WORD
* 2
5780 && (!MEM_P (op0
) || ! MEM_VOLATILE_P (op0
)))
5783 if ((code
== EQ
|| code
== NE
)
5784 && (op1
== const0_rtx
|| op1
== constm1_rtx
))
5788 /* Do a logical OR or AND of the two words and compare the
5790 op00
= force_subreg (word_mode
, op0
, int_mode
, 0);
5791 op01
= force_subreg (word_mode
, op0
, int_mode
, UNITS_PER_WORD
);
5792 tem
= expand_binop (word_mode
,
5793 op1
== const0_rtx
? ior_optab
: and_optab
,
5794 op00
, op01
, NULL_RTX
, unsignedp
,
5798 tem
= emit_store_flag (NULL_RTX
, code
, tem
, op1
, word_mode
,
5799 unsignedp
, normalizep
);
5801 else if ((code
== LT
|| code
== GE
) && op1
== const0_rtx
)
5805 /* If testing the sign bit, can just test on high word. */
5806 op0h
= force_highpart_subreg (word_mode
, op0
, int_mode
);
5807 tem
= emit_store_flag (NULL_RTX
, code
, op0h
, op1
, word_mode
,
5808 unsignedp
, normalizep
);
5815 if (target_mode
== VOIDmode
|| GET_MODE (tem
) == target_mode
)
5818 target
= gen_reg_rtx (target_mode
);
5820 convert_move (target
, tem
,
5821 !val_signbit_known_set_p (word_mode
,
5822 (normalizep
? normalizep
5823 : STORE_FLAG_VALUE
)));
5831 /* Subroutine of emit_store_flag that handles cases in which the operands
5832 are scalar integers. SUBTARGET is the target to use for temporary
5833 operations and TRUEVAL is the value to store when the condition is
5834 true. All other arguments are as for emit_store_flag. */
5837 emit_store_flag_int (rtx target
, rtx subtarget
, enum rtx_code code
, rtx op0
,
5838 rtx op1
, scalar_int_mode mode
, int unsignedp
,
5839 int normalizep
, rtx trueval
)
5841 machine_mode target_mode
= target
? GET_MODE (target
) : VOIDmode
;
5842 rtx_insn
*last
= get_last_insn ();
5844 /* If this is an equality comparison of integers, we can try to exclusive-or
5845 (or subtract) the two operands and use a recursive call to try the
5846 comparison with zero. Don't do any of these cases if branches are
5849 if ((code
== EQ
|| code
== NE
) && op1
!= const0_rtx
)
5851 rtx tem
= expand_binop (mode
, xor_optab
, op0
, op1
, subtarget
, 1,
5855 tem
= expand_binop (mode
, sub_optab
, op0
, op1
, subtarget
, 1,
5858 tem
= emit_store_flag (target
, code
, tem
, const0_rtx
,
5859 mode
, unsignedp
, normalizep
);
5863 delete_insns_since (last
);
5866 /* For integer comparisons, try the reverse comparison. However, for
5867 small X and if we'd have anyway to extend, implementing "X != 0"
5868 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5869 rtx_code rcode
= reverse_condition (code
);
5870 if (can_compare_p (rcode
, mode
, ccp_store_flag
)
5871 && ! (optab_handler (cstore_optab
, mode
) == CODE_FOR_nothing
5873 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
5874 && op1
== const0_rtx
))
5876 int want_add
= ((STORE_FLAG_VALUE
== 1 && normalizep
== -1)
5877 || (STORE_FLAG_VALUE
== -1 && normalizep
== 1));
5879 /* Again, for the reverse comparison, use either an addition or a XOR. */
5881 && rtx_cost (GEN_INT (normalizep
), mode
, PLUS
, 1,
5882 optimize_insn_for_speed_p ()) == 0)
5884 rtx tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5885 STORE_FLAG_VALUE
, target_mode
);
5887 tem
= expand_binop (target_mode
, add_optab
, tem
,
5888 gen_int_mode (normalizep
, target_mode
),
5889 target
, 0, OPTAB_WIDEN
);
5894 && rtx_cost (trueval
, mode
, XOR
, 1,
5895 optimize_insn_for_speed_p ()) == 0)
5897 rtx tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5898 normalizep
, target_mode
);
5900 tem
= expand_binop (target_mode
, xor_optab
, tem
, trueval
, target
,
5901 INTVAL (trueval
) >= 0, OPTAB_WIDEN
);
5906 delete_insns_since (last
);
5909 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5910 the constant zero. Reject all other comparisons at this point. Only
5911 do LE and GT if branches are expensive since they are expensive on
5912 2-operand machines. */
5914 if (op1
!= const0_rtx
5915 || (code
!= EQ
&& code
!= NE
5916 && (BRANCH_COST (optimize_insn_for_speed_p (),
5917 false) <= 1 || (code
!= LE
&& code
!= GT
))))
5920 /* Try to put the result of the comparison in the sign bit. Assume we can't
5921 do the necessary operation below. */
5925 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5926 the sign bit set. */
5930 /* This is destructive, so SUBTARGET can't be OP0. */
5931 if (rtx_equal_p (subtarget
, op0
))
5934 tem
= expand_binop (mode
, sub_optab
, op0
, const1_rtx
, subtarget
, 0,
5937 tem
= expand_binop (mode
, ior_optab
, op0
, tem
, subtarget
, 0,
5941 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5942 number of bits in the mode of OP0, minus one. */
5946 if (rtx_equal_p (subtarget
, op0
))
5949 tem
= maybe_expand_shift (RSHIFT_EXPR
, mode
, op0
,
5950 GET_MODE_BITSIZE (mode
) - 1,
5953 tem
= expand_binop (mode
, sub_optab
, tem
, op0
, subtarget
, 0,
5957 if (code
== EQ
|| code
== NE
)
5959 /* For EQ or NE, one way to do the comparison is to apply an operation
5960 that converts the operand into a positive number if it is nonzero
5961 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5962 for NE we negate. This puts the result in the sign bit. Then we
5963 normalize with a shift, if needed.
5965 Two operations that can do the above actions are ABS and FFS, so try
5966 them. If that doesn't work, and MODE is smaller than a full word,
5967 we can use zero-extension to the wider mode (an unsigned conversion)
5968 as the operation. */
5970 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5971 that is compensated by the subsequent overflow when subtracting
5974 if (optab_handler (abs_optab
, mode
) != CODE_FOR_nothing
)
5975 tem
= expand_unop (mode
, abs_optab
, op0
, subtarget
, 1);
5976 else if (optab_handler (ffs_optab
, mode
) != CODE_FOR_nothing
)
5977 tem
= expand_unop (mode
, ffs_optab
, op0
, subtarget
, 1);
5978 else if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
5980 tem
= convert_modes (word_mode
, mode
, op0
, 1);
5987 tem
= expand_binop (mode
, sub_optab
, tem
, const1_rtx
, subtarget
,
5990 tem
= expand_unop (mode
, neg_optab
, tem
, subtarget
, 0);
5993 /* If we couldn't do it that way, for NE we can "or" the two's complement
5994 of the value with itself. For EQ, we take the one's complement of
5995 that "or", which is an extra insn, so we only handle EQ if branches
6000 || BRANCH_COST (optimize_insn_for_speed_p (),
6003 if (rtx_equal_p (subtarget
, op0
))
6006 tem
= expand_unop (mode
, neg_optab
, op0
, subtarget
, 0);
6007 tem
= expand_binop (mode
, ior_optab
, tem
, op0
, subtarget
, 0,
6010 if (tem
&& code
== EQ
)
6011 tem
= expand_unop (mode
, one_cmpl_optab
, tem
, subtarget
, 0);
6015 if (tem
&& normalizep
)
6016 tem
= maybe_expand_shift (RSHIFT_EXPR
, mode
, tem
,
6017 GET_MODE_BITSIZE (mode
) - 1,
6018 subtarget
, normalizep
== 1);
6024 else if (GET_MODE (tem
) != target_mode
)
6026 convert_move (target
, tem
, 0);
6029 else if (!subtarget
)
6031 emit_move_insn (target
, tem
);
6036 delete_insns_since (last
);
6041 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
6042 and storing in TARGET. Normally return TARGET.
6043 Return 0 if that cannot be done.
6045 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
6046 it is VOIDmode, they cannot both be CONST_INT.
6048 UNSIGNEDP is for the case where we have to widen the operands
6049 to perform the operation. It says to use zero-extension.
6051 NORMALIZEP is 1 if we should convert the result to be either zero
6052 or one. Normalize is -1 if we should convert the result to be
6053 either zero or -1. If NORMALIZEP is zero, the result will be left
6054 "raw" out of the scc insn. */
6057 emit_store_flag (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
6058 machine_mode mode
, int unsignedp
, int normalizep
)
6060 machine_mode target_mode
= target
? GET_MODE (target
) : VOIDmode
;
6061 enum rtx_code rcode
;
6066 /* If we compare constants, we shouldn't use a store-flag operation,
6067 but a constant load. We can get there via the vanilla route that
6068 usually generates a compare-branch sequence, but will in this case
6069 fold the comparison to a constant, and thus elide the branch. */
6070 if (CONSTANT_P (op0
) && CONSTANT_P (op1
))
6073 tem
= emit_store_flag_1 (target
, code
, op0
, op1
, mode
, unsignedp
, normalizep
,
6078 /* If we reached here, we can't do this with a scc insn, however there
6079 are some comparisons that can be done in other ways. Don't do any
6080 of these cases if branches are very cheap. */
6081 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
6084 /* See what we need to return. We can only return a 1, -1, or the
6087 if (normalizep
== 0)
6089 if (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
6090 normalizep
= STORE_FLAG_VALUE
;
6092 else if (val_signbit_p (mode
, STORE_FLAG_VALUE
))
6098 last
= get_last_insn ();
6100 /* If optimizing, use different pseudo registers for each insn, instead
6101 of reusing the same pseudo. This leads to better CSE, but slows
6102 down the compiler, since there are more pseudos. */
6103 subtarget
= (!optimize
6104 && (target_mode
== mode
)) ? target
: NULL_RTX
;
6105 trueval
= GEN_INT (normalizep
? normalizep
: STORE_FLAG_VALUE
);
6107 /* For floating-point comparisons, try the reverse comparison or try
6108 changing the "orderedness" of the comparison. */
6109 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
6111 enum rtx_code first_code
;
6114 rcode
= reverse_condition_maybe_unordered (code
);
6115 if (can_compare_p (rcode
, mode
, ccp_store_flag
)
6116 && (code
== ORDERED
|| code
== UNORDERED
6117 || (! HONOR_NANS (mode
) && (code
== LTGT
|| code
== UNEQ
))
6118 || (! HONOR_SNANS (mode
) && (code
== EQ
|| code
== NE
))))
6120 int want_add
= ((STORE_FLAG_VALUE
== 1 && normalizep
== -1)
6121 || (STORE_FLAG_VALUE
== -1 && normalizep
== 1));
6123 /* For the reverse comparison, use either an addition or a XOR. */
6125 && rtx_cost (GEN_INT (normalizep
), mode
, PLUS
, 1,
6126 optimize_insn_for_speed_p ()) == 0)
6128 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
6129 STORE_FLAG_VALUE
, target_mode
);
6131 return expand_binop (target_mode
, add_optab
, tem
,
6132 gen_int_mode (normalizep
, target_mode
),
6133 target
, 0, OPTAB_WIDEN
);
6136 && rtx_cost (trueval
, mode
, XOR
, 1,
6137 optimize_insn_for_speed_p ()) == 0)
6139 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
6140 normalizep
, target_mode
);
6142 return expand_binop (target_mode
, xor_optab
, tem
, trueval
,
6143 target
, INTVAL (trueval
) >= 0,
6148 delete_insns_since (last
);
6150 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
6151 if (code
== ORDERED
|| code
== UNORDERED
)
6154 and_them
= split_comparison (code
, mode
, &first_code
, &code
);
6156 /* If there are no NaNs, the first comparison should always fall through.
6157 Effectively change the comparison to the other one. */
6158 if (!HONOR_NANS (mode
))
6160 gcc_assert (first_code
== (and_them
? ORDERED
: UNORDERED
));
6161 return emit_store_flag_1 (target
, code
, op0
, op1
, mode
, 0, normalizep
,
6165 if (!HAVE_conditional_move
)
6168 /* Do not turn a trapping comparison into a non-trapping one. */
6169 if ((code
!= EQ
&& code
!= NE
&& code
!= UNEQ
&& code
!= LTGT
)
6170 && flag_trapping_math
)
6173 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
6174 conditional move. */
6175 tem
= emit_store_flag_1 (subtarget
, first_code
, op0
, op1
, mode
, 0,
6176 normalizep
, target_mode
);
6181 tem
= emit_conditional_move (target
, { code
, op0
, op1
, mode
},
6182 tem
, const0_rtx
, GET_MODE (tem
), 0);
6184 tem
= emit_conditional_move (target
, { code
, op0
, op1
, mode
},
6185 trueval
, tem
, GET_MODE (tem
), 0);
6188 delete_insns_since (last
);
6192 /* The remaining tricks only apply to integer comparisons. */
6194 scalar_int_mode int_mode
;
6195 if (is_int_mode (mode
, &int_mode
))
6196 return emit_store_flag_int (target
, subtarget
, code
, op0
, op1
, int_mode
,
6197 unsignedp
, normalizep
, trueval
);
6202 /* Like emit_store_flag, but always succeeds. */
6205 emit_store_flag_force (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
6206 machine_mode mode
, int unsignedp
, int normalizep
)
6209 rtx_code_label
*label
;
6210 rtx trueval
, falseval
;
6212 /* First see if emit_store_flag can do the job. */
6213 tem
= emit_store_flag (target
, code
, op0
, op1
, mode
, unsignedp
, normalizep
);
6217 /* If one operand is constant, make it the second one. Only do this
6218 if the other operand is not constant as well. */
6219 if (swap_commutative_operands_p (op0
, op1
))
6221 std::swap (op0
, op1
);
6222 code
= swap_condition (code
);
6225 if (mode
== VOIDmode
)
6226 mode
= GET_MODE (op0
);
6229 target
= gen_reg_rtx (word_mode
);
6231 /* If this failed, we have to do this with set/compare/jump/set code.
6232 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
6233 trueval
= normalizep
? GEN_INT (normalizep
) : const1_rtx
;
6235 && GET_MODE_CLASS (mode
) == MODE_INT
6238 && op1
== const0_rtx
)
6240 label
= gen_label_rtx ();
6241 do_compare_rtx_and_jump (target
, const0_rtx
, EQ
, unsignedp
, mode
,
6242 NULL_RTX
, NULL
, label
,
6243 profile_probability::uninitialized ());
6244 emit_move_insn (target
, trueval
);
6250 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
6251 target
= gen_reg_rtx (GET_MODE (target
));
6253 /* Jump in the right direction if the target cannot implement CODE
6254 but can jump on its reverse condition. */
6255 falseval
= const0_rtx
;
6256 if (! can_compare_p (code
, mode
, ccp_jump
)
6257 && (! FLOAT_MODE_P (mode
)
6258 || code
== ORDERED
|| code
== UNORDERED
6259 || (! HONOR_NANS (mode
) && (code
== LTGT
|| code
== UNEQ
))
6260 || (! HONOR_SNANS (mode
) && (code
== EQ
|| code
== NE
))))
6262 enum rtx_code rcode
;
6263 if (FLOAT_MODE_P (mode
))
6264 rcode
= reverse_condition_maybe_unordered (code
);
6266 rcode
= reverse_condition (code
);
6268 /* Canonicalize to UNORDERED for the libcall. */
6269 if (can_compare_p (rcode
, mode
, ccp_jump
)
6270 || (code
== ORDERED
&& ! can_compare_p (ORDERED
, mode
, ccp_jump
)))
6273 trueval
= const0_rtx
;
6278 emit_move_insn (target
, trueval
);
6279 label
= gen_label_rtx ();
6280 do_compare_rtx_and_jump (op0
, op1
, code
, unsignedp
, mode
, NULL_RTX
, NULL
,
6281 label
, profile_probability::uninitialized ());
6283 emit_move_insn (target
, falseval
);
6289 /* Helper function for canonicalize_cmp_for_target. Swap between inclusive
6290 and exclusive ranges in order to create an equivalent comparison. See
6291 canonicalize_cmp_for_target for the possible cases. */
6293 static enum rtx_code
6294 equivalent_cmp_code (enum rtx_code code
)
6320 /* Choose the more appropiate immediate in scalar integer comparisons. The
6321 purpose of this is to end up with an immediate which can be loaded into a
6322 register in fewer moves, if possible.
6324 For each integer comparison there exists an equivalent choice:
6325 i) a > b or a >= b + 1
6326 ii) a <= b or a < b + 1
6327 iii) a >= b or a > b - 1
6328 iv) a < b or a <= b - 1
6330 MODE is the mode of the first operand.
6331 CODE points to the comparison code.
6332 IMM points to the rtx containing the immediate. *IMM must satisfy
6333 CONST_SCALAR_INT_P on entry and continues to satisfy CONST_SCALAR_INT_P
6337 canonicalize_comparison (machine_mode mode
, enum rtx_code
*code
, rtx
*imm
)
6339 if (!SCALAR_INT_MODE_P (mode
))
6343 enum signop sgn
= unsigned_condition_p (*code
) ? UNSIGNED
: SIGNED
;
6345 /* Extract the immediate value from the rtx. */
6346 wide_int imm_val
= rtx_mode_t (*imm
, mode
);
6348 if (*code
== GT
|| *code
== GTU
|| *code
== LE
|| *code
== LEU
)
6350 else if (*code
== GE
|| *code
== GEU
|| *code
== LT
|| *code
== LTU
)
6355 /* Check for overflow/underflow in the case of signed values and
6356 wrapping around in the case of unsigned values. If any occur
6357 cancel the optimization. */
6358 wi::overflow_type overflow
= wi::OVF_NONE
;
6362 imm_modif
= wi::add (imm_val
, 1, sgn
, &overflow
);
6364 imm_modif
= wi::sub (imm_val
, 1, sgn
, &overflow
);
6369 /* The following creates a pseudo; if we cannot do that, bail out. */
6370 if (!can_create_pseudo_p ())
6373 rtx reg
= gen_rtx_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
6374 rtx new_imm
= immed_wide_int_const (imm_modif
, mode
);
6376 rtx_insn
*old_rtx
= gen_move_insn (reg
, *imm
);
6377 rtx_insn
*new_rtx
= gen_move_insn (reg
, new_imm
);
6379 /* Update the immediate and the code. */
6380 if (insn_cost (old_rtx
, true) > insn_cost (new_rtx
, true))
6382 *code
= equivalent_cmp_code (*code
);
6389 /* Perform possibly multi-word comparison and conditional jump to LABEL
6390 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
6391 now a thin wrapper around do_compare_rtx_and_jump. */
6394 do_cmp_and_jump (rtx arg1
, rtx arg2
, enum rtx_code op
, machine_mode mode
,
6395 rtx_code_label
*label
)
6397 int unsignedp
= (op
== LTU
|| op
== LEU
|| op
== GTU
|| op
== GEU
);
6398 do_compare_rtx_and_jump (arg1
, arg2
, op
, unsignedp
, mode
, NULL_RTX
,
6399 NULL
, label
, profile_probability::uninitialized ());