libcpp, c, middle-end: Optimize initializers using #embed in C
[official-gcc.git] / gcc / gimple-range-gori.h
blob97e051cd31703e886a2abc0f1edbe89feeed2c42
1 /* Header file for gimple range GORI structures.
2 Copyright (C) 2017-2024 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4 and Aldy Hernandez <aldyh@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #ifndef GCC_GIMPLE_RANGE_GORI_H
23 #define GCC_GIMPLE_RANGE_GORI_H
25 // RANGE_DEF_CHAIN is used to determine which SSA names in a block can
26 // have range information calculated for them, and what the
27 // dependencies on each other are.
29 class range_def_chain
31 public:
32 range_def_chain ();
33 ~range_def_chain ();
34 tree depend1 (tree name) const;
35 tree depend2 (tree name) const;
36 bool in_chain_p (tree name, tree def);
37 bool chain_import_p (tree name, tree import);
38 void register_dependency (tree name, tree ssa1, basic_block bb = NULL);
39 void dump (FILE *f, basic_block bb, const char *prefix = NULL);
40 protected:
41 bool has_def_chain (tree name);
42 bool def_chain_in_bitmap_p (tree name, bitmap b);
43 void add_def_chain_to_bitmap (bitmap b, tree name);
44 bitmap get_def_chain (tree name);
45 bitmap get_imports (tree name);
46 bitmap_obstack m_bitmaps;
47 private:
48 struct rdc {
49 unsigned int ssa1; // First direct dependency
50 unsigned int ssa2; // Second direct dependency
51 bitmap bm; // All dependencies
52 bitmap m_import;
54 vec<rdc> m_def_chain; // SSA_NAME : def chain components.
55 void set_import (struct rdc &data, tree imp, bitmap b);
56 int m_logical_depth;
59 // Return the first direct dependency for NAME, if there is one.
60 // Direct dependencies are those which occur on the definition statement.
61 // Only the first 2 such names are cached.
63 inline tree
64 range_def_chain::depend1 (tree name) const
66 unsigned v = SSA_NAME_VERSION (name);
67 if (v >= m_def_chain.length ())
68 return NULL_TREE;
69 unsigned v1 = m_def_chain[v].ssa1;
70 if (!v1)
71 return NULL_TREE;
72 return ssa_name (v1);
75 // Return the second direct dependency for NAME, if there is one.
77 inline tree
78 range_def_chain::depend2 (tree name) const
80 unsigned v = SSA_NAME_VERSION (name);
81 if (v >= m_def_chain.length ())
82 return NULL_TREE;
83 unsigned v2 = m_def_chain[v].ssa2;
84 if (!v2)
85 return NULL_TREE;
86 return ssa_name (v2);
89 // GORI_MAP is used to accumulate what SSA names in a block can
90 // generate range information, and provides tools for the block ranger
91 // to enable it to efficiently calculate these ranges.
93 class gori_map : public range_def_chain
95 public:
96 gori_map ();
97 ~gori_map ();
99 bool is_export_p (tree name, basic_block bb = NULL);
100 bool is_import_p (tree name, basic_block bb);
101 bitmap exports (basic_block bb);
102 bitmap imports (basic_block bb);
103 void set_range_invariant (tree name, bool invariant = true);
105 void dump (FILE *f);
106 void dump (FILE *f, basic_block bb, bool verbose = true);
107 private:
108 vec<bitmap> m_outgoing; // BB: Outgoing ranges calculable on edges
109 vec<bitmap> m_incoming; // BB: Incoming ranges which can affect exports.
110 bitmap m_maybe_variant; // Names which might have outgoing ranges.
111 void maybe_add_gori (tree name, basic_block bb);
112 void calculate_gori (basic_block bb);
116 // This class is used to determine which SSA_NAMES can have ranges
117 // calculated for them on outgoing edges from basic blocks. This represents
118 // ONLY the effect of the basic block edge->src on a range.
120 // There are 2 primary entry points:
122 // has_edge_range_p (tree name, edge e)
123 // returns true if the outgoing edge *may* be able to produce range
124 // information for ssa_name NAME on edge E.
125 // FALSE is returned if this edge does not affect the range of NAME.
126 // if no edge is specified, return TRUE if name may have a value calculated
127 // on *ANY* edge that has been seen. FALSE indicates that the global value
128 // is applicable everywhere that has been processed.
130 // edge_range_p (vrange &range, edge e, tree name)
131 // Actually does the calculation of RANGE for name on E
132 // This represents application of whatever static range effect edge E
133 // may have on NAME, not any cumulative effect.
135 // There are also some internal APIs
137 // ssa_range_in_bb () is an internal routine which is used to start any
138 // calculation chain using SSA_NAMES which come from outside the block. ie
139 // a_2 = b_4 - 8
140 // if (a_2 < 30)
141 // on the true edge, a_2 is known to be [0, 29]
142 // b_4 can be calculated as [8, 37]
143 // during this calculation, b_4 is considered an "import" and ssa_range_in_bb
144 // is queried for a starting range which is used in the calculation.
145 // A default value of VARYING provides the raw static info for the edge.
147 // If there is any known range for b_4 coming into this block, it can refine
148 // the results. This allows for cascading results to be propagated.
149 // if b_4 is [100, 200] on entry to the block, feeds into the calculation
150 // of a_2 = [92, 192], and finally on the true edge the range would be
151 // an empty range [] because it is not possible for the true edge to be taken.
153 // expr_range_in_bb is simply a wrapper which calls ssa_range_in_bb for
154 // SSA_NAMES and otherwise simply calculates the range of the expression.
156 // The constructor takes a flag value to use on edges to check for the
157 // NON_EXECUTABLE_EDGE property. The zero default means no flag is checked.
158 // All value requests from NON_EXECUTABLE_EDGE edges are returned UNDEFINED.
160 // The remaining routines are internal use only.
162 class value_relation;
164 class gori_compute : public gimple_outgoing_range
166 public:
167 gori_compute (gori_map &map, int not_executable_flag = 0,
168 int max_sw_edges = 0);
169 virtual ~gori_compute ();
170 bool edge_range_p (vrange &r, edge e, tree name, range_query &q);
171 bool has_edge_range_p (tree name, basic_block bb = NULL);
172 bool has_edge_range_p (tree name, edge e);
173 void dump (FILE *f);
174 bool compute_operand_range (vrange &r, gimple *stmt, const vrange &lhs,
175 tree name, class fur_source &src,
176 value_relation *rel = NULL);
177 private:
178 gori_map &m_map;
179 bool refine_using_relation (tree op1, vrange &op1_range,
180 tree op2, vrange &op2_range,
181 fur_source &src, relation_kind k);
182 bool may_recompute_p (tree name, edge e, int depth = -1);
183 bool may_recompute_p (tree name, basic_block bb = NULL, int depth = -1);
184 bool compute_operand_range_switch (vrange &r, gswitch *s, const vrange &lhs,
185 tree name, fur_source &src);
186 bool compute_operand1_range (vrange &r, gimple_range_op_handler &handler,
187 const vrange &lhs, fur_source &src,
188 value_relation *rel = NULL);
189 bool compute_operand2_range (vrange &r, gimple_range_op_handler &handler,
190 const vrange &lhs, fur_source &src,
191 value_relation *rel = NULL);
192 bool compute_operand1_and_operand2_range (vrange &r,
193 gimple_range_op_handler &handler,
194 const vrange &lhs, tree name,
195 fur_source &src,
196 value_relation *rel = NULL);
197 void compute_logical_operands (vrange &true_range, vrange &false_range,
198 gimple_range_op_handler &handler,
199 const irange &lhs, tree name, fur_source &src,
200 tree op, bool op_in_chain);
201 bool logical_combine (vrange &r, enum tree_code code, const irange &lhs,
202 const vrange &op1_true, const vrange &op1_false,
203 const vrange &op2_true, const vrange &op2_false);
204 int_range<2> m_bool_zero; // Boolean false cached.
205 int_range<2> m_bool_one; // Boolean true cached.
207 range_tracer tracer;
208 int m_not_executable_flag;
209 int m_recompute_depth;
212 // These APIs are used to query GORI if there are ranges generated on an edge.
213 // GORI_ON_EDGE is used to get all the ranges at once (returned in an
214 // ssa_cache structure).
215 // GORI_NAME_ON_EDGE is used to simply ask if NAME has a range on edge E
217 // Fill ssa-cache R with any outgoing ranges on edge E, using QUERY.
218 bool gori_on_edge (class ssa_cache &r, edge e, range_query *query = NULL);
220 // Query if NAME has an outgoing range on edge E, and return it in R if so.
221 // Note this doesnt use ranger, its a static GORI analysis of the range in
222 // block e->src and is based on any branch at the exit of that block.
223 bool gori_name_on_edge (vrange &r, tree name, edge e, range_query *q = NULL);
225 // For each name that is an import into BB's exports..
226 #define FOR_EACH_GORI_IMPORT_NAME(gorimap, bb, name) \
227 for (gori_export_iterator iter ((gorimap)->imports ((bb))); \
228 ((name) = iter.get_name ()); \
229 iter.next ())
231 // For each name possibly exported from block BB.
232 #define FOR_EACH_GORI_EXPORT_NAME(gorimap, bb, name) \
233 for (gori_export_iterator iter ((gorimap)->exports ((bb))); \
234 ((name) = iter.get_name ()); \
235 iter.next ())
237 // Used to assist with iterating over the GORI export list in various ways
238 class gori_export_iterator {
239 public:
240 gori_export_iterator (bitmap b);
241 void next ();
242 tree get_name ();
243 protected:
244 bitmap bm;
245 bitmap_iterator bi;
246 unsigned y;
249 #endif // GCC_GIMPLE_RANGE_GORI_H