1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2024 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
36 #include "rtl-error.h"
38 #include "addresses.h"
45 #include "function-abi.h"
47 /* This file contains the reload pass of the compiler, which is
48 run after register allocation has been done. It checks that
49 each insn is valid (operands required to be in registers really
50 are in registers of the proper class) and fixes up invalid ones
51 by copying values temporarily into registers for the insns
54 The results of register allocation are described by the vector
55 reg_renumber; the insns still contain pseudo regs, but reg_renumber
56 can be used to find which hard reg, if any, a pseudo reg is in.
58 The technique we always use is to free up a few hard regs that are
59 called ``reload regs'', and for each place where a pseudo reg
60 must be in a hard reg, copy it temporarily into one of the reload regs.
62 Reload regs are allocated locally for every instruction that needs
63 reloads. When there are pseudos which are allocated to a register that
64 has been chosen as a reload reg, such pseudos must be ``spilled''.
65 This means that they go to other hard regs, or to stack slots if no other
66 available hard regs can be found. Spilling can invalidate more
67 insns, requiring additional need for reloads, so we must keep checking
68 until the process stabilizes.
70 For machines with different classes of registers, we must keep track
71 of the register class needed for each reload, and make sure that
72 we allocate enough reload registers of each class.
74 The file reload.cc contains the code that checks one insn for
75 validity and reports the reloads that it needs. This file
76 is in charge of scanning the entire rtl code, accumulating the
77 reload needs, spilling, assigning reload registers to use for
78 fixing up each insn, and generating the new insns to copy values
79 into the reload registers. */
81 struct target_reload default_target_reload
;
83 struct target_reload
*this_target_reload
= &default_target_reload
;
86 #define spill_indirect_levels \
87 (this_target_reload->x_spill_indirect_levels)
89 /* During reload_as_needed, element N contains a REG rtx for the hard reg
90 into which reg N has been reloaded (perhaps for a previous insn). */
91 static rtx
*reg_last_reload_reg
;
93 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
94 for an output reload that stores into reg N. */
95 static regset_head reg_has_output_reload
;
97 /* Indicates which hard regs are reload-registers for an output reload
98 in the current insn. */
99 static HARD_REG_SET reg_is_output_reload
;
101 /* Widest mode in which each pseudo reg is referred to (via subreg). */
102 static machine_mode
*reg_max_ref_mode
;
104 /* Vector to remember old contents of reg_renumber before spilling. */
105 static short *reg_old_renumber
;
107 /* During reload_as_needed, element N contains the last pseudo regno reloaded
108 into hard register N. If that pseudo reg occupied more than one register,
109 reg_reloaded_contents points to that pseudo for each spill register in
110 use; all of these must remain set for an inheritance to occur. */
111 static int reg_reloaded_contents
[FIRST_PSEUDO_REGISTER
];
113 /* During reload_as_needed, element N contains the insn for which
114 hard register N was last used. Its contents are significant only
115 when reg_reloaded_valid is set for this register. */
116 static rtx_insn
*reg_reloaded_insn
[FIRST_PSEUDO_REGISTER
];
118 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
119 static HARD_REG_SET reg_reloaded_valid
;
120 /* Indicate if the register was dead at the end of the reload.
121 This is only valid if reg_reloaded_contents is set and valid. */
122 static HARD_REG_SET reg_reloaded_dead
;
124 /* Number of spill-regs so far; number of valid elements of spill_regs. */
127 /* In parallel with spill_regs, contains REG rtx's for those regs.
128 Holds the last rtx used for any given reg, or 0 if it has never
129 been used for spilling yet. This rtx is reused, provided it has
131 static rtx spill_reg_rtx
[FIRST_PSEUDO_REGISTER
];
133 /* In parallel with spill_regs, contains nonzero for a spill reg
134 that was stored after the last time it was used.
135 The precise value is the insn generated to do the store. */
136 static rtx_insn
*spill_reg_store
[FIRST_PSEUDO_REGISTER
];
138 /* This is the register that was stored with spill_reg_store. This is a
139 copy of reload_out / reload_out_reg when the value was stored; if
140 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
141 static rtx spill_reg_stored_to
[FIRST_PSEUDO_REGISTER
];
143 /* This table is the inverse mapping of spill_regs:
144 indexed by hard reg number,
145 it contains the position of that reg in spill_regs,
146 or -1 for something that is not in spill_regs.
148 ?!? This is no longer accurate. */
149 static short spill_reg_order
[FIRST_PSEUDO_REGISTER
];
151 /* This reg set indicates registers that can't be used as spill registers for
152 the currently processed insn. These are the hard registers which are live
153 during the insn, but not allocated to pseudos, as well as fixed
155 static HARD_REG_SET bad_spill_regs
;
157 /* These are the hard registers that can't be used as spill register for any
158 insn. This includes registers used for user variables and registers that
159 we can't eliminate. A register that appears in this set also can't be used
160 to retry register allocation. */
161 static HARD_REG_SET bad_spill_regs_global
;
163 /* Describes order of use of registers for reloading
164 of spilled pseudo-registers. `n_spills' is the number of
165 elements that are actually valid; new ones are added at the end.
167 Both spill_regs and spill_reg_order are used on two occasions:
168 once during find_reload_regs, where they keep track of the spill registers
169 for a single insn, but also during reload_as_needed where they show all
170 the registers ever used by reload. For the latter case, the information
171 is calculated during finish_spills. */
172 static short spill_regs
[FIRST_PSEUDO_REGISTER
];
174 /* This vector of reg sets indicates, for each pseudo, which hard registers
175 may not be used for retrying global allocation because the register was
176 formerly spilled from one of them. If we allowed reallocating a pseudo to
177 a register that it was already allocated to, reload might not
179 static HARD_REG_SET
*pseudo_previous_regs
;
181 /* This vector of reg sets indicates, for each pseudo, which hard
182 registers may not be used for retrying global allocation because they
183 are used as spill registers during one of the insns in which the
185 static HARD_REG_SET
*pseudo_forbidden_regs
;
187 /* All hard regs that have been used as spill registers for any insn are
188 marked in this set. */
189 static HARD_REG_SET used_spill_regs
;
191 /* Index of last register assigned as a spill register. We allocate in
192 a round-robin fashion. */
193 static int last_spill_reg
;
195 /* Record the stack slot for each spilled hard register. */
196 static rtx spill_stack_slot
[FIRST_PSEUDO_REGISTER
];
198 /* Width allocated so far for that stack slot. */
199 static poly_uint64 spill_stack_slot_width
[FIRST_PSEUDO_REGISTER
];
201 /* Record which pseudos needed to be spilled. */
202 static regset_head spilled_pseudos
;
204 /* Record which pseudos changed their allocation in finish_spills. */
205 static regset_head changed_allocation_pseudos
;
207 /* Used for communication between order_regs_for_reload and count_pseudo.
208 Used to avoid counting one pseudo twice. */
209 static regset_head pseudos_counted
;
211 /* First uid used by insns created by reload in this function.
212 Used in find_equiv_reg. */
213 int reload_first_uid
;
215 /* Flag set by local-alloc or global-alloc if anything is live in
216 a call-clobbered reg across calls. */
217 int caller_save_needed
;
219 /* Set to 1 while reload_as_needed is operating.
220 Required by some machines to handle any generated moves differently. */
221 int reload_in_progress
= 0;
223 /* This obstack is used for allocation of rtl during register elimination.
224 The allocated storage can be freed once find_reloads has processed the
226 static struct obstack reload_obstack
;
228 /* Points to the beginning of the reload_obstack. All insn_chain structures
229 are allocated first. */
230 static char *reload_startobj
;
232 /* The point after all insn_chain structures. Used to quickly deallocate
233 memory allocated in copy_reloads during calculate_needs_all_insns. */
234 static char *reload_firstobj
;
236 /* This points before all local rtl generated by register elimination.
237 Used to quickly free all memory after processing one insn. */
238 static char *reload_insn_firstobj
;
240 /* List of insn_chain instructions, one for every insn that reload needs to
242 class insn_chain
*reload_insn_chain
;
244 /* TRUE if we potentially left dead insns in the insn stream and want to
245 run DCE immediately after reload, FALSE otherwise. */
246 static bool need_dce
;
248 /* List of all insns needing reloads. */
249 static class insn_chain
*insns_need_reload
;
251 /* This structure is used to record information about register eliminations.
252 Each array entry describes one possible way of eliminating a register
253 in favor of another. If there is more than one way of eliminating a
254 particular register, the most preferred should be specified first. */
258 int from
; /* Register number to be eliminated. */
259 int to
; /* Register number used as replacement. */
260 poly_int64 initial_offset
; /* Initial difference between values. */
261 int can_eliminate
; /* Nonzero if this elimination can be done. */
262 int can_eliminate_previous
; /* Value returned by TARGET_CAN_ELIMINATE
263 target hook in previous scan over insns
265 poly_int64 offset
; /* Current offset between the two regs. */
266 poly_int64 previous_offset
; /* Offset at end of previous insn. */
267 int ref_outside_mem
; /* "to" has been referenced outside a MEM. */
268 rtx from_rtx
; /* REG rtx for the register to be eliminated.
269 We cannot simply compare the number since
270 we might then spuriously replace a hard
271 register corresponding to a pseudo
272 assigned to the reg to be eliminated. */
273 rtx to_rtx
; /* REG rtx for the replacement. */
276 static struct elim_table
*reg_eliminate
= 0;
278 /* This is an intermediate structure to initialize the table. It has
279 exactly the members provided by ELIMINABLE_REGS. */
280 static const struct elim_table_1
284 } reg_eliminate_1
[] =
286 /* Reload and LRA don't agree on how a multi-register frame pointer
287 is represented for elimination. See avr.h for a use case. */
288 #ifdef RELOAD_ELIMINABLE_REGS
289 RELOAD_ELIMINABLE_REGS
;
294 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
296 /* Record the number of pending eliminations that have an offset not equal
297 to their initial offset. If nonzero, we use a new copy of each
298 replacement result in any insns encountered. */
299 int num_not_at_initial_offset
;
301 /* Count the number of registers that we may be able to eliminate. */
302 static int num_eliminable
;
303 /* And the number of registers that are equivalent to a constant that
304 can be eliminated to frame_pointer / arg_pointer + constant. */
305 static int num_eliminable_invariants
;
307 /* For each label, we record the offset of each elimination. If we reach
308 a label by more than one path and an offset differs, we cannot do the
309 elimination. This information is indexed by the difference of the
310 number of the label and the first label number. We can't offset the
311 pointer itself as this can cause problems on machines with segmented
312 memory. The first table is an array of flags that records whether we
313 have yet encountered a label and the second table is an array of arrays,
314 one entry in the latter array for each elimination. */
316 static int first_label_num
;
317 static char *offsets_known_at
;
318 static poly_int64 (*offsets_at
)[NUM_ELIMINABLE_REGS
];
320 vec
<reg_equivs_t
, va_gc
> *reg_equivs
;
322 /* Stack of addresses where an rtx has been changed. We can undo the
323 changes by popping items off the stack and restoring the original
324 value at each location.
326 We use this simplistic undo capability rather than copy_rtx as copy_rtx
327 will not make a deep copy of a normally sharable rtx, such as
328 (const (plus (symbol_ref) (const_int))). If such an expression appears
329 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
330 rtx expression would be changed. See PR 42431. */
333 static vec
<rtx_p
> substitute_stack
;
335 /* Number of labels in the current function. */
337 static int num_labels
;
339 static void replace_pseudos_in (rtx
*, machine_mode
, rtx
);
340 static void maybe_fix_stack_asms (void);
341 static void copy_reloads (class insn_chain
*);
342 static void calculate_needs_all_insns (int);
343 static int find_reg (class insn_chain
*, int);
344 static void find_reload_regs (class insn_chain
*);
345 static void select_reload_regs (void);
346 static void delete_caller_save_insns (void);
348 static void spill_failure (rtx_insn
*, enum reg_class
);
349 static void count_spilled_pseudo (int, int, int);
350 static void delete_dead_insn (rtx_insn
*);
351 static void alter_reg (int, int, bool);
352 static void set_label_offsets (rtx
, rtx_insn
*, int);
353 static void check_eliminable_occurrences (rtx
);
354 static void elimination_effects (rtx
, machine_mode
);
355 static rtx
eliminate_regs_1 (rtx
, machine_mode
, rtx
, bool, bool);
356 static int eliminate_regs_in_insn (rtx_insn
*, int);
357 static void update_eliminable_offsets (void);
358 static void mark_not_eliminable (rtx
, const_rtx
, void *);
359 static void set_initial_elim_offsets (void);
360 static bool verify_initial_elim_offsets (void);
361 static void set_initial_label_offsets (void);
362 static void set_offsets_for_label (rtx_insn
*);
363 static void init_eliminable_invariants (rtx_insn
*, bool);
364 static void init_elim_table (void);
365 static void free_reg_equiv (void);
366 static void update_eliminables (HARD_REG_SET
*);
367 static bool update_eliminables_and_spill (void);
368 static void elimination_costs_in_insn (rtx_insn
*);
369 static void spill_hard_reg (unsigned int, int);
370 static int finish_spills (int);
371 static void scan_paradoxical_subregs (rtx
);
372 static void count_pseudo (int);
373 static void order_regs_for_reload (class insn_chain
*);
374 static void reload_as_needed (int);
375 static void forget_old_reloads_1 (rtx
, const_rtx
, void *);
376 static void forget_marked_reloads (regset
);
377 static int reload_reg_class_lower (const void *, const void *);
378 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type
,
380 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type
,
382 static int reload_reg_free_p (unsigned int, int, enum reload_type
);
383 static int reload_reg_free_for_value_p (int, int, int, enum reload_type
,
385 static int free_for_value_p (int, machine_mode
, int, enum reload_type
,
387 static int allocate_reload_reg (class insn_chain
*, int, int);
388 static int conflicts_with_override (rtx
);
389 static void failed_reload (rtx_insn
*, int);
390 static int set_reload_reg (int, int);
391 static void choose_reload_regs_init (class insn_chain
*, rtx
*);
392 static void choose_reload_regs (class insn_chain
*);
393 static void emit_input_reload_insns (class insn_chain
*, struct reload
*,
395 static void emit_output_reload_insns (class insn_chain
*, struct reload
*,
397 static void do_input_reload (class insn_chain
*, struct reload
*, int);
398 static void do_output_reload (class insn_chain
*, struct reload
*, int);
399 static void emit_reload_insns (class insn_chain
*);
400 static void delete_output_reload (rtx_insn
*, int, int, rtx
);
401 static void delete_address_reloads (rtx_insn
*, rtx_insn
*);
402 static void delete_address_reloads_1 (rtx_insn
*, rtx
, rtx_insn
*);
403 static void inc_for_reload (rtx
, rtx
, rtx
, poly_int64
);
404 static void substitute (rtx
*, const_rtx
, rtx
);
405 static bool gen_reload_chain_without_interm_reg_p (int, int);
406 static int reloads_conflict (int, int);
407 static rtx_insn
*gen_reload (rtx
, rtx
, int, enum reload_type
);
408 static rtx_insn
*emit_insn_if_valid_for_reload (rtx
);
410 /* Initialize the reload pass. This is called at the beginning of compilation
411 and may be called again if the target is reinitialized. */
418 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
419 Set spill_indirect_levels to the number of levels such addressing is
420 permitted, zero if it is not permitted at all. */
423 = gen_rtx_MEM (Pmode
,
426 LAST_VIRTUAL_REGISTER
+ 1),
427 gen_int_mode (4, Pmode
)));
428 spill_indirect_levels
= 0;
430 while (memory_address_p (QImode
, tem
))
432 spill_indirect_levels
++;
433 tem
= gen_rtx_MEM (Pmode
, tem
);
436 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
438 tem
= gen_rtx_MEM (Pmode
, gen_rtx_SYMBOL_REF (Pmode
, "foo"));
439 indirect_symref_ok
= memory_address_p (QImode
, tem
);
441 /* See if reg+reg is a valid (and offsettable) address. */
443 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
445 tem
= gen_rtx_PLUS (Pmode
,
446 gen_rtx_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
),
447 gen_rtx_REG (Pmode
, i
));
449 /* This way, we make sure that reg+reg is an offsettable address. */
450 tem
= plus_constant (Pmode
, tem
, 4);
452 for (int mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
453 if (!double_reg_address_ok
[mode
]
454 && memory_address_p ((enum machine_mode
)mode
, tem
))
455 double_reg_address_ok
[mode
] = 1;
458 /* Initialize obstack for our rtl allocation. */
459 if (reload_startobj
== NULL
)
461 gcc_obstack_init (&reload_obstack
);
462 reload_startobj
= XOBNEWVAR (&reload_obstack
, char, 0);
465 INIT_REG_SET (&spilled_pseudos
);
466 INIT_REG_SET (&changed_allocation_pseudos
);
467 INIT_REG_SET (&pseudos_counted
);
470 /* List of insn chains that are currently unused. */
471 static class insn_chain
*unused_insn_chains
= 0;
473 /* Allocate an empty insn_chain structure. */
475 new_insn_chain (void)
479 if (unused_insn_chains
== 0)
481 c
= XOBNEW (&reload_obstack
, class insn_chain
);
482 INIT_REG_SET (&c
->live_throughout
);
483 INIT_REG_SET (&c
->dead_or_set
);
487 c
= unused_insn_chains
;
488 unused_insn_chains
= c
->next
;
490 c
->is_caller_save_insn
= 0;
491 c
->need_operand_change
= 0;
497 /* Small utility function to set all regs in hard reg set TO which are
498 allocated to pseudos in regset FROM. */
501 compute_use_by_pseudos (HARD_REG_SET
*to
, regset from
)
504 reg_set_iterator rsi
;
506 EXECUTE_IF_SET_IN_REG_SET (from
, FIRST_PSEUDO_REGISTER
, regno
, rsi
)
508 int r
= reg_renumber
[regno
];
512 /* reload_combine uses the information from DF_LIVE_IN,
513 which might still contain registers that have not
514 actually been allocated since they have an
516 gcc_assert (ira_conflicts_p
|| reload_completed
);
519 add_to_hard_reg_set (to
, PSEUDO_REGNO_MODE (regno
), r
);
523 /* Replace all pseudos found in LOC with their corresponding
527 replace_pseudos_in (rtx
*loc
, machine_mode mem_mode
, rtx usage
)
540 unsigned int regno
= REGNO (x
);
542 if (regno
< FIRST_PSEUDO_REGISTER
)
545 x
= eliminate_regs_1 (x
, mem_mode
, usage
, true, false);
549 replace_pseudos_in (loc
, mem_mode
, usage
);
553 if (reg_equiv_constant (regno
))
554 *loc
= reg_equiv_constant (regno
);
555 else if (reg_equiv_invariant (regno
))
556 *loc
= reg_equiv_invariant (regno
);
557 else if (reg_equiv_mem (regno
))
558 *loc
= reg_equiv_mem (regno
);
559 else if (reg_equiv_address (regno
))
560 *loc
= gen_rtx_MEM (GET_MODE (x
), reg_equiv_address (regno
));
563 gcc_assert (!REG_P (regno_reg_rtx
[regno
])
564 || REGNO (regno_reg_rtx
[regno
]) != regno
);
565 *loc
= regno_reg_rtx
[regno
];
570 else if (code
== MEM
)
572 replace_pseudos_in (& XEXP (x
, 0), GET_MODE (x
), usage
);
576 /* Process each of our operands recursively. */
577 fmt
= GET_RTX_FORMAT (code
);
578 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++, fmt
++)
580 replace_pseudos_in (&XEXP (x
, i
), mem_mode
, usage
);
581 else if (*fmt
== 'E')
582 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
583 replace_pseudos_in (& XVECEXP (x
, i
, j
), mem_mode
, usage
);
586 /* Determine if the current function has an exception receiver block
587 that reaches the exit block via non-exceptional edges */
590 has_nonexceptional_receiver (void)
594 basic_block
*tos
, *worklist
, bb
;
596 /* If we're not optimizing, then just err on the safe side. */
600 /* First determine which blocks can reach exit via normal paths. */
601 tos
= worklist
= XNEWVEC (basic_block
, n_basic_blocks_for_fn (cfun
) + 1);
603 FOR_EACH_BB_FN (bb
, cfun
)
604 bb
->flags
&= ~BB_REACHABLE
;
606 /* Place the exit block on our worklist. */
607 EXIT_BLOCK_PTR_FOR_FN (cfun
)->flags
|= BB_REACHABLE
;
608 *tos
++ = EXIT_BLOCK_PTR_FOR_FN (cfun
);
610 /* Iterate: find everything reachable from what we've already seen. */
611 while (tos
!= worklist
)
615 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
616 if (!(e
->flags
& EDGE_ABNORMAL
))
618 basic_block src
= e
->src
;
620 if (!(src
->flags
& BB_REACHABLE
))
622 src
->flags
|= BB_REACHABLE
;
629 /* Now see if there's a reachable block with an exceptional incoming
631 FOR_EACH_BB_FN (bb
, cfun
)
632 if (bb
->flags
& BB_REACHABLE
&& bb_has_abnormal_pred (bb
))
635 /* No exceptional block reached exit unexceptionally. */
639 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
640 zero elements) to MAX_REG_NUM elements.
642 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
644 grow_reg_equivs (void)
646 int old_size
= vec_safe_length (reg_equivs
);
647 int max_regno
= max_reg_num ();
651 memset (&ze
, 0, sizeof (reg_equivs_t
));
652 vec_safe_reserve (reg_equivs
, max_regno
);
653 for (i
= old_size
; i
< max_regno
; i
++)
654 reg_equivs
->quick_insert (i
, ze
);
658 /* Global variables used by reload and its subroutines. */
660 /* The current basic block while in calculate_elim_costs_all_insns. */
661 static basic_block elim_bb
;
663 /* Set during calculate_needs if an insn needs register elimination. */
664 static int something_needs_elimination
;
665 /* Set during calculate_needs if an insn needs an operand changed. */
666 static int something_needs_operands_changed
;
667 /* Set by alter_regs if we spilled a register to the stack. */
668 static bool something_was_spilled
;
670 /* Nonzero means we couldn't get enough spill regs. */
673 /* Temporary array of pseudo-register number. */
674 static int *temp_pseudo_reg_arr
;
676 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
677 If that insn didn't set the register (i.e., it copied the register to
678 memory), just delete that insn instead of the equivalencing insn plus
679 anything now dead. If we call delete_dead_insn on that insn, we may
680 delete the insn that actually sets the register if the register dies
681 there and that is incorrect. */
685 for (int i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
687 if (reg_renumber
[i
] < 0 && reg_equiv_init (i
) != 0)
690 for (list
= reg_equiv_init (i
); list
; list
= XEXP (list
, 1))
692 rtx_insn
*equiv_insn
= as_a
<rtx_insn
*> (XEXP (list
, 0));
694 /* If we already deleted the insn or if it may trap, we can't
695 delete it. The latter case shouldn't happen, but can
696 if an insn has a variable address, gets a REG_EH_REGION
697 note added to it, and then gets converted into a load
698 from a constant address. */
699 if (NOTE_P (equiv_insn
)
700 || can_throw_internal (equiv_insn
))
702 else if (reg_set_p (regno_reg_rtx
[i
], PATTERN (equiv_insn
)))
703 delete_dead_insn (equiv_insn
);
705 SET_INSN_DELETED (equiv_insn
);
711 /* Return true if remove_init_insns will delete INSN. */
713 will_delete_init_insn_p (rtx_insn
*insn
)
715 rtx set
= single_set (insn
);
716 if (!set
|| !REG_P (SET_DEST (set
)))
718 unsigned regno
= REGNO (SET_DEST (set
));
720 if (can_throw_internal (insn
))
723 if (regno
< FIRST_PSEUDO_REGISTER
|| reg_renumber
[regno
] >= 0)
726 for (rtx list
= reg_equiv_init (regno
); list
; list
= XEXP (list
, 1))
728 rtx equiv_insn
= XEXP (list
, 0);
729 if (equiv_insn
== insn
)
735 /* Main entry point for the reload pass.
737 FIRST is the first insn of the function being compiled.
739 GLOBAL nonzero means we were called from global_alloc
740 and should attempt to reallocate any pseudoregs that we
741 displace from hard regs we will use for reloads.
742 If GLOBAL is zero, we do not have enough information to do that,
743 so any pseudo reg that is spilled must go to the stack.
745 Return value is TRUE if reload likely left dead insns in the
746 stream and a DCE pass should be run to elimiante them. Else the
747 return value is FALSE. */
750 reload (rtx_insn
*first
, int global
)
754 struct elim_table
*ep
;
758 /* Make sure even insns with volatile mem refs are recognizable. */
763 reload_firstobj
= XOBNEWVAR (&reload_obstack
, char, 0);
765 /* Make sure that the last insn in the chain
766 is not something that needs reloading. */
767 emit_note (NOTE_INSN_DELETED
);
769 /* Enable find_equiv_reg to distinguish insns made by reload. */
770 reload_first_uid
= get_max_uid ();
772 /* Initialize the secondary memory table. */
773 clear_secondary_mem ();
775 /* We don't have a stack slot for any spill reg yet. */
776 memset (spill_stack_slot
, 0, sizeof spill_stack_slot
);
777 memset (spill_stack_slot_width
, 0, sizeof spill_stack_slot_width
);
779 /* Initialize the save area information for caller-save, in case some
783 /* Compute which hard registers are now in use
784 as homes for pseudo registers.
785 This is done here rather than (eg) in global_alloc
786 because this point is reached even if not optimizing. */
787 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
790 /* A function that has a nonlocal label that can reach the exit
791 block via non-exceptional paths must save all call-saved
793 if (cfun
->has_nonlocal_label
794 && has_nonexceptional_receiver ())
795 crtl
->saves_all_registers
= 1;
797 if (crtl
->saves_all_registers
)
798 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
799 if (! crtl
->abi
->clobbers_full_reg_p (i
)
801 && ! LOCAL_REGNO (i
))
802 df_set_regs_ever_live (i
, true);
804 /* Find all the pseudo registers that didn't get hard regs
805 but do have known equivalent constants or memory slots.
806 These include parameters (known equivalent to parameter slots)
807 and cse'd or loop-moved constant memory addresses.
809 Record constant equivalents in reg_equiv_constant
810 so they will be substituted by find_reloads.
811 Record memory equivalents in reg_mem_equiv so they can
812 be substituted eventually by altering the REG-rtx's. */
815 reg_old_renumber
= XCNEWVEC (short, max_regno
);
816 memcpy (reg_old_renumber
, reg_renumber
, max_regno
* sizeof (short));
817 pseudo_forbidden_regs
= XNEWVEC (HARD_REG_SET
, max_regno
);
818 pseudo_previous_regs
= XCNEWVEC (HARD_REG_SET
, max_regno
);
820 CLEAR_HARD_REG_SET (bad_spill_regs_global
);
822 init_eliminable_invariants (first
, true);
825 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
826 stack slots to the pseudos that lack hard regs or equivalents.
827 Do not touch virtual registers. */
829 temp_pseudo_reg_arr
= XNEWVEC (int, max_regno
- LAST_VIRTUAL_REGISTER
- 1);
830 for (n
= 0, i
= LAST_VIRTUAL_REGISTER
+ 1; i
< max_regno
; i
++)
831 temp_pseudo_reg_arr
[n
++] = i
;
834 /* Ask IRA to order pseudo-registers for better stack slot
836 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr
, n
, reg_max_ref_mode
);
838 for (i
= 0; i
< n
; i
++)
839 alter_reg (temp_pseudo_reg_arr
[i
], -1, false);
841 /* If we have some registers we think can be eliminated, scan all insns to
842 see if there is an insn that sets one of these registers to something
843 other than itself plus a constant. If so, the register cannot be
844 eliminated. Doing this scan here eliminates an extra pass through the
845 main reload loop in the most common case where register elimination
847 for (insn
= first
; insn
&& num_eliminable
; insn
= NEXT_INSN (insn
))
849 note_pattern_stores (PATTERN (insn
), mark_not_eliminable
, NULL
);
851 maybe_fix_stack_asms ();
853 insns_need_reload
= 0;
854 something_needs_elimination
= 0;
856 /* Initialize to -1, which means take the first spill register. */
859 /* Spill any hard regs that we know we can't eliminate. */
860 CLEAR_HARD_REG_SET (used_spill_regs
);
861 /* There can be multiple ways to eliminate a register;
862 they should be listed adjacently.
863 Elimination for any register fails only if all possible ways fail. */
864 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; )
867 int can_eliminate
= 0;
870 can_eliminate
|= ep
->can_eliminate
;
873 while (ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
] && ep
->from
== from
);
875 spill_hard_reg (from
, 1);
878 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
&& frame_pointer_needed
)
879 spill_hard_reg (HARD_FRAME_POINTER_REGNUM
, 1);
881 finish_spills (global
);
883 /* From now on, we may need to generate moves differently. We may also
884 allow modifications of insns which cause them to not be recognized.
885 Any such modifications will be cleaned up during reload itself. */
886 reload_in_progress
= 1;
888 /* This loop scans the entire function each go-round
889 and repeats until one repetition spills no additional hard regs. */
892 int something_changed
;
893 poly_int64 starting_frame_size
;
895 starting_frame_size
= get_frame_size ();
896 something_was_spilled
= false;
898 set_initial_elim_offsets ();
899 set_initial_label_offsets ();
901 /* For each pseudo register that has an equivalent location defined,
902 try to eliminate any eliminable registers (such as the frame pointer)
903 assuming initial offsets for the replacement register, which
906 If the resulting location is directly addressable, substitute
907 the MEM we just got directly for the old REG.
909 If it is not addressable but is a constant or the sum of a hard reg
910 and constant, it is probably not addressable because the constant is
911 out of range, in that case record the address; we will generate
912 hairy code to compute the address in a register each time it is
913 needed. Similarly if it is a hard register, but one that is not
914 valid as an address register.
916 If the location is not addressable, but does not have one of the
917 above forms, assign a stack slot. We have to do this to avoid the
918 potential of producing lots of reloads if, e.g., a location involves
919 a pseudo that didn't get a hard register and has an equivalent memory
920 location that also involves a pseudo that didn't get a hard register.
922 Perhaps at some point we will improve reload_when_needed handling
923 so this problem goes away. But that's very hairy. */
925 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
926 if (reg_renumber
[i
] < 0 && reg_equiv_memory_loc (i
))
928 rtx x
= eliminate_regs (reg_equiv_memory_loc (i
), VOIDmode
,
931 if (strict_memory_address_addr_space_p
932 (GET_MODE (regno_reg_rtx
[i
]), XEXP (x
, 0),
934 reg_equiv_mem (i
) = x
, reg_equiv_address (i
) = 0;
935 else if (CONSTANT_P (XEXP (x
, 0))
936 || (REG_P (XEXP (x
, 0))
937 && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
938 || (GET_CODE (XEXP (x
, 0)) == PLUS
939 && REG_P (XEXP (XEXP (x
, 0), 0))
940 && (REGNO (XEXP (XEXP (x
, 0), 0))
941 < FIRST_PSEUDO_REGISTER
)
942 && CONSTANT_P (XEXP (XEXP (x
, 0), 1))))
943 reg_equiv_address (i
) = XEXP (x
, 0), reg_equiv_mem (i
) = 0;
946 /* Make a new stack slot. Then indicate that something
947 changed so we go back and recompute offsets for
948 eliminable registers because the allocation of memory
949 below might change some offset. reg_equiv_{mem,address}
950 will be set up for this pseudo on the next pass around
952 reg_equiv_memory_loc (i
) = 0;
953 reg_equiv_init (i
) = 0;
954 alter_reg (i
, -1, true);
958 if (caller_save_needed
)
961 if (maybe_ne (starting_frame_size
, 0) && crtl
->stack_alignment_needed
)
963 /* If we have a stack frame, we must align it now. The
964 stack size may be a part of the offset computation for
965 register elimination. So if this changes the stack size,
966 then repeat the elimination bookkeeping. We don't
967 realign when there is no stack, as that will cause a
968 stack frame when none is needed should
969 TARGET_STARTING_FRAME_OFFSET not be already aligned to
971 assign_stack_local (BLKmode
, 0, crtl
->stack_alignment_needed
);
973 /* If we allocated another stack slot, redo elimination bookkeeping. */
974 if (something_was_spilled
975 || maybe_ne (starting_frame_size
, get_frame_size ()))
977 if (update_eliminables_and_spill ())
982 if (caller_save_needed
)
984 save_call_clobbered_regs ();
985 /* That might have allocated new insn_chain structures. */
986 reload_firstobj
= XOBNEWVAR (&reload_obstack
, char, 0);
989 calculate_needs_all_insns (global
);
991 if (! ira_conflicts_p
)
992 /* Don't do it for IRA. We need this info because we don't
993 change live_throughout and dead_or_set for chains when IRA
995 CLEAR_REG_SET (&spilled_pseudos
);
997 something_changed
= 0;
999 /* If we allocated any new memory locations, make another pass
1000 since it might have changed elimination offsets. */
1001 if (something_was_spilled
1002 || maybe_ne (starting_frame_size
, get_frame_size ()))
1003 something_changed
= 1;
1005 /* Even if the frame size remained the same, we might still have
1006 changed elimination offsets, e.g. if find_reloads called
1007 force_const_mem requiring the back end to allocate a constant
1008 pool base register that needs to be saved on the stack. */
1009 else if (!verify_initial_elim_offsets ())
1010 something_changed
= 1;
1012 if (update_eliminables_and_spill ())
1015 something_changed
= 1;
1019 select_reload_regs ();
1022 if (insns_need_reload
)
1023 something_changed
|= finish_spills (global
);
1026 if (! something_changed
)
1029 if (caller_save_needed
)
1030 delete_caller_save_insns ();
1032 obstack_free (&reload_obstack
, reload_firstobj
);
1035 /* If global-alloc was run, notify it of any register eliminations we have
1038 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
1039 if (ep
->can_eliminate
)
1040 mark_elimination (ep
->from
, ep
->to
);
1042 remove_init_insns ();
1044 /* Use the reload registers where necessary
1045 by generating move instructions to move the must-be-register
1046 values into or out of the reload registers. */
1048 if (insns_need_reload
!= 0 || something_needs_elimination
1049 || something_needs_operands_changed
)
1051 poly_int64 old_frame_size
= get_frame_size ();
1053 reload_as_needed (global
);
1055 gcc_assert (known_eq (old_frame_size
, get_frame_size ()));
1057 gcc_assert (verify_initial_elim_offsets ());
1060 /* If we were able to eliminate the frame pointer, show that it is no
1061 longer live at the start of any basic block. If it ls live by
1062 virtue of being in a pseudo, that pseudo will be marked live
1063 and hence the frame pointer will be known to be live via that
1066 if (! frame_pointer_needed
)
1067 FOR_EACH_BB_FN (bb
, cfun
)
1068 bitmap_clear_bit (df_get_live_in (bb
), HARD_FRAME_POINTER_REGNUM
);
1070 /* Come here (with failure set nonzero) if we can't get enough spill
1074 CLEAR_REG_SET (&changed_allocation_pseudos
);
1075 CLEAR_REG_SET (&spilled_pseudos
);
1076 reload_in_progress
= 0;
1078 /* Now eliminate all pseudo regs by modifying them into
1079 their equivalent memory references.
1080 The REG-rtx's for the pseudos are modified in place,
1081 so all insns that used to refer to them now refer to memory.
1083 For a reg that has a reg_equiv_address, all those insns
1084 were changed by reloading so that no insns refer to it any longer;
1085 but the DECL_RTL of a variable decl may refer to it,
1086 and if so this causes the debugging info to mention the variable. */
1088 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
1092 if (reg_equiv_mem (i
))
1093 addr
= XEXP (reg_equiv_mem (i
), 0);
1095 if (reg_equiv_address (i
))
1096 addr
= reg_equiv_address (i
);
1100 if (reg_renumber
[i
] < 0)
1102 rtx reg
= regno_reg_rtx
[i
];
1104 REG_USERVAR_P (reg
) = 0;
1105 PUT_CODE (reg
, MEM
);
1106 XEXP (reg
, 0) = addr
;
1107 if (reg_equiv_memory_loc (i
))
1108 MEM_COPY_ATTRIBUTES (reg
, reg_equiv_memory_loc (i
));
1110 MEM_ATTRS (reg
) = 0;
1111 MEM_NOTRAP_P (reg
) = 1;
1113 else if (reg_equiv_mem (i
))
1114 XEXP (reg_equiv_mem (i
), 0) = addr
;
1117 /* We don't want complex addressing modes in debug insns
1118 if simpler ones will do, so delegitimize equivalences
1120 if (MAY_HAVE_DEBUG_BIND_INSNS
&& reg_renumber
[i
] < 0)
1122 rtx reg
= regno_reg_rtx
[i
];
1126 if (reg_equiv_constant (i
))
1127 equiv
= reg_equiv_constant (i
);
1128 else if (reg_equiv_invariant (i
))
1129 equiv
= reg_equiv_invariant (i
);
1130 else if (reg
&& MEM_P (reg
))
1131 equiv
= targetm
.delegitimize_address (reg
);
1132 else if (reg
&& REG_P (reg
) && (int)REGNO (reg
) != i
)
1138 for (use
= DF_REG_USE_CHAIN (i
); use
; use
= next
)
1140 insn
= DF_REF_INSN (use
);
1142 /* Make sure the next ref is for a different instruction,
1143 so that we're not affected by the rescan. */
1144 next
= DF_REF_NEXT_REG (use
);
1145 while (next
&& DF_REF_INSN (next
) == insn
)
1146 next
= DF_REF_NEXT_REG (next
);
1148 if (DEBUG_BIND_INSN_P (insn
))
1152 INSN_VAR_LOCATION_LOC (insn
) = gen_rtx_UNKNOWN_VAR_LOC ();
1153 df_insn_rescan_debug_internal (insn
);
1156 INSN_VAR_LOCATION_LOC (insn
)
1157 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn
),
1164 /* We must set reload_completed now since the cleanup_subreg_operands call
1165 below will re-recognize each insn and reload may have generated insns
1166 which are only valid during and after reload. */
1167 reload_completed
= 1;
1169 /* Make a pass over all the insns and delete all USEs which we inserted
1170 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1171 notes. Delete all CLOBBER insns, except those that refer to the return
1172 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1173 from misarranging variable-array code, and simplify (subreg (reg))
1174 operands. Strip and regenerate REG_INC notes that may have been moved
1177 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1183 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn
),
1184 VOIDmode
, CALL_INSN_FUNCTION_USAGE (insn
));
1186 if ((GET_CODE (PATTERN (insn
)) == USE
1187 /* We mark with QImode USEs introduced by reload itself. */
1188 && (GET_MODE (insn
) == QImode
1189 || find_reg_note (insn
, REG_EQUAL
, NULL_RTX
)))
1190 || (GET_CODE (PATTERN (insn
)) == CLOBBER
1191 && (!MEM_P (XEXP (PATTERN (insn
), 0))
1192 || GET_MODE (XEXP (PATTERN (insn
), 0)) != BLKmode
1193 || (GET_CODE (XEXP (XEXP (PATTERN (insn
), 0), 0)) != SCRATCH
1194 && XEXP (XEXP (PATTERN (insn
), 0), 0)
1195 != stack_pointer_rtx
))
1196 && (!REG_P (XEXP (PATTERN (insn
), 0))
1197 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn
), 0)))))
1203 /* Some CLOBBERs may survive until here and still reference unassigned
1204 pseudos with const equivalent, which may in turn cause ICE in later
1205 passes if the reference remains in place. */
1206 if (GET_CODE (PATTERN (insn
)) == CLOBBER
)
1207 replace_pseudos_in (& XEXP (PATTERN (insn
), 0),
1208 VOIDmode
, PATTERN (insn
));
1210 /* Discard obvious no-ops, even without -O. This optimization
1211 is fast and doesn't interfere with debugging. */
1212 if (NONJUMP_INSN_P (insn
)
1213 && GET_CODE (PATTERN (insn
)) == SET
1214 && REG_P (SET_SRC (PATTERN (insn
)))
1215 && REG_P (SET_DEST (PATTERN (insn
)))
1216 && (REGNO (SET_SRC (PATTERN (insn
)))
1217 == REGNO (SET_DEST (PATTERN (insn
)))))
1223 pnote
= ®_NOTES (insn
);
1226 if (REG_NOTE_KIND (*pnote
) == REG_DEAD
1227 || REG_NOTE_KIND (*pnote
) == REG_UNUSED
1228 || REG_NOTE_KIND (*pnote
) == REG_INC
)
1229 *pnote
= XEXP (*pnote
, 1);
1231 pnote
= &XEXP (*pnote
, 1);
1235 add_auto_inc_notes (insn
, PATTERN (insn
));
1237 /* Simplify (subreg (reg)) if it appears as an operand. */
1238 cleanup_subreg_operands (insn
);
1240 /* Clean up invalid ASMs so that they don't confuse later passes.
1242 if (asm_noperands (PATTERN (insn
)) >= 0)
1244 extract_insn (insn
);
1245 if (!constrain_operands (1, get_enabled_alternatives (insn
)))
1247 error_for_asm (insn
,
1248 "%<asm%> operand has impossible constraints");
1255 free (temp_pseudo_reg_arr
);
1257 /* Indicate that we no longer have known memory locations or constants. */
1260 free (reg_max_ref_mode
);
1261 free (reg_old_renumber
);
1262 free (pseudo_previous_regs
);
1263 free (pseudo_forbidden_regs
);
1265 CLEAR_HARD_REG_SET (used_spill_regs
);
1266 for (i
= 0; i
< n_spills
; i
++)
1267 SET_HARD_REG_BIT (used_spill_regs
, spill_regs
[i
]);
1269 /* Free all the insn_chain structures at once. */
1270 obstack_free (&reload_obstack
, reload_startobj
);
1271 unused_insn_chains
= 0;
1273 inserted
= fixup_abnormal_edges ();
1275 /* We've possibly turned single trapping insn into multiple ones. */
1276 if (cfun
->can_throw_non_call_exceptions
)
1278 auto_sbitmap
blocks (last_basic_block_for_fn (cfun
));
1279 bitmap_ones (blocks
);
1280 find_many_sub_basic_blocks (blocks
);
1284 commit_edge_insertions ();
1286 /* Replacing pseudos with their memory equivalents might have
1287 created shared rtx. Subsequent passes would get confused
1288 by this, so unshare everything here. */
1289 unshare_all_rtl_again (first
);
1291 #ifdef STACK_BOUNDARY
1292 /* init_emit has set the alignment of the hard frame pointer
1293 to STACK_BOUNDARY. It is very likely no longer valid if
1294 the hard frame pointer was used for register allocation. */
1295 if (!frame_pointer_needed
)
1296 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = BITS_PER_UNIT
;
1299 substitute_stack
.release ();
1301 gcc_assert (bitmap_empty_p (&spilled_pseudos
));
1303 reload_completed
= !failure
;
1308 /* Yet another special case. Unfortunately, reg-stack forces people to
1309 write incorrect clobbers in asm statements. These clobbers must not
1310 cause the register to appear in bad_spill_regs, otherwise we'll call
1311 fatal_insn later. We clear the corresponding regnos in the live
1312 register sets to avoid this.
1313 The whole thing is rather sick, I'm afraid. */
1316 maybe_fix_stack_asms (void)
1319 const char *constraints
[MAX_RECOG_OPERANDS
];
1320 machine_mode operand_mode
[MAX_RECOG_OPERANDS
];
1321 class insn_chain
*chain
;
1323 for (chain
= reload_insn_chain
; chain
!= 0; chain
= chain
->next
)
1326 HARD_REG_SET clobbered
, allowed
;
1329 if (! INSN_P (chain
->insn
)
1330 || (noperands
= asm_noperands (PATTERN (chain
->insn
))) < 0)
1332 pat
= PATTERN (chain
->insn
);
1333 if (GET_CODE (pat
) != PARALLEL
)
1336 CLEAR_HARD_REG_SET (clobbered
);
1337 CLEAR_HARD_REG_SET (allowed
);
1339 /* First, make a mask of all stack regs that are clobbered. */
1340 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1342 rtx t
= XVECEXP (pat
, 0, i
);
1343 if (GET_CODE (t
) == CLOBBER
&& STACK_REG_P (XEXP (t
, 0)))
1344 SET_HARD_REG_BIT (clobbered
, REGNO (XEXP (t
, 0)));
1347 /* Get the operand values and constraints out of the insn. */
1348 decode_asm_operands (pat
, recog_data
.operand
, recog_data
.operand_loc
,
1349 constraints
, operand_mode
, NULL
);
1351 /* For every operand, see what registers are allowed. */
1352 for (i
= 0; i
< noperands
; i
++)
1354 const char *p
= constraints
[i
];
1355 /* For every alternative, we compute the class of registers allowed
1356 for reloading in CLS, and merge its contents into the reg set
1358 int cls
= (int) NO_REGS
;
1364 if (c
== '\0' || c
== ',' || c
== '#')
1366 /* End of one alternative - mark the regs in the current
1367 class, and reset the class. */
1368 allowed
|= reg_class_contents
[cls
];
1374 } while (c
!= '\0' && c
!= ',');
1383 cls
= (int) reg_class_subunion
[cls
][(int) GENERAL_REGS
];
1387 enum constraint_num cn
= lookup_constraint (p
);
1388 if (insn_extra_address_constraint (cn
))
1389 cls
= (int) reg_class_subunion
[cls
]
1390 [(int) base_reg_class (VOIDmode
, ADDR_SPACE_GENERIC
,
1391 ADDRESS
, SCRATCH
, chain
->insn
)];
1393 cls
= (int) reg_class_subunion
[cls
]
1394 [reg_class_for_constraint (cn
)];
1397 p
+= CONSTRAINT_LEN (c
, p
);
1400 /* Those of the registers which are clobbered, but allowed by the
1401 constraints, must be usable as reload registers. So clear them
1402 out of the life information. */
1403 allowed
&= clobbered
;
1404 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1405 if (TEST_HARD_REG_BIT (allowed
, i
))
1407 CLEAR_REGNO_REG_SET (&chain
->live_throughout
, i
);
1408 CLEAR_REGNO_REG_SET (&chain
->dead_or_set
, i
);
1415 /* Copy the global variables n_reloads and rld into the corresponding elts
1418 copy_reloads (class insn_chain
*chain
)
1420 chain
->n_reloads
= n_reloads
;
1421 chain
->rld
= XOBNEWVEC (&reload_obstack
, struct reload
, n_reloads
);
1422 memcpy (chain
->rld
, rld
, n_reloads
* sizeof (struct reload
));
1423 reload_insn_firstobj
= XOBNEWVAR (&reload_obstack
, char, 0);
1426 /* Walk the chain of insns, and determine for each whether it needs reloads
1427 and/or eliminations. Build the corresponding insns_need_reload list, and
1428 set something_needs_elimination as appropriate. */
1430 calculate_needs_all_insns (int global
)
1432 class insn_chain
**pprev_reload
= &insns_need_reload
;
1433 class insn_chain
*chain
, *next
= 0;
1435 something_needs_elimination
= 0;
1437 reload_insn_firstobj
= XOBNEWVAR (&reload_obstack
, char, 0);
1438 for (chain
= reload_insn_chain
; chain
!= 0; chain
= next
)
1440 rtx_insn
*insn
= chain
->insn
;
1444 /* Clear out the shortcuts. */
1445 chain
->n_reloads
= 0;
1446 chain
->need_elim
= 0;
1447 chain
->need_reload
= 0;
1448 chain
->need_operand_change
= 0;
1450 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1451 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1452 what effects this has on the known offsets at labels. */
1454 if (LABEL_P (insn
) || JUMP_P (insn
) || JUMP_TABLE_DATA_P (insn
)
1455 || (INSN_P (insn
) && REG_NOTES (insn
) != 0))
1456 set_label_offsets (insn
, insn
, 0);
1460 rtx old_body
= PATTERN (insn
);
1461 int old_code
= INSN_CODE (insn
);
1462 rtx old_notes
= REG_NOTES (insn
);
1463 int did_elimination
= 0;
1464 int operands_changed
= 0;
1466 /* Skip insns that only set an equivalence. */
1467 if (will_delete_init_insn_p (insn
))
1470 /* If needed, eliminate any eliminable registers. */
1471 if (num_eliminable
|| num_eliminable_invariants
)
1472 did_elimination
= eliminate_regs_in_insn (insn
, 0);
1474 /* Analyze the instruction. */
1475 operands_changed
= find_reloads (insn
, 0, spill_indirect_levels
,
1476 global
, spill_reg_order
);
1478 /* If a no-op set needs more than one reload, this is likely
1479 to be something that needs input address reloads. We
1480 can't get rid of this cleanly later, and it is of no use
1481 anyway, so discard it now.
1482 We only do this when expensive_optimizations is enabled,
1483 since this complements reload inheritance / output
1484 reload deletion, and it can make debugging harder. */
1485 if (flag_expensive_optimizations
&& n_reloads
> 1)
1487 rtx set
= single_set (insn
);
1490 ((SET_SRC (set
) == SET_DEST (set
)
1491 && REG_P (SET_SRC (set
))
1492 && REGNO (SET_SRC (set
)) >= FIRST_PSEUDO_REGISTER
)
1493 || (REG_P (SET_SRC (set
)) && REG_P (SET_DEST (set
))
1494 && reg_renumber
[REGNO (SET_SRC (set
))] < 0
1495 && reg_renumber
[REGNO (SET_DEST (set
))] < 0
1496 && reg_equiv_memory_loc (REGNO (SET_SRC (set
))) != NULL
1497 && reg_equiv_memory_loc (REGNO (SET_DEST (set
))) != NULL
1498 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set
))),
1499 reg_equiv_memory_loc (REGNO (SET_DEST (set
)))))))
1501 if (ira_conflicts_p
)
1502 /* Inform IRA about the insn deletion. */
1503 ira_mark_memory_move_deletion (REGNO (SET_DEST (set
)),
1504 REGNO (SET_SRC (set
)));
1506 /* Delete it from the reload chain. */
1508 chain
->prev
->next
= next
;
1510 reload_insn_chain
= next
;
1512 next
->prev
= chain
->prev
;
1513 chain
->next
= unused_insn_chains
;
1514 unused_insn_chains
= chain
;
1519 update_eliminable_offsets ();
1521 /* Remember for later shortcuts which insns had any reloads or
1522 register eliminations. */
1523 chain
->need_elim
= did_elimination
;
1524 chain
->need_reload
= n_reloads
> 0;
1525 chain
->need_operand_change
= operands_changed
;
1527 /* Discard any register replacements done. */
1528 if (did_elimination
)
1530 obstack_free (&reload_obstack
, reload_insn_firstobj
);
1531 PATTERN (insn
) = old_body
;
1532 INSN_CODE (insn
) = old_code
;
1533 REG_NOTES (insn
) = old_notes
;
1534 something_needs_elimination
= 1;
1537 something_needs_operands_changed
|= operands_changed
;
1541 copy_reloads (chain
);
1542 *pprev_reload
= chain
;
1543 pprev_reload
= &chain
->next_need_reload
;
1550 /* This function is called from the register allocator to set up estimates
1551 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1552 an invariant. The structure is similar to calculate_needs_all_insns. */
1555 calculate_elim_costs_all_insns (void)
1557 int *reg_equiv_init_cost
;
1561 reg_equiv_init_cost
= XCNEWVEC (int, max_regno
);
1563 init_eliminable_invariants (get_insns (), false);
1565 set_initial_elim_offsets ();
1566 set_initial_label_offsets ();
1568 FOR_EACH_BB_FN (bb
, cfun
)
1573 FOR_BB_INSNS (bb
, insn
)
1575 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1576 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1577 what effects this has on the known offsets at labels. */
1579 if (LABEL_P (insn
) || JUMP_P (insn
) || JUMP_TABLE_DATA_P (insn
)
1580 || (INSN_P (insn
) && REG_NOTES (insn
) != 0))
1581 set_label_offsets (insn
, insn
, 0);
1585 rtx set
= single_set (insn
);
1587 /* Skip insns that only set an equivalence. */
1588 if (set
&& REG_P (SET_DEST (set
))
1589 && reg_renumber
[REGNO (SET_DEST (set
))] < 0
1590 && (reg_equiv_constant (REGNO (SET_DEST (set
)))
1591 || reg_equiv_invariant (REGNO (SET_DEST (set
)))))
1593 unsigned regno
= REGNO (SET_DEST (set
));
1594 rtx_insn_list
*init
= reg_equiv_init (regno
);
1597 rtx t
= eliminate_regs_1 (SET_SRC (set
), VOIDmode
, insn
,
1599 machine_mode mode
= GET_MODE (SET_DEST (set
));
1600 int cost
= set_src_cost (t
, mode
,
1601 optimize_bb_for_speed_p (bb
));
1602 int freq
= REG_FREQ_FROM_BB (bb
);
1604 reg_equiv_init_cost
[regno
] = cost
* freq
;
1608 /* If needed, eliminate any eliminable registers. */
1609 if (num_eliminable
|| num_eliminable_invariants
)
1610 elimination_costs_in_insn (insn
);
1613 update_eliminable_offsets ();
1617 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
1619 if (reg_equiv_invariant (i
))
1621 if (reg_equiv_init (i
))
1623 int cost
= reg_equiv_init_cost
[i
];
1626 "Reg %d has equivalence, initial gains %d\n", i
, cost
);
1628 ira_adjust_equiv_reg_cost (i
, cost
);
1634 "Reg %d had equivalence, but can't be eliminated\n",
1636 ira_adjust_equiv_reg_cost (i
, 0);
1641 free (reg_equiv_init_cost
);
1642 free (offsets_known_at
);
1645 offsets_known_at
= NULL
;
1648 /* Comparison function for qsort to decide which of two reloads
1649 should be handled first. *P1 and *P2 are the reload numbers. */
1652 reload_reg_class_lower (const void *r1p
, const void *r2p
)
1654 int r1
= *(const short *) r1p
, r2
= *(const short *) r2p
;
1657 /* Consider required reloads before optional ones. */
1658 t
= rld
[r1
].optional
- rld
[r2
].optional
;
1662 /* Count all solitary classes before non-solitary ones. */
1663 t
= ((reg_class_size
[(int) rld
[r2
].rclass
] == 1)
1664 - (reg_class_size
[(int) rld
[r1
].rclass
] == 1));
1668 /* Aside from solitaires, consider all multi-reg groups first. */
1669 t
= rld
[r2
].nregs
- rld
[r1
].nregs
;
1673 /* Consider reloads in order of increasing reg-class number. */
1674 t
= (int) rld
[r1
].rclass
- (int) rld
[r2
].rclass
;
1678 /* If reloads are equally urgent, sort by reload number,
1679 so that the results of qsort leave nothing to chance. */
1683 /* The cost of spilling each hard reg. */
1684 static int spill_cost
[FIRST_PSEUDO_REGISTER
];
1686 /* When spilling multiple hard registers, we use SPILL_COST for the first
1687 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1688 only the first hard reg for a multi-reg pseudo. */
1689 static int spill_add_cost
[FIRST_PSEUDO_REGISTER
];
1691 /* Map of hard regno to pseudo regno currently occupying the hard
1693 static int hard_regno_to_pseudo_regno
[FIRST_PSEUDO_REGISTER
];
1695 /* Update the spill cost arrays, considering that pseudo REG is live. */
1698 count_pseudo (int reg
)
1700 int freq
= REG_FREQ (reg
);
1701 int r
= reg_renumber
[reg
];
1704 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1705 if (ira_conflicts_p
&& r
< 0)
1708 if (REGNO_REG_SET_P (&pseudos_counted
, reg
)
1709 || REGNO_REG_SET_P (&spilled_pseudos
, reg
))
1712 SET_REGNO_REG_SET (&pseudos_counted
, reg
);
1714 gcc_assert (r
>= 0);
1716 spill_add_cost
[r
] += freq
;
1717 nregs
= hard_regno_nregs (r
, PSEUDO_REGNO_MODE (reg
));
1720 hard_regno_to_pseudo_regno
[r
+ nregs
] = reg
;
1721 spill_cost
[r
+ nregs
] += freq
;
1725 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1726 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1729 order_regs_for_reload (class insn_chain
*chain
)
1732 HARD_REG_SET used_by_pseudos
;
1733 HARD_REG_SET used_by_pseudos2
;
1734 reg_set_iterator rsi
;
1736 bad_spill_regs
= fixed_reg_set
;
1738 memset (spill_cost
, 0, sizeof spill_cost
);
1739 memset (spill_add_cost
, 0, sizeof spill_add_cost
);
1740 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1741 hard_regno_to_pseudo_regno
[i
] = -1;
1743 /* Count number of uses of each hard reg by pseudo regs allocated to it
1744 and then order them by decreasing use. First exclude hard registers
1745 that are live in or across this insn. */
1747 REG_SET_TO_HARD_REG_SET (used_by_pseudos
, &chain
->live_throughout
);
1748 REG_SET_TO_HARD_REG_SET (used_by_pseudos2
, &chain
->dead_or_set
);
1749 bad_spill_regs
|= used_by_pseudos
;
1750 bad_spill_regs
|= used_by_pseudos2
;
1752 /* Now find out which pseudos are allocated to it, and update
1754 CLEAR_REG_SET (&pseudos_counted
);
1756 EXECUTE_IF_SET_IN_REG_SET
1757 (&chain
->live_throughout
, FIRST_PSEUDO_REGISTER
, i
, rsi
)
1761 EXECUTE_IF_SET_IN_REG_SET
1762 (&chain
->dead_or_set
, FIRST_PSEUDO_REGISTER
, i
, rsi
)
1766 CLEAR_REG_SET (&pseudos_counted
);
1769 /* Vector of reload-numbers showing the order in which the reloads should
1771 static short reload_order
[MAX_RELOADS
];
1773 /* This is used to keep track of the spill regs used in one insn. */
1774 static HARD_REG_SET used_spill_regs_local
;
1776 /* We decided to spill hard register SPILLED, which has a size of
1777 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1778 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1779 update SPILL_COST/SPILL_ADD_COST. */
1782 count_spilled_pseudo (int spilled
, int spilled_nregs
, int reg
)
1784 int freq
= REG_FREQ (reg
);
1785 int r
= reg_renumber
[reg
];
1788 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1789 if (ira_conflicts_p
&& r
< 0)
1792 gcc_assert (r
>= 0);
1794 nregs
= hard_regno_nregs (r
, PSEUDO_REGNO_MODE (reg
));
1796 if (REGNO_REG_SET_P (&spilled_pseudos
, reg
)
1797 || spilled
+ spilled_nregs
<= r
|| r
+ nregs
<= spilled
)
1800 SET_REGNO_REG_SET (&spilled_pseudos
, reg
);
1802 spill_add_cost
[r
] -= freq
;
1805 hard_regno_to_pseudo_regno
[r
+ nregs
] = -1;
1806 spill_cost
[r
+ nregs
] -= freq
;
1810 /* Find reload register to use for reload number ORDER. */
1813 find_reg (class insn_chain
*chain
, int order
)
1815 int rnum
= reload_order
[order
];
1816 struct reload
*rl
= rld
+ rnum
;
1817 int best_cost
= INT_MAX
;
1819 unsigned int i
, j
, n
;
1821 HARD_REG_SET not_usable
;
1822 HARD_REG_SET used_by_other_reload
;
1823 reg_set_iterator rsi
;
1824 static int regno_pseudo_regs
[FIRST_PSEUDO_REGISTER
];
1825 static int best_regno_pseudo_regs
[FIRST_PSEUDO_REGISTER
];
1827 not_usable
= (bad_spill_regs
1828 | bad_spill_regs_global
1829 | ~reg_class_contents
[rl
->rclass
]);
1831 CLEAR_HARD_REG_SET (used_by_other_reload
);
1832 for (k
= 0; k
< order
; k
++)
1834 int other
= reload_order
[k
];
1836 if (rld
[other
].regno
>= 0 && reloads_conflict (other
, rnum
))
1837 for (j
= 0; j
< rld
[other
].nregs
; j
++)
1838 SET_HARD_REG_BIT (used_by_other_reload
, rld
[other
].regno
+ j
);
1841 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1843 #ifdef REG_ALLOC_ORDER
1844 unsigned int regno
= reg_alloc_order
[i
];
1846 unsigned int regno
= i
;
1849 if (! TEST_HARD_REG_BIT (not_usable
, regno
)
1850 && ! TEST_HARD_REG_BIT (used_by_other_reload
, regno
)
1851 && targetm
.hard_regno_mode_ok (regno
, rl
->mode
))
1853 int this_cost
= spill_cost
[regno
];
1855 unsigned int this_nregs
= hard_regno_nregs (regno
, rl
->mode
);
1857 for (j
= 1; j
< this_nregs
; j
++)
1859 this_cost
+= spill_add_cost
[regno
+ j
];
1860 if ((TEST_HARD_REG_BIT (not_usable
, regno
+ j
))
1861 || TEST_HARD_REG_BIT (used_by_other_reload
, regno
+ j
))
1867 if (ira_conflicts_p
)
1869 /* Ask IRA to find a better pseudo-register for
1871 for (n
= j
= 0; j
< this_nregs
; j
++)
1873 int r
= hard_regno_to_pseudo_regno
[regno
+ j
];
1877 if (n
== 0 || regno_pseudo_regs
[n
- 1] != r
)
1878 regno_pseudo_regs
[n
++] = r
;
1880 regno_pseudo_regs
[n
++] = -1;
1882 || ira_better_spill_reload_regno_p (regno_pseudo_regs
,
1883 best_regno_pseudo_regs
,
1890 best_regno_pseudo_regs
[j
] = regno_pseudo_regs
[j
];
1891 if (regno_pseudo_regs
[j
] < 0)
1898 if (rl
->in
&& REG_P (rl
->in
) && REGNO (rl
->in
) == regno
)
1900 if (rl
->out
&& REG_P (rl
->out
) && REGNO (rl
->out
) == regno
)
1902 if (this_cost
< best_cost
1903 /* Among registers with equal cost, prefer caller-saved ones, or
1904 use REG_ALLOC_ORDER if it is defined. */
1905 || (this_cost
== best_cost
1906 #ifdef REG_ALLOC_ORDER
1907 && (inv_reg_alloc_order
[regno
]
1908 < inv_reg_alloc_order
[best_reg
])
1910 && crtl
->abi
->clobbers_full_reg_p (regno
)
1911 && !crtl
->abi
->clobbers_full_reg_p (best_reg
)
1916 best_cost
= this_cost
;
1924 fprintf (dump_file
, "Using reg %d for reload %d\n", best_reg
, rnum
);
1926 rl
->nregs
= hard_regno_nregs (best_reg
, rl
->mode
);
1927 rl
->regno
= best_reg
;
1929 EXECUTE_IF_SET_IN_REG_SET
1930 (&chain
->live_throughout
, FIRST_PSEUDO_REGISTER
, j
, rsi
)
1932 count_spilled_pseudo (best_reg
, rl
->nregs
, j
);
1935 EXECUTE_IF_SET_IN_REG_SET
1936 (&chain
->dead_or_set
, FIRST_PSEUDO_REGISTER
, j
, rsi
)
1938 count_spilled_pseudo (best_reg
, rl
->nregs
, j
);
1941 for (i
= 0; i
< rl
->nregs
; i
++)
1943 gcc_assert (spill_cost
[best_reg
+ i
] == 0);
1944 gcc_assert (spill_add_cost
[best_reg
+ i
] == 0);
1945 gcc_assert (hard_regno_to_pseudo_regno
[best_reg
+ i
] == -1);
1946 SET_HARD_REG_BIT (used_spill_regs_local
, best_reg
+ i
);
1951 /* Find more reload regs to satisfy the remaining need of an insn, which
1953 Do it by ascending class number, since otherwise a reg
1954 might be spilled for a big class and might fail to count
1955 for a smaller class even though it belongs to that class. */
1958 find_reload_regs (class insn_chain
*chain
)
1962 /* In order to be certain of getting the registers we need,
1963 we must sort the reloads into order of increasing register class.
1964 Then our grabbing of reload registers will parallel the process
1965 that provided the reload registers. */
1966 for (i
= 0; i
< chain
->n_reloads
; i
++)
1968 /* Show whether this reload already has a hard reg. */
1969 if (chain
->rld
[i
].reg_rtx
)
1971 chain
->rld
[i
].regno
= REGNO (chain
->rld
[i
].reg_rtx
);
1972 chain
->rld
[i
].nregs
= REG_NREGS (chain
->rld
[i
].reg_rtx
);
1975 chain
->rld
[i
].regno
= -1;
1976 reload_order
[i
] = i
;
1979 n_reloads
= chain
->n_reloads
;
1980 memcpy (rld
, chain
->rld
, n_reloads
* sizeof (struct reload
));
1982 CLEAR_HARD_REG_SET (used_spill_regs_local
);
1985 fprintf (dump_file
, "Spilling for insn %d.\n", INSN_UID (chain
->insn
));
1987 qsort (reload_order
, n_reloads
, sizeof (short), reload_reg_class_lower
);
1989 /* Compute the order of preference for hard registers to spill. */
1991 order_regs_for_reload (chain
);
1993 for (i
= 0; i
< n_reloads
; i
++)
1995 int r
= reload_order
[i
];
1997 /* Ignore reloads that got marked inoperative. */
1998 if ((rld
[r
].out
!= 0 || rld
[r
].in
!= 0 || rld
[r
].secondary_p
)
1999 && ! rld
[r
].optional
2000 && rld
[r
].regno
== -1)
2001 if (! find_reg (chain
, i
))
2004 fprintf (dump_file
, "reload failure for reload %d\n", r
);
2005 spill_failure (chain
->insn
, rld
[r
].rclass
);
2011 chain
->used_spill_regs
= used_spill_regs_local
;
2012 used_spill_regs
|= used_spill_regs_local
;
2014 memcpy (chain
->rld
, rld
, n_reloads
* sizeof (struct reload
));
2018 select_reload_regs (void)
2020 class insn_chain
*chain
;
2022 /* Try to satisfy the needs for each insn. */
2023 for (chain
= insns_need_reload
; chain
!= 0;
2024 chain
= chain
->next_need_reload
)
2025 find_reload_regs (chain
);
2028 /* Delete all insns that were inserted by emit_caller_save_insns during
2031 delete_caller_save_insns (void)
2033 class insn_chain
*c
= reload_insn_chain
;
2037 while (c
!= 0 && c
->is_caller_save_insn
)
2039 class insn_chain
*next
= c
->next
;
2040 rtx_insn
*insn
= c
->insn
;
2042 if (c
== reload_insn_chain
)
2043 reload_insn_chain
= next
;
2047 next
->prev
= c
->prev
;
2049 c
->prev
->next
= next
;
2050 c
->next
= unused_insn_chains
;
2051 unused_insn_chains
= c
;
2059 /* Handle the failure to find a register to spill.
2060 INSN should be one of the insns which needed this particular spill reg. */
2063 spill_failure (rtx_insn
*insn
, enum reg_class rclass
)
2065 if (asm_noperands (PATTERN (insn
)) >= 0)
2066 error_for_asm (insn
, "cannot find a register in class %qs while "
2067 "reloading %<asm%>",
2068 reg_class_names
[rclass
]);
2071 error ("unable to find a register to spill in class %qs",
2072 reg_class_names
[rclass
]);
2076 fprintf (dump_file
, "\nReloads for insn # %d\n", INSN_UID (insn
));
2077 debug_reload_to_stream (dump_file
);
2079 fatal_insn ("this is the insn:", insn
);
2083 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2084 data that is dead in INSN. */
2087 delete_dead_insn (rtx_insn
*insn
)
2089 rtx_insn
*prev
= prev_active_insn (insn
);
2092 /* If the previous insn sets a register that dies in our insn make
2093 a note that we want to run DCE immediately after reload.
2095 We used to delete the previous insn & recurse, but that's wrong for
2096 block local equivalences. Instead of trying to figure out the exact
2097 circumstances where we can delete the potentially dead insns, just
2098 let DCE do the job. */
2099 if (prev
&& BLOCK_FOR_INSN (prev
) == BLOCK_FOR_INSN (insn
)
2100 && GET_CODE (PATTERN (prev
)) == SET
2101 && (prev_dest
= SET_DEST (PATTERN (prev
)), REG_P (prev_dest
))
2102 && reg_mentioned_p (prev_dest
, PATTERN (insn
))
2103 && find_regno_note (insn
, REG_DEAD
, REGNO (prev_dest
))
2104 && ! side_effects_p (SET_SRC (PATTERN (prev
))))
2107 SET_INSN_DELETED (insn
);
2110 /* Modify the home of pseudo-reg I.
2111 The new home is present in reg_renumber[I].
2113 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2114 or it may be -1, meaning there is none or it is not relevant.
2115 This is used so that all pseudos spilled from a given hard reg
2116 can share one stack slot. */
2119 alter_reg (int i
, int from_reg
, bool dont_share_p
)
2121 /* When outputting an inline function, this can happen
2122 for a reg that isn't actually used. */
2123 if (regno_reg_rtx
[i
] == 0)
2126 /* If the reg got changed to a MEM at rtl-generation time,
2128 if (!REG_P (regno_reg_rtx
[i
]))
2131 /* Modify the reg-rtx to contain the new hard reg
2132 number or else to contain its pseudo reg number. */
2133 SET_REGNO (regno_reg_rtx
[i
],
2134 reg_renumber
[i
] >= 0 ? reg_renumber
[i
] : i
);
2136 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2137 allocate a stack slot for it. */
2139 if (reg_renumber
[i
] < 0
2140 && REG_N_REFS (i
) > 0
2141 && reg_equiv_constant (i
) == 0
2142 && (reg_equiv_invariant (i
) == 0
2143 || reg_equiv_init (i
) == 0)
2144 && reg_equiv_memory_loc (i
) == 0)
2147 machine_mode mode
= GET_MODE (regno_reg_rtx
[i
]);
2148 poly_uint64 inherent_size
= GET_MODE_SIZE (mode
);
2149 unsigned int inherent_align
= GET_MODE_ALIGNMENT (mode
);
2150 machine_mode wider_mode
= wider_subreg_mode (mode
, reg_max_ref_mode
[i
]);
2151 poly_uint64 total_size
= GET_MODE_SIZE (wider_mode
);
2152 /* ??? Seems strange to derive the minimum alignment from the size,
2153 but that's the traditional behavior. For polynomial-size modes,
2154 the natural extension is to use the minimum possible size. */
2155 unsigned int min_align
2156 = constant_lower_bound (GET_MODE_BITSIZE (reg_max_ref_mode
[i
]));
2157 poly_int64 adjust
= 0;
2159 something_was_spilled
= true;
2161 if (ira_conflicts_p
)
2163 /* Mark the spill for IRA. */
2164 SET_REGNO_REG_SET (&spilled_pseudos
, i
);
2166 x
= ira_reuse_stack_slot (i
, inherent_size
, total_size
);
2172 /* Each pseudo reg has an inherent size which comes from its own mode,
2173 and a total size which provides room for paradoxical subregs
2174 which refer to the pseudo reg in wider modes.
2176 We can use a slot already allocated if it provides both
2177 enough inherent space and enough total space.
2178 Otherwise, we allocate a new slot, making sure that it has no less
2179 inherent space, and no less total space, then the previous slot. */
2180 else if (from_reg
== -1 || (!dont_share_p
&& ira_conflicts_p
))
2184 /* The sizes are taken from a subreg operation, which guarantees
2185 that they're ordered. */
2186 gcc_checking_assert (ordered_p (total_size
, inherent_size
));
2188 /* No known place to spill from => no slot to reuse. */
2189 x
= assign_stack_local (mode
, total_size
,
2190 min_align
> inherent_align
2191 || maybe_gt (total_size
, inherent_size
)
2196 /* Cancel the big-endian correction done in assign_stack_local.
2197 Get the address of the beginning of the slot. This is so we
2198 can do a big-endian correction unconditionally below. */
2199 if (BYTES_BIG_ENDIAN
)
2201 adjust
= inherent_size
- total_size
;
2202 if (maybe_ne (adjust
, 0))
2204 poly_uint64 total_bits
= total_size
* BITS_PER_UNIT
;
2205 machine_mode mem_mode
2206 = int_mode_for_size (total_bits
, 1).else_blk ();
2207 stack_slot
= adjust_address_nv (x
, mem_mode
, adjust
);
2211 if (! dont_share_p
&& ira_conflicts_p
)
2212 /* Inform IRA about allocation a new stack slot. */
2213 ira_mark_new_stack_slot (stack_slot
, i
, total_size
);
2216 /* Reuse a stack slot if possible. */
2217 else if (spill_stack_slot
[from_reg
] != 0
2218 && known_ge (spill_stack_slot_width
[from_reg
], total_size
)
2219 && known_ge (GET_MODE_SIZE
2220 (GET_MODE (spill_stack_slot
[from_reg
])),
2222 && MEM_ALIGN (spill_stack_slot
[from_reg
]) >= min_align
)
2223 x
= spill_stack_slot
[from_reg
];
2225 /* Allocate a bigger slot. */
2228 /* Compute maximum size needed, both for inherent size
2229 and for total size. */
2232 if (spill_stack_slot
[from_reg
])
2234 if (partial_subreg_p (mode
,
2235 GET_MODE (spill_stack_slot
[from_reg
])))
2236 mode
= GET_MODE (spill_stack_slot
[from_reg
]);
2237 total_size
= ordered_max (total_size
,
2238 spill_stack_slot_width
[from_reg
]);
2239 if (MEM_ALIGN (spill_stack_slot
[from_reg
]) > min_align
)
2240 min_align
= MEM_ALIGN (spill_stack_slot
[from_reg
]);
2243 /* The sizes are taken from a subreg operation, which guarantees
2244 that they're ordered. */
2245 gcc_checking_assert (ordered_p (total_size
, inherent_size
));
2247 /* Make a slot with that size. */
2248 x
= assign_stack_local (mode
, total_size
,
2249 min_align
> inherent_align
2250 || maybe_gt (total_size
, inherent_size
)
2254 /* Cancel the big-endian correction done in assign_stack_local.
2255 Get the address of the beginning of the slot. This is so we
2256 can do a big-endian correction unconditionally below. */
2257 if (BYTES_BIG_ENDIAN
)
2259 adjust
= GET_MODE_SIZE (mode
) - total_size
;
2260 if (maybe_ne (adjust
, 0))
2262 poly_uint64 total_bits
= total_size
* BITS_PER_UNIT
;
2263 machine_mode mem_mode
2264 = int_mode_for_size (total_bits
, 1).else_blk ();
2265 stack_slot
= adjust_address_nv (x
, mem_mode
, adjust
);
2269 spill_stack_slot
[from_reg
] = stack_slot
;
2270 spill_stack_slot_width
[from_reg
] = total_size
;
2273 /* On a big endian machine, the "address" of the slot
2274 is the address of the low part that fits its inherent mode. */
2275 adjust
+= subreg_size_lowpart_offset (inherent_size
, total_size
);
2277 /* If we have any adjustment to make, or if the stack slot is the
2278 wrong mode, make a new stack slot. */
2279 x
= adjust_address_nv (x
, GET_MODE (regno_reg_rtx
[i
]), adjust
);
2281 /* Set all of the memory attributes as appropriate for a spill. */
2282 set_mem_attrs_for_spill (x
);
2284 /* Save the stack slot for later. */
2285 reg_equiv_memory_loc (i
) = x
;
2289 /* Mark the slots in regs_ever_live for the hard regs used by
2290 pseudo-reg number REGNO, accessed in MODE. */
2293 mark_home_live_1 (int regno
, machine_mode mode
)
2297 i
= reg_renumber
[regno
];
2300 lim
= end_hard_regno (mode
, i
);
2302 df_set_regs_ever_live (i
++, true);
2305 /* Mark the slots in regs_ever_live for the hard regs
2306 used by pseudo-reg number REGNO. */
2309 mark_home_live (int regno
)
2311 if (reg_renumber
[regno
] >= 0)
2312 mark_home_live_1 (regno
, PSEUDO_REGNO_MODE (regno
));
2315 /* This function handles the tracking of elimination offsets around branches.
2317 X is a piece of RTL being scanned.
2319 INSN is the insn that it came from, if any.
2321 INITIAL_P is nonzero if we are to set the offset to be the initial
2322 offset and zero if we are setting the offset of the label to be the
2326 set_label_offsets (rtx x
, rtx_insn
*insn
, int initial_p
)
2328 enum rtx_code code
= GET_CODE (x
);
2331 struct elim_table
*p
;
2336 if (LABEL_REF_NONLOCAL_P (x
))
2339 x
= label_ref_label (x
);
2344 /* If we know nothing about this label, set the desired offsets. Note
2345 that this sets the offset at a label to be the offset before a label
2346 if we don't know anything about the label. This is not correct for
2347 the label after a BARRIER, but is the best guess we can make. If
2348 we guessed wrong, we will suppress an elimination that might have
2349 been possible had we been able to guess correctly. */
2351 if (! offsets_known_at
[CODE_LABEL_NUMBER (x
) - first_label_num
])
2353 for (i
= 0; i
< NUM_ELIMINABLE_REGS
; i
++)
2354 offsets_at
[CODE_LABEL_NUMBER (x
) - first_label_num
][i
]
2355 = (initial_p
? reg_eliminate
[i
].initial_offset
2356 : reg_eliminate
[i
].offset
);
2357 offsets_known_at
[CODE_LABEL_NUMBER (x
) - first_label_num
] = 1;
2360 /* Otherwise, if this is the definition of a label and it is
2361 preceded by a BARRIER, set our offsets to the known offset of
2365 && (tem
= prev_nonnote_insn (insn
)) != 0
2367 set_offsets_for_label (insn
);
2369 /* If neither of the above cases is true, compare each offset
2370 with those previously recorded and suppress any eliminations
2371 where the offsets disagree. */
2373 for (i
= 0; i
< NUM_ELIMINABLE_REGS
; i
++)
2374 if (maybe_ne (offsets_at
[CODE_LABEL_NUMBER (x
) - first_label_num
][i
],
2375 (initial_p
? reg_eliminate
[i
].initial_offset
2376 : reg_eliminate
[i
].offset
)))
2377 reg_eliminate
[i
].can_eliminate
= 0;
2381 case JUMP_TABLE_DATA
:
2382 set_label_offsets (PATTERN (insn
), insn
, initial_p
);
2386 set_label_offsets (PATTERN (insn
), insn
, initial_p
);
2392 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2393 to indirectly and hence must have all eliminations at their
2395 for (tem
= REG_NOTES (x
); tem
; tem
= XEXP (tem
, 1))
2396 if (REG_NOTE_KIND (tem
) == REG_LABEL_OPERAND
)
2397 set_label_offsets (XEXP (tem
, 0), insn
, 1);
2403 /* Each of the labels in the parallel or address vector must be
2404 at their initial offsets. We want the first field for PARALLEL
2405 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2407 for (i
= 0; i
< (unsigned) XVECLEN (x
, code
== ADDR_DIFF_VEC
); i
++)
2408 set_label_offsets (XVECEXP (x
, code
== ADDR_DIFF_VEC
, i
),
2413 /* We only care about setting PC. If the source is not RETURN,
2414 IF_THEN_ELSE, or a label, disable any eliminations not at
2415 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2416 isn't one of those possibilities. For branches to a label,
2417 call ourselves recursively.
2419 Note that this can disable elimination unnecessarily when we have
2420 a non-local goto since it will look like a non-constant jump to
2421 someplace in the current function. This isn't a significant
2422 problem since such jumps will normally be when all elimination
2423 pairs are back to their initial offsets. */
2425 if (SET_DEST (x
) != pc_rtx
)
2428 switch (GET_CODE (SET_SRC (x
)))
2435 set_label_offsets (SET_SRC (x
), insn
, initial_p
);
2439 tem
= XEXP (SET_SRC (x
), 1);
2440 if (GET_CODE (tem
) == LABEL_REF
)
2441 set_label_offsets (label_ref_label (tem
), insn
, initial_p
);
2442 else if (GET_CODE (tem
) != PC
&& GET_CODE (tem
) != RETURN
)
2445 tem
= XEXP (SET_SRC (x
), 2);
2446 if (GET_CODE (tem
) == LABEL_REF
)
2447 set_label_offsets (label_ref_label (tem
), insn
, initial_p
);
2448 else if (GET_CODE (tem
) != PC
&& GET_CODE (tem
) != RETURN
)
2456 /* If we reach here, all eliminations must be at their initial
2457 offset because we are doing a jump to a variable address. */
2458 for (p
= reg_eliminate
; p
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; p
++)
2459 if (maybe_ne (p
->offset
, p
->initial_offset
))
2460 p
->can_eliminate
= 0;
2468 /* This function examines every reg that occurs in X and adjusts the
2469 costs for its elimination which are gathered by IRA. INSN is the
2470 insn in which X occurs. We do not recurse into MEM expressions. */
2473 note_reg_elim_costly (const_rtx x
, rtx insn
)
2475 subrtx_iterator::array_type array
;
2476 FOR_EACH_SUBRTX (iter
, array
, x
, NONCONST
)
2478 const_rtx x
= *iter
;
2480 iter
.skip_subrtxes ();
2482 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
2483 && reg_equiv_init (REGNO (x
))
2484 && reg_equiv_invariant (REGNO (x
)))
2486 rtx t
= reg_equiv_invariant (REGNO (x
));
2487 rtx new_rtx
= eliminate_regs_1 (t
, Pmode
, insn
, true, true);
2488 int cost
= set_src_cost (new_rtx
, Pmode
,
2489 optimize_bb_for_speed_p (elim_bb
));
2490 int freq
= REG_FREQ_FROM_BB (elim_bb
);
2493 ira_adjust_equiv_reg_cost (REGNO (x
), -cost
* freq
);
2498 /* Scan X and replace any eliminable registers (such as fp) with a
2499 replacement (such as sp), plus an offset.
2501 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2502 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2503 MEM, we are allowed to replace a sum of a register and the constant zero
2504 with the register, which we cannot do outside a MEM. In addition, we need
2505 to record the fact that a register is referenced outside a MEM.
2507 If INSN is an insn, it is the insn containing X. If we replace a REG
2508 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2509 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2510 the REG is being modified.
2512 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2513 That's used when we eliminate in expressions stored in notes.
2514 This means, do not set ref_outside_mem even if the reference
2517 If FOR_COSTS is true, we are being called before reload in order to
2518 estimate the costs of keeping registers with an equivalence unallocated.
2520 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2521 replacements done assuming all offsets are at their initial values. If
2522 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2523 encounter, return the actual location so that find_reloads will do
2524 the proper thing. */
2527 eliminate_regs_1 (rtx x
, machine_mode mem_mode
, rtx insn
,
2528 bool may_use_invariant
, bool for_costs
)
2530 enum rtx_code code
= GET_CODE (x
);
2531 struct elim_table
*ep
;
2538 if (! current_function_decl
)
2557 /* First handle the case where we encounter a bare register that
2558 is eliminable. Replace it with a PLUS. */
2559 if (regno
< FIRST_PSEUDO_REGISTER
)
2561 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
];
2563 if (ep
->from_rtx
== x
&& ep
->can_eliminate
)
2564 return plus_constant (Pmode
, ep
->to_rtx
, ep
->previous_offset
);
2567 else if (reg_renumber
&& reg_renumber
[regno
] < 0
2569 && reg_equiv_invariant (regno
))
2571 if (may_use_invariant
|| (insn
&& DEBUG_INSN_P (insn
)))
2572 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno
)),
2573 mem_mode
, insn
, true, for_costs
);
2574 /* There exists at least one use of REGNO that cannot be
2575 eliminated. Prevent the defining insn from being deleted. */
2576 reg_equiv_init (regno
) = NULL
;
2578 alter_reg (regno
, -1, true);
2582 /* You might think handling MINUS in a manner similar to PLUS is a
2583 good idea. It is not. It has been tried multiple times and every
2584 time the change has had to have been reverted.
2586 Other parts of reload know a PLUS is special (gen_reload for example)
2587 and require special code to handle code a reloaded PLUS operand.
2589 Also consider backends where the flags register is clobbered by a
2590 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2591 lea instruction comes to mind). If we try to reload a MINUS, we
2592 may kill the flags register that was holding a useful value.
2594 So, please before trying to handle MINUS, consider reload as a
2595 whole instead of this little section as well as the backend issues. */
2597 /* If this is the sum of an eliminable register and a constant, rework
2599 if (REG_P (XEXP (x
, 0))
2600 && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
2601 && CONSTANT_P (XEXP (x
, 1)))
2603 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
];
2605 if (ep
->from_rtx
== XEXP (x
, 0) && ep
->can_eliminate
)
2607 /* The only time we want to replace a PLUS with a REG (this
2608 occurs when the constant operand of the PLUS is the negative
2609 of the offset) is when we are inside a MEM. We won't want
2610 to do so at other times because that would change the
2611 structure of the insn in a way that reload can't handle.
2612 We special-case the commonest situation in
2613 eliminate_regs_in_insn, so just replace a PLUS with a
2614 PLUS here, unless inside a MEM. In DEBUG_INSNs, it is
2615 always ok to replace a PLUS with just a REG. */
2616 if ((mem_mode
!= 0 || (insn
&& DEBUG_INSN_P (insn
)))
2617 && CONST_INT_P (XEXP (x
, 1))
2618 && known_eq (INTVAL (XEXP (x
, 1)), -ep
->previous_offset
))
2621 return gen_rtx_PLUS (Pmode
, ep
->to_rtx
,
2622 plus_constant (Pmode
, XEXP (x
, 1),
2623 ep
->previous_offset
));
2626 /* If the register is not eliminable, we are done since the other
2627 operand is a constant. */
2631 /* If this is part of an address, we want to bring any constant to the
2632 outermost PLUS. We will do this by doing register replacement in
2633 our operands and seeing if a constant shows up in one of them.
2635 Note that there is no risk of modifying the structure of the insn,
2636 since we only get called for its operands, thus we are either
2637 modifying the address inside a MEM, or something like an address
2638 operand of a load-address insn. */
2641 rtx new0
= eliminate_regs_1 (XEXP (x
, 0), mem_mode
, insn
, true,
2643 rtx new1
= eliminate_regs_1 (XEXP (x
, 1), mem_mode
, insn
, true,
2646 if (reg_renumber
&& (new0
!= XEXP (x
, 0) || new1
!= XEXP (x
, 1)))
2648 /* If one side is a PLUS and the other side is a pseudo that
2649 didn't get a hard register but has a reg_equiv_constant,
2650 we must replace the constant here since it may no longer
2651 be in the position of any operand. */
2652 if (GET_CODE (new0
) == PLUS
&& REG_P (new1
)
2653 && REGNO (new1
) >= FIRST_PSEUDO_REGISTER
2654 && reg_renumber
[REGNO (new1
)] < 0
2656 && reg_equiv_constant (REGNO (new1
)) != 0)
2657 new1
= reg_equiv_constant (REGNO (new1
));
2658 else if (GET_CODE (new1
) == PLUS
&& REG_P (new0
)
2659 && REGNO (new0
) >= FIRST_PSEUDO_REGISTER
2660 && reg_renumber
[REGNO (new0
)] < 0
2661 && reg_equiv_constant (REGNO (new0
)) != 0)
2662 new0
= reg_equiv_constant (REGNO (new0
));
2664 new_rtx
= form_sum (GET_MODE (x
), new0
, new1
);
2666 /* As above, if we are not inside a MEM we do not want to
2667 turn a PLUS into something else. We might try to do so here
2668 for an addition of 0 if we aren't optimizing. */
2669 if (! mem_mode
&& GET_CODE (new_rtx
) != PLUS
)
2670 return gen_rtx_PLUS (GET_MODE (x
), new_rtx
, const0_rtx
);
2678 /* If this is the product of an eliminable register and a
2679 constant, apply the distribute law and move the constant out
2680 so that we have (plus (mult ..) ..). This is needed in order
2681 to keep load-address insns valid. This case is pathological.
2682 We ignore the possibility of overflow here. */
2683 if (REG_P (XEXP (x
, 0))
2684 && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
2685 && CONST_INT_P (XEXP (x
, 1)))
2686 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
];
2688 if (ep
->from_rtx
== XEXP (x
, 0) && ep
->can_eliminate
)
2691 /* Refs inside notes or in DEBUG_INSNs don't count for
2693 && ! (insn
!= 0 && (GET_CODE (insn
) == EXPR_LIST
2694 || GET_CODE (insn
) == INSN_LIST
2695 || DEBUG_INSN_P (insn
))))
2696 ep
->ref_outside_mem
= 1;
2699 plus_constant (Pmode
,
2700 gen_rtx_MULT (Pmode
, ep
->to_rtx
, XEXP (x
, 1)),
2701 ep
->previous_offset
* INTVAL (XEXP (x
, 1)));
2708 /* See comments before PLUS about handling MINUS. */
2710 case DIV
: case UDIV
:
2711 case MOD
: case UMOD
:
2712 case AND
: case IOR
: case XOR
:
2713 case ROTATERT
: case ROTATE
:
2714 case ASHIFTRT
: case LSHIFTRT
: case ASHIFT
:
2716 case GE
: case GT
: case GEU
: case GTU
:
2717 case LE
: case LT
: case LEU
: case LTU
:
2719 rtx new0
= eliminate_regs_1 (XEXP (x
, 0), mem_mode
, insn
, false,
2721 rtx new1
= XEXP (x
, 1)
2722 ? eliminate_regs_1 (XEXP (x
, 1), mem_mode
, insn
, false,
2725 if (new0
!= XEXP (x
, 0) || new1
!= XEXP (x
, 1))
2726 return gen_rtx_fmt_ee (code
, GET_MODE (x
), new0
, new1
);
2731 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2734 new_rtx
= eliminate_regs_1 (XEXP (x
, 0), mem_mode
, insn
, true,
2736 if (new_rtx
!= XEXP (x
, 0))
2738 /* If this is a REG_DEAD note, it is not valid anymore.
2739 Using the eliminated version could result in creating a
2740 REG_DEAD note for the stack or frame pointer. */
2741 if (REG_NOTE_KIND (x
) == REG_DEAD
)
2743 ? eliminate_regs_1 (XEXP (x
, 1), mem_mode
, insn
, true,
2747 x
= alloc_reg_note (REG_NOTE_KIND (x
), new_rtx
, XEXP (x
, 1));
2755 /* Now do eliminations in the rest of the chain. If this was
2756 an EXPR_LIST, this might result in allocating more memory than is
2757 strictly needed, but it simplifies the code. */
2760 new_rtx
= eliminate_regs_1 (XEXP (x
, 1), mem_mode
, insn
, true,
2762 if (new_rtx
!= XEXP (x
, 1))
2764 gen_rtx_fmt_ee (GET_CODE (x
), GET_MODE (x
), XEXP (x
, 0), new_rtx
);
2772 /* We do not support elimination of a register that is modified.
2773 elimination_effects has already make sure that this does not
2779 /* We do not support elimination of a register that is modified.
2780 elimination_effects has already make sure that this does not
2781 happen. The only remaining case we need to consider here is
2782 that the increment value may be an eliminable register. */
2783 if (GET_CODE (XEXP (x
, 1)) == PLUS
2784 && XEXP (XEXP (x
, 1), 0) == XEXP (x
, 0))
2786 rtx new_rtx
= eliminate_regs_1 (XEXP (XEXP (x
, 1), 1), mem_mode
,
2787 insn
, true, for_costs
);
2789 if (new_rtx
!= XEXP (XEXP (x
, 1), 1))
2790 return gen_rtx_fmt_ee (code
, GET_MODE (x
), XEXP (x
, 0),
2791 gen_rtx_PLUS (GET_MODE (x
),
2792 XEXP (x
, 0), new_rtx
));
2796 case STRICT_LOW_PART
:
2798 case SIGN_EXTEND
: case ZERO_EXTEND
:
2799 case TRUNCATE
: case FLOAT_EXTEND
: case FLOAT_TRUNCATE
:
2800 case FLOAT
: case FIX
:
2801 case UNSIGNED_FIX
: case UNSIGNED_FLOAT
:
2810 new_rtx
= eliminate_regs_1 (XEXP (x
, 0), mem_mode
, insn
, false,
2812 if (new_rtx
!= XEXP (x
, 0))
2813 return gen_rtx_fmt_e (code
, GET_MODE (x
), new_rtx
);
2817 /* Similar to above processing, but preserve SUBREG_BYTE.
2818 Convert (subreg (mem)) to (mem) if not paradoxical.
2819 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2820 pseudo didn't get a hard reg, we must replace this with the
2821 eliminated version of the memory location because push_reload
2822 may do the replacement in certain circumstances. */
2823 if (REG_P (SUBREG_REG (x
))
2824 && !paradoxical_subreg_p (x
)
2826 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x
))) != 0)
2828 new_rtx
= SUBREG_REG (x
);
2831 new_rtx
= eliminate_regs_1 (SUBREG_REG (x
), mem_mode
, insn
, false, for_costs
);
2833 if (new_rtx
!= SUBREG_REG (x
))
2835 poly_int64 x_size
= GET_MODE_SIZE (GET_MODE (x
));
2836 poly_int64 new_size
= GET_MODE_SIZE (GET_MODE (new_rtx
));
2839 && ((partial_subreg_p (GET_MODE (x
), GET_MODE (new_rtx
))
2840 /* On RISC machines, combine can create rtl of the form
2841 (set (subreg:m1 (reg:m2 R) 0) ...)
2842 where m1 < m2, and expects something interesting to
2843 happen to the entire word. Moreover, it will use the
2844 (reg:m2 R) later, expecting all bits to be preserved.
2845 So if the number of words is the same, preserve the
2846 subreg so that push_reload can see it. */
2847 && !(WORD_REGISTER_OPERATIONS
2848 && known_equal_after_align_down (x_size
- 1,
2851 || known_eq (x_size
, new_size
))
2853 return adjust_address_nv (new_rtx
, GET_MODE (x
), SUBREG_BYTE (x
));
2854 else if (insn
&& GET_CODE (insn
) == DEBUG_INSN
)
2855 return gen_rtx_raw_SUBREG (GET_MODE (x
), new_rtx
, SUBREG_BYTE (x
));
2857 return gen_rtx_SUBREG (GET_MODE (x
), new_rtx
, SUBREG_BYTE (x
));
2863 /* Our only special processing is to pass the mode of the MEM to our
2864 recursive call and copy the flags. While we are here, handle this
2865 case more efficiently. */
2867 new_rtx
= eliminate_regs_1 (XEXP (x
, 0), GET_MODE (x
), insn
, true,
2870 && memory_address_p (GET_MODE (x
), XEXP (x
, 0))
2871 && !memory_address_p (GET_MODE (x
), new_rtx
))
2872 note_reg_elim_costly (XEXP (x
, 0), insn
);
2874 return replace_equiv_address_nv (x
, new_rtx
);
2877 /* Handle insn_list USE that a call to a pure function may generate. */
2878 new_rtx
= eliminate_regs_1 (XEXP (x
, 0), VOIDmode
, insn
, false,
2880 if (new_rtx
!= XEXP (x
, 0))
2881 return gen_rtx_USE (GET_MODE (x
), new_rtx
);
2886 gcc_assert (insn
&& DEBUG_INSN_P (insn
));
2896 /* Process each of our operands recursively. If any have changed, make a
2898 fmt
= GET_RTX_FORMAT (code
);
2899 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++, fmt
++)
2903 new_rtx
= eliminate_regs_1 (XEXP (x
, i
), mem_mode
, insn
, false,
2905 if (new_rtx
!= XEXP (x
, i
) && ! copied
)
2907 x
= shallow_copy_rtx (x
);
2910 XEXP (x
, i
) = new_rtx
;
2912 else if (*fmt
== 'E')
2915 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2917 new_rtx
= eliminate_regs_1 (XVECEXP (x
, i
, j
), mem_mode
, insn
, false,
2919 if (new_rtx
!= XVECEXP (x
, i
, j
) && ! copied_vec
)
2921 rtvec new_v
= gen_rtvec_v (XVECLEN (x
, i
),
2925 x
= shallow_copy_rtx (x
);
2928 XVEC (x
, i
) = new_v
;
2931 XVECEXP (x
, i
, j
) = new_rtx
;
2940 eliminate_regs (rtx x
, machine_mode mem_mode
, rtx insn
)
2942 if (reg_eliminate
== NULL
)
2944 gcc_assert (targetm
.no_register_allocation
);
2947 return eliminate_regs_1 (x
, mem_mode
, insn
, false, false);
2950 /* Scan rtx X for modifications of elimination target registers. Update
2951 the table of eliminables to reflect the changed state. MEM_MODE is
2952 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2955 elimination_effects (rtx x
, machine_mode mem_mode
)
2957 enum rtx_code code
= GET_CODE (x
);
2958 struct elim_table
*ep
;
2979 /* First handle the case where we encounter a bare register that
2980 is eliminable. Replace it with a PLUS. */
2981 if (regno
< FIRST_PSEUDO_REGISTER
)
2983 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
];
2985 if (ep
->from_rtx
== x
&& ep
->can_eliminate
)
2988 ep
->ref_outside_mem
= 1;
2993 else if (reg_renumber
[regno
] < 0
2995 && reg_equiv_constant (regno
)
2996 && ! function_invariant_p (reg_equiv_constant (regno
)))
2997 elimination_effects (reg_equiv_constant (regno
), mem_mode
);
3006 /* If we modify the source of an elimination rule, disable it. */
3007 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
3008 if (ep
->from_rtx
== XEXP (x
, 0))
3009 ep
->can_eliminate
= 0;
3011 /* If we modify the target of an elimination rule by adding a constant,
3012 update its offset. If we modify the target in any other way, we'll
3013 have to disable the rule as well. */
3014 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
3015 if (ep
->to_rtx
== XEXP (x
, 0))
3017 poly_int64 size
= GET_MODE_SIZE (mem_mode
);
3019 /* If more bytes than MEM_MODE are pushed, account for them. */
3020 #ifdef PUSH_ROUNDING
3021 if (ep
->to_rtx
== stack_pointer_rtx
)
3022 size
= PUSH_ROUNDING (size
);
3024 if (code
== PRE_DEC
|| code
== POST_DEC
)
3026 else if (code
== PRE_INC
|| code
== POST_INC
)
3028 else if (code
== PRE_MODIFY
|| code
== POST_MODIFY
)
3030 if (GET_CODE (XEXP (x
, 1)) == PLUS
3031 && XEXP (x
, 0) == XEXP (XEXP (x
, 1), 0)
3032 && CONST_INT_P (XEXP (XEXP (x
, 1), 1)))
3033 ep
->offset
-= INTVAL (XEXP (XEXP (x
, 1), 1));
3035 ep
->can_eliminate
= 0;
3039 /* These two aren't unary operators. */
3040 if (code
== POST_MODIFY
|| code
== PRE_MODIFY
)
3043 /* Fall through to generic unary operation case. */
3045 case STRICT_LOW_PART
:
3047 case SIGN_EXTEND
: case ZERO_EXTEND
:
3048 case TRUNCATE
: case FLOAT_EXTEND
: case FLOAT_TRUNCATE
:
3049 case FLOAT
: case FIX
:
3050 case UNSIGNED_FIX
: case UNSIGNED_FLOAT
:
3059 elimination_effects (XEXP (x
, 0), mem_mode
);
3063 if (REG_P (SUBREG_REG (x
))
3064 && !paradoxical_subreg_p (x
)
3066 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x
))) != 0)
3069 elimination_effects (SUBREG_REG (x
), mem_mode
);
3073 /* If using a register that is the source of an eliminate we still
3074 think can be performed, note it cannot be performed since we don't
3075 know how this register is used. */
3076 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
3077 if (ep
->from_rtx
== XEXP (x
, 0))
3078 ep
->can_eliminate
= 0;
3080 elimination_effects (XEXP (x
, 0), mem_mode
);
3084 /* If clobbering a register that is the replacement register for an
3085 elimination we still think can be performed, note that it cannot
3086 be performed. Otherwise, we need not be concerned about it. */
3087 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
3088 if (ep
->to_rtx
== XEXP (x
, 0))
3089 ep
->can_eliminate
= 0;
3091 elimination_effects (XEXP (x
, 0), mem_mode
);
3095 /* Check for setting a register that we know about. */
3096 if (REG_P (SET_DEST (x
)))
3098 /* See if this is setting the replacement register for an
3101 If DEST is the hard frame pointer, we do nothing because we
3102 assume that all assignments to the frame pointer are for
3103 non-local gotos and are being done at a time when they are valid
3104 and do not disturb anything else. Some machines want to
3105 eliminate a fake argument pointer (or even a fake frame pointer)
3106 with either the real frame or the stack pointer. Assignments to
3107 the hard frame pointer must not prevent this elimination. */
3109 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
];
3111 if (ep
->to_rtx
== SET_DEST (x
)
3112 && SET_DEST (x
) != hard_frame_pointer_rtx
)
3114 /* If it is being incremented, adjust the offset. Otherwise,
3115 this elimination can't be done. */
3116 rtx src
= SET_SRC (x
);
3118 if (GET_CODE (src
) == PLUS
3119 && XEXP (src
, 0) == SET_DEST (x
)
3120 && CONST_INT_P (XEXP (src
, 1)))
3121 ep
->offset
-= INTVAL (XEXP (src
, 1));
3123 ep
->can_eliminate
= 0;
3127 elimination_effects (SET_DEST (x
), VOIDmode
);
3128 elimination_effects (SET_SRC (x
), VOIDmode
);
3132 /* Our only special processing is to pass the mode of the MEM to our
3134 elimination_effects (XEXP (x
, 0), GET_MODE (x
));
3141 fmt
= GET_RTX_FORMAT (code
);
3142 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++, fmt
++)
3145 elimination_effects (XEXP (x
, i
), mem_mode
);
3146 else if (*fmt
== 'E')
3147 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3148 elimination_effects (XVECEXP (x
, i
, j
), mem_mode
);
3152 /* Descend through rtx X and verify that no references to eliminable registers
3153 remain. If any do remain, mark the involved register as not
3157 check_eliminable_occurrences (rtx x
)
3166 code
= GET_CODE (x
);
3168 if (code
== REG
&& REGNO (x
) < FIRST_PSEUDO_REGISTER
)
3170 struct elim_table
*ep
;
3172 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
3173 if (ep
->from_rtx
== x
)
3174 ep
->can_eliminate
= 0;
3178 fmt
= GET_RTX_FORMAT (code
);
3179 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++, fmt
++)
3182 check_eliminable_occurrences (XEXP (x
, i
));
3183 else if (*fmt
== 'E')
3186 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3187 check_eliminable_occurrences (XVECEXP (x
, i
, j
));
3192 /* Scan INSN and eliminate all eliminable registers in it.
3194 If REPLACE is nonzero, do the replacement destructively. Also
3195 delete the insn as dead it if it is setting an eliminable register.
3197 If REPLACE is zero, do all our allocations in reload_obstack.
3199 If no eliminations were done and this insn doesn't require any elimination
3200 processing (these are not identical conditions: it might be updating sp,
3201 but not referencing fp; this needs to be seen during reload_as_needed so
3202 that the offset between fp and sp can be taken into consideration), zero
3203 is returned. Otherwise, 1 is returned. */
3206 eliminate_regs_in_insn (rtx_insn
*insn
, int replace
)
3208 int icode
= recog_memoized (insn
);
3209 rtx old_body
= PATTERN (insn
);
3210 int insn_is_asm
= asm_noperands (old_body
) >= 0;
3211 rtx old_set
= single_set (insn
);
3215 rtx substed_operand
[MAX_RECOG_OPERANDS
];
3216 rtx orig_operand
[MAX_RECOG_OPERANDS
];
3217 struct elim_table
*ep
;
3218 rtx plus_src
, plus_cst_src
;
3220 if (! insn_is_asm
&& icode
< 0)
3222 gcc_assert (DEBUG_INSN_P (insn
)
3223 || GET_CODE (PATTERN (insn
)) == USE
3224 || GET_CODE (PATTERN (insn
)) == CLOBBER
3225 || GET_CODE (PATTERN (insn
)) == ASM_INPUT
);
3226 if (DEBUG_BIND_INSN_P (insn
))
3227 INSN_VAR_LOCATION_LOC (insn
)
3228 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn
), VOIDmode
, insn
);
3232 /* We allow one special case which happens to work on all machines we
3233 currently support: a single set with the source or a REG_EQUAL
3234 note being a PLUS of an eliminable register and a constant. */
3235 plus_src
= plus_cst_src
= 0;
3236 if (old_set
&& REG_P (SET_DEST (old_set
)))
3238 if (GET_CODE (SET_SRC (old_set
)) == PLUS
)
3239 plus_src
= SET_SRC (old_set
);
3240 /* First see if the source is of the form (plus (...) CST). */
3242 && CONST_INT_P (XEXP (plus_src
, 1)))
3243 plus_cst_src
= plus_src
;
3244 else if (REG_P (SET_SRC (old_set
))
3247 /* Otherwise, see if we have a REG_EQUAL note of the form
3248 (plus (...) CST). */
3250 for (links
= REG_NOTES (insn
); links
; links
= XEXP (links
, 1))
3252 if ((REG_NOTE_KIND (links
) == REG_EQUAL
3253 || REG_NOTE_KIND (links
) == REG_EQUIV
)
3254 && GET_CODE (XEXP (links
, 0)) == PLUS
3255 && CONST_INT_P (XEXP (XEXP (links
, 0), 1)))
3257 plus_cst_src
= XEXP (links
, 0);
3263 /* Check that the first operand of the PLUS is a hard reg or
3264 the lowpart subreg of one. */
3267 rtx reg
= XEXP (plus_cst_src
, 0);
3268 if (GET_CODE (reg
) == SUBREG
&& subreg_lowpart_p (reg
))
3269 reg
= SUBREG_REG (reg
);
3271 if (!REG_P (reg
) || REGNO (reg
) >= FIRST_PSEUDO_REGISTER
)
3277 rtx reg
= XEXP (plus_cst_src
, 0);
3278 poly_int64 offset
= INTVAL (XEXP (plus_cst_src
, 1));
3280 if (GET_CODE (reg
) == SUBREG
)
3281 reg
= SUBREG_REG (reg
);
3283 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
3284 if (ep
->from_rtx
== reg
&& ep
->can_eliminate
)
3286 rtx to_rtx
= ep
->to_rtx
;
3287 offset
+= ep
->offset
;
3288 offset
= trunc_int_for_mode (offset
, GET_MODE (plus_cst_src
));
3290 if (GET_CODE (XEXP (plus_cst_src
, 0)) == SUBREG
)
3291 to_rtx
= gen_lowpart (GET_MODE (XEXP (plus_cst_src
, 0)),
3293 /* If we have a nonzero offset, and the source is already
3294 a simple REG, the following transformation would
3295 increase the cost of the insn by replacing a simple REG
3296 with (plus (reg sp) CST). So try only when we already
3297 had a PLUS before. */
3298 if (known_eq (offset
, 0) || plus_src
)
3300 rtx new_src
= plus_constant (GET_MODE (to_rtx
),
3303 new_body
= old_body
;
3306 new_body
= copy_insn (old_body
);
3307 if (REG_NOTES (insn
))
3308 REG_NOTES (insn
) = copy_insn_1 (REG_NOTES (insn
));
3310 PATTERN (insn
) = new_body
;
3311 old_set
= single_set (insn
);
3313 /* First see if this insn remains valid when we make the
3314 change. If not, try to replace the whole pattern with
3315 a simple set (this may help if the original insn was a
3316 PARALLEL that was only recognized as single_set due to
3317 REG_UNUSED notes). If this isn't valid either, keep
3318 the INSN_CODE the same and let reload fix it up. */
3319 if (!validate_change (insn
, &SET_SRC (old_set
), new_src
, 0))
3321 rtx new_pat
= gen_rtx_SET (SET_DEST (old_set
), new_src
);
3323 if (!validate_change (insn
, &PATTERN (insn
), new_pat
, 0))
3324 SET_SRC (old_set
) = new_src
;
3331 /* This can't have an effect on elimination offsets, so skip right
3337 /* Determine the effects of this insn on elimination offsets. */
3338 elimination_effects (old_body
, VOIDmode
);
3340 /* Eliminate all eliminable registers occurring in operands that
3341 can be handled by reload. */
3342 extract_insn (insn
);
3343 for (i
= 0; i
< recog_data
.n_operands
; i
++)
3345 orig_operand
[i
] = recog_data
.operand
[i
];
3346 substed_operand
[i
] = recog_data
.operand
[i
];
3348 /* For an asm statement, every operand is eliminable. */
3349 if (insn_is_asm
|| insn_data
[icode
].operand
[i
].eliminable
)
3351 bool is_set_src
, in_plus
;
3353 /* Check for setting a register that we know about. */
3354 if (recog_data
.operand_type
[i
] != OP_IN
3355 && REG_P (orig_operand
[i
]))
3357 /* If we are assigning to a register that can be eliminated, it
3358 must be as part of a PARALLEL, since the code above handles
3359 single SETs. We must indicate that we can no longer
3360 eliminate this reg. */
3361 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
];
3363 if (ep
->from_rtx
== orig_operand
[i
])
3364 ep
->can_eliminate
= 0;
3367 /* Companion to the above plus substitution, we can allow
3368 invariants as the source of a plain move. */
3371 && recog_data
.operand_loc
[i
] == &SET_SRC (old_set
))
3375 && (recog_data
.operand_loc
[i
] == &XEXP (plus_src
, 0)
3376 || recog_data
.operand_loc
[i
] == &XEXP (plus_src
, 1)))
3380 = eliminate_regs_1 (recog_data
.operand
[i
], VOIDmode
,
3381 replace
? insn
: NULL_RTX
,
3382 is_set_src
|| in_plus
, false);
3383 if (substed_operand
[i
] != orig_operand
[i
])
3385 /* Terminate the search in check_eliminable_occurrences at
3387 *recog_data
.operand_loc
[i
] = 0;
3389 /* If an output operand changed from a REG to a MEM and INSN is an
3390 insn, write a CLOBBER insn. */
3391 if (recog_data
.operand_type
[i
] != OP_IN
3392 && REG_P (orig_operand
[i
])
3393 && MEM_P (substed_operand
[i
])
3395 emit_insn_after (gen_clobber (orig_operand
[i
]), insn
);
3399 for (i
= 0; i
< recog_data
.n_dups
; i
++)
3400 *recog_data
.dup_loc
[i
]
3401 = *recog_data
.operand_loc
[(int) recog_data
.dup_num
[i
]];
3403 /* If any eliminable remain, they aren't eliminable anymore. */
3404 check_eliminable_occurrences (old_body
);
3406 /* Substitute the operands; the new values are in the substed_operand
3408 for (i
= 0; i
< recog_data
.n_operands
; i
++)
3409 *recog_data
.operand_loc
[i
] = substed_operand
[i
];
3410 for (i
= 0; i
< recog_data
.n_dups
; i
++)
3411 *recog_data
.dup_loc
[i
] = substed_operand
[(int) recog_data
.dup_num
[i
]];
3413 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3414 re-recognize the insn. We do this in case we had a simple addition
3415 but now can do this as a load-address. This saves an insn in this
3417 If re-recognition fails, the old insn code number will still be used,
3418 and some register operands may have changed into PLUS expressions.
3419 These will be handled by find_reloads by loading them into a register
3424 /* If we aren't replacing things permanently and we changed something,
3425 make another copy to ensure that all the RTL is new. Otherwise
3426 things can go wrong if find_reload swaps commutative operands
3427 and one is inside RTL that has been copied while the other is not. */
3428 new_body
= old_body
;
3431 new_body
= copy_insn (old_body
);
3432 if (REG_NOTES (insn
))
3433 REG_NOTES (insn
) = copy_insn_1 (REG_NOTES (insn
));
3435 PATTERN (insn
) = new_body
;
3437 /* If we had a move insn but now we don't, rerecognize it. This will
3438 cause spurious re-recognition if the old move had a PARALLEL since
3439 the new one still will, but we can't call single_set without
3440 having put NEW_BODY into the insn and the re-recognition won't
3441 hurt in this rare case. */
3442 /* ??? Why this huge if statement - why don't we just rerecognize the
3446 && ((REG_P (SET_SRC (old_set
))
3447 && (GET_CODE (new_body
) != SET
3448 || !REG_P (SET_SRC (new_body
))))
3449 /* If this was a load from or store to memory, compare
3450 the MEM in recog_data.operand to the one in the insn.
3451 If they are not equal, then rerecognize the insn. */
3453 && ((MEM_P (SET_SRC (old_set
))
3454 && SET_SRC (old_set
) != recog_data
.operand
[1])
3455 || (MEM_P (SET_DEST (old_set
))
3456 && SET_DEST (old_set
) != recog_data
.operand
[0])))
3457 /* If this was an add insn before, rerecognize. */
3458 || GET_CODE (SET_SRC (old_set
)) == PLUS
))
3460 int new_icode
= recog (PATTERN (insn
), insn
, 0);
3462 INSN_CODE (insn
) = new_icode
;
3466 /* Restore the old body. If there were any changes to it, we made a copy
3467 of it while the changes were still in place, so we'll correctly return
3468 a modified insn below. */
3471 /* Restore the old body. */
3472 for (i
= 0; i
< recog_data
.n_operands
; i
++)
3473 /* Restoring a top-level match_parallel would clobber the new_body
3474 we installed in the insn. */
3475 if (recog_data
.operand_loc
[i
] != &PATTERN (insn
))
3476 *recog_data
.operand_loc
[i
] = orig_operand
[i
];
3477 for (i
= 0; i
< recog_data
.n_dups
; i
++)
3478 *recog_data
.dup_loc
[i
] = orig_operand
[(int) recog_data
.dup_num
[i
]];
3481 /* Update all elimination pairs to reflect the status after the current
3482 insn. The changes we make were determined by the earlier call to
3483 elimination_effects.
3485 We also detect cases where register elimination cannot be done,
3486 namely, if a register would be both changed and referenced outside a MEM
3487 in the resulting insn since such an insn is often undefined and, even if
3488 not, we cannot know what meaning will be given to it. Note that it is
3489 valid to have a register used in an address in an insn that changes it
3490 (presumably with a pre- or post-increment or decrement).
3492 If anything changes, return nonzero. */
3494 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
3496 if (maybe_ne (ep
->previous_offset
, ep
->offset
) && ep
->ref_outside_mem
)
3497 ep
->can_eliminate
= 0;
3499 ep
->ref_outside_mem
= 0;
3501 if (maybe_ne (ep
->previous_offset
, ep
->offset
))
3506 /* If we changed something, perform elimination in REG_NOTES. This is
3507 needed even when REPLACE is zero because a REG_DEAD note might refer
3508 to a register that we eliminate and could cause a different number
3509 of spill registers to be needed in the final reload pass than in
3511 if (val
&& REG_NOTES (insn
) != 0)
3513 = eliminate_regs_1 (REG_NOTES (insn
), VOIDmode
, REG_NOTES (insn
), true,
3519 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3520 register allocator. INSN is the instruction we need to examine, we perform
3521 eliminations in its operands and record cases where eliminating a reg with
3522 an invariant equivalence would add extra cost. */
3524 #pragma GCC diagnostic push
3525 #pragma GCC diagnostic warning "-Wmaybe-uninitialized"
3527 elimination_costs_in_insn (rtx_insn
*insn
)
3529 int icode
= recog_memoized (insn
);
3530 rtx old_body
= PATTERN (insn
);
3531 int insn_is_asm
= asm_noperands (old_body
) >= 0;
3532 rtx old_set
= single_set (insn
);
3534 rtx orig_operand
[MAX_RECOG_OPERANDS
];
3535 rtx orig_dup
[MAX_RECOG_OPERANDS
];
3536 struct elim_table
*ep
;
3537 rtx plus_src
, plus_cst_src
;
3540 if (! insn_is_asm
&& icode
< 0)
3542 gcc_assert (DEBUG_INSN_P (insn
)
3543 || GET_CODE (PATTERN (insn
)) == USE
3544 || GET_CODE (PATTERN (insn
)) == CLOBBER
3545 || GET_CODE (PATTERN (insn
)) == ASM_INPUT
);
3549 if (old_set
!= 0 && REG_P (SET_DEST (old_set
))
3550 && REGNO (SET_DEST (old_set
)) < FIRST_PSEUDO_REGISTER
)
3552 /* Check for setting an eliminable register. */
3553 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
3554 if (ep
->from_rtx
== SET_DEST (old_set
) && ep
->can_eliminate
)
3558 /* We allow one special case which happens to work on all machines we
3559 currently support: a single set with the source or a REG_EQUAL
3560 note being a PLUS of an eliminable register and a constant. */
3561 plus_src
= plus_cst_src
= 0;
3563 if (old_set
&& REG_P (SET_DEST (old_set
)))
3566 if (GET_CODE (SET_SRC (old_set
)) == PLUS
)
3567 plus_src
= SET_SRC (old_set
);
3568 /* First see if the source is of the form (plus (...) CST). */
3570 && CONST_INT_P (XEXP (plus_src
, 1)))
3571 plus_cst_src
= plus_src
;
3572 else if (REG_P (SET_SRC (old_set
))
3575 /* Otherwise, see if we have a REG_EQUAL note of the form
3576 (plus (...) CST). */
3578 for (links
= REG_NOTES (insn
); links
; links
= XEXP (links
, 1))
3580 if ((REG_NOTE_KIND (links
) == REG_EQUAL
3581 || REG_NOTE_KIND (links
) == REG_EQUIV
)
3582 && GET_CODE (XEXP (links
, 0)) == PLUS
3583 && CONST_INT_P (XEXP (XEXP (links
, 0), 1)))
3585 plus_cst_src
= XEXP (links
, 0);
3592 /* Determine the effects of this insn on elimination offsets. */
3593 elimination_effects (old_body
, VOIDmode
);
3595 /* Eliminate all eliminable registers occurring in operands that
3596 can be handled by reload. */
3597 extract_insn (insn
);
3598 int n_dups
= recog_data
.n_dups
;
3599 for (i
= 0; i
< n_dups
; i
++)
3600 orig_dup
[i
] = *recog_data
.dup_loc
[i
];
3602 int n_operands
= recog_data
.n_operands
;
3603 for (i
= 0; i
< n_operands
; i
++)
3605 orig_operand
[i
] = recog_data
.operand
[i
];
3607 /* For an asm statement, every operand is eliminable. */
3608 if (insn_is_asm
|| insn_data
[icode
].operand
[i
].eliminable
)
3610 bool is_set_src
, in_plus
;
3612 /* Check for setting a register that we know about. */
3613 if (recog_data
.operand_type
[i
] != OP_IN
3614 && REG_P (orig_operand
[i
]))
3616 /* If we are assigning to a register that can be eliminated, it
3617 must be as part of a PARALLEL, since the code above handles
3618 single SETs. We must indicate that we can no longer
3619 eliminate this reg. */
3620 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
];
3622 if (ep
->from_rtx
== orig_operand
[i
])
3623 ep
->can_eliminate
= 0;
3626 /* Companion to the above plus substitution, we can allow
3627 invariants as the source of a plain move. */
3629 if (old_set
&& recog_data
.operand_loc
[i
] == &SET_SRC (old_set
))
3631 if (is_set_src
&& !sets_reg_p
)
3632 note_reg_elim_costly (SET_SRC (old_set
), insn
);
3634 if (plus_src
&& sets_reg_p
3635 && (recog_data
.operand_loc
[i
] == &XEXP (plus_src
, 0)
3636 || recog_data
.operand_loc
[i
] == &XEXP (plus_src
, 1)))
3639 eliminate_regs_1 (recog_data
.operand
[i
], VOIDmode
,
3641 is_set_src
|| in_plus
, true);
3642 /* Terminate the search in check_eliminable_occurrences at
3644 *recog_data
.operand_loc
[i
] = 0;
3648 for (i
= 0; i
< n_dups
; i
++)
3649 *recog_data
.dup_loc
[i
]
3650 = *recog_data
.operand_loc
[(int) recog_data
.dup_num
[i
]];
3652 /* If any eliminable remain, they aren't eliminable anymore. */
3653 check_eliminable_occurrences (old_body
);
3655 /* Restore the old body. */
3656 for (i
= 0; i
< n_operands
; i
++)
3657 *recog_data
.operand_loc
[i
] = orig_operand
[i
];
3658 for (i
= 0; i
< n_dups
; i
++)
3659 *recog_data
.dup_loc
[i
] = orig_dup
[i
];
3661 /* Update all elimination pairs to reflect the status after the current
3662 insn. The changes we make were determined by the earlier call to
3663 elimination_effects. */
3665 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
3667 if (maybe_ne (ep
->previous_offset
, ep
->offset
) && ep
->ref_outside_mem
)
3668 ep
->can_eliminate
= 0;
3670 ep
->ref_outside_mem
= 0;
3675 #pragma GCC diagnostic pop
3677 /* Loop through all elimination pairs.
3678 Recalculate the number not at initial offset.
3680 Compute the maximum offset (minimum offset if the stack does not
3681 grow downward) for each elimination pair. */
3684 update_eliminable_offsets (void)
3686 struct elim_table
*ep
;
3688 num_not_at_initial_offset
= 0;
3689 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
3691 ep
->previous_offset
= ep
->offset
;
3692 if (ep
->can_eliminate
&& maybe_ne (ep
->offset
, ep
->initial_offset
))
3693 num_not_at_initial_offset
++;
3697 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3698 replacement we currently believe is valid, mark it as not eliminable if X
3699 modifies DEST in any way other than by adding a constant integer to it.
3701 If DEST is the frame pointer, we do nothing because we assume that
3702 all assignments to the hard frame pointer are nonlocal gotos and are being
3703 done at a time when they are valid and do not disturb anything else.
3704 Some machines want to eliminate a fake argument pointer with either the
3705 frame or stack pointer. Assignments to the hard frame pointer must not
3706 prevent this elimination.
3708 Called via note_stores from reload before starting its passes to scan
3709 the insns of the function. */
3712 mark_not_eliminable (rtx dest
, const_rtx x
, void *data ATTRIBUTE_UNUSED
)
3716 /* A SUBREG of a hard register here is just changing its mode. We should
3717 not see a SUBREG of an eliminable hard register, but check just in
3719 if (GET_CODE (dest
) == SUBREG
)
3720 dest
= SUBREG_REG (dest
);
3722 if (dest
== hard_frame_pointer_rtx
)
3725 for (i
= 0; i
< NUM_ELIMINABLE_REGS
; i
++)
3726 if (reg_eliminate
[i
].can_eliminate
&& dest
== reg_eliminate
[i
].to_rtx
3727 && (GET_CODE (x
) != SET
3728 || GET_CODE (SET_SRC (x
)) != PLUS
3729 || XEXP (SET_SRC (x
), 0) != dest
3730 || !CONST_INT_P (XEXP (SET_SRC (x
), 1))))
3732 reg_eliminate
[i
].can_eliminate_previous
3733 = reg_eliminate
[i
].can_eliminate
= 0;
3738 /* Verify that the initial elimination offsets did not change since the
3739 last call to set_initial_elim_offsets. This is used to catch cases
3740 where something illegal happened during reload_as_needed that could
3741 cause incorrect code to be generated if we did not check for it. */
3744 verify_initial_elim_offsets (void)
3747 struct elim_table
*ep
;
3749 if (!num_eliminable
)
3752 targetm
.compute_frame_layout ();
3753 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
3755 INITIAL_ELIMINATION_OFFSET (ep
->from
, ep
->to
, t
);
3756 if (maybe_ne (t
, ep
->initial_offset
))
3763 /* Reset all offsets on eliminable registers to their initial values. */
3766 set_initial_elim_offsets (void)
3768 struct elim_table
*ep
= reg_eliminate
;
3770 targetm
.compute_frame_layout ();
3771 for (; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
3773 INITIAL_ELIMINATION_OFFSET (ep
->from
, ep
->to
, ep
->initial_offset
);
3774 ep
->previous_offset
= ep
->offset
= ep
->initial_offset
;
3777 num_not_at_initial_offset
= 0;
3780 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3783 set_initial_eh_label_offset (rtx label
)
3785 set_label_offsets (label
, NULL
, 1);
3788 /* Initialize the known label offsets.
3789 Set a known offset for each forced label to be at the initial offset
3790 of each elimination. We do this because we assume that all
3791 computed jumps occur from a location where each elimination is
3792 at its initial offset.
3793 For all other labels, show that we don't know the offsets. */
3796 set_initial_label_offsets (void)
3798 memset (offsets_known_at
, 0, num_labels
);
3802 FOR_EACH_VEC_SAFE_ELT (forced_labels
, i
, insn
)
3803 set_label_offsets (insn
, NULL
, 1);
3805 for (rtx_insn_list
*x
= nonlocal_goto_handler_labels
; x
; x
= x
->next ())
3807 set_label_offsets (x
->insn (), NULL
, 1);
3809 for_each_eh_label (set_initial_eh_label_offset
);
3812 /* Set all elimination offsets to the known values for the code label given
3816 set_offsets_for_label (rtx_insn
*insn
)
3819 int label_nr
= CODE_LABEL_NUMBER (insn
);
3820 struct elim_table
*ep
;
3822 num_not_at_initial_offset
= 0;
3823 for (i
= 0, ep
= reg_eliminate
; i
< NUM_ELIMINABLE_REGS
; ep
++, i
++)
3825 ep
->offset
= ep
->previous_offset
3826 = offsets_at
[label_nr
- first_label_num
][i
];
3827 if (ep
->can_eliminate
&& maybe_ne (ep
->offset
, ep
->initial_offset
))
3828 num_not_at_initial_offset
++;
3832 /* See if anything that happened changes which eliminations are valid.
3833 For example, on the SPARC, whether or not the frame pointer can
3834 be eliminated can depend on what registers have been used. We need
3835 not check some conditions again (such as flag_omit_frame_pointer)
3836 since they can't have changed. */
3839 update_eliminables (HARD_REG_SET
*pset
)
3841 int previous_frame_pointer_needed
= frame_pointer_needed
;
3842 struct elim_table
*ep
;
3844 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
3845 if ((ep
->from
== HARD_FRAME_POINTER_REGNUM
3846 && targetm
.frame_pointer_required ())
3847 || ! targetm
.can_eliminate (ep
->from
, ep
->to
)
3849 ep
->can_eliminate
= 0;
3851 /* Look for the case where we have discovered that we can't replace
3852 register A with register B and that means that we will now be
3853 trying to replace register A with register C. This means we can
3854 no longer replace register C with register B and we need to disable
3855 such an elimination, if it exists. This occurs often with A == ap,
3856 B == sp, and C == fp. */
3858 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
3860 struct elim_table
*op
;
3863 if (! ep
->can_eliminate
&& ep
->can_eliminate_previous
)
3865 /* Find the current elimination for ep->from, if there is a
3867 for (op
= reg_eliminate
;
3868 op
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; op
++)
3869 if (op
->from
== ep
->from
&& op
->can_eliminate
)
3875 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3877 for (op
= reg_eliminate
;
3878 op
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; op
++)
3879 if (op
->from
== new_to
&& op
->to
== ep
->to
)
3880 op
->can_eliminate
= 0;
3884 /* See if any registers that we thought we could eliminate the previous
3885 time are no longer eliminable. If so, something has changed and we
3886 must spill the register. Also, recompute the number of eliminable
3887 registers and see if the frame pointer is needed; it is if there is
3888 no elimination of the frame pointer that we can perform. */
3890 frame_pointer_needed
= 1;
3891 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
3893 if (ep
->can_eliminate
3894 && ep
->from
== FRAME_POINTER_REGNUM
3895 && ep
->to
!= HARD_FRAME_POINTER_REGNUM
3896 && (! SUPPORTS_STACK_ALIGNMENT
3897 || ! crtl
->stack_realign_needed
))
3898 frame_pointer_needed
= 0;
3900 if (! ep
->can_eliminate
&& ep
->can_eliminate_previous
)
3902 ep
->can_eliminate_previous
= 0;
3903 SET_HARD_REG_BIT (*pset
, ep
->from
);
3908 /* If we didn't need a frame pointer last time, but we do now, spill
3909 the hard frame pointer. */
3910 if (frame_pointer_needed
&& ! previous_frame_pointer_needed
)
3911 SET_HARD_REG_BIT (*pset
, HARD_FRAME_POINTER_REGNUM
);
3914 /* Call update_eliminables an spill any registers we can't eliminate anymore.
3915 Return true iff a register was spilled. */
3918 update_eliminables_and_spill (void)
3921 bool did_spill
= false;
3922 HARD_REG_SET to_spill
;
3923 CLEAR_HARD_REG_SET (to_spill
);
3924 update_eliminables (&to_spill
);
3925 used_spill_regs
&= ~to_spill
;
3927 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3928 if (TEST_HARD_REG_BIT (to_spill
, i
))
3930 spill_hard_reg (i
, 1);
3933 /* Regardless of the state of spills, if we previously had
3934 a register that we thought we could eliminate, but now
3935 cannot eliminate, we must run another pass.
3937 Consider pseudos which have an entry in reg_equiv_* which
3938 reference an eliminable register. We must make another pass
3939 to update reg_equiv_* so that we do not substitute in the
3940 old value from when we thought the elimination could be
3946 /* Return true if X is used as the target register of an elimination. */
3949 elimination_target_reg_p (rtx x
)
3951 struct elim_table
*ep
;
3953 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
3954 if (ep
->to_rtx
== x
&& ep
->can_eliminate
)
3960 /* Initialize the table of registers to eliminate.
3961 Pre-condition: global flag frame_pointer_needed has been set before
3962 calling this function. */
3965 init_elim_table (void)
3967 struct elim_table
*ep
;
3968 const struct elim_table_1
*ep1
;
3971 reg_eliminate
= XCNEWVEC (struct elim_table
, NUM_ELIMINABLE_REGS
);
3975 for (ep
= reg_eliminate
, ep1
= reg_eliminate_1
;
3976 ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++, ep1
++)
3978 ep
->from
= ep1
->from
;
3980 ep
->can_eliminate
= ep
->can_eliminate_previous
3981 = (targetm
.can_eliminate (ep
->from
, ep
->to
)
3982 && ! (ep
->to
== STACK_POINTER_REGNUM
3983 && frame_pointer_needed
3984 && (! SUPPORTS_STACK_ALIGNMENT
3985 || ! stack_realign_fp
)));
3988 /* Count the number of eliminable registers and build the FROM and TO
3989 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
3990 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3991 We depend on this. */
3992 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
3994 num_eliminable
+= ep
->can_eliminate
;
3995 ep
->from_rtx
= gen_rtx_REG (Pmode
, ep
->from
);
3996 ep
->to_rtx
= gen_rtx_REG (Pmode
, ep
->to
);
4000 /* Find all the pseudo registers that didn't get hard regs
4001 but do have known equivalent constants or memory slots.
4002 These include parameters (known equivalent to parameter slots)
4003 and cse'd or loop-moved constant memory addresses.
4005 Record constant equivalents in reg_equiv_constant
4006 so they will be substituted by find_reloads.
4007 Record memory equivalents in reg_mem_equiv so they can
4008 be substituted eventually by altering the REG-rtx's. */
4011 init_eliminable_invariants (rtx_insn
*first
, bool do_subregs
)
4018 reg_max_ref_mode
= XCNEWVEC (machine_mode
, max_regno
);
4020 reg_max_ref_mode
= NULL
;
4022 num_eliminable_invariants
= 0;
4024 first_label_num
= get_first_label_num ();
4025 num_labels
= max_label_num () - first_label_num
;
4027 /* Allocate the tables used to store offset information at labels. */
4028 offsets_known_at
= XNEWVEC (char, num_labels
);
4029 offsets_at
= (poly_int64 (*)[NUM_ELIMINABLE_REGS
])
4030 xmalloc (num_labels
* NUM_ELIMINABLE_REGS
* sizeof (poly_int64
));
4032 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4033 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4034 find largest such for each pseudo. FIRST is the head of the insn
4037 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
4039 rtx set
= single_set (insn
);
4041 /* We may introduce USEs that we want to remove at the end, so
4042 we'll mark them with QImode. Make sure there are no
4043 previously-marked insns left by say regmove. */
4044 if (INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == USE
4045 && GET_MODE (insn
) != VOIDmode
)
4046 PUT_MODE (insn
, VOIDmode
);
4048 if (do_subregs
&& NONDEBUG_INSN_P (insn
))
4049 scan_paradoxical_subregs (PATTERN (insn
));
4051 if (set
!= 0 && REG_P (SET_DEST (set
)))
4053 rtx note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
);
4059 i
= REGNO (SET_DEST (set
));
4062 if (i
<= LAST_VIRTUAL_REGISTER
)
4065 /* If flag_pic and we have constant, verify it's legitimate. */
4067 || !flag_pic
|| LEGITIMATE_PIC_OPERAND_P (x
))
4069 /* It can happen that a REG_EQUIV note contains a MEM
4070 that is not a legitimate memory operand. As later
4071 stages of reload assume that all addresses found
4072 in the reg_equiv_* arrays were originally legitimate,
4073 we ignore such REG_EQUIV notes. */
4074 if (memory_operand (x
, VOIDmode
))
4076 /* Always unshare the equivalence, so we can
4077 substitute into this insn without touching the
4079 reg_equiv_memory_loc (i
) = copy_rtx (x
);
4081 else if (function_invariant_p (x
))
4085 mode
= GET_MODE (SET_DEST (set
));
4086 if (GET_CODE (x
) == PLUS
)
4088 /* This is PLUS of frame pointer and a constant,
4089 and might be shared. Unshare it. */
4090 reg_equiv_invariant (i
) = copy_rtx (x
);
4091 num_eliminable_invariants
++;
4093 else if (x
== frame_pointer_rtx
|| x
== arg_pointer_rtx
)
4095 reg_equiv_invariant (i
) = x
;
4096 num_eliminable_invariants
++;
4098 else if (targetm
.legitimate_constant_p (mode
, x
))
4099 reg_equiv_constant (i
) = x
;
4102 reg_equiv_memory_loc (i
) = force_const_mem (mode
, x
);
4103 if (! reg_equiv_memory_loc (i
))
4104 reg_equiv_init (i
) = NULL
;
4109 reg_equiv_init (i
) = NULL
;
4114 reg_equiv_init (i
) = NULL
;
4119 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
4120 if (reg_equiv_init (i
))
4122 fprintf (dump_file
, "init_insns for %u: ", i
);
4123 print_inline_rtx (dump_file
, reg_equiv_init (i
), 20);
4124 fprintf (dump_file
, "\n");
4128 /* Indicate that we no longer have known memory locations or constants.
4129 Free all data involved in tracking these. */
4132 free_reg_equiv (void)
4136 free (offsets_known_at
);
4139 offsets_known_at
= 0;
4141 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4142 if (reg_equiv_alt_mem_list (i
))
4143 free_EXPR_LIST_list (®_equiv_alt_mem_list (i
));
4144 vec_free (reg_equivs
);
4147 /* Kick all pseudos out of hard register REGNO.
4149 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4150 because we found we can't eliminate some register. In the case, no pseudos
4151 are allowed to be in the register, even if they are only in a block that
4152 doesn't require spill registers, unlike the case when we are spilling this
4153 hard reg to produce another spill register.
4155 Return nonzero if any pseudos needed to be kicked out. */
4158 spill_hard_reg (unsigned int regno
, int cant_eliminate
)
4164 SET_HARD_REG_BIT (bad_spill_regs_global
, regno
);
4165 df_set_regs_ever_live (regno
, true);
4168 /* Spill every pseudo reg that was allocated to this reg
4169 or to something that overlaps this reg. */
4171 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
4172 if (reg_renumber
[i
] >= 0
4173 && (unsigned int) reg_renumber
[i
] <= regno
4174 && end_hard_regno (PSEUDO_REGNO_MODE (i
), reg_renumber
[i
]) > regno
)
4175 SET_REGNO_REG_SET (&spilled_pseudos
, i
);
4178 /* After spill_hard_reg was called and/or find_reload_regs was run for all
4179 insns that need reloads, this function is used to actually spill pseudo
4180 registers and try to reallocate them. It also sets up the spill_regs
4181 array for use by choose_reload_regs.
4183 GLOBAL nonzero means we should attempt to reallocate any pseudo registers
4184 that we displace from hard registers. */
4187 finish_spills (int global
)
4189 class insn_chain
*chain
;
4190 int something_changed
= 0;
4192 reg_set_iterator rsi
;
4194 /* Build the spill_regs array for the function. */
4195 /* If there are some registers still to eliminate and one of the spill regs
4196 wasn't ever used before, additional stack space may have to be
4197 allocated to store this register. Thus, we may have changed the offset
4198 between the stack and frame pointers, so mark that something has changed.
4200 One might think that we need only set VAL to 1 if this is a call-used
4201 register. However, the set of registers that must be saved by the
4202 prologue is not identical to the call-used set. For example, the
4203 register used by the call insn for the return PC is a call-used register,
4204 but must be saved by the prologue. */
4207 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4208 if (TEST_HARD_REG_BIT (used_spill_regs
, i
))
4210 spill_reg_order
[i
] = n_spills
;
4211 spill_regs
[n_spills
++] = i
;
4212 if (num_eliminable
&& ! df_regs_ever_live_p (i
))
4213 something_changed
= 1;
4214 df_set_regs_ever_live (i
, true);
4217 spill_reg_order
[i
] = -1;
4219 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos
, FIRST_PSEUDO_REGISTER
, i
, rsi
)
4220 if (reg_renumber
[i
] >= 0)
4222 SET_HARD_REG_BIT (pseudo_previous_regs
[i
], reg_renumber
[i
]);
4223 /* Mark it as no longer having a hard register home. */
4224 reg_renumber
[i
] = -1;
4225 if (ira_conflicts_p
)
4226 /* Inform IRA about the change. */
4227 ira_mark_allocation_change (i
);
4228 /* We will need to scan everything again. */
4229 something_changed
= 1;
4232 /* Retry global register allocation if possible. */
4233 if (global
&& ira_conflicts_p
)
4237 memset (pseudo_forbidden_regs
, 0, max_regno
* sizeof (HARD_REG_SET
));
4238 /* For every insn that needs reloads, set the registers used as spill
4239 regs in pseudo_forbidden_regs for every pseudo live across the
4241 for (chain
= insns_need_reload
; chain
; chain
= chain
->next_need_reload
)
4243 EXECUTE_IF_SET_IN_REG_SET
4244 (&chain
->live_throughout
, FIRST_PSEUDO_REGISTER
, i
, rsi
)
4246 pseudo_forbidden_regs
[i
] |= chain
->used_spill_regs
;
4248 EXECUTE_IF_SET_IN_REG_SET
4249 (&chain
->dead_or_set
, FIRST_PSEUDO_REGISTER
, i
, rsi
)
4251 pseudo_forbidden_regs
[i
] |= chain
->used_spill_regs
;
4255 /* Retry allocating the pseudos spilled in IRA and the
4256 reload. For each reg, merge the various reg sets that
4257 indicate which hard regs can't be used, and call
4258 ira_reassign_pseudos. */
4259 for (n
= 0, i
= FIRST_PSEUDO_REGISTER
; i
< (unsigned) max_regno
; i
++)
4260 if (reg_old_renumber
[i
] != reg_renumber
[i
])
4262 if (reg_renumber
[i
] < 0)
4263 temp_pseudo_reg_arr
[n
++] = i
;
4265 CLEAR_REGNO_REG_SET (&spilled_pseudos
, i
);
4267 if (ira_reassign_pseudos (temp_pseudo_reg_arr
, n
,
4268 bad_spill_regs_global
,
4269 pseudo_forbidden_regs
, pseudo_previous_regs
,
4271 something_changed
= 1;
4273 /* Fix up the register information in the insn chain.
4274 This involves deleting those of the spilled pseudos which did not get
4275 a new hard register home from the live_{before,after} sets. */
4276 for (chain
= reload_insn_chain
; chain
; chain
= chain
->next
)
4278 HARD_REG_SET used_by_pseudos
;
4279 HARD_REG_SET used_by_pseudos2
;
4281 if (! ira_conflicts_p
)
4283 /* Don't do it for IRA because IRA and the reload still can
4284 assign hard registers to the spilled pseudos on next
4285 reload iterations. */
4286 AND_COMPL_REG_SET (&chain
->live_throughout
, &spilled_pseudos
);
4287 AND_COMPL_REG_SET (&chain
->dead_or_set
, &spilled_pseudos
);
4289 /* Mark any unallocated hard regs as available for spills. That
4290 makes inheritance work somewhat better. */
4291 if (chain
->need_reload
)
4293 REG_SET_TO_HARD_REG_SET (used_by_pseudos
, &chain
->live_throughout
);
4294 REG_SET_TO_HARD_REG_SET (used_by_pseudos2
, &chain
->dead_or_set
);
4295 used_by_pseudos
|= used_by_pseudos2
;
4297 compute_use_by_pseudos (&used_by_pseudos
, &chain
->live_throughout
);
4298 compute_use_by_pseudos (&used_by_pseudos
, &chain
->dead_or_set
);
4299 /* Value of chain->used_spill_regs from previous iteration
4300 may be not included in the value calculated here because
4301 of possible removing caller-saves insns (see function
4302 delete_caller_save_insns. */
4303 chain
->used_spill_regs
= ~used_by_pseudos
& used_spill_regs
;
4307 CLEAR_REG_SET (&changed_allocation_pseudos
);
4308 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4309 for (i
= FIRST_PSEUDO_REGISTER
; i
< (unsigned)max_regno
; i
++)
4311 int regno
= reg_renumber
[i
];
4312 if (reg_old_renumber
[i
] == regno
)
4315 SET_REGNO_REG_SET (&changed_allocation_pseudos
, i
);
4317 alter_reg (i
, reg_old_renumber
[i
], false);
4318 reg_old_renumber
[i
] = regno
;
4322 fprintf (dump_file
, " Register %d now on stack.\n\n", i
);
4324 fprintf (dump_file
, " Register %d now in %d.\n\n",
4325 i
, reg_renumber
[i
]);
4329 return something_changed
;
4332 /* Find all paradoxical subregs within X and update reg_max_ref_mode. */
4335 scan_paradoxical_subregs (rtx x
)
4339 enum rtx_code code
= GET_CODE (x
);
4354 if (REG_P (SUBREG_REG (x
)))
4356 unsigned int regno
= REGNO (SUBREG_REG (x
));
4357 if (partial_subreg_p (reg_max_ref_mode
[regno
], GET_MODE (x
)))
4359 reg_max_ref_mode
[regno
] = GET_MODE (x
);
4360 mark_home_live_1 (regno
, GET_MODE (x
));
4369 fmt
= GET_RTX_FORMAT (code
);
4370 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4373 scan_paradoxical_subregs (XEXP (x
, i
));
4374 else if (fmt
[i
] == 'E')
4377 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4378 scan_paradoxical_subregs (XVECEXP (x
, i
, j
));
4383 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4384 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4385 and apply the corresponding narrowing subreg to *OTHER_PTR.
4386 Return true if the operands were changed, false otherwise. */
4389 strip_paradoxical_subreg (rtx
*op_ptr
, rtx
*other_ptr
)
4391 rtx op
, inner
, other
, tem
;
4394 if (!paradoxical_subreg_p (op
))
4396 inner
= SUBREG_REG (op
);
4399 tem
= gen_lowpart_common (GET_MODE (inner
), other
);
4403 /* If the lowpart operation turned a hard register into a subreg,
4404 rather than simplifying it to another hard register, then the
4405 mode change cannot be properly represented. For example, OTHER
4406 might be valid in its current mode, but not in the new one. */
4407 if (GET_CODE (tem
) == SUBREG
4409 && HARD_REGISTER_P (other
))
4417 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4418 examine all of the reload insns between PREV and NEXT exclusive, and
4419 annotate all that may trap. */
4422 fixup_eh_region_note (rtx_insn
*insn
, rtx_insn
*prev
, rtx_insn
*next
)
4424 rtx note
= find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
);
4427 if (!insn_could_throw_p (insn
))
4428 remove_note (insn
, note
);
4429 copy_reg_eh_region_note_forward (note
, NEXT_INSN (prev
), next
);
4432 /* Reload pseudo-registers into hard regs around each insn as needed.
4433 Additional register load insns are output before the insn that needs it
4434 and perhaps store insns after insns that modify the reloaded pseudo reg.
4436 reg_last_reload_reg and reg_reloaded_contents keep track of
4437 which registers are already available in reload registers.
4438 We update these for the reloads that we perform,
4439 as the insns are scanned. */
4442 reload_as_needed (int live_known
)
4444 class insn_chain
*chain
;
4450 memset (spill_reg_rtx
, 0, sizeof spill_reg_rtx
);
4451 memset (spill_reg_store
, 0, sizeof spill_reg_store
);
4452 reg_last_reload_reg
= XCNEWVEC (rtx
, max_regno
);
4453 INIT_REG_SET (®_has_output_reload
);
4454 CLEAR_HARD_REG_SET (reg_reloaded_valid
);
4456 set_initial_elim_offsets ();
4458 /* Generate a marker insn that we will move around. */
4459 marker
= emit_note (NOTE_INSN_DELETED
);
4460 unlink_insn_chain (marker
, marker
);
4462 for (chain
= reload_insn_chain
; chain
; chain
= chain
->next
)
4465 rtx_insn
*insn
= chain
->insn
;
4466 rtx_insn
*old_next
= NEXT_INSN (insn
);
4468 rtx_insn
*old_prev
= PREV_INSN (insn
);
4471 if (will_delete_init_insn_p (insn
))
4474 /* If we pass a label, copy the offsets from the label information
4475 into the current offsets of each elimination. */
4477 set_offsets_for_label (insn
);
4479 else if (INSN_P (insn
))
4481 regset_head regs_to_forget
;
4482 INIT_REG_SET (®s_to_forget
);
4483 note_stores (insn
, forget_old_reloads_1
, ®s_to_forget
);
4485 /* If this is a USE and CLOBBER of a MEM, ensure that any
4486 references to eliminable registers have been removed. */
4488 if ((GET_CODE (PATTERN (insn
)) == USE
4489 || GET_CODE (PATTERN (insn
)) == CLOBBER
)
4490 && MEM_P (XEXP (PATTERN (insn
), 0)))
4491 XEXP (XEXP (PATTERN (insn
), 0), 0)
4492 = eliminate_regs (XEXP (XEXP (PATTERN (insn
), 0), 0),
4493 GET_MODE (XEXP (PATTERN (insn
), 0)),
4496 /* If we need to do register elimination processing, do so.
4497 This might delete the insn, in which case we are done. */
4498 if ((num_eliminable
|| num_eliminable_invariants
) && chain
->need_elim
)
4500 eliminate_regs_in_insn (insn
, 1);
4503 update_eliminable_offsets ();
4504 CLEAR_REG_SET (®s_to_forget
);
4509 /* If need_elim is nonzero but need_reload is zero, one might think
4510 that we could simply set n_reloads to 0. However, find_reloads
4511 could have done some manipulation of the insn (such as swapping
4512 commutative operands), and these manipulations are lost during
4513 the first pass for every insn that needs register elimination.
4514 So the actions of find_reloads must be redone here. */
4516 if (! chain
->need_elim
&& ! chain
->need_reload
4517 && ! chain
->need_operand_change
)
4519 /* First find the pseudo regs that must be reloaded for this insn.
4520 This info is returned in the tables reload_... (see reload.h).
4521 Also modify the body of INSN by substituting RELOAD
4522 rtx's for those pseudo regs. */
4525 CLEAR_REG_SET (®_has_output_reload
);
4526 CLEAR_HARD_REG_SET (reg_is_output_reload
);
4528 find_reloads (insn
, 1, spill_indirect_levels
, live_known
,
4534 rtx_insn
*next
= NEXT_INSN (insn
);
4536 /* ??? PREV can get deleted by reload inheritance.
4537 Work around this by emitting a marker note. */
4538 prev
= PREV_INSN (insn
);
4539 reorder_insns_nobb (marker
, marker
, prev
);
4541 /* Now compute which reload regs to reload them into. Perhaps
4542 reusing reload regs from previous insns, or else output
4543 load insns to reload them. Maybe output store insns too.
4544 Record the choices of reload reg in reload_reg_rtx. */
4545 choose_reload_regs (chain
);
4547 /* Generate the insns to reload operands into or out of
4548 their reload regs. */
4549 emit_reload_insns (chain
);
4551 /* Substitute the chosen reload regs from reload_reg_rtx
4552 into the insn's body (or perhaps into the bodies of other
4553 load and store insn that we just made for reloading
4554 and that we moved the structure into). */
4555 subst_reloads (insn
);
4557 prev
= PREV_INSN (marker
);
4558 unlink_insn_chain (marker
, marker
);
4560 /* Adjust the exception region notes for loads and stores. */
4561 if (cfun
->can_throw_non_call_exceptions
&& !CALL_P (insn
))
4562 fixup_eh_region_note (insn
, prev
, next
);
4564 /* Adjust the location of REG_ARGS_SIZE. */
4565 rtx p
= find_reg_note (insn
, REG_ARGS_SIZE
, NULL_RTX
);
4568 remove_note (insn
, p
);
4569 fixup_args_size_notes (prev
, PREV_INSN (next
),
4573 /* If this was an ASM, make sure that all the reload insns
4574 we have generated are valid. If not, give an error
4576 if (asm_noperands (PATTERN (insn
)) >= 0)
4577 for (rtx_insn
*p
= NEXT_INSN (prev
);
4580 if (p
!= insn
&& INSN_P (p
)
4581 && GET_CODE (PATTERN (p
)) != USE
4582 && (recog_memoized (p
) < 0
4583 || (extract_insn (p
),
4584 !(constrain_operands (1,
4585 get_enabled_alternatives (p
))))))
4587 error_for_asm (insn
,
4588 "%<asm%> operand requires "
4589 "impossible reload");
4594 if (num_eliminable
&& chain
->need_elim
)
4595 update_eliminable_offsets ();
4597 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4598 is no longer validly lying around to save a future reload.
4599 Note that this does not detect pseudos that were reloaded
4600 for this insn in order to be stored in
4601 (obeying register constraints). That is correct; such reload
4602 registers ARE still valid. */
4603 forget_marked_reloads (®s_to_forget
);
4604 CLEAR_REG_SET (®s_to_forget
);
4606 /* There may have been CLOBBER insns placed after INSN. So scan
4607 between INSN and NEXT and use them to forget old reloads. */
4608 for (rtx_insn
*x
= NEXT_INSN (insn
); x
!= old_next
; x
= NEXT_INSN (x
))
4609 if (NONJUMP_INSN_P (x
) && GET_CODE (PATTERN (x
)) == CLOBBER
)
4610 note_stores (x
, forget_old_reloads_1
, NULL
);
4613 /* Likewise for regs altered by auto-increment in this insn.
4614 REG_INC notes have been changed by reloading:
4615 find_reloads_address_1 records substitutions for them,
4616 which have been performed by subst_reloads above. */
4617 for (i
= n_reloads
- 1; i
>= 0; i
--)
4619 rtx in_reg
= rld
[i
].in_reg
;
4622 enum rtx_code code
= GET_CODE (in_reg
);
4623 /* PRE_INC / PRE_DEC will have the reload register ending up
4624 with the same value as the stack slot, but that doesn't
4625 hold true for POST_INC / POST_DEC. Either we have to
4626 convert the memory access to a true POST_INC / POST_DEC,
4627 or we can't use the reload register for inheritance. */
4628 if ((code
== POST_INC
|| code
== POST_DEC
)
4629 && TEST_HARD_REG_BIT (reg_reloaded_valid
,
4630 REGNO (rld
[i
].reg_rtx
))
4631 /* Make sure it is the inc/dec pseudo, and not
4632 some other (e.g. output operand) pseudo. */
4633 && ((unsigned) reg_reloaded_contents
[REGNO (rld
[i
].reg_rtx
)]
4634 == REGNO (XEXP (in_reg
, 0))))
4637 rtx reload_reg
= rld
[i
].reg_rtx
;
4638 machine_mode mode
= GET_MODE (reload_reg
);
4642 for (p
= PREV_INSN (old_next
); p
!= prev
; p
= PREV_INSN (p
))
4644 /* We really want to ignore REG_INC notes here, so
4645 use PATTERN (p) as argument to reg_set_p . */
4646 if (reg_set_p (reload_reg
, PATTERN (p
)))
4648 n
= count_occurrences (PATTERN (p
), reload_reg
, 0);
4654 = gen_rtx_fmt_e (code
, mode
, reload_reg
);
4656 validate_replace_rtx_group (reload_reg
,
4658 n
= verify_changes (0);
4660 /* We must also verify that the constraints
4661 are met after the replacement. Make sure
4662 extract_insn is only called for an insn
4663 where the replacements were found to be
4668 n
= constrain_operands (1,
4669 get_enabled_alternatives (p
));
4672 /* If the constraints were not met, then
4673 undo the replacement, else confirm it. */
4677 confirm_change_group ();
4683 add_reg_note (p
, REG_INC
, reload_reg
);
4684 /* Mark this as having an output reload so that the
4685 REG_INC processing code below won't invalidate
4686 the reload for inheritance. */
4687 SET_HARD_REG_BIT (reg_is_output_reload
,
4688 REGNO (reload_reg
));
4689 SET_REGNO_REG_SET (®_has_output_reload
,
4690 REGNO (XEXP (in_reg
, 0)));
4693 forget_old_reloads_1 (XEXP (in_reg
, 0), NULL_RTX
,
4696 else if ((code
== PRE_INC
|| code
== PRE_DEC
)
4697 && TEST_HARD_REG_BIT (reg_reloaded_valid
,
4698 REGNO (rld
[i
].reg_rtx
))
4699 /* Make sure it is the inc/dec pseudo, and not
4700 some other (e.g. output operand) pseudo. */
4701 && ((unsigned) reg_reloaded_contents
[REGNO (rld
[i
].reg_rtx
)]
4702 == REGNO (XEXP (in_reg
, 0))))
4704 SET_HARD_REG_BIT (reg_is_output_reload
,
4705 REGNO (rld
[i
].reg_rtx
));
4706 SET_REGNO_REG_SET (®_has_output_reload
,
4707 REGNO (XEXP (in_reg
, 0)));
4709 else if (code
== PRE_INC
|| code
== PRE_DEC
4710 || code
== POST_INC
|| code
== POST_DEC
)
4712 int in_regno
= REGNO (XEXP (in_reg
, 0));
4714 if (reg_last_reload_reg
[in_regno
] != NULL_RTX
)
4717 bool forget_p
= true;
4719 in_hard_regno
= REGNO (reg_last_reload_reg
[in_regno
]);
4720 if (TEST_HARD_REG_BIT (reg_reloaded_valid
,
4723 for (rtx_insn
*x
= (old_prev
?
4724 NEXT_INSN (old_prev
) : insn
);
4727 if (x
== reg_reloaded_insn
[in_hard_regno
])
4733 /* If for some reasons, we didn't set up
4734 reg_last_reload_reg in this insn,
4735 invalidate inheritance from previous
4736 insns for the incremented/decremented
4737 register. Such registers will be not in
4738 reg_has_output_reload. Invalidate it
4739 also if the corresponding element in
4740 reg_reloaded_insn is also
4743 forget_old_reloads_1 (XEXP (in_reg
, 0),
4749 /* If a pseudo that got a hard register is auto-incremented,
4750 we must purge records of copying it into pseudos without
4752 for (rtx x
= REG_NOTES (insn
); x
; x
= XEXP (x
, 1))
4753 if (REG_NOTE_KIND (x
) == REG_INC
)
4755 /* See if this pseudo reg was reloaded in this insn.
4756 If so, its last-reload info is still valid
4757 because it is based on this insn's reload. */
4758 for (i
= 0; i
< n_reloads
; i
++)
4759 if (rld
[i
].out
== XEXP (x
, 0))
4763 forget_old_reloads_1 (XEXP (x
, 0), NULL_RTX
, NULL
);
4767 /* A reload reg's contents are unknown after a label. */
4769 CLEAR_HARD_REG_SET (reg_reloaded_valid
);
4771 /* Don't assume a reload reg is still good after a call insn
4772 if it is a call-used reg, or if it contains a value that will
4773 be partially clobbered by the call. */
4774 else if (CALL_P (insn
))
4777 &= ~insn_callee_abi (insn
).full_and_partial_reg_clobbers ();
4779 /* If this is a call to a setjmp-type function, we must not
4780 reuse any reload reg contents across the call; that will
4781 just be clobbered by other uses of the register in later
4782 code, before the longjmp. */
4783 if (find_reg_note (insn
, REG_SETJMP
, NULL_RTX
))
4784 CLEAR_HARD_REG_SET (reg_reloaded_valid
);
4789 free (reg_last_reload_reg
);
4790 CLEAR_REG_SET (®_has_output_reload
);
4793 /* Discard all record of any value reloaded from X,
4794 or reloaded in X from someplace else;
4795 unless X is an output reload reg of the current insn.
4797 X may be a hard reg (the reload reg)
4798 or it may be a pseudo reg that was reloaded from.
4800 When DATA is non-NULL just mark the registers in regset
4801 to be forgotten later. */
4804 forget_old_reloads_1 (rtx x
, const_rtx
, void *data
)
4808 regset regs
= (regset
) data
;
4810 /* note_stores does give us subregs of hard regs,
4811 subreg_regno_offset requires a hard reg. */
4812 while (GET_CODE (x
) == SUBREG
)
4814 /* We ignore the subreg offset when calculating the regno,
4815 because we are using the entire underlying hard register
4825 if (regno
>= FIRST_PSEUDO_REGISTER
)
4832 /* Storing into a spilled-reg invalidates its contents.
4833 This can happen if a block-local pseudo is allocated to that reg
4834 and it wasn't spilled because this block's total need is 0.
4835 Then some insn might have an optional reload and use this reg. */
4837 for (i
= 0; i
< nr
; i
++)
4838 /* But don't do this if the reg actually serves as an output
4839 reload reg in the current instruction. */
4841 || ! TEST_HARD_REG_BIT (reg_is_output_reload
, regno
+ i
))
4843 CLEAR_HARD_REG_BIT (reg_reloaded_valid
, regno
+ i
);
4844 spill_reg_store
[regno
+ i
] = 0;
4850 SET_REGNO_REG_SET (regs
, regno
+ nr
);
4853 /* Since value of X has changed,
4854 forget any value previously copied from it. */
4857 /* But don't forget a copy if this is the output reload
4858 that establishes the copy's validity. */
4860 || !REGNO_REG_SET_P (®_has_output_reload
, regno
+ nr
))
4861 reg_last_reload_reg
[regno
+ nr
] = 0;
4865 /* Forget the reloads marked in regset by previous function. */
4867 forget_marked_reloads (regset regs
)
4870 reg_set_iterator rsi
;
4871 EXECUTE_IF_SET_IN_REG_SET (regs
, 0, reg
, rsi
)
4873 if (reg
< FIRST_PSEUDO_REGISTER
4874 /* But don't do this if the reg actually serves as an output
4875 reload reg in the current instruction. */
4877 || ! TEST_HARD_REG_BIT (reg_is_output_reload
, reg
)))
4879 CLEAR_HARD_REG_BIT (reg_reloaded_valid
, reg
);
4880 spill_reg_store
[reg
] = 0;
4883 || !REGNO_REG_SET_P (®_has_output_reload
, reg
))
4884 reg_last_reload_reg
[reg
] = 0;
4888 /* The following HARD_REG_SETs indicate when each hard register is
4889 used for a reload of various parts of the current insn. */
4891 /* If reg is unavailable for all reloads. */
4892 static HARD_REG_SET reload_reg_unavailable
;
4893 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4894 static HARD_REG_SET reload_reg_used
;
4895 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4896 static HARD_REG_SET reload_reg_used_in_input_addr
[MAX_RECOG_OPERANDS
];
4897 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4898 static HARD_REG_SET reload_reg_used_in_inpaddr_addr
[MAX_RECOG_OPERANDS
];
4899 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4900 static HARD_REG_SET reload_reg_used_in_output_addr
[MAX_RECOG_OPERANDS
];
4901 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4902 static HARD_REG_SET reload_reg_used_in_outaddr_addr
[MAX_RECOG_OPERANDS
];
4903 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4904 static HARD_REG_SET reload_reg_used_in_input
[MAX_RECOG_OPERANDS
];
4905 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4906 static HARD_REG_SET reload_reg_used_in_output
[MAX_RECOG_OPERANDS
];
4907 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4908 static HARD_REG_SET reload_reg_used_in_op_addr
;
4909 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4910 static HARD_REG_SET reload_reg_used_in_op_addr_reload
;
4911 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4912 static HARD_REG_SET reload_reg_used_in_insn
;
4913 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4914 static HARD_REG_SET reload_reg_used_in_other_addr
;
4916 /* If reg is in use as a reload reg for any sort of reload. */
4917 static HARD_REG_SET reload_reg_used_at_all
;
4919 /* If reg is use as an inherited reload. We just mark the first register
4921 static HARD_REG_SET reload_reg_used_for_inherit
;
4923 /* Records which hard regs are used in any way, either as explicit use or
4924 by being allocated to a pseudo during any point of the current insn. */
4925 static HARD_REG_SET reg_used_in_insn
;
4927 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4928 TYPE. MODE is used to indicate how many consecutive regs are
4932 mark_reload_reg_in_use (unsigned int regno
, int opnum
, enum reload_type type
,
4938 add_to_hard_reg_set (&reload_reg_used
, mode
, regno
);
4941 case RELOAD_FOR_INPUT_ADDRESS
:
4942 add_to_hard_reg_set (&reload_reg_used_in_input_addr
[opnum
], mode
, regno
);
4945 case RELOAD_FOR_INPADDR_ADDRESS
:
4946 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr
[opnum
], mode
, regno
);
4949 case RELOAD_FOR_OUTPUT_ADDRESS
:
4950 add_to_hard_reg_set (&reload_reg_used_in_output_addr
[opnum
], mode
, regno
);
4953 case RELOAD_FOR_OUTADDR_ADDRESS
:
4954 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr
[opnum
], mode
, regno
);
4957 case RELOAD_FOR_OPERAND_ADDRESS
:
4958 add_to_hard_reg_set (&reload_reg_used_in_op_addr
, mode
, regno
);
4961 case RELOAD_FOR_OPADDR_ADDR
:
4962 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload
, mode
, regno
);
4965 case RELOAD_FOR_OTHER_ADDRESS
:
4966 add_to_hard_reg_set (&reload_reg_used_in_other_addr
, mode
, regno
);
4969 case RELOAD_FOR_INPUT
:
4970 add_to_hard_reg_set (&reload_reg_used_in_input
[opnum
], mode
, regno
);
4973 case RELOAD_FOR_OUTPUT
:
4974 add_to_hard_reg_set (&reload_reg_used_in_output
[opnum
], mode
, regno
);
4977 case RELOAD_FOR_INSN
:
4978 add_to_hard_reg_set (&reload_reg_used_in_insn
, mode
, regno
);
4982 add_to_hard_reg_set (&reload_reg_used_at_all
, mode
, regno
);
4985 /* Similarly, but show REGNO is no longer in use for a reload. */
4988 clear_reload_reg_in_use (unsigned int regno
, int opnum
,
4989 enum reload_type type
, machine_mode mode
)
4991 unsigned int nregs
= hard_regno_nregs (regno
, mode
);
4992 unsigned int start_regno
, end_regno
, r
;
4994 /* A complication is that for some reload types, inheritance might
4995 allow multiple reloads of the same types to share a reload register.
4996 We set check_opnum if we have to check only reloads with the same
4997 operand number, and check_any if we have to check all reloads. */
4998 int check_opnum
= 0;
5000 HARD_REG_SET
*used_in_set
;
5005 used_in_set
= &reload_reg_used
;
5008 case RELOAD_FOR_INPUT_ADDRESS
:
5009 used_in_set
= &reload_reg_used_in_input_addr
[opnum
];
5012 case RELOAD_FOR_INPADDR_ADDRESS
:
5014 used_in_set
= &reload_reg_used_in_inpaddr_addr
[opnum
];
5017 case RELOAD_FOR_OUTPUT_ADDRESS
:
5018 used_in_set
= &reload_reg_used_in_output_addr
[opnum
];
5021 case RELOAD_FOR_OUTADDR_ADDRESS
:
5023 used_in_set
= &reload_reg_used_in_outaddr_addr
[opnum
];
5026 case RELOAD_FOR_OPERAND_ADDRESS
:
5027 used_in_set
= &reload_reg_used_in_op_addr
;
5030 case RELOAD_FOR_OPADDR_ADDR
:
5032 used_in_set
= &reload_reg_used_in_op_addr_reload
;
5035 case RELOAD_FOR_OTHER_ADDRESS
:
5036 used_in_set
= &reload_reg_used_in_other_addr
;
5040 case RELOAD_FOR_INPUT
:
5041 used_in_set
= &reload_reg_used_in_input
[opnum
];
5044 case RELOAD_FOR_OUTPUT
:
5045 used_in_set
= &reload_reg_used_in_output
[opnum
];
5048 case RELOAD_FOR_INSN
:
5049 used_in_set
= &reload_reg_used_in_insn
;
5054 /* We resolve conflicts with remaining reloads of the same type by
5055 excluding the intervals of reload registers by them from the
5056 interval of freed reload registers. Since we only keep track of
5057 one set of interval bounds, we might have to exclude somewhat
5058 more than what would be necessary if we used a HARD_REG_SET here.
5059 But this should only happen very infrequently, so there should
5060 be no reason to worry about it. */
5062 start_regno
= regno
;
5063 end_regno
= regno
+ nregs
;
5064 if (check_opnum
|| check_any
)
5066 for (i
= n_reloads
- 1; i
>= 0; i
--)
5068 if (rld
[i
].when_needed
== type
5069 && (check_any
|| rld
[i
].opnum
== opnum
)
5072 unsigned int conflict_start
= true_regnum (rld
[i
].reg_rtx
);
5073 unsigned int conflict_end
5074 = end_hard_regno (rld
[i
].mode
, conflict_start
);
5076 /* If there is an overlap with the first to-be-freed register,
5077 adjust the interval start. */
5078 if (conflict_start
<= start_regno
&& conflict_end
> start_regno
)
5079 start_regno
= conflict_end
;
5080 /* Otherwise, if there is a conflict with one of the other
5081 to-be-freed registers, adjust the interval end. */
5082 if (conflict_start
> start_regno
&& conflict_start
< end_regno
)
5083 end_regno
= conflict_start
;
5088 for (r
= start_regno
; r
< end_regno
; r
++)
5089 CLEAR_HARD_REG_BIT (*used_in_set
, r
);
5092 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5093 specified by OPNUM and TYPE. */
5096 reload_reg_free_p (unsigned int regno
, int opnum
, enum reload_type type
)
5100 /* In use for a RELOAD_OTHER means it's not available for anything. */
5101 if (TEST_HARD_REG_BIT (reload_reg_used
, regno
)
5102 || TEST_HARD_REG_BIT (reload_reg_unavailable
, regno
))
5108 /* In use for anything means we can't use it for RELOAD_OTHER. */
5109 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr
, regno
)
5110 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr
, regno
)
5111 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload
, regno
)
5112 || TEST_HARD_REG_BIT (reload_reg_used_in_insn
, regno
))
5115 for (i
= 0; i
< reload_n_operands
; i
++)
5116 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr
[i
], regno
)
5117 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr
[i
], regno
)
5118 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr
[i
], regno
)
5119 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr
[i
], regno
)
5120 || TEST_HARD_REG_BIT (reload_reg_used_in_input
[i
], regno
)
5121 || TEST_HARD_REG_BIT (reload_reg_used_in_output
[i
], regno
))
5126 case RELOAD_FOR_INPUT
:
5127 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn
, regno
)
5128 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr
, regno
))
5131 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload
, regno
))
5134 /* If it is used for some other input, can't use it. */
5135 for (i
= 0; i
< reload_n_operands
; i
++)
5136 if (TEST_HARD_REG_BIT (reload_reg_used_in_input
[i
], regno
))
5139 /* If it is used in a later operand's address, can't use it. */
5140 for (i
= opnum
+ 1; i
< reload_n_operands
; i
++)
5141 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr
[i
], regno
)
5142 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr
[i
], regno
))
5147 case RELOAD_FOR_INPUT_ADDRESS
:
5148 /* Can't use a register if it is used for an input address for this
5149 operand or used as an input in an earlier one. */
5150 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr
[opnum
], regno
)
5151 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr
[opnum
], regno
))
5154 for (i
= 0; i
< opnum
; i
++)
5155 if (TEST_HARD_REG_BIT (reload_reg_used_in_input
[i
], regno
))
5160 case RELOAD_FOR_INPADDR_ADDRESS
:
5161 /* Can't use a register if it is used for an input address
5162 for this operand or used as an input in an earlier
5164 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr
[opnum
], regno
))
5167 for (i
= 0; i
< opnum
; i
++)
5168 if (TEST_HARD_REG_BIT (reload_reg_used_in_input
[i
], regno
))
5173 case RELOAD_FOR_OUTPUT_ADDRESS
:
5174 /* Can't use a register if it is used for an output address for this
5175 operand or used as an output in this or a later operand. Note
5176 that multiple output operands are emitted in reverse order, so
5177 the conflicting ones are those with lower indices. */
5178 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr
[opnum
], regno
))
5181 for (i
= 0; i
<= opnum
; i
++)
5182 if (TEST_HARD_REG_BIT (reload_reg_used_in_output
[i
], regno
))
5187 case RELOAD_FOR_OUTADDR_ADDRESS
:
5188 /* Can't use a register if it is used for an output address
5189 for this operand or used as an output in this or a
5190 later operand. Note that multiple output operands are
5191 emitted in reverse order, so the conflicting ones are
5192 those with lower indices. */
5193 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr
[opnum
], regno
))
5196 for (i
= 0; i
<= opnum
; i
++)
5197 if (TEST_HARD_REG_BIT (reload_reg_used_in_output
[i
], regno
))
5202 case RELOAD_FOR_OPERAND_ADDRESS
:
5203 for (i
= 0; i
< reload_n_operands
; i
++)
5204 if (TEST_HARD_REG_BIT (reload_reg_used_in_input
[i
], regno
))
5207 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn
, regno
)
5208 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr
, regno
));
5210 case RELOAD_FOR_OPADDR_ADDR
:
5211 for (i
= 0; i
< reload_n_operands
; i
++)
5212 if (TEST_HARD_REG_BIT (reload_reg_used_in_input
[i
], regno
))
5215 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload
, regno
));
5217 case RELOAD_FOR_OUTPUT
:
5218 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5219 outputs, or an operand address for this or an earlier output.
5220 Note that multiple output operands are emitted in reverse order,
5221 so the conflicting ones are those with higher indices. */
5222 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn
, regno
))
5225 for (i
= 0; i
< reload_n_operands
; i
++)
5226 if (TEST_HARD_REG_BIT (reload_reg_used_in_output
[i
], regno
))
5229 for (i
= opnum
; i
< reload_n_operands
; i
++)
5230 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr
[i
], regno
)
5231 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr
[i
], regno
))
5236 case RELOAD_FOR_INSN
:
5237 for (i
= 0; i
< reload_n_operands
; i
++)
5238 if (TEST_HARD_REG_BIT (reload_reg_used_in_input
[i
], regno
)
5239 || TEST_HARD_REG_BIT (reload_reg_used_in_output
[i
], regno
))
5242 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn
, regno
)
5243 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr
, regno
));
5245 case RELOAD_FOR_OTHER_ADDRESS
:
5246 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr
, regno
);
5253 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5254 the number RELOADNUM, is still available in REGNO at the end of the insn.
5256 We can assume that the reload reg was already tested for availability
5257 at the time it is needed, and we should not check this again,
5258 in case the reg has already been marked in use. */
5261 reload_reg_reaches_end_p (unsigned int regno
, int reloadnum
)
5263 int opnum
= rld
[reloadnum
].opnum
;
5264 enum reload_type type
= rld
[reloadnum
].when_needed
;
5267 /* See if there is a reload with the same type for this operand, using
5268 the same register. This case is not handled by the code below. */
5269 for (i
= reloadnum
+ 1; i
< n_reloads
; i
++)
5273 if (rld
[i
].opnum
!= opnum
|| rld
[i
].when_needed
!= type
)
5275 reg
= rld
[i
].reg_rtx
;
5276 if (reg
== NULL_RTX
)
5278 if (regno
>= REGNO (reg
) && regno
< END_REGNO (reg
))
5285 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5286 its value must reach the end. */
5289 /* If this use is for part of the insn,
5290 its value reaches if no subsequent part uses the same register.
5291 Just like the above function, don't try to do this with lots
5294 case RELOAD_FOR_OTHER_ADDRESS
:
5295 /* Here we check for everything else, since these don't conflict
5296 with anything else and everything comes later. */
5298 for (i
= 0; i
< reload_n_operands
; i
++)
5299 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr
[i
], regno
)
5300 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr
[i
], regno
)
5301 || TEST_HARD_REG_BIT (reload_reg_used_in_output
[i
], regno
)
5302 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr
[i
], regno
)
5303 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr
[i
], regno
)
5304 || TEST_HARD_REG_BIT (reload_reg_used_in_input
[i
], regno
))
5307 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr
, regno
)
5308 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload
, regno
)
5309 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn
, regno
)
5310 && ! TEST_HARD_REG_BIT (reload_reg_used
, regno
));
5312 case RELOAD_FOR_INPUT_ADDRESS
:
5313 case RELOAD_FOR_INPADDR_ADDRESS
:
5314 /* Similar, except that we check only for this and subsequent inputs
5315 and the address of only subsequent inputs and we do not need
5316 to check for RELOAD_OTHER objects since they are known not to
5319 for (i
= opnum
; i
< reload_n_operands
; i
++)
5320 if (TEST_HARD_REG_BIT (reload_reg_used_in_input
[i
], regno
))
5323 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5324 could be killed if the register is also used by reload with type
5325 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5326 if (type
== RELOAD_FOR_INPADDR_ADDRESS
5327 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr
[opnum
], regno
))
5330 for (i
= opnum
+ 1; i
< reload_n_operands
; i
++)
5331 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr
[i
], regno
)
5332 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr
[i
], regno
))
5335 for (i
= 0; i
< reload_n_operands
; i
++)
5336 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr
[i
], regno
)
5337 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr
[i
], regno
)
5338 || TEST_HARD_REG_BIT (reload_reg_used_in_output
[i
], regno
))
5341 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload
, regno
))
5344 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr
, regno
)
5345 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn
, regno
)
5346 && !TEST_HARD_REG_BIT (reload_reg_used
, regno
));
5348 case RELOAD_FOR_INPUT
:
5349 /* Similar to input address, except we start at the next operand for
5350 both input and input address and we do not check for
5351 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5354 for (i
= opnum
+ 1; i
< reload_n_operands
; i
++)
5355 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr
[i
], regno
)
5356 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr
[i
], regno
)
5357 || TEST_HARD_REG_BIT (reload_reg_used_in_input
[i
], regno
))
5360 /* ... fall through ... */
5362 case RELOAD_FOR_OPERAND_ADDRESS
:
5363 /* Check outputs and their addresses. */
5365 for (i
= 0; i
< reload_n_operands
; i
++)
5366 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr
[i
], regno
)
5367 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr
[i
], regno
)
5368 || TEST_HARD_REG_BIT (reload_reg_used_in_output
[i
], regno
))
5371 return (!TEST_HARD_REG_BIT (reload_reg_used
, regno
));
5373 case RELOAD_FOR_OPADDR_ADDR
:
5374 for (i
= 0; i
< reload_n_operands
; i
++)
5375 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr
[i
], regno
)
5376 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr
[i
], regno
)
5377 || TEST_HARD_REG_BIT (reload_reg_used_in_output
[i
], regno
))
5380 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr
, regno
)
5381 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn
, regno
)
5382 && !TEST_HARD_REG_BIT (reload_reg_used
, regno
));
5384 case RELOAD_FOR_INSN
:
5385 /* These conflict with other outputs with RELOAD_OTHER. So
5386 we need only check for output addresses. */
5388 opnum
= reload_n_operands
;
5392 case RELOAD_FOR_OUTPUT
:
5393 case RELOAD_FOR_OUTPUT_ADDRESS
:
5394 case RELOAD_FOR_OUTADDR_ADDRESS
:
5395 /* We already know these can't conflict with a later output. So the
5396 only thing to check are later output addresses.
5397 Note that multiple output operands are emitted in reverse order,
5398 so the conflicting ones are those with lower indices. */
5399 for (i
= 0; i
< opnum
; i
++)
5400 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr
[i
], regno
)
5401 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr
[i
], regno
))
5404 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5405 could be killed if the register is also used by reload with type
5406 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5407 if (type
== RELOAD_FOR_OUTADDR_ADDRESS
5408 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr
[opnum
], regno
))
5418 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5419 every register in REG. */
5422 reload_reg_rtx_reaches_end_p (rtx reg
, int reloadnum
)
5426 for (i
= REGNO (reg
); i
< END_REGNO (reg
); i
++)
5427 if (!reload_reg_reaches_end_p (i
, reloadnum
))
5433 /* Returns whether R1 and R2 are uniquely chained: the value of one
5434 is used by the other, and that value is not used by any other
5435 reload for this insn. This is used to partially undo the decision
5436 made in find_reloads when in the case of multiple
5437 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5438 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5439 reloads. This code tries to avoid the conflict created by that
5440 change. It might be cleaner to explicitly keep track of which
5441 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5442 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5443 this after the fact. */
5445 reloads_unique_chain_p (int r1
, int r2
)
5449 /* We only check input reloads. */
5450 if (! rld
[r1
].in
|| ! rld
[r2
].in
)
5453 /* Avoid anything with output reloads. */
5454 if (rld
[r1
].out
|| rld
[r2
].out
)
5457 /* "chained" means one reload is a component of the other reload,
5458 not the same as the other reload. */
5459 if (rld
[r1
].opnum
!= rld
[r2
].opnum
5460 || rtx_equal_p (rld
[r1
].in
, rld
[r2
].in
)
5461 || rld
[r1
].optional
|| rld
[r2
].optional
5462 || ! (reg_mentioned_p (rld
[r1
].in
, rld
[r2
].in
)
5463 || reg_mentioned_p (rld
[r2
].in
, rld
[r1
].in
)))
5466 /* The following loop assumes that r1 is the reload that feeds r2. */
5470 for (i
= 0; i
< n_reloads
; i
++)
5471 /* Look for input reloads that aren't our two */
5472 if (i
!= r1
&& i
!= r2
&& rld
[i
].in
)
5474 /* If our reload is mentioned at all, it isn't a simple chain. */
5475 if (reg_mentioned_p (rld
[r1
].in
, rld
[i
].in
))
5481 /* The recursive function change all occurrences of WHAT in *WHERE
5484 substitute (rtx
*where
, const_rtx what
, rtx repl
)
5493 if (*where
== what
|| rtx_equal_p (*where
, what
))
5495 /* Record the location of the changed rtx. */
5496 substitute_stack
.safe_push (where
);
5501 code
= GET_CODE (*where
);
5502 fmt
= GET_RTX_FORMAT (code
);
5503 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
5509 for (j
= XVECLEN (*where
, i
) - 1; j
>= 0; j
--)
5510 substitute (&XVECEXP (*where
, i
, j
), what
, repl
);
5512 else if (fmt
[i
] == 'e')
5513 substitute (&XEXP (*where
, i
), what
, repl
);
5517 /* The function returns TRUE if chain of reload R1 and R2 (in any
5518 order) can be evaluated without usage of intermediate register for
5519 the reload containing another reload. It is important to see
5520 gen_reload to understand what the function is trying to do. As an
5521 example, let us have reload chain
5524 r1: <something> + const
5526 and reload R2 got reload reg HR. The function returns true if
5527 there is a correct insn HR = HR + <something>. Otherwise,
5528 gen_reload will use intermediate register (and this is the reload
5529 reg for R1) to reload <something>.
5531 We need this function to find a conflict for chain reloads. In our
5532 example, if HR = HR + <something> is incorrect insn, then we cannot
5533 use HR as a reload register for R2. If we do use it then we get a
5542 gen_reload_chain_without_interm_reg_p (int r1
, int r2
)
5544 /* Assume other cases in gen_reload are not possible for
5545 chain reloads or do need an intermediate hard registers. */
5550 rtx_insn
*last
= get_last_insn ();
5552 /* Make r2 a component of r1. */
5553 if (reg_mentioned_p (rld
[r1
].in
, rld
[r2
].in
))
5556 gcc_assert (reg_mentioned_p (rld
[r2
].in
, rld
[r1
].in
));
5557 regno
= rld
[r1
].regno
>= 0 ? rld
[r1
].regno
: rld
[r2
].regno
;
5558 gcc_assert (regno
>= 0);
5559 out
= gen_rtx_REG (rld
[r1
].mode
, regno
);
5561 substitute (&in
, rld
[r2
].in
, gen_rtx_REG (rld
[r2
].mode
, regno
));
5563 /* If IN is a paradoxical SUBREG, remove it and try to put the
5564 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5565 strip_paradoxical_subreg (&in
, &out
);
5567 if (GET_CODE (in
) == PLUS
5568 && (REG_P (XEXP (in
, 0))
5569 || GET_CODE (XEXP (in
, 0)) == SUBREG
5570 || MEM_P (XEXP (in
, 0)))
5571 && (REG_P (XEXP (in
, 1))
5572 || GET_CODE (XEXP (in
, 1)) == SUBREG
5573 || CONSTANT_P (XEXP (in
, 1))
5574 || MEM_P (XEXP (in
, 1))))
5576 insn
= emit_insn (gen_rtx_SET (out
, in
));
5577 code
= recog_memoized (insn
);
5582 extract_insn (insn
);
5583 /* We want constrain operands to treat this insn strictly in
5584 its validity determination, i.e., the way it would after
5585 reload has completed. */
5586 result
= constrain_operands (1, get_enabled_alternatives (insn
));
5589 delete_insns_since (last
);
5592 /* Restore the original value at each changed address within R1. */
5593 while (!substitute_stack
.is_empty ())
5595 rtx
*where
= substitute_stack
.pop ();
5596 *where
= rld
[r2
].in
;
5602 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5605 This function uses the same algorithm as reload_reg_free_p above. */
5608 reloads_conflict (int r1
, int r2
)
5610 enum reload_type r1_type
= rld
[r1
].when_needed
;
5611 enum reload_type r2_type
= rld
[r2
].when_needed
;
5612 int r1_opnum
= rld
[r1
].opnum
;
5613 int r2_opnum
= rld
[r2
].opnum
;
5615 /* RELOAD_OTHER conflicts with everything. */
5616 if (r2_type
== RELOAD_OTHER
)
5619 /* Otherwise, check conflicts differently for each type. */
5623 case RELOAD_FOR_INPUT
:
5624 return (r2_type
== RELOAD_FOR_INSN
5625 || r2_type
== RELOAD_FOR_OPERAND_ADDRESS
5626 || r2_type
== RELOAD_FOR_OPADDR_ADDR
5627 || r2_type
== RELOAD_FOR_INPUT
5628 || ((r2_type
== RELOAD_FOR_INPUT_ADDRESS
5629 || r2_type
== RELOAD_FOR_INPADDR_ADDRESS
)
5630 && r2_opnum
> r1_opnum
));
5632 case RELOAD_FOR_INPUT_ADDRESS
:
5633 return ((r2_type
== RELOAD_FOR_INPUT_ADDRESS
&& r1_opnum
== r2_opnum
)
5634 || (r2_type
== RELOAD_FOR_INPUT
&& r2_opnum
< r1_opnum
));
5636 case RELOAD_FOR_INPADDR_ADDRESS
:
5637 return ((r2_type
== RELOAD_FOR_INPADDR_ADDRESS
&& r1_opnum
== r2_opnum
)
5638 || (r2_type
== RELOAD_FOR_INPUT
&& r2_opnum
< r1_opnum
));
5640 case RELOAD_FOR_OUTPUT_ADDRESS
:
5641 return ((r2_type
== RELOAD_FOR_OUTPUT_ADDRESS
&& r2_opnum
== r1_opnum
)
5642 || (r2_type
== RELOAD_FOR_OUTPUT
&& r2_opnum
<= r1_opnum
));
5644 case RELOAD_FOR_OUTADDR_ADDRESS
:
5645 return ((r2_type
== RELOAD_FOR_OUTADDR_ADDRESS
&& r2_opnum
== r1_opnum
)
5646 || (r2_type
== RELOAD_FOR_OUTPUT
&& r2_opnum
<= r1_opnum
));
5648 case RELOAD_FOR_OPERAND_ADDRESS
:
5649 return (r2_type
== RELOAD_FOR_INPUT
|| r2_type
== RELOAD_FOR_INSN
5650 || (r2_type
== RELOAD_FOR_OPERAND_ADDRESS
5651 && (!reloads_unique_chain_p (r1
, r2
)
5652 || !gen_reload_chain_without_interm_reg_p (r1
, r2
))));
5654 case RELOAD_FOR_OPADDR_ADDR
:
5655 return (r2_type
== RELOAD_FOR_INPUT
5656 || r2_type
== RELOAD_FOR_OPADDR_ADDR
);
5658 case RELOAD_FOR_OUTPUT
:
5659 return (r2_type
== RELOAD_FOR_INSN
|| r2_type
== RELOAD_FOR_OUTPUT
5660 || ((r2_type
== RELOAD_FOR_OUTPUT_ADDRESS
5661 || r2_type
== RELOAD_FOR_OUTADDR_ADDRESS
)
5662 && r2_opnum
>= r1_opnum
));
5664 case RELOAD_FOR_INSN
:
5665 return (r2_type
== RELOAD_FOR_INPUT
|| r2_type
== RELOAD_FOR_OUTPUT
5666 || r2_type
== RELOAD_FOR_INSN
5667 || r2_type
== RELOAD_FOR_OPERAND_ADDRESS
);
5669 case RELOAD_FOR_OTHER_ADDRESS
:
5670 return r2_type
== RELOAD_FOR_OTHER_ADDRESS
;
5680 /* Indexed by reload number, 1 if incoming value
5681 inherited from previous insns. */
5682 static char reload_inherited
[MAX_RELOADS
];
5684 /* For an inherited reload, this is the insn the reload was inherited from,
5685 if we know it. Otherwise, this is 0. */
5686 static rtx_insn
*reload_inheritance_insn
[MAX_RELOADS
];
5688 /* If nonzero, this is a place to get the value of the reload,
5689 rather than using reload_in. */
5690 static rtx reload_override_in
[MAX_RELOADS
];
5692 /* For each reload, the hard register number of the register used,
5693 or -1 if we did not need a register for this reload. */
5694 static int reload_spill_index
[MAX_RELOADS
];
5696 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5697 static rtx reload_reg_rtx_for_input
[MAX_RELOADS
];
5699 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5700 static rtx reload_reg_rtx_for_output
[MAX_RELOADS
];
5702 /* Subroutine of free_for_value_p, used to check a single register.
5703 START_REGNO is the starting regno of the full reload register
5704 (possibly comprising multiple hard registers) that we are considering. */
5707 reload_reg_free_for_value_p (int start_regno
, int regno
, int opnum
,
5708 enum reload_type type
, rtx value
, rtx out
,
5709 int reloadnum
, int ignore_address_reloads
)
5712 /* Set if we see an input reload that must not share its reload register
5713 with any new earlyclobber, but might otherwise share the reload
5714 register with an output or input-output reload. */
5715 int check_earlyclobber
= 0;
5719 if (TEST_HARD_REG_BIT (reload_reg_unavailable
, regno
))
5722 if (out
== const0_rtx
)
5728 /* We use some pseudo 'time' value to check if the lifetimes of the
5729 new register use would overlap with the one of a previous reload
5730 that is not read-only or uses a different value.
5731 The 'time' used doesn't have to be linear in any shape or form, just
5733 Some reload types use different 'buckets' for each operand.
5734 So there are MAX_RECOG_OPERANDS different time values for each
5736 We compute TIME1 as the time when the register for the prospective
5737 new reload ceases to be live, and TIME2 for each existing
5738 reload as the time when that the reload register of that reload
5740 Where there is little to be gained by exact lifetime calculations,
5741 we just make conservative assumptions, i.e. a longer lifetime;
5742 this is done in the 'default:' cases. */
5745 case RELOAD_FOR_OTHER_ADDRESS
:
5746 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5747 time1
= copy
? 0 : 1;
5750 time1
= copy
? 1 : MAX_RECOG_OPERANDS
* 5 + 5;
5752 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5753 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5754 respectively, to the time values for these, we get distinct time
5755 values. To get distinct time values for each operand, we have to
5756 multiply opnum by at least three. We round that up to four because
5757 multiply by four is often cheaper. */
5758 case RELOAD_FOR_INPADDR_ADDRESS
:
5759 time1
= opnum
* 4 + 2;
5761 case RELOAD_FOR_INPUT_ADDRESS
:
5762 time1
= opnum
* 4 + 3;
5764 case RELOAD_FOR_INPUT
:
5765 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5766 executes (inclusive). */
5767 time1
= copy
? opnum
* 4 + 4 : MAX_RECOG_OPERANDS
* 4 + 3;
5769 case RELOAD_FOR_OPADDR_ADDR
:
5771 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5772 time1
= MAX_RECOG_OPERANDS
* 4 + 1;
5774 case RELOAD_FOR_OPERAND_ADDRESS
:
5775 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5777 time1
= copy
? MAX_RECOG_OPERANDS
* 4 + 2 : MAX_RECOG_OPERANDS
* 4 + 3;
5779 case RELOAD_FOR_OUTADDR_ADDRESS
:
5780 time1
= MAX_RECOG_OPERANDS
* 4 + 4 + opnum
;
5782 case RELOAD_FOR_OUTPUT_ADDRESS
:
5783 time1
= MAX_RECOG_OPERANDS
* 4 + 5 + opnum
;
5786 time1
= MAX_RECOG_OPERANDS
* 5 + 5;
5789 for (i
= 0; i
< n_reloads
; i
++)
5791 rtx reg
= rld
[i
].reg_rtx
;
5792 if (reg
&& REG_P (reg
)
5793 && (unsigned) regno
- true_regnum (reg
) < REG_NREGS (reg
)
5796 rtx other_input
= rld
[i
].in
;
5798 /* If the other reload loads the same input value, that
5799 will not cause a conflict only if it's loading it into
5800 the same register. */
5801 if (true_regnum (reg
) != start_regno
)
5802 other_input
= NULL_RTX
;
5803 if (! other_input
|| ! rtx_equal_p (other_input
, value
)
5804 || rld
[i
].out
|| out
)
5807 switch (rld
[i
].when_needed
)
5809 case RELOAD_FOR_OTHER_ADDRESS
:
5812 case RELOAD_FOR_INPADDR_ADDRESS
:
5813 /* find_reloads makes sure that a
5814 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5815 by at most one - the first -
5816 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5817 address reload is inherited, the address address reload
5818 goes away, so we can ignore this conflict. */
5819 if (type
== RELOAD_FOR_INPUT_ADDRESS
&& reloadnum
== i
+ 1
5820 && ignore_address_reloads
5821 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5822 Then the address address is still needed to store
5823 back the new address. */
5824 && ! rld
[reloadnum
].out
)
5826 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5827 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5829 if (type
== RELOAD_FOR_INPUT
&& opnum
== rld
[i
].opnum
5830 && ignore_address_reloads
5831 /* Unless we are reloading an auto_inc expression. */
5832 && ! rld
[reloadnum
].out
)
5834 time2
= rld
[i
].opnum
* 4 + 2;
5836 case RELOAD_FOR_INPUT_ADDRESS
:
5837 if (type
== RELOAD_FOR_INPUT
&& opnum
== rld
[i
].opnum
5838 && ignore_address_reloads
5839 && ! rld
[reloadnum
].out
)
5841 time2
= rld
[i
].opnum
* 4 + 3;
5843 case RELOAD_FOR_INPUT
:
5844 time2
= rld
[i
].opnum
* 4 + 4;
5845 check_earlyclobber
= 1;
5847 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5848 == MAX_RECOG_OPERAND * 4 */
5849 case RELOAD_FOR_OPADDR_ADDR
:
5850 if (type
== RELOAD_FOR_OPERAND_ADDRESS
&& reloadnum
== i
+ 1
5851 && ignore_address_reloads
5852 && ! rld
[reloadnum
].out
)
5854 time2
= MAX_RECOG_OPERANDS
* 4 + 1;
5856 case RELOAD_FOR_OPERAND_ADDRESS
:
5857 time2
= MAX_RECOG_OPERANDS
* 4 + 2;
5858 check_earlyclobber
= 1;
5860 case RELOAD_FOR_INSN
:
5861 time2
= MAX_RECOG_OPERANDS
* 4 + 3;
5863 case RELOAD_FOR_OUTPUT
:
5864 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5865 instruction is executed. */
5866 time2
= MAX_RECOG_OPERANDS
* 4 + 4;
5868 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5869 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5871 case RELOAD_FOR_OUTADDR_ADDRESS
:
5872 if (type
== RELOAD_FOR_OUTPUT_ADDRESS
&& reloadnum
== i
+ 1
5873 && ignore_address_reloads
5874 && ! rld
[reloadnum
].out
)
5876 time2
= MAX_RECOG_OPERANDS
* 4 + 4 + rld
[i
].opnum
;
5878 case RELOAD_FOR_OUTPUT_ADDRESS
:
5879 time2
= MAX_RECOG_OPERANDS
* 4 + 5 + rld
[i
].opnum
;
5882 /* If there is no conflict in the input part, handle this
5883 like an output reload. */
5884 if (! rld
[i
].in
|| rtx_equal_p (other_input
, value
))
5886 time2
= MAX_RECOG_OPERANDS
* 4 + 4;
5887 /* Earlyclobbered outputs must conflict with inputs. */
5888 if (earlyclobber_operand_p (rld
[i
].out
))
5889 time2
= MAX_RECOG_OPERANDS
* 4 + 3;
5894 /* RELOAD_OTHER might be live beyond instruction execution,
5895 but this is not obvious when we set time2 = 1. So check
5896 here if there might be a problem with the new reload
5897 clobbering the register used by the RELOAD_OTHER. */
5905 && (! rld
[i
].in
|| rld
[i
].out
5906 || ! rtx_equal_p (other_input
, value
)))
5907 || (out
&& rld
[reloadnum
].out_reg
5908 && time2
>= MAX_RECOG_OPERANDS
* 4 + 3))
5914 /* Earlyclobbered outputs must conflict with inputs. */
5915 if (check_earlyclobber
&& out
&& earlyclobber_operand_p (out
))
5921 /* Return 1 if the value in reload reg REGNO, as used by a reload
5922 needed for the part of the insn specified by OPNUM and TYPE,
5923 may be used to load VALUE into it.
5925 MODE is the mode in which the register is used, this is needed to
5926 determine how many hard regs to test.
5928 Other read-only reloads with the same value do not conflict
5929 unless OUT is nonzero and these other reloads have to live while
5930 output reloads live.
5931 If OUT is CONST0_RTX, this is a special case: it means that the
5932 test should not be for using register REGNO as reload register, but
5933 for copying from register REGNO into the reload register.
5935 RELOADNUM is the number of the reload we want to load this value for;
5936 a reload does not conflict with itself.
5938 When IGNORE_ADDRESS_RELOADS is set, we cannot have conflicts with
5939 reloads that load an address for the very reload we are considering.
5941 The caller has to make sure that there is no conflict with the return
5945 free_for_value_p (int regno
, machine_mode mode
, int opnum
,
5946 enum reload_type type
, rtx value
, rtx out
, int reloadnum
,
5947 int ignore_address_reloads
)
5949 int nregs
= hard_regno_nregs (regno
, mode
);
5951 if (! reload_reg_free_for_value_p (regno
, regno
+ nregs
, opnum
, type
,
5952 value
, out
, reloadnum
,
5953 ignore_address_reloads
))
5958 /* Return true if the rtx X is invariant over the current function. */
5959 /* ??? Actually, the places where we use this expect exactly what is
5960 tested here, and not everything that is function invariant. In
5961 particular, the frame pointer and arg pointer are special cased;
5962 pic_offset_table_rtx is not, and we must not spill these things to
5966 function_invariant_p (const_rtx x
)
5970 if (x
== frame_pointer_rtx
|| x
== arg_pointer_rtx
)
5972 if (GET_CODE (x
) == PLUS
5973 && (XEXP (x
, 0) == frame_pointer_rtx
|| XEXP (x
, 0) == arg_pointer_rtx
)
5974 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
5979 /* Determine whether the reload reg X overlaps any rtx'es used for
5980 overriding inheritance. Return nonzero if so. */
5983 conflicts_with_override (rtx x
)
5986 for (i
= 0; i
< n_reloads
; i
++)
5987 if (reload_override_in
[i
]
5988 && reg_overlap_mentioned_p (x
, reload_override_in
[i
]))
5993 /* Give an error message saying we failed to find a reload for INSN,
5994 and clear out reload R. */
5996 failed_reload (rtx_insn
*insn
, int r
)
5998 if (asm_noperands (PATTERN (insn
)) < 0)
5999 /* It's the compiler's fault. */
6000 fatal_insn ("could not find a spill register", insn
);
6002 /* It's the user's fault; the operand's mode and constraint
6003 don't match. Disable this reload so we don't crash in final. */
6004 error_for_asm (insn
,
6005 "%<asm%> operand constraint incompatible with operand size");
6009 rld
[r
].optional
= 1;
6010 rld
[r
].secondary_p
= 1;
6013 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6014 for reload R. If it's valid, get an rtx for it. Return nonzero if
6017 set_reload_reg (int i
, int r
)
6020 rtx reg
= spill_reg_rtx
[i
];
6022 if (reg
== 0 || GET_MODE (reg
) != rld
[r
].mode
)
6023 spill_reg_rtx
[i
] = reg
6024 = gen_rtx_REG (rld
[r
].mode
, spill_regs
[i
]);
6026 regno
= true_regnum (reg
);
6028 /* Detect when the reload reg can't hold the reload mode.
6029 This used to be one `if', but Sequent compiler can't handle that. */
6030 if (targetm
.hard_regno_mode_ok (regno
, rld
[r
].mode
))
6032 machine_mode test_mode
= VOIDmode
;
6034 test_mode
= GET_MODE (rld
[r
].in
);
6035 /* If rld[r].in has VOIDmode, it means we will load it
6036 in whatever mode the reload reg has: to wit, rld[r].mode.
6037 We have already tested that for validity. */
6038 /* Aside from that, we need to test that the expressions
6039 to reload from or into have modes which are valid for this
6040 reload register. Otherwise the reload insns would be invalid. */
6041 if (! (rld
[r
].in
!= 0 && test_mode
!= VOIDmode
6042 && !targetm
.hard_regno_mode_ok (regno
, test_mode
)))
6043 if (! (rld
[r
].out
!= 0
6044 && !targetm
.hard_regno_mode_ok (regno
, GET_MODE (rld
[r
].out
))))
6046 /* The reg is OK. */
6049 /* Mark as in use for this insn the reload regs we use
6051 mark_reload_reg_in_use (spill_regs
[i
], rld
[r
].opnum
,
6052 rld
[r
].when_needed
, rld
[r
].mode
);
6054 rld
[r
].reg_rtx
= reg
;
6055 reload_spill_index
[r
] = spill_regs
[i
];
6062 /* Find a spill register to use as a reload register for reload R.
6063 LAST_RELOAD is nonzero if this is the last reload for the insn being
6066 Set rld[R].reg_rtx to the register allocated.
6068 We return 1 if successful, or 0 if we couldn't find a spill reg and
6069 we didn't change anything. */
6072 allocate_reload_reg (class insn_chain
*chain ATTRIBUTE_UNUSED
, int r
,
6077 /* If we put this reload ahead, thinking it is a group,
6078 then insist on finding a group. Otherwise we can grab a
6079 reg that some other reload needs.
6080 (That can happen when we have a 68000 DATA_OR_FP_REG
6081 which is a group of data regs or one fp reg.)
6082 We need not be so restrictive if there are no more reloads
6085 ??? Really it would be nicer to have smarter handling
6086 for that kind of reg class, where a problem like this is normal.
6087 Perhaps those classes should be avoided for reloading
6088 by use of more alternatives. */
6090 int force_group
= rld
[r
].nregs
> 1 && ! last_reload
;
6092 /* If we want a single register and haven't yet found one,
6093 take any reg in the right class and not in use.
6094 If we want a consecutive group, here is where we look for it.
6096 We use three passes so we can first look for reload regs to
6097 reuse, which are already in use for other reloads in this insn,
6098 and only then use additional registers which are not "bad", then
6099 finally any register.
6101 I think that maximizing reuse is needed to make sure we don't
6102 run out of reload regs. Suppose we have three reloads, and
6103 reloads A and B can share regs. These need two regs.
6104 Suppose A and B are given different regs.
6105 That leaves none for C. */
6106 for (pass
= 0; pass
< 3; pass
++)
6108 /* I is the index in spill_regs.
6109 We advance it round-robin between insns to use all spill regs
6110 equally, so that inherited reloads have a chance
6111 of leapfrogging each other. */
6115 for (count
= 0; count
< n_spills
; count
++)
6117 int rclass
= (int) rld
[r
].rclass
;
6123 regnum
= spill_regs
[i
];
6125 if ((reload_reg_free_p (regnum
, rld
[r
].opnum
,
6128 /* We check reload_reg_used to make sure we
6129 don't clobber the return register. */
6130 && ! TEST_HARD_REG_BIT (reload_reg_used
, regnum
)
6131 && free_for_value_p (regnum
, rld
[r
].mode
, rld
[r
].opnum
,
6132 rld
[r
].when_needed
, rld
[r
].in
,
6134 && TEST_HARD_REG_BIT (reg_class_contents
[rclass
], regnum
)
6135 && targetm
.hard_regno_mode_ok (regnum
, rld
[r
].mode
)
6136 /* Look first for regs to share, then for unshared. But
6137 don't share regs used for inherited reloads; they are
6138 the ones we want to preserve. */
6140 || (TEST_HARD_REG_BIT (reload_reg_used_at_all
,
6142 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit
,
6145 int nr
= hard_regno_nregs (regnum
, rld
[r
].mode
);
6147 /* During the second pass we want to avoid reload registers
6148 which are "bad" for this reload. */
6150 && ira_bad_reload_regno (regnum
, rld
[r
].in
, rld
[r
].out
))
6153 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6154 (on 68000) got us two FP regs. If NR is 1,
6155 we would reject both of them. */
6158 /* If we need only one reg, we have already won. */
6161 /* But reject a single reg if we demand a group. */
6166 /* Otherwise check that as many consecutive regs as we need
6167 are available here. */
6170 int regno
= regnum
+ nr
- 1;
6171 if (!(TEST_HARD_REG_BIT (reg_class_contents
[rclass
], regno
)
6172 && spill_reg_order
[regno
] >= 0
6173 && reload_reg_free_p (regno
, rld
[r
].opnum
,
6174 rld
[r
].when_needed
)))
6183 /* If we found something on the current pass, omit later passes. */
6184 if (count
< n_spills
)
6188 /* We should have found a spill register by now. */
6189 if (count
>= n_spills
)
6192 /* I is the index in SPILL_REG_RTX of the reload register we are to
6193 allocate. Get an rtx for it and find its register number. */
6195 return set_reload_reg (i
, r
);
6198 /* Initialize all the tables needed to allocate reload registers.
6199 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6200 is the array we use to restore the reg_rtx field for every reload. */
6203 choose_reload_regs_init (class insn_chain
*chain
, rtx
*save_reload_reg_rtx
)
6207 for (i
= 0; i
< n_reloads
; i
++)
6208 rld
[i
].reg_rtx
= save_reload_reg_rtx
[i
];
6210 memset (reload_inherited
, 0, MAX_RELOADS
);
6211 memset (reload_inheritance_insn
, 0, MAX_RELOADS
* sizeof (rtx
));
6212 memset (reload_override_in
, 0, MAX_RELOADS
* sizeof (rtx
));
6214 CLEAR_HARD_REG_SET (reload_reg_used
);
6215 CLEAR_HARD_REG_SET (reload_reg_used_at_all
);
6216 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr
);
6217 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload
);
6218 CLEAR_HARD_REG_SET (reload_reg_used_in_insn
);
6219 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr
);
6221 CLEAR_HARD_REG_SET (reg_used_in_insn
);
6224 REG_SET_TO_HARD_REG_SET (tmp
, &chain
->live_throughout
);
6225 reg_used_in_insn
|= tmp
;
6226 REG_SET_TO_HARD_REG_SET (tmp
, &chain
->dead_or_set
);
6227 reg_used_in_insn
|= tmp
;
6228 compute_use_by_pseudos (®_used_in_insn
, &chain
->live_throughout
);
6229 compute_use_by_pseudos (®_used_in_insn
, &chain
->dead_or_set
);
6232 for (i
= 0; i
< reload_n_operands
; i
++)
6234 CLEAR_HARD_REG_SET (reload_reg_used_in_output
[i
]);
6235 CLEAR_HARD_REG_SET (reload_reg_used_in_input
[i
]);
6236 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr
[i
]);
6237 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr
[i
]);
6238 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr
[i
]);
6239 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr
[i
]);
6242 reload_reg_unavailable
= ~chain
->used_spill_regs
;
6244 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit
);
6246 for (i
= 0; i
< n_reloads
; i
++)
6247 /* If we have already decided to use a certain register,
6248 don't use it in another way. */
6250 mark_reload_reg_in_use (REGNO (rld
[i
].reg_rtx
), rld
[i
].opnum
,
6251 rld
[i
].when_needed
, rld
[i
].mode
);
6254 /* If X is not a subreg, return it unmodified. If it is a subreg,
6255 look up whether we made a replacement for the SUBREG_REG. Return
6256 either the replacement or the SUBREG_REG. */
6259 replaced_subreg (rtx x
)
6261 if (GET_CODE (x
) == SUBREG
)
6262 return find_replacement (&SUBREG_REG (x
));
6266 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6267 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6268 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6269 otherwise it is NULL. */
6272 compute_reload_subreg_offset (machine_mode outermode
,
6274 machine_mode innermode
)
6276 poly_int64 outer_offset
;
6277 machine_mode middlemode
;
6280 return subreg_lowpart_offset (outermode
, innermode
);
6282 outer_offset
= SUBREG_BYTE (subreg
);
6283 middlemode
= GET_MODE (SUBREG_REG (subreg
));
6285 /* If SUBREG is paradoxical then return the normal lowpart offset
6286 for OUTERMODE and INNERMODE. Our caller has already checked
6287 that OUTERMODE fits in INNERMODE. */
6288 if (paradoxical_subreg_p (outermode
, middlemode
))
6289 return subreg_lowpart_offset (outermode
, innermode
);
6291 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6292 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6293 return outer_offset
+ subreg_lowpart_offset (middlemode
, innermode
);
6296 /* Assign hard reg targets for the pseudo-registers we must reload
6297 into hard regs for this insn.
6298 Also output the instructions to copy them in and out of the hard regs.
6300 For machines with register classes, we are responsible for
6301 finding a reload reg in the proper class. */
6304 choose_reload_regs (class insn_chain
*chain
)
6306 rtx_insn
*insn
= chain
->insn
;
6308 unsigned int max_group_size
= 1;
6309 enum reg_class group_class
= NO_REGS
;
6310 int pass
, win
, inheritance
;
6312 rtx save_reload_reg_rtx
[MAX_RELOADS
];
6314 /* In order to be certain of getting the registers we need,
6315 we must sort the reloads into order of increasing register class.
6316 Then our grabbing of reload registers will parallel the process
6317 that provided the reload registers.
6319 Also note whether any of the reloads wants a consecutive group of regs.
6320 If so, record the maximum size of the group desired and what
6321 register class contains all the groups needed by this insn. */
6323 for (j
= 0; j
< n_reloads
; j
++)
6325 reload_order
[j
] = j
;
6326 if (rld
[j
].reg_rtx
!= NULL_RTX
)
6328 gcc_assert (REG_P (rld
[j
].reg_rtx
)
6329 && HARD_REGISTER_P (rld
[j
].reg_rtx
));
6330 reload_spill_index
[j
] = REGNO (rld
[j
].reg_rtx
);
6333 reload_spill_index
[j
] = -1;
6335 if (rld
[j
].nregs
> 1)
6337 max_group_size
= MAX (rld
[j
].nregs
, max_group_size
);
6339 = reg_class_superunion
[(int) rld
[j
].rclass
][(int) group_class
];
6342 save_reload_reg_rtx
[j
] = rld
[j
].reg_rtx
;
6346 qsort (reload_order
, n_reloads
, sizeof (short), reload_reg_class_lower
);
6348 /* If -O, try first with inheritance, then turning it off.
6349 If not -O, don't do inheritance.
6350 Using inheritance when not optimizing leads to paradoxes
6351 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6352 because one side of the comparison might be inherited. */
6354 for (inheritance
= optimize
> 0; inheritance
>= 0; inheritance
--)
6356 choose_reload_regs_init (chain
, save_reload_reg_rtx
);
6358 /* Process the reloads in order of preference just found.
6359 Beyond this point, subregs can be found in reload_reg_rtx.
6361 This used to look for an existing reloaded home for all of the
6362 reloads, and only then perform any new reloads. But that could lose
6363 if the reloads were done out of reg-class order because a later
6364 reload with a looser constraint might have an old home in a register
6365 needed by an earlier reload with a tighter constraint.
6367 To solve this, we make two passes over the reloads, in the order
6368 described above. In the first pass we try to inherit a reload
6369 from a previous insn. If there is a later reload that needs a
6370 class that is a proper subset of the class being processed, we must
6371 also allocate a spill register during the first pass.
6373 Then make a second pass over the reloads to allocate any reloads
6374 that haven't been given registers yet. */
6376 for (j
= 0; j
< n_reloads
; j
++)
6378 int r
= reload_order
[j
];
6379 rtx search_equiv
= NULL_RTX
;
6381 /* Ignore reloads that got marked inoperative. */
6382 if (rld
[r
].out
== 0 && rld
[r
].in
== 0
6383 && ! rld
[r
].secondary_p
)
6386 /* If find_reloads chose to use reload_in or reload_out as a reload
6387 register, we don't need to chose one. Otherwise, try even if it
6388 found one since we might save an insn if we find the value lying
6390 Try also when reload_in is a pseudo without a hard reg. */
6391 if (rld
[r
].in
!= 0 && rld
[r
].reg_rtx
!= 0
6392 && (rtx_equal_p (rld
[r
].in
, rld
[r
].reg_rtx
)
6393 || (rtx_equal_p (rld
[r
].out
, rld
[r
].reg_rtx
)
6394 && !MEM_P (rld
[r
].in
)
6395 && true_regnum (rld
[r
].in
) < FIRST_PSEUDO_REGISTER
)))
6398 #if 0 /* No longer needed for correct operation.
6399 It might give better code, or might not; worth an experiment? */
6400 /* If this is an optional reload, we can't inherit from earlier insns
6401 until we are sure that any non-optional reloads have been allocated.
6402 The following code takes advantage of the fact that optional reloads
6403 are at the end of reload_order. */
6404 if (rld
[r
].optional
!= 0)
6405 for (i
= 0; i
< j
; i
++)
6406 if ((rld
[reload_order
[i
]].out
!= 0
6407 || rld
[reload_order
[i
]].in
!= 0
6408 || rld
[reload_order
[i
]].secondary_p
)
6409 && ! rld
[reload_order
[i
]].optional
6410 && rld
[reload_order
[i
]].reg_rtx
== 0)
6411 allocate_reload_reg (chain
, reload_order
[i
], 0);
6414 /* First see if this pseudo is already available as reloaded
6415 for a previous insn. We cannot try to inherit for reloads
6416 that are smaller than the maximum number of registers needed
6417 for groups unless the register we would allocate cannot be used
6420 We could check here to see if this is a secondary reload for
6421 an object that is already in a register of the desired class.
6422 This would avoid the need for the secondary reload register.
6423 But this is complex because we can't easily determine what
6424 objects might want to be loaded via this reload. So let a
6425 register be allocated here. In `emit_reload_insns' we suppress
6426 one of the loads in the case described above. */
6430 poly_int64 byte
= 0;
6432 machine_mode mode
= VOIDmode
;
6433 rtx subreg
= NULL_RTX
;
6437 else if (REG_P (rld
[r
].in
))
6439 regno
= REGNO (rld
[r
].in
);
6440 mode
= GET_MODE (rld
[r
].in
);
6442 else if (REG_P (rld
[r
].in_reg
))
6444 regno
= REGNO (rld
[r
].in_reg
);
6445 mode
= GET_MODE (rld
[r
].in_reg
);
6447 else if (GET_CODE (rld
[r
].in_reg
) == SUBREG
6448 && REG_P (SUBREG_REG (rld
[r
].in_reg
)))
6450 regno
= REGNO (SUBREG_REG (rld
[r
].in_reg
));
6451 if (regno
< FIRST_PSEUDO_REGISTER
)
6452 regno
= subreg_regno (rld
[r
].in_reg
);
6455 subreg
= rld
[r
].in_reg
;
6456 byte
= SUBREG_BYTE (subreg
);
6458 mode
= GET_MODE (rld
[r
].in_reg
);
6461 else if (GET_RTX_CLASS (GET_CODE (rld
[r
].in_reg
)) == RTX_AUTOINC
6462 && REG_P (XEXP (rld
[r
].in_reg
, 0)))
6464 regno
= REGNO (XEXP (rld
[r
].in_reg
, 0));
6465 mode
= GET_MODE (XEXP (rld
[r
].in_reg
, 0));
6466 rld
[r
].out
= rld
[r
].in
;
6470 /* This won't work, since REGNO can be a pseudo reg number.
6471 Also, it takes much more hair to keep track of all the things
6472 that can invalidate an inherited reload of part of a pseudoreg. */
6473 else if (GET_CODE (rld
[r
].in
) == SUBREG
6474 && REG_P (SUBREG_REG (rld
[r
].in
)))
6475 regno
= subreg_regno (rld
[r
].in
);
6479 && reg_last_reload_reg
[regno
] != 0
6481 (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg
[regno
])),
6482 GET_MODE_SIZE (mode
) + byte
))
6483 /* Verify that the register it's in can be used in
6485 && (REG_CAN_CHANGE_MODE_P
6486 (REGNO (reg_last_reload_reg
[regno
]),
6487 GET_MODE (reg_last_reload_reg
[regno
]),
6490 enum reg_class rclass
= rld
[r
].rclass
, last_class
;
6491 rtx last_reg
= reg_last_reload_reg
[regno
];
6493 i
= REGNO (last_reg
);
6494 byte
= compute_reload_subreg_offset (mode
,
6496 GET_MODE (last_reg
));
6497 i
+= subreg_regno_offset (i
, GET_MODE (last_reg
), byte
, mode
);
6498 last_class
= REGNO_REG_CLASS (i
);
6500 if (reg_reloaded_contents
[i
] == regno
6501 && TEST_HARD_REG_BIT (reg_reloaded_valid
, i
)
6502 && targetm
.hard_regno_mode_ok (i
, rld
[r
].mode
)
6503 && (TEST_HARD_REG_BIT (reg_class_contents
[(int) rclass
], i
)
6504 /* Even if we can't use this register as a reload
6505 register, we might use it for reload_override_in,
6506 if copying it to the desired class is cheap
6508 || ((register_move_cost (mode
, last_class
, rclass
)
6509 < memory_move_cost (mode
, rclass
, true))
6510 && (secondary_reload_class (1, rclass
, mode
,
6513 && !(targetm
.secondary_memory_needed
6514 (mode
, last_class
, rclass
))))
6515 && (rld
[r
].nregs
== max_group_size
6516 || ! TEST_HARD_REG_BIT (reg_class_contents
[(int) group_class
],
6518 && free_for_value_p (i
, rld
[r
].mode
, rld
[r
].opnum
,
6519 rld
[r
].when_needed
, rld
[r
].in
,
6522 /* If a group is needed, verify that all the subsequent
6523 registers still have their values intact. */
6524 int nr
= hard_regno_nregs (i
, rld
[r
].mode
);
6527 for (k
= 1; k
< nr
; k
++)
6528 if (reg_reloaded_contents
[i
+ k
] != regno
6529 || ! TEST_HARD_REG_BIT (reg_reloaded_valid
, i
+ k
))
6537 last_reg
= (GET_MODE (last_reg
) == mode
6538 ? last_reg
: gen_rtx_REG (mode
, i
));
6541 for (k
= 0; k
< nr
; k
++)
6542 bad_for_class
|= ! TEST_HARD_REG_BIT (reg_class_contents
[(int) rld
[r
].rclass
],
6545 /* We found a register that contains the
6546 value we need. If this register is the
6547 same as an `earlyclobber' operand of the
6548 current insn, just mark it as a place to
6549 reload from since we can't use it as the
6550 reload register itself. */
6552 for (i1
= 0; i1
< n_earlyclobbers
; i1
++)
6553 if (reg_overlap_mentioned_for_reload_p
6554 (reg_last_reload_reg
[regno
],
6555 reload_earlyclobbers
[i1
]))
6558 if (i1
!= n_earlyclobbers
6559 || ! (free_for_value_p (i
, rld
[r
].mode
,
6561 rld
[r
].when_needed
, rld
[r
].in
,
6563 /* Don't use it if we'd clobber a pseudo reg. */
6564 || (TEST_HARD_REG_BIT (reg_used_in_insn
, i
)
6566 && ! TEST_HARD_REG_BIT (reg_reloaded_dead
, i
))
6567 /* Don't clobber the frame pointer. */
6568 || (i
== HARD_FRAME_POINTER_REGNUM
6569 && frame_pointer_needed
6571 /* Don't really use the inherited spill reg
6572 if we need it wider than we've got it. */
6573 || paradoxical_subreg_p (rld
[r
].mode
, mode
)
6576 /* If find_reloads chose reload_out as reload
6577 register, stay with it - that leaves the
6578 inherited register for subsequent reloads. */
6579 || (rld
[r
].out
&& rld
[r
].reg_rtx
6580 && rtx_equal_p (rld
[r
].out
, rld
[r
].reg_rtx
)))
6582 if (! rld
[r
].optional
)
6584 reload_override_in
[r
] = last_reg
;
6585 reload_inheritance_insn
[r
]
6586 = reg_reloaded_insn
[i
];
6592 /* We can use this as a reload reg. */
6593 /* Mark the register as in use for this part of
6595 mark_reload_reg_in_use (i
,
6599 rld
[r
].reg_rtx
= last_reg
;
6600 reload_inherited
[r
] = 1;
6601 reload_inheritance_insn
[r
]
6602 = reg_reloaded_insn
[i
];
6603 reload_spill_index
[r
] = i
;
6604 for (k
= 0; k
< nr
; k
++)
6605 SET_HARD_REG_BIT (reload_reg_used_for_inherit
,
6613 /* Here's another way to see if the value is already lying around. */
6616 && ! reload_inherited
[r
]
6618 && (CONSTANT_P (rld
[r
].in
)
6619 || GET_CODE (rld
[r
].in
) == PLUS
6620 || REG_P (rld
[r
].in
)
6621 || MEM_P (rld
[r
].in
))
6622 && (rld
[r
].nregs
== max_group_size
6623 || ! reg_classes_intersect_p (rld
[r
].rclass
, group_class
)))
6624 search_equiv
= rld
[r
].in
;
6629 = find_equiv_reg (search_equiv
, insn
, rld
[r
].rclass
,
6630 -1, NULL
, 0, rld
[r
].mode
);
6636 regno
= REGNO (equiv
);
6639 /* This must be a SUBREG of a hard register.
6640 Make a new REG since this might be used in an
6641 address and not all machines support SUBREGs
6643 gcc_assert (GET_CODE (equiv
) == SUBREG
);
6644 regno
= subreg_regno (equiv
);
6645 equiv
= gen_rtx_REG (rld
[r
].mode
, regno
);
6646 /* If we choose EQUIV as the reload register, but the
6647 loop below decides to cancel the inheritance, we'll
6648 end up reloading EQUIV in rld[r].mode, not the mode
6649 it had originally. That isn't safe when EQUIV isn't
6650 available as a spill register since its value might
6651 still be live at this point. */
6652 for (i
= regno
; i
< regno
+ (int) rld
[r
].nregs
; i
++)
6653 if (TEST_HARD_REG_BIT (reload_reg_unavailable
, i
))
6658 /* If we found a spill reg, reject it unless it is free
6659 and of the desired class. */
6663 int bad_for_class
= 0;
6664 int max_regno
= regno
+ rld
[r
].nregs
;
6666 for (i
= regno
; i
< max_regno
; i
++)
6668 regs_used
|= TEST_HARD_REG_BIT (reload_reg_used_at_all
,
6670 bad_for_class
|= ! TEST_HARD_REG_BIT (reg_class_contents
[(int) rld
[r
].rclass
],
6675 && ! free_for_value_p (regno
, rld
[r
].mode
,
6676 rld
[r
].opnum
, rld
[r
].when_needed
,
6677 rld
[r
].in
, rld
[r
].out
, r
, 1))
6683 && !targetm
.hard_regno_mode_ok (regno
, rld
[r
].mode
))
6686 /* We found a register that contains the value we need.
6687 If this register is the same as an `earlyclobber' operand
6688 of the current insn, just mark it as a place to reload from
6689 since we can't use it as the reload register itself. */
6692 for (i
= 0; i
< n_earlyclobbers
; i
++)
6693 if (reg_overlap_mentioned_for_reload_p (equiv
,
6694 reload_earlyclobbers
[i
]))
6696 if (! rld
[r
].optional
)
6697 reload_override_in
[r
] = equiv
;
6702 /* If the equiv register we have found is explicitly clobbered
6703 in the current insn, it depends on the reload type if we
6704 can use it, use it for reload_override_in, or not at all.
6705 In particular, we then can't use EQUIV for a
6706 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6710 if (regno_clobbered_p (regno
, insn
, rld
[r
].mode
, 2))
6711 switch (rld
[r
].when_needed
)
6713 case RELOAD_FOR_OTHER_ADDRESS
:
6714 case RELOAD_FOR_INPADDR_ADDRESS
:
6715 case RELOAD_FOR_INPUT_ADDRESS
:
6716 case RELOAD_FOR_OPADDR_ADDR
:
6719 case RELOAD_FOR_INPUT
:
6720 case RELOAD_FOR_OPERAND_ADDRESS
:
6721 if (! rld
[r
].optional
)
6722 reload_override_in
[r
] = equiv
;
6728 else if (regno_clobbered_p (regno
, insn
, rld
[r
].mode
, 1))
6729 switch (rld
[r
].when_needed
)
6731 case RELOAD_FOR_OTHER_ADDRESS
:
6732 case RELOAD_FOR_INPADDR_ADDRESS
:
6733 case RELOAD_FOR_INPUT_ADDRESS
:
6734 case RELOAD_FOR_OPADDR_ADDR
:
6735 case RELOAD_FOR_OPERAND_ADDRESS
:
6736 case RELOAD_FOR_INPUT
:
6739 if (! rld
[r
].optional
)
6740 reload_override_in
[r
] = equiv
;
6748 /* If we found an equivalent reg, say no code need be generated
6749 to load it, and use it as our reload reg. */
6751 && (regno
!= HARD_FRAME_POINTER_REGNUM
6752 || !frame_pointer_needed
))
6754 int nr
= hard_regno_nregs (regno
, rld
[r
].mode
);
6756 rld
[r
].reg_rtx
= equiv
;
6757 reload_spill_index
[r
] = regno
;
6758 reload_inherited
[r
] = 1;
6760 /* If reg_reloaded_valid is not set for this register,
6761 there might be a stale spill_reg_store lying around.
6762 We must clear it, since otherwise emit_reload_insns
6763 might delete the store. */
6764 if (! TEST_HARD_REG_BIT (reg_reloaded_valid
, regno
))
6765 spill_reg_store
[regno
] = NULL
;
6766 /* If any of the hard registers in EQUIV are spill
6767 registers, mark them as in use for this insn. */
6768 for (k
= 0; k
< nr
; k
++)
6770 i
= spill_reg_order
[regno
+ k
];
6773 mark_reload_reg_in_use (regno
, rld
[r
].opnum
,
6776 SET_HARD_REG_BIT (reload_reg_used_for_inherit
,
6783 /* If we found a register to use already, or if this is an optional
6784 reload, we are done. */
6785 if (rld
[r
].reg_rtx
!= 0 || rld
[r
].optional
!= 0)
6789 /* No longer needed for correct operation. Might or might
6790 not give better code on the average. Want to experiment? */
6792 /* See if there is a later reload that has a class different from our
6793 class that intersects our class or that requires less register
6794 than our reload. If so, we must allocate a register to this
6795 reload now, since that reload might inherit a previous reload
6796 and take the only available register in our class. Don't do this
6797 for optional reloads since they will force all previous reloads
6798 to be allocated. Also don't do this for reloads that have been
6801 for (i
= j
+ 1; i
< n_reloads
; i
++)
6803 int s
= reload_order
[i
];
6805 if ((rld
[s
].in
== 0 && rld
[s
].out
== 0
6806 && ! rld
[s
].secondary_p
)
6810 if ((rld
[s
].rclass
!= rld
[r
].rclass
6811 && reg_classes_intersect_p (rld
[r
].rclass
,
6813 || rld
[s
].nregs
< rld
[r
].nregs
)
6820 allocate_reload_reg (chain
, r
, j
== n_reloads
- 1);
6824 /* Now allocate reload registers for anything non-optional that
6825 didn't get one yet. */
6826 for (j
= 0; j
< n_reloads
; j
++)
6828 int r
= reload_order
[j
];
6830 /* Ignore reloads that got marked inoperative. */
6831 if (rld
[r
].out
== 0 && rld
[r
].in
== 0 && ! rld
[r
].secondary_p
)
6834 /* Skip reloads that already have a register allocated or are
6836 if (rld
[r
].reg_rtx
!= 0 || rld
[r
].optional
)
6839 if (! allocate_reload_reg (chain
, r
, j
== n_reloads
- 1))
6843 /* If that loop got all the way, we have won. */
6850 /* Loop around and try without any inheritance. */
6855 /* First undo everything done by the failed attempt
6856 to allocate with inheritance. */
6857 choose_reload_regs_init (chain
, save_reload_reg_rtx
);
6859 /* Some sanity tests to verify that the reloads found in the first
6860 pass are identical to the ones we have now. */
6861 gcc_assert (chain
->n_reloads
== n_reloads
);
6863 for (i
= 0; i
< n_reloads
; i
++)
6865 if (chain
->rld
[i
].regno
< 0 || chain
->rld
[i
].reg_rtx
!= 0)
6867 gcc_assert (chain
->rld
[i
].when_needed
== rld
[i
].when_needed
);
6868 for (j
= 0; j
< n_spills
; j
++)
6869 if (spill_regs
[j
] == chain
->rld
[i
].regno
)
6870 if (! set_reload_reg (j
, i
))
6871 failed_reload (chain
->insn
, i
);
6875 /* If we thought we could inherit a reload, because it seemed that
6876 nothing else wanted the same reload register earlier in the insn,
6877 verify that assumption, now that all reloads have been assigned.
6878 Likewise for reloads where reload_override_in has been set. */
6880 /* If doing expensive optimizations, do one preliminary pass that doesn't
6881 cancel any inheritance, but removes reloads that have been needed only
6882 for reloads that we know can be inherited. */
6883 for (pass
= flag_expensive_optimizations
; pass
>= 0; pass
--)
6885 for (j
= 0; j
< n_reloads
; j
++)
6887 int r
= reload_order
[j
];
6890 if (reload_inherited
[r
] && rld
[r
].reg_rtx
)
6891 check_reg
= rld
[r
].reg_rtx
;
6892 else if (reload_override_in
[r
]
6893 && (REG_P (reload_override_in
[r
])
6894 || GET_CODE (reload_override_in
[r
]) == SUBREG
))
6895 check_reg
= reload_override_in
[r
];
6898 if (! free_for_value_p (true_regnum (check_reg
), rld
[r
].mode
,
6899 rld
[r
].opnum
, rld
[r
].when_needed
, rld
[r
].in
,
6900 (reload_inherited
[r
]
6901 ? rld
[r
].out
: const0_rtx
),
6906 reload_inherited
[r
] = 0;
6907 reload_override_in
[r
] = 0;
6909 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6910 reload_override_in, then we do not need its related
6911 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6912 likewise for other reload types.
6913 We handle this by removing a reload when its only replacement
6914 is mentioned in reload_in of the reload we are going to inherit.
6915 A special case are auto_inc expressions; even if the input is
6916 inherited, we still need the address for the output. We can
6917 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6918 If we succeeded removing some reload and we are doing a preliminary
6919 pass just to remove such reloads, make another pass, since the
6920 removal of one reload might allow us to inherit another one. */
6922 && rld
[r
].out
!= rld
[r
].in
6923 && remove_address_replacements (rld
[r
].in
))
6928 /* If we needed a memory location for the reload, we also have to
6929 remove its related reloads. */
6931 && rld
[r
].out
!= rld
[r
].in
6932 && (tem
= replaced_subreg (rld
[r
].in
), REG_P (tem
))
6933 && REGNO (tem
) < FIRST_PSEUDO_REGISTER
6934 && (targetm
.secondary_memory_needed
6935 (rld
[r
].inmode
, REGNO_REG_CLASS (REGNO (tem
)),
6937 && remove_address_replacements
6938 (get_secondary_mem (tem
, rld
[r
].inmode
, rld
[r
].opnum
,
6939 rld
[r
].when_needed
)))
6947 /* Now that reload_override_in is known valid,
6948 actually override reload_in. */
6949 for (j
= 0; j
< n_reloads
; j
++)
6950 if (reload_override_in
[j
])
6951 rld
[j
].in
= reload_override_in
[j
];
6953 /* If this reload won't be done because it has been canceled or is
6954 optional and not inherited, clear reload_reg_rtx so other
6955 routines (such as subst_reloads) don't get confused. */
6956 for (j
= 0; j
< n_reloads
; j
++)
6957 if (rld
[j
].reg_rtx
!= 0
6958 && ((rld
[j
].optional
&& ! reload_inherited
[j
])
6959 || (rld
[j
].in
== 0 && rld
[j
].out
== 0
6960 && ! rld
[j
].secondary_p
)))
6962 int regno
= true_regnum (rld
[j
].reg_rtx
);
6964 if (spill_reg_order
[regno
] >= 0)
6965 clear_reload_reg_in_use (regno
, rld
[j
].opnum
,
6966 rld
[j
].when_needed
, rld
[j
].mode
);
6968 reload_spill_index
[j
] = -1;
6971 /* Record which pseudos and which spill regs have output reloads. */
6972 for (j
= 0; j
< n_reloads
; j
++)
6974 int r
= reload_order
[j
];
6976 i
= reload_spill_index
[r
];
6978 /* I is nonneg if this reload uses a register.
6979 If rld[r].reg_rtx is 0, this is an optional reload
6980 that we opted to ignore. */
6981 if (rld
[r
].out_reg
!= 0 && REG_P (rld
[r
].out_reg
)
6982 && rld
[r
].reg_rtx
!= 0)
6984 int nregno
= REGNO (rld
[r
].out_reg
);
6987 if (nregno
< FIRST_PSEUDO_REGISTER
)
6988 nr
= hard_regno_nregs (nregno
, rld
[r
].mode
);
6991 SET_REGNO_REG_SET (®_has_output_reload
,
6995 add_to_hard_reg_set (®_is_output_reload
, rld
[r
].mode
, i
);
6997 gcc_assert (rld
[r
].when_needed
== RELOAD_OTHER
6998 || rld
[r
].when_needed
== RELOAD_FOR_OUTPUT
6999 || rld
[r
].when_needed
== RELOAD_FOR_INSN
);
7004 /* Deallocate the reload register for reload R. This is called from
7005 remove_address_replacements. */
7008 deallocate_reload_reg (int r
)
7012 if (! rld
[r
].reg_rtx
)
7014 regno
= true_regnum (rld
[r
].reg_rtx
);
7016 if (spill_reg_order
[regno
] >= 0)
7017 clear_reload_reg_in_use (regno
, rld
[r
].opnum
, rld
[r
].when_needed
,
7019 reload_spill_index
[r
] = -1;
7022 /* These arrays are filled by emit_reload_insns and its subroutines. */
7023 static rtx_insn
*input_reload_insns
[MAX_RECOG_OPERANDS
];
7024 static rtx_insn
*other_input_address_reload_insns
= 0;
7025 static rtx_insn
*other_input_reload_insns
= 0;
7026 static rtx_insn
*input_address_reload_insns
[MAX_RECOG_OPERANDS
];
7027 static rtx_insn
*inpaddr_address_reload_insns
[MAX_RECOG_OPERANDS
];
7028 static rtx_insn
*output_reload_insns
[MAX_RECOG_OPERANDS
];
7029 static rtx_insn
*output_address_reload_insns
[MAX_RECOG_OPERANDS
];
7030 static rtx_insn
*outaddr_address_reload_insns
[MAX_RECOG_OPERANDS
];
7031 static rtx_insn
*operand_reload_insns
= 0;
7032 static rtx_insn
*other_operand_reload_insns
= 0;
7033 static rtx_insn
*other_output_reload_insns
[MAX_RECOG_OPERANDS
];
7035 /* Values to be put in spill_reg_store are put here first. Instructions
7036 must only be placed here if the associated reload register reaches
7037 the end of the instruction's reload sequence. */
7038 static rtx_insn
*new_spill_reg_store
[FIRST_PSEUDO_REGISTER
];
7039 static HARD_REG_SET reg_reloaded_died
;
7041 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7042 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7043 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7044 adjusted register, and return true. Otherwise, return false. */
7046 reload_adjust_reg_for_temp (rtx
*reload_reg
, rtx alt_reload_reg
,
7047 enum reg_class new_class
,
7048 machine_mode new_mode
)
7053 for (reg
= *reload_reg
; reg
; reg
= alt_reload_reg
, alt_reload_reg
= 0)
7055 unsigned regno
= REGNO (reg
);
7057 if (!TEST_HARD_REG_BIT (reg_class_contents
[(int) new_class
], regno
))
7059 if (GET_MODE (reg
) != new_mode
)
7061 if (!targetm
.hard_regno_mode_ok (regno
, new_mode
))
7063 if (hard_regno_nregs (regno
, new_mode
) > REG_NREGS (reg
))
7065 reg
= reload_adjust_reg_for_mode (reg
, new_mode
);
7073 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7074 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7075 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7076 adjusted register, and return true. Otherwise, return false. */
7078 reload_adjust_reg_for_icode (rtx
*reload_reg
, rtx alt_reload_reg
,
7079 enum insn_code icode
)
7082 enum reg_class new_class
= scratch_reload_class (icode
);
7083 machine_mode new_mode
= insn_data
[(int) icode
].operand
[2].mode
;
7085 return reload_adjust_reg_for_temp (reload_reg
, alt_reload_reg
,
7086 new_class
, new_mode
);
7089 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7090 has the number J. OLD contains the value to be used as input. */
7093 emit_input_reload_insns (class insn_chain
*chain
, struct reload
*rl
,
7096 rtx_insn
*insn
= chain
->insn
;
7098 rtx oldequiv_reg
= 0;
7104 /* delete_output_reload is only invoked properly if old contains
7105 the original pseudo register. Since this is replaced with a
7106 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7107 find the pseudo in RELOAD_IN_REG. This is also used to
7108 determine whether a secondary reload is needed. */
7109 if (reload_override_in
[j
]
7110 && (REG_P (rl
->in_reg
)
7111 || (GET_CODE (rl
->in_reg
) == SUBREG
7112 && REG_P (SUBREG_REG (rl
->in_reg
)))))
7119 else if (REG_P (oldequiv
))
7120 oldequiv_reg
= oldequiv
;
7121 else if (GET_CODE (oldequiv
) == SUBREG
)
7122 oldequiv_reg
= SUBREG_REG (oldequiv
);
7124 reloadreg
= reload_reg_rtx_for_input
[j
];
7125 mode
= GET_MODE (reloadreg
);
7127 /* If we are reloading from a register that was recently stored in
7128 with an output-reload, see if we can prove there was
7129 actually no need to store the old value in it. */
7131 if (optimize
&& REG_P (oldequiv
)
7132 && REGNO (oldequiv
) < FIRST_PSEUDO_REGISTER
7133 && spill_reg_store
[REGNO (oldequiv
)]
7135 && (dead_or_set_p (insn
, spill_reg_stored_to
[REGNO (oldequiv
)])
7136 || rtx_equal_p (spill_reg_stored_to
[REGNO (oldequiv
)],
7138 delete_output_reload (insn
, j
, REGNO (oldequiv
), reloadreg
);
7140 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7143 while (GET_CODE (oldequiv
) == SUBREG
&& GET_MODE (oldequiv
) != mode
)
7144 oldequiv
= SUBREG_REG (oldequiv
);
7145 if (GET_MODE (oldequiv
) != VOIDmode
7146 && mode
!= GET_MODE (oldequiv
))
7147 oldequiv
= gen_lowpart_SUBREG (mode
, oldequiv
);
7149 /* Switch to the right place to emit the reload insns. */
7150 switch (rl
->when_needed
)
7153 where
= &other_input_reload_insns
;
7155 case RELOAD_FOR_INPUT
:
7156 where
= &input_reload_insns
[rl
->opnum
];
7158 case RELOAD_FOR_INPUT_ADDRESS
:
7159 where
= &input_address_reload_insns
[rl
->opnum
];
7161 case RELOAD_FOR_INPADDR_ADDRESS
:
7162 where
= &inpaddr_address_reload_insns
[rl
->opnum
];
7164 case RELOAD_FOR_OUTPUT_ADDRESS
:
7165 where
= &output_address_reload_insns
[rl
->opnum
];
7167 case RELOAD_FOR_OUTADDR_ADDRESS
:
7168 where
= &outaddr_address_reload_insns
[rl
->opnum
];
7170 case RELOAD_FOR_OPERAND_ADDRESS
:
7171 where
= &operand_reload_insns
;
7173 case RELOAD_FOR_OPADDR_ADDR
:
7174 where
= &other_operand_reload_insns
;
7176 case RELOAD_FOR_OTHER_ADDRESS
:
7177 where
= &other_input_address_reload_insns
;
7183 push_to_sequence (*where
);
7185 /* Auto-increment addresses must be reloaded in a special way. */
7186 if (rl
->out
&& ! rl
->out_reg
)
7188 /* We are not going to bother supporting the case where a
7189 incremented register can't be copied directly from
7190 OLDEQUIV since this seems highly unlikely. */
7191 gcc_assert (rl
->secondary_in_reload
< 0);
7193 if (reload_inherited
[j
])
7194 oldequiv
= reloadreg
;
7196 old
= XEXP (rl
->in_reg
, 0);
7198 /* Prevent normal processing of this reload. */
7200 /* Output a special code sequence for this case. */
7201 inc_for_reload (reloadreg
, oldequiv
, rl
->out
, rl
->inc
);
7204 /* If we are reloading a pseudo-register that was set by the previous
7205 insn, see if we can get rid of that pseudo-register entirely
7206 by redirecting the previous insn into our reload register. */
7208 else if (optimize
&& REG_P (old
)
7209 && REGNO (old
) >= FIRST_PSEUDO_REGISTER
7210 && dead_or_set_p (insn
, old
)
7211 /* This is unsafe if some other reload
7212 uses the same reg first. */
7213 && ! conflicts_with_override (reloadreg
)
7214 && free_for_value_p (REGNO (reloadreg
), rl
->mode
, rl
->opnum
,
7215 rl
->when_needed
, old
, rl
->out
, j
, 0))
7217 rtx_insn
*temp
= PREV_INSN (insn
);
7218 while (temp
&& (NOTE_P (temp
) || DEBUG_INSN_P (temp
)))
7219 temp
= PREV_INSN (temp
);
7221 && NONJUMP_INSN_P (temp
)
7222 && GET_CODE (PATTERN (temp
)) == SET
7223 && SET_DEST (PATTERN (temp
)) == old
7224 /* Make sure we can access insn_operand_constraint. */
7225 && asm_noperands (PATTERN (temp
)) < 0
7226 /* This is unsafe if operand occurs more than once in current
7227 insn. Perhaps some occurrences aren't reloaded. */
7228 && count_occurrences (PATTERN (insn
), old
, 0) == 1)
7230 rtx old
= SET_DEST (PATTERN (temp
));
7231 /* Store into the reload register instead of the pseudo. */
7232 SET_DEST (PATTERN (temp
)) = reloadreg
;
7234 /* Verify that resulting insn is valid.
7236 Note that we have replaced the destination of TEMP with
7237 RELOADREG. If TEMP references RELOADREG within an
7238 autoincrement addressing mode, then the resulting insn
7239 is ill-formed and we must reject this optimization. */
7240 extract_insn (temp
);
7241 if (constrain_operands (1, get_enabled_alternatives (temp
))
7242 && (!AUTO_INC_DEC
|| ! find_reg_note (temp
, REG_INC
, reloadreg
)))
7244 /* If the previous insn is an output reload, the source is
7245 a reload register, and its spill_reg_store entry will
7246 contain the previous destination. This is now
7248 if (REG_P (SET_SRC (PATTERN (temp
)))
7249 && REGNO (SET_SRC (PATTERN (temp
))) < FIRST_PSEUDO_REGISTER
)
7251 spill_reg_store
[REGNO (SET_SRC (PATTERN (temp
)))] = 0;
7252 spill_reg_stored_to
[REGNO (SET_SRC (PATTERN (temp
)))] = 0;
7255 /* If these are the only uses of the pseudo reg,
7256 pretend for GDB it lives in the reload reg we used. */
7257 if (REG_N_DEATHS (REGNO (old
)) == 1
7258 && REG_N_SETS (REGNO (old
)) == 1)
7260 reg_renumber
[REGNO (old
)] = REGNO (reloadreg
);
7261 if (ira_conflicts_p
)
7262 /* Inform IRA about the change. */
7263 ira_mark_allocation_change (REGNO (old
));
7264 alter_reg (REGNO (old
), -1, false);
7268 /* Adjust any debug insns between temp and insn. */
7269 while ((temp
= NEXT_INSN (temp
)) != insn
)
7270 if (DEBUG_BIND_INSN_P (temp
))
7271 INSN_VAR_LOCATION_LOC (temp
)
7272 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (temp
),
7275 gcc_assert (DEBUG_INSN_P (temp
) || NOTE_P (temp
));
7279 SET_DEST (PATTERN (temp
)) = old
;
7284 /* We can't do that, so output an insn to load RELOADREG. */
7286 /* If we have a secondary reload, pick up the secondary register
7287 and icode, if any. If OLDEQUIV and OLD are different or
7288 if this is an in-out reload, recompute whether or not we
7289 still need a secondary register and what the icode should
7290 be. If we still need a secondary register and the class or
7291 icode is different, go back to reloading from OLD if using
7292 OLDEQUIV means that we got the wrong type of register. We
7293 cannot have different class or icode due to an in-out reload
7294 because we don't make such reloads when both the input and
7295 output need secondary reload registers. */
7297 if (! special
&& rl
->secondary_in_reload
>= 0)
7299 rtx second_reload_reg
= 0;
7300 rtx third_reload_reg
= 0;
7301 int secondary_reload
= rl
->secondary_in_reload
;
7302 rtx real_oldequiv
= oldequiv
;
7305 enum insn_code icode
;
7306 enum insn_code tertiary_icode
= CODE_FOR_nothing
;
7308 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7309 and similarly for OLD.
7310 See comments in get_secondary_reload in reload.cc. */
7311 /* If it is a pseudo that cannot be replaced with its
7312 equivalent MEM, we must fall back to reload_in, which
7313 will have all the necessary substitutions registered.
7314 Likewise for a pseudo that can't be replaced with its
7315 equivalent constant.
7317 Take extra care for subregs of such pseudos. Note that
7318 we cannot use reg_equiv_mem in this case because it is
7319 not in the right mode. */
7322 if (GET_CODE (tmp
) == SUBREG
)
7323 tmp
= SUBREG_REG (tmp
);
7325 && REGNO (tmp
) >= FIRST_PSEUDO_REGISTER
7326 && (reg_equiv_memory_loc (REGNO (tmp
)) != 0
7327 || reg_equiv_constant (REGNO (tmp
)) != 0))
7329 if (! reg_equiv_mem (REGNO (tmp
))
7330 || num_not_at_initial_offset
7331 || GET_CODE (oldequiv
) == SUBREG
)
7332 real_oldequiv
= rl
->in
;
7334 real_oldequiv
= reg_equiv_mem (REGNO (tmp
));
7338 if (GET_CODE (tmp
) == SUBREG
)
7339 tmp
= SUBREG_REG (tmp
);
7341 && REGNO (tmp
) >= FIRST_PSEUDO_REGISTER
7342 && (reg_equiv_memory_loc (REGNO (tmp
)) != 0
7343 || reg_equiv_constant (REGNO (tmp
)) != 0))
7345 if (! reg_equiv_mem (REGNO (tmp
))
7346 || num_not_at_initial_offset
7347 || GET_CODE (old
) == SUBREG
)
7350 real_old
= reg_equiv_mem (REGNO (tmp
));
7353 second_reload_reg
= rld
[secondary_reload
].reg_rtx
;
7354 if (rld
[secondary_reload
].secondary_in_reload
>= 0)
7356 int tertiary_reload
= rld
[secondary_reload
].secondary_in_reload
;
7358 third_reload_reg
= rld
[tertiary_reload
].reg_rtx
;
7359 tertiary_icode
= rld
[secondary_reload
].secondary_in_icode
;
7360 /* We'd have to add more code for quartary reloads. */
7361 gcc_assert (rld
[tertiary_reload
].secondary_in_reload
< 0);
7363 icode
= rl
->secondary_in_icode
;
7365 if ((old
!= oldequiv
&& ! rtx_equal_p (old
, oldequiv
))
7366 || (rl
->in
!= 0 && rl
->out
!= 0))
7368 secondary_reload_info sri
, sri2
;
7369 enum reg_class new_class
, new_t_class
;
7371 sri
.icode
= CODE_FOR_nothing
;
7372 sri
.prev_sri
= NULL
;
7374 = (enum reg_class
) targetm
.secondary_reload (1, real_oldequiv
,
7378 if (new_class
== NO_REGS
&& sri
.icode
== CODE_FOR_nothing
)
7379 second_reload_reg
= 0;
7380 else if (new_class
== NO_REGS
)
7382 if (reload_adjust_reg_for_icode (&second_reload_reg
,
7384 (enum insn_code
) sri
.icode
))
7386 icode
= (enum insn_code
) sri
.icode
;
7387 third_reload_reg
= 0;
7392 real_oldequiv
= real_old
;
7395 else if (sri
.icode
!= CODE_FOR_nothing
)
7396 /* We currently lack a way to express this in reloads. */
7400 sri2
.icode
= CODE_FOR_nothing
;
7401 sri2
.prev_sri
= &sri
;
7403 = (enum reg_class
) targetm
.secondary_reload (1, real_oldequiv
,
7406 if (new_t_class
== NO_REGS
&& sri2
.icode
== CODE_FOR_nothing
)
7408 if (reload_adjust_reg_for_temp (&second_reload_reg
,
7412 third_reload_reg
= 0;
7413 tertiary_icode
= (enum insn_code
) sri2
.icode
;
7418 real_oldequiv
= real_old
;
7421 else if (new_t_class
== NO_REGS
&& sri2
.icode
!= CODE_FOR_nothing
)
7423 rtx intermediate
= second_reload_reg
;
7425 if (reload_adjust_reg_for_temp (&intermediate
, NULL
,
7427 && reload_adjust_reg_for_icode (&third_reload_reg
, NULL
,
7431 second_reload_reg
= intermediate
;
7432 tertiary_icode
= (enum insn_code
) sri2
.icode
;
7437 real_oldequiv
= real_old
;
7440 else if (new_t_class
!= NO_REGS
&& sri2
.icode
== CODE_FOR_nothing
)
7442 rtx intermediate
= second_reload_reg
;
7444 if (reload_adjust_reg_for_temp (&intermediate
, NULL
,
7446 && reload_adjust_reg_for_temp (&third_reload_reg
, NULL
,
7449 second_reload_reg
= intermediate
;
7450 tertiary_icode
= (enum insn_code
) sri2
.icode
;
7455 real_oldequiv
= real_old
;
7460 /* This could be handled more intelligently too. */
7462 real_oldequiv
= real_old
;
7467 /* If we still need a secondary reload register, check
7468 to see if it is being used as a scratch or intermediate
7469 register and generate code appropriately. If we need
7470 a scratch register, use REAL_OLDEQUIV since the form of
7471 the insn may depend on the actual address if it is
7474 if (second_reload_reg
)
7476 if (icode
!= CODE_FOR_nothing
)
7478 /* We'd have to add extra code to handle this case. */
7479 gcc_assert (!third_reload_reg
);
7481 emit_insn (GEN_FCN (icode
) (reloadreg
, real_oldequiv
,
7482 second_reload_reg
));
7487 /* See if we need a scratch register to load the
7488 intermediate register (a tertiary reload). */
7489 if (tertiary_icode
!= CODE_FOR_nothing
)
7491 emit_insn ((GEN_FCN (tertiary_icode
)
7492 (second_reload_reg
, real_oldequiv
,
7493 third_reload_reg
)));
7495 else if (third_reload_reg
)
7497 gen_reload (third_reload_reg
, real_oldequiv
,
7500 gen_reload (second_reload_reg
, third_reload_reg
,
7505 gen_reload (second_reload_reg
, real_oldequiv
,
7509 oldequiv
= second_reload_reg
;
7514 if (! special
&& ! rtx_equal_p (reloadreg
, oldequiv
))
7516 rtx real_oldequiv
= oldequiv
;
7518 if ((REG_P (oldequiv
)
7519 && REGNO (oldequiv
) >= FIRST_PSEUDO_REGISTER
7520 && (reg_equiv_memory_loc (REGNO (oldequiv
)) != 0
7521 || reg_equiv_constant (REGNO (oldequiv
)) != 0))
7522 || (GET_CODE (oldequiv
) == SUBREG
7523 && REG_P (SUBREG_REG (oldequiv
))
7524 && (REGNO (SUBREG_REG (oldequiv
))
7525 >= FIRST_PSEUDO_REGISTER
)
7526 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv
))) != 0)
7527 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv
))) != 0)))
7528 || (CONSTANT_P (oldequiv
)
7529 && (targetm
.preferred_reload_class (oldequiv
,
7530 REGNO_REG_CLASS (REGNO (reloadreg
)))
7532 real_oldequiv
= rl
->in
;
7533 gen_reload (reloadreg
, real_oldequiv
, rl
->opnum
,
7537 if (cfun
->can_throw_non_call_exceptions
)
7538 copy_reg_eh_region_note_forward (insn
, get_insns (), NULL
);
7540 /* End this sequence. */
7541 *where
= get_insns ();
7544 /* Update reload_override_in so that delete_address_reloads_1
7545 can see the actual register usage. */
7547 reload_override_in
[j
] = oldequiv
;
7550 /* Generate insns to for the output reload RL, which is for the insn described
7551 by CHAIN and has the number J. */
7553 emit_output_reload_insns (class insn_chain
*chain
, struct reload
*rl
,
7557 rtx_insn
*insn
= chain
->insn
;
7564 if (rl
->when_needed
== RELOAD_OTHER
)
7567 push_to_sequence (output_reload_insns
[rl
->opnum
]);
7569 rl_reg_rtx
= reload_reg_rtx_for_output
[j
];
7570 mode
= GET_MODE (rl_reg_rtx
);
7572 reloadreg
= rl_reg_rtx
;
7574 /* If we need two reload regs, set RELOADREG to the intermediate
7575 one, since it will be stored into OLD. We might need a secondary
7576 register only for an input reload, so check again here. */
7578 if (rl
->secondary_out_reload
>= 0)
7581 int secondary_reload
= rl
->secondary_out_reload
;
7582 int tertiary_reload
= rld
[secondary_reload
].secondary_out_reload
;
7584 if (REG_P (old
) && REGNO (old
) >= FIRST_PSEUDO_REGISTER
7585 && reg_equiv_mem (REGNO (old
)) != 0)
7586 real_old
= reg_equiv_mem (REGNO (old
));
7588 if (secondary_reload_class (0, rl
->rclass
, mode
, real_old
) != NO_REGS
)
7590 rtx second_reloadreg
= reloadreg
;
7591 reloadreg
= rld
[secondary_reload
].reg_rtx
;
7593 /* See if RELOADREG is to be used as a scratch register
7594 or as an intermediate register. */
7595 if (rl
->secondary_out_icode
!= CODE_FOR_nothing
)
7597 /* We'd have to add extra code to handle this case. */
7598 gcc_assert (tertiary_reload
< 0);
7600 emit_insn ((GEN_FCN (rl
->secondary_out_icode
)
7601 (real_old
, second_reloadreg
, reloadreg
)));
7606 /* See if we need both a scratch and intermediate reload
7609 enum insn_code tertiary_icode
7610 = rld
[secondary_reload
].secondary_out_icode
;
7612 /* We'd have to add more code for quartary reloads. */
7613 gcc_assert (tertiary_reload
< 0
7614 || rld
[tertiary_reload
].secondary_out_reload
< 0);
7616 if (GET_MODE (reloadreg
) != mode
)
7617 reloadreg
= reload_adjust_reg_for_mode (reloadreg
, mode
);
7619 if (tertiary_icode
!= CODE_FOR_nothing
)
7621 rtx third_reloadreg
= rld
[tertiary_reload
].reg_rtx
;
7623 /* Copy primary reload reg to secondary reload reg.
7624 (Note that these have been swapped above, then
7625 secondary reload reg to OLD using our insn.) */
7627 /* If REAL_OLD is a paradoxical SUBREG, remove it
7628 and try to put the opposite SUBREG on
7630 strip_paradoxical_subreg (&real_old
, &reloadreg
);
7632 gen_reload (reloadreg
, second_reloadreg
,
7633 rl
->opnum
, rl
->when_needed
);
7634 emit_insn ((GEN_FCN (tertiary_icode
)
7635 (real_old
, reloadreg
, third_reloadreg
)));
7641 /* Copy between the reload regs here and then to
7644 gen_reload (reloadreg
, second_reloadreg
,
7645 rl
->opnum
, rl
->when_needed
);
7646 if (tertiary_reload
>= 0)
7648 rtx third_reloadreg
= rld
[tertiary_reload
].reg_rtx
;
7650 gen_reload (third_reloadreg
, reloadreg
,
7651 rl
->opnum
, rl
->when_needed
);
7652 reloadreg
= third_reloadreg
;
7659 /* Output the last reload insn. */
7664 /* Don't output the last reload if OLD is not the dest of
7665 INSN and is in the src and is clobbered by INSN. */
7666 if (! flag_expensive_optimizations
7668 || !(set
= single_set (insn
))
7669 || rtx_equal_p (old
, SET_DEST (set
))
7670 || !reg_mentioned_p (old
, SET_SRC (set
))
7671 || !((REGNO (old
) < FIRST_PSEUDO_REGISTER
)
7672 && regno_clobbered_p (REGNO (old
), insn
, rl
->mode
, 0)))
7673 gen_reload (old
, reloadreg
, rl
->opnum
,
7677 /* Look at all insns we emitted, just to be safe. */
7678 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
7681 rtx pat
= PATTERN (p
);
7683 /* If this output reload doesn't come from a spill reg,
7684 clear any memory of reloaded copies of the pseudo reg.
7685 If this output reload comes from a spill reg,
7686 reg_has_output_reload will make this do nothing. */
7687 note_stores (p
, forget_old_reloads_1
, NULL
);
7689 if (reg_mentioned_p (rl_reg_rtx
, pat
))
7691 rtx set
= single_set (insn
);
7692 if (reload_spill_index
[j
] < 0
7694 && SET_SRC (set
) == rl_reg_rtx
)
7696 int src
= REGNO (SET_SRC (set
));
7698 reload_spill_index
[j
] = src
;
7699 SET_HARD_REG_BIT (reg_is_output_reload
, src
);
7700 if (find_regno_note (insn
, REG_DEAD
, src
))
7701 SET_HARD_REG_BIT (reg_reloaded_died
, src
);
7703 if (HARD_REGISTER_P (rl_reg_rtx
))
7705 int s
= rl
->secondary_out_reload
;
7706 set
= single_set (p
);
7707 /* If this reload copies only to the secondary reload
7708 register, the secondary reload does the actual
7710 if (s
>= 0 && set
== NULL_RTX
)
7711 /* We can't tell what function the secondary reload
7712 has and where the actual store to the pseudo is
7713 made; leave new_spill_reg_store alone. */
7716 && SET_SRC (set
) == rl_reg_rtx
7717 && SET_DEST (set
) == rld
[s
].reg_rtx
)
7719 /* Usually the next instruction will be the
7720 secondary reload insn; if we can confirm
7721 that it is, setting new_spill_reg_store to
7722 that insn will allow an extra optimization. */
7723 rtx s_reg
= rld
[s
].reg_rtx
;
7724 rtx_insn
*next
= NEXT_INSN (p
);
7725 rld
[s
].out
= rl
->out
;
7726 rld
[s
].out_reg
= rl
->out_reg
;
7727 set
= single_set (next
);
7728 if (set
&& SET_SRC (set
) == s_reg
7729 && reload_reg_rtx_reaches_end_p (s_reg
, s
))
7731 SET_HARD_REG_BIT (reg_is_output_reload
,
7733 new_spill_reg_store
[REGNO (s_reg
)] = next
;
7736 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx
, j
))
7737 new_spill_reg_store
[REGNO (rl_reg_rtx
)] = p
;
7742 if (rl
->when_needed
== RELOAD_OTHER
)
7744 emit_insn (other_output_reload_insns
[rl
->opnum
]);
7745 other_output_reload_insns
[rl
->opnum
] = get_insns ();
7748 output_reload_insns
[rl
->opnum
] = get_insns ();
7750 if (cfun
->can_throw_non_call_exceptions
)
7751 copy_reg_eh_region_note_forward (insn
, get_insns (), NULL
);
7756 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7757 and has the number J. */
7759 do_input_reload (class insn_chain
*chain
, struct reload
*rl
, int j
)
7761 rtx_insn
*insn
= chain
->insn
;
7762 rtx old
= (rl
->in
&& MEM_P (rl
->in
)
7763 ? rl
->in_reg
: rl
->in
);
7764 rtx reg_rtx
= rl
->reg_rtx
;
7770 /* Determine the mode to reload in.
7771 This is very tricky because we have three to choose from.
7772 There is the mode the insn operand wants (rl->inmode).
7773 There is the mode of the reload register RELOADREG.
7774 There is the intrinsic mode of the operand, which we could find
7775 by stripping some SUBREGs.
7776 It turns out that RELOADREG's mode is irrelevant:
7777 we can change that arbitrarily.
7779 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7780 then the reload reg may not support QImode moves, so use SImode.
7781 If foo is in memory due to spilling a pseudo reg, this is safe,
7782 because the QImode value is in the least significant part of a
7783 slot big enough for a SImode. If foo is some other sort of
7784 memory reference, then it is impossible to reload this case,
7785 so previous passes had better make sure this never happens.
7787 Then consider a one-word union which has SImode and one of its
7788 members is a float, being fetched as (SUBREG:SF union:SI).
7789 We must fetch that as SFmode because we could be loading into
7790 a float-only register. In this case OLD's mode is correct.
7792 Consider an immediate integer: it has VOIDmode. Here we need
7793 to get a mode from something else.
7795 In some cases, there is a fourth mode, the operand's
7796 containing mode. If the insn specifies a containing mode for
7797 this operand, it overrides all others.
7799 I am not sure whether the algorithm here is always right,
7800 but it does the right things in those cases. */
7802 mode
= GET_MODE (old
);
7803 if (mode
== VOIDmode
)
7806 /* We cannot use gen_lowpart_common since it can do the wrong thing
7807 when REG_RTX has a multi-word mode. Note that REG_RTX must
7808 always be a REG here. */
7809 if (GET_MODE (reg_rtx
) != mode
)
7810 reg_rtx
= reload_adjust_reg_for_mode (reg_rtx
, mode
);
7812 reload_reg_rtx_for_input
[j
] = reg_rtx
;
7815 /* AUTO_INC reloads need to be handled even if inherited. We got an
7816 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7817 && (! reload_inherited
[j
] || (rl
->out
&& ! rl
->out_reg
))
7818 && ! rtx_equal_p (reg_rtx
, old
)
7820 emit_input_reload_insns (chain
, rld
+ j
, old
, j
);
7822 /* When inheriting a wider reload, we have a MEM in rl->in,
7823 e.g. inheriting a SImode output reload for
7824 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7825 if (optimize
&& reload_inherited
[j
] && rl
->in
7827 && MEM_P (rl
->in_reg
)
7828 && reload_spill_index
[j
] >= 0
7829 && TEST_HARD_REG_BIT (reg_reloaded_valid
, reload_spill_index
[j
]))
7830 rl
->in
= regno_reg_rtx
[reg_reloaded_contents
[reload_spill_index
[j
]]];
7832 /* If we are reloading a register that was recently stored in with an
7833 output-reload, see if we can prove there was
7834 actually no need to store the old value in it. */
7837 && (reload_inherited
[j
] || reload_override_in
[j
])
7840 && spill_reg_store
[REGNO (reg_rtx
)] != 0
7842 /* There doesn't seem to be any reason to restrict this to pseudos
7843 and doing so loses in the case where we are copying from a
7844 register of the wrong class. */
7845 && !HARD_REGISTER_P (spill_reg_stored_to
[REGNO (reg_rtx
)])
7847 /* The insn might have already some references to stackslots
7848 replaced by MEMs, while reload_out_reg still names the
7850 && (dead_or_set_p (insn
, spill_reg_stored_to
[REGNO (reg_rtx
)])
7851 || rtx_equal_p (spill_reg_stored_to
[REGNO (reg_rtx
)], rl
->out_reg
)))
7852 delete_output_reload (insn
, j
, REGNO (reg_rtx
), reg_rtx
);
7855 /* Do output reloading for reload RL, which is for the insn described by
7856 CHAIN and has the number J.
7857 ??? At some point we need to support handling output reloads of
7860 do_output_reload (class insn_chain
*chain
, struct reload
*rl
, int j
)
7863 rtx_insn
*insn
= chain
->insn
;
7864 /* If this is an output reload that stores something that is
7865 not loaded in this same reload, see if we can eliminate a previous
7867 rtx pseudo
= rl
->out_reg
;
7868 rtx reg_rtx
= rl
->reg_rtx
;
7870 if (rl
->out
&& reg_rtx
)
7874 /* Determine the mode to reload in.
7875 See comments above (for input reloading). */
7876 mode
= GET_MODE (rl
->out
);
7877 if (mode
== VOIDmode
)
7879 /* VOIDmode should never happen for an output. */
7880 if (asm_noperands (PATTERN (insn
)) < 0)
7881 /* It's the compiler's fault. */
7882 fatal_insn ("VOIDmode on an output", insn
);
7883 error_for_asm (insn
, "output operand is constant in %<asm%>");
7884 /* Prevent crash--use something we know is valid. */
7886 rl
->out
= gen_rtx_REG (mode
, REGNO (reg_rtx
));
7888 if (GET_MODE (reg_rtx
) != mode
)
7889 reg_rtx
= reload_adjust_reg_for_mode (reg_rtx
, mode
);
7891 reload_reg_rtx_for_output
[j
] = reg_rtx
;
7896 && ! rtx_equal_p (rl
->in_reg
, pseudo
)
7897 && REGNO (pseudo
) >= FIRST_PSEUDO_REGISTER
7898 && reg_last_reload_reg
[REGNO (pseudo
)])
7900 int pseudo_no
= REGNO (pseudo
);
7901 int last_regno
= REGNO (reg_last_reload_reg
[pseudo_no
]);
7903 /* We don't need to test full validity of last_regno for
7904 inherit here; we only want to know if the store actually
7905 matches the pseudo. */
7906 if (TEST_HARD_REG_BIT (reg_reloaded_valid
, last_regno
)
7907 && reg_reloaded_contents
[last_regno
] == pseudo_no
7908 && spill_reg_store
[last_regno
]
7909 && rtx_equal_p (pseudo
, spill_reg_stored_to
[last_regno
]))
7910 delete_output_reload (insn
, j
, last_regno
, reg_rtx
);
7916 || rtx_equal_p (old
, reg_rtx
))
7919 /* An output operand that dies right away does need a reload,
7920 but need not be copied from it. Show the new location in the
7922 if ((REG_P (old
) || GET_CODE (old
) == SCRATCH
)
7923 && (note
= find_reg_note (insn
, REG_UNUSED
, old
)) != 0)
7925 XEXP (note
, 0) = reg_rtx
;
7928 /* Likewise for a SUBREG of an operand that dies. */
7929 else if (GET_CODE (old
) == SUBREG
7930 && REG_P (SUBREG_REG (old
))
7931 && (note
= find_reg_note (insn
, REG_UNUSED
,
7932 SUBREG_REG (old
))) != 0)
7934 XEXP (note
, 0) = gen_lowpart_common (GET_MODE (old
), reg_rtx
);
7937 else if (GET_CODE (old
) == SCRATCH
)
7938 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7939 but we don't want to make an output reload. */
7942 /* If is a JUMP_INSN, we can't support output reloads yet. */
7943 gcc_assert (NONJUMP_INSN_P (insn
));
7945 emit_output_reload_insns (chain
, rld
+ j
, j
);
7948 /* A reload copies values of MODE from register SRC to register DEST.
7949 Return true if it can be treated for inheritance purposes like a
7950 group of reloads, each one reloading a single hard register. The
7951 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
7952 occupy the same number of hard registers. */
7955 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED
,
7956 int src ATTRIBUTE_UNUSED
,
7957 machine_mode mode ATTRIBUTE_UNUSED
)
7959 return (REG_CAN_CHANGE_MODE_P (dest
, mode
, reg_raw_mode
[dest
])
7960 && REG_CAN_CHANGE_MODE_P (src
, mode
, reg_raw_mode
[src
]));
7963 /* Output insns to reload values in and out of the chosen reload regs. */
7966 emit_reload_insns (class insn_chain
*chain
)
7968 rtx_insn
*insn
= chain
->insn
;
7972 CLEAR_HARD_REG_SET (reg_reloaded_died
);
7974 for (j
= 0; j
< reload_n_operands
; j
++)
7975 input_reload_insns
[j
] = input_address_reload_insns
[j
]
7976 = inpaddr_address_reload_insns
[j
]
7977 = output_reload_insns
[j
] = output_address_reload_insns
[j
]
7978 = outaddr_address_reload_insns
[j
]
7979 = other_output_reload_insns
[j
] = 0;
7980 other_input_address_reload_insns
= 0;
7981 other_input_reload_insns
= 0;
7982 operand_reload_insns
= 0;
7983 other_operand_reload_insns
= 0;
7985 /* Dump reloads into the dump file. */
7988 fprintf (dump_file
, "\nReloads for insn # %d\n", INSN_UID (insn
));
7989 debug_reload_to_stream (dump_file
);
7992 for (j
= 0; j
< n_reloads
; j
++)
7993 if (rld
[j
].reg_rtx
&& HARD_REGISTER_P (rld
[j
].reg_rtx
))
7997 for (i
= REGNO (rld
[j
].reg_rtx
); i
< END_REGNO (rld
[j
].reg_rtx
); i
++)
7998 new_spill_reg_store
[i
] = 0;
8001 /* Now output the instructions to copy the data into and out of the
8002 reload registers. Do these in the order that the reloads were reported,
8003 since reloads of base and index registers precede reloads of operands
8004 and the operands may need the base and index registers reloaded. */
8006 for (j
= 0; j
< n_reloads
; j
++)
8008 do_input_reload (chain
, rld
+ j
, j
);
8009 do_output_reload (chain
, rld
+ j
, j
);
8012 /* Now write all the insns we made for reloads in the order expected by
8013 the allocation functions. Prior to the insn being reloaded, we write
8014 the following reloads:
8016 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8018 RELOAD_OTHER reloads.
8020 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8021 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8022 RELOAD_FOR_INPUT reload for the operand.
8024 RELOAD_FOR_OPADDR_ADDRS reloads.
8026 RELOAD_FOR_OPERAND_ADDRESS reloads.
8028 After the insn being reloaded, we write the following:
8030 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8031 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8032 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8033 reloads for the operand. The RELOAD_OTHER output reloads are
8034 output in descending order by reload number. */
8036 emit_insn_before (other_input_address_reload_insns
, insn
);
8037 emit_insn_before (other_input_reload_insns
, insn
);
8039 for (j
= 0; j
< reload_n_operands
; j
++)
8041 emit_insn_before (inpaddr_address_reload_insns
[j
], insn
);
8042 emit_insn_before (input_address_reload_insns
[j
], insn
);
8043 emit_insn_before (input_reload_insns
[j
], insn
);
8046 emit_insn_before (other_operand_reload_insns
, insn
);
8047 emit_insn_before (operand_reload_insns
, insn
);
8049 for (j
= 0; j
< reload_n_operands
; j
++)
8051 rtx_insn
*x
= emit_insn_after (outaddr_address_reload_insns
[j
], insn
);
8052 x
= emit_insn_after (output_address_reload_insns
[j
], x
);
8053 x
= emit_insn_after (output_reload_insns
[j
], x
);
8054 emit_insn_after (other_output_reload_insns
[j
], x
);
8057 /* For all the spill regs newly reloaded in this instruction,
8058 record what they were reloaded from, so subsequent instructions
8059 can inherit the reloads.
8061 Update spill_reg_store for the reloads of this insn.
8062 Copy the elements that were updated in the loop above. */
8064 for (j
= 0; j
< n_reloads
; j
++)
8066 int r
= reload_order
[j
];
8067 int i
= reload_spill_index
[r
];
8069 /* If this is a non-inherited input reload from a pseudo, we must
8070 clear any memory of a previous store to the same pseudo. Only do
8071 something if there will not be an output reload for the pseudo
8073 if (rld
[r
].in_reg
!= 0
8074 && ! (reload_inherited
[r
] || reload_override_in
[r
]))
8076 rtx reg
= rld
[r
].in_reg
;
8078 if (GET_CODE (reg
) == SUBREG
)
8079 reg
= SUBREG_REG (reg
);
8082 && REGNO (reg
) >= FIRST_PSEUDO_REGISTER
8083 && !REGNO_REG_SET_P (®_has_output_reload
, REGNO (reg
)))
8085 int nregno
= REGNO (reg
);
8087 if (reg_last_reload_reg
[nregno
])
8089 int last_regno
= REGNO (reg_last_reload_reg
[nregno
]);
8091 if (reg_reloaded_contents
[last_regno
] == nregno
)
8092 spill_reg_store
[last_regno
] = 0;
8097 /* I is nonneg if this reload used a register.
8098 If rld[r].reg_rtx is 0, this is an optional reload
8099 that we opted to ignore. */
8101 if (i
>= 0 && rld
[r
].reg_rtx
!= 0)
8103 int nr
= hard_regno_nregs (i
, GET_MODE (rld
[r
].reg_rtx
));
8106 /* For a multi register reload, we need to check if all or part
8107 of the value lives to the end. */
8108 for (k
= 0; k
< nr
; k
++)
8109 if (reload_reg_reaches_end_p (i
+ k
, r
))
8110 CLEAR_HARD_REG_BIT (reg_reloaded_valid
, i
+ k
);
8112 /* Maybe the spill reg contains a copy of reload_out. */
8114 && (REG_P (rld
[r
].out
)
8116 ? REG_P (rld
[r
].out_reg
)
8117 /* The reload value is an auto-modification of
8118 some kind. For PRE_INC, POST_INC, PRE_DEC
8119 and POST_DEC, we record an equivalence
8120 between the reload register and the operand
8121 on the optimistic assumption that we can make
8122 the equivalence hold. reload_as_needed must
8123 then either make it hold or invalidate the
8126 PRE_MODIFY and POST_MODIFY addresses are reloaded
8127 somewhat differently, and allowing them here leads
8129 : (GET_CODE (rld
[r
].out
) != POST_MODIFY
8130 && GET_CODE (rld
[r
].out
) != PRE_MODIFY
))))
8134 reg
= reload_reg_rtx_for_output
[r
];
8135 if (reload_reg_rtx_reaches_end_p (reg
, r
))
8137 machine_mode mode
= GET_MODE (reg
);
8138 int regno
= REGNO (reg
);
8139 int nregs
= REG_NREGS (reg
);
8140 rtx out
= (REG_P (rld
[r
].out
)
8144 /* AUTO_INC */ : XEXP (rld
[r
].in_reg
, 0));
8145 int out_regno
= REGNO (out
);
8146 int out_nregs
= (!HARD_REGISTER_NUM_P (out_regno
) ? 1
8147 : hard_regno_nregs (out_regno
, mode
));
8150 spill_reg_store
[regno
] = new_spill_reg_store
[regno
];
8151 spill_reg_stored_to
[regno
] = out
;
8152 reg_last_reload_reg
[out_regno
] = reg
;
8154 piecemeal
= (HARD_REGISTER_NUM_P (out_regno
)
8155 && nregs
== out_nregs
8156 && inherit_piecemeal_p (out_regno
, regno
, mode
));
8158 /* If OUT_REGNO is a hard register, it may occupy more than
8159 one register. If it does, say what is in the
8160 rest of the registers assuming that both registers
8161 agree on how many words the object takes. If not,
8162 invalidate the subsequent registers. */
8164 if (HARD_REGISTER_NUM_P (out_regno
))
8165 for (k
= 1; k
< out_nregs
; k
++)
8166 reg_last_reload_reg
[out_regno
+ k
]
8167 = (piecemeal
? regno_reg_rtx
[regno
+ k
] : 0);
8169 /* Now do the inverse operation. */
8170 for (k
= 0; k
< nregs
; k
++)
8172 CLEAR_HARD_REG_BIT (reg_reloaded_dead
, regno
+ k
);
8173 reg_reloaded_contents
[regno
+ k
]
8174 = (!HARD_REGISTER_NUM_P (out_regno
) || !piecemeal
8177 reg_reloaded_insn
[regno
+ k
] = insn
;
8178 SET_HARD_REG_BIT (reg_reloaded_valid
, regno
+ k
);
8182 /* Maybe the spill reg contains a copy of reload_in. Only do
8183 something if there will not be an output reload for
8184 the register being reloaded. */
8185 else if (rld
[r
].out_reg
== 0
8187 && ((REG_P (rld
[r
].in
)
8188 && !HARD_REGISTER_P (rld
[r
].in
)
8189 && !REGNO_REG_SET_P (®_has_output_reload
,
8191 || (REG_P (rld
[r
].in_reg
)
8192 && !REGNO_REG_SET_P (®_has_output_reload
,
8193 REGNO (rld
[r
].in_reg
))))
8194 && !reg_set_p (reload_reg_rtx_for_input
[r
], PATTERN (insn
)))
8198 reg
= reload_reg_rtx_for_input
[r
];
8199 if (reload_reg_rtx_reaches_end_p (reg
, r
))
8209 mode
= GET_MODE (reg
);
8210 regno
= REGNO (reg
);
8211 nregs
= REG_NREGS (reg
);
8212 if (REG_P (rld
[r
].in
)
8213 && REGNO (rld
[r
].in
) >= FIRST_PSEUDO_REGISTER
)
8215 else if (REG_P (rld
[r
].in_reg
))
8218 in
= XEXP (rld
[r
].in_reg
, 0);
8219 in_regno
= REGNO (in
);
8221 in_nregs
= (!HARD_REGISTER_NUM_P (in_regno
) ? 1
8222 : hard_regno_nregs (in_regno
, mode
));
8224 reg_last_reload_reg
[in_regno
] = reg
;
8226 piecemeal
= (HARD_REGISTER_NUM_P (in_regno
)
8227 && nregs
== in_nregs
8228 && inherit_piecemeal_p (regno
, in_regno
, mode
));
8230 if (HARD_REGISTER_NUM_P (in_regno
))
8231 for (k
= 1; k
< in_nregs
; k
++)
8232 reg_last_reload_reg
[in_regno
+ k
]
8233 = (piecemeal
? regno_reg_rtx
[regno
+ k
] : 0);
8235 /* Unless we inherited this reload, show we haven't
8236 recently done a store.
8237 Previous stores of inherited auto_inc expressions
8238 also have to be discarded. */
8239 if (! reload_inherited
[r
]
8240 || (rld
[r
].out
&& ! rld
[r
].out_reg
))
8241 spill_reg_store
[regno
] = 0;
8243 for (k
= 0; k
< nregs
; k
++)
8245 CLEAR_HARD_REG_BIT (reg_reloaded_dead
, regno
+ k
);
8246 reg_reloaded_contents
[regno
+ k
]
8247 = (!HARD_REGISTER_NUM_P (in_regno
) || !piecemeal
8250 reg_reloaded_insn
[regno
+ k
] = insn
;
8251 SET_HARD_REG_BIT (reg_reloaded_valid
, regno
+ k
);
8257 /* The following if-statement was #if 0'd in 1.34 (or before...).
8258 It's reenabled in 1.35 because supposedly nothing else
8259 deals with this problem. */
8261 /* If a register gets output-reloaded from a non-spill register,
8262 that invalidates any previous reloaded copy of it.
8263 But forget_old_reloads_1 won't get to see it, because
8264 it thinks only about the original insn. So invalidate it here.
8265 Also do the same thing for RELOAD_OTHER constraints where the
8266 output is discarded. */
8268 && ((rld
[r
].out
!= 0
8269 && (REG_P (rld
[r
].out
)
8270 || (MEM_P (rld
[r
].out
)
8271 && REG_P (rld
[r
].out_reg
))))
8272 || (rld
[r
].out
== 0 && rld
[r
].out_reg
8273 && REG_P (rld
[r
].out_reg
))))
8275 rtx out
= ((rld
[r
].out
&& REG_P (rld
[r
].out
))
8276 ? rld
[r
].out
: rld
[r
].out_reg
);
8277 int out_regno
= REGNO (out
);
8278 machine_mode mode
= GET_MODE (out
);
8280 /* REG_RTX is now set or clobbered by the main instruction.
8281 As the comment above explains, forget_old_reloads_1 only
8282 sees the original instruction, and there is no guarantee
8283 that the original instruction also clobbered REG_RTX.
8284 For example, if find_reloads sees that the input side of
8285 a matched operand pair dies in this instruction, it may
8286 use the input register as the reload register.
8288 Calling forget_old_reloads_1 is a waste of effort if
8289 REG_RTX is also the output register.
8291 If we know that REG_RTX holds the value of a pseudo
8292 register, the code after the call will record that fact. */
8293 if (rld
[r
].reg_rtx
&& rld
[r
].reg_rtx
!= out
)
8294 forget_old_reloads_1 (rld
[r
].reg_rtx
, NULL_RTX
, NULL
);
8296 if (!HARD_REGISTER_NUM_P (out_regno
))
8299 rtx_insn
*store_insn
= NULL
;
8301 reg_last_reload_reg
[out_regno
] = 0;
8303 /* If we can find a hard register that is stored, record
8304 the storing insn so that we may delete this insn with
8305 delete_output_reload. */
8306 src_reg
= reload_reg_rtx_for_output
[r
];
8310 if (reload_reg_rtx_reaches_end_p (src_reg
, r
))
8311 store_insn
= new_spill_reg_store
[REGNO (src_reg
)];
8317 /* If this is an optional reload, try to find the
8318 source reg from an input reload. */
8319 rtx set
= single_set (insn
);
8320 if (set
&& SET_DEST (set
) == rld
[r
].out
)
8324 src_reg
= SET_SRC (set
);
8326 for (k
= 0; k
< n_reloads
; k
++)
8328 if (rld
[k
].in
== src_reg
)
8330 src_reg
= reload_reg_rtx_for_input
[k
];
8336 if (src_reg
&& REG_P (src_reg
)
8337 && REGNO (src_reg
) < FIRST_PSEUDO_REGISTER
)
8339 int src_regno
, src_nregs
, k
;
8342 gcc_assert (GET_MODE (src_reg
) == mode
);
8343 src_regno
= REGNO (src_reg
);
8344 src_nregs
= hard_regno_nregs (src_regno
, mode
);
8345 /* The place where to find a death note varies with
8346 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8347 necessarily checked exactly in the code that moves
8348 notes, so just check both locations. */
8349 note
= find_regno_note (insn
, REG_DEAD
, src_regno
);
8350 if (! note
&& store_insn
)
8351 note
= find_regno_note (store_insn
, REG_DEAD
, src_regno
);
8352 for (k
= 0; k
< src_nregs
; k
++)
8354 spill_reg_store
[src_regno
+ k
] = store_insn
;
8355 spill_reg_stored_to
[src_regno
+ k
] = out
;
8356 reg_reloaded_contents
[src_regno
+ k
] = out_regno
;
8357 reg_reloaded_insn
[src_regno
+ k
] = store_insn
;
8358 CLEAR_HARD_REG_BIT (reg_reloaded_dead
, src_regno
+ k
);
8359 SET_HARD_REG_BIT (reg_reloaded_valid
, src_regno
+ k
);
8360 SET_HARD_REG_BIT (reg_is_output_reload
, src_regno
+ k
);
8362 SET_HARD_REG_BIT (reg_reloaded_died
, src_regno
);
8364 CLEAR_HARD_REG_BIT (reg_reloaded_died
, src_regno
);
8366 reg_last_reload_reg
[out_regno
] = src_reg
;
8367 /* We have to set reg_has_output_reload here, or else
8368 forget_old_reloads_1 will clear reg_last_reload_reg
8370 SET_REGNO_REG_SET (®_has_output_reload
,
8376 int k
, out_nregs
= hard_regno_nregs (out_regno
, mode
);
8378 for (k
= 0; k
< out_nregs
; k
++)
8379 reg_last_reload_reg
[out_regno
+ k
] = 0;
8383 reg_reloaded_dead
|= reg_reloaded_died
;
8387 /* Helper for emit_insn_if_valid_for_reload. */
8390 emit_insn_if_valid_for_reload_1 (rtx pat
)
8392 rtx_insn
*last
= get_last_insn ();
8395 rtx_insn
*insn
= emit_insn (pat
);
8396 code
= recog_memoized (insn
);
8400 extract_insn (insn
);
8401 /* We want constrain operands to treat this insn strictly in its
8402 validity determination, i.e., the way it would after reload has
8404 if (constrain_operands (1, get_enabled_alternatives (insn
)))
8408 delete_insns_since (last
);
8412 /* Go through the motions to emit INSN and test if it is strictly valid.
8413 Return the emitted insn if valid, else return NULL. */
8416 emit_insn_if_valid_for_reload (rtx pat
)
8418 rtx_insn
*insn
= emit_insn_if_valid_for_reload_1 (pat
);
8423 /* If the pattern is a SET, and this target has a single
8424 flags-register, try again with a PARALLEL that clobbers that
8426 if (targetm
.flags_regnum
== INVALID_REGNUM
|| GET_CODE (pat
) != SET
)
8429 rtx flags_clobber
= gen_hard_reg_clobber (CCmode
, targetm
.flags_regnum
);
8430 rtx parpat
= gen_rtx_PARALLEL (VOIDmode
, gen_rtvec (2, pat
, flags_clobber
));
8432 return emit_insn_if_valid_for_reload (parpat
);
8435 /* Emit code to perform a reload from IN (which may be a reload register) to
8436 OUT (which may also be a reload register). IN or OUT is from operand
8437 OPNUM with reload type TYPE.
8439 Returns first insn emitted. */
8442 gen_reload (rtx out
, rtx in
, int opnum
, enum reload_type type
)
8444 rtx_insn
*last
= get_last_insn ();
8448 /* If IN is a paradoxical SUBREG, remove it and try to put the
8449 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8450 if (!strip_paradoxical_subreg (&in
, &out
))
8451 strip_paradoxical_subreg (&out
, &in
);
8453 /* How to do this reload can get quite tricky. Normally, we are being
8454 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8455 register that didn't get a hard register. In that case we can just
8456 call emit_move_insn.
8458 We can also be asked to reload a PLUS that adds a register or a MEM to
8459 another register, constant or MEM. This can occur during frame pointer
8460 elimination and while reloading addresses. This case is handled by
8461 trying to emit a single insn to perform the add. If it is not valid,
8462 we use a two insn sequence.
8464 Or we can be asked to reload an unary operand that was a fragment of
8465 an addressing mode, into a register. If it isn't recognized as-is,
8466 we try making the unop operand and the reload-register the same:
8467 (set reg:X (unop:X expr:Y))
8468 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8470 Finally, we could be called to handle an 'o' constraint by putting
8471 an address into a register. In that case, we first try to do this
8472 with a named pattern of "reload_load_address". If no such pattern
8473 exists, we just emit a SET insn and hope for the best (it will normally
8474 be valid on machines that use 'o').
8476 This entire process is made complex because reload will never
8477 process the insns we generate here and so we must ensure that
8478 they will fit their constraints and also by the fact that parts of
8479 IN might be being reloaded separately and replaced with spill registers.
8480 Because of this, we are, in some sense, just guessing the right approach
8481 here. The one listed above seems to work.
8483 ??? At some point, this whole thing needs to be rethought. */
8485 if (GET_CODE (in
) == PLUS
8486 && (REG_P (XEXP (in
, 0))
8487 || GET_CODE (XEXP (in
, 0)) == SUBREG
8488 || MEM_P (XEXP (in
, 0)))
8489 && (REG_P (XEXP (in
, 1))
8490 || GET_CODE (XEXP (in
, 1)) == SUBREG
8491 || CONSTANT_P (XEXP (in
, 1))
8492 || MEM_P (XEXP (in
, 1))))
8494 /* We need to compute the sum of a register or a MEM and another
8495 register, constant, or MEM, and put it into the reload
8496 register. The best possible way of doing this is if the machine
8497 has a three-operand ADD insn that accepts the required operands.
8499 The simplest approach is to try to generate such an insn and see if it
8500 is recognized and matches its constraints. If so, it can be used.
8502 It might be better not to actually emit the insn unless it is valid,
8503 but we need to pass the insn as an operand to `recog' and
8504 `extract_insn' and it is simpler to emit and then delete the insn if
8505 not valid than to dummy things up. */
8509 enum insn_code code
;
8511 op0
= find_replacement (&XEXP (in
, 0));
8512 op1
= find_replacement (&XEXP (in
, 1));
8514 /* Since constraint checking is strict, commutativity won't be
8515 checked, so we need to do that here to avoid spurious failure
8516 if the add instruction is two-address and the second operand
8517 of the add is the same as the reload reg, which is frequently
8518 the case. If the insn would be A = B + A, rearrange it so
8519 it will be A = A + B as constrain_operands expects. */
8521 if (REG_P (XEXP (in
, 1))
8522 && REGNO (out
) == REGNO (XEXP (in
, 1)))
8523 tem
= op0
, op0
= op1
, op1
= tem
;
8525 if (op0
!= XEXP (in
, 0) || op1
!= XEXP (in
, 1))
8526 in
= gen_rtx_PLUS (GET_MODE (in
), op0
, op1
);
8528 insn
= emit_insn_if_valid_for_reload (gen_rtx_SET (out
, in
));
8532 /* If that failed, we must use a conservative two-insn sequence.
8534 Use a move to copy one operand into the reload register. Prefer
8535 to reload a constant, MEM or pseudo since the move patterns can
8536 handle an arbitrary operand. If OP1 is not a constant, MEM or
8537 pseudo and OP1 is not a valid operand for an add instruction, then
8540 After reloading one of the operands into the reload register, add
8541 the reload register to the output register.
8543 If there is another way to do this for a specific machine, a
8544 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8547 code
= optab_handler (add_optab
, GET_MODE (out
));
8549 if (CONSTANT_P (op1
) || MEM_P (op1
) || GET_CODE (op1
) == SUBREG
8551 && REGNO (op1
) >= FIRST_PSEUDO_REGISTER
)
8552 || (code
!= CODE_FOR_nothing
8553 && !insn_operand_matches (code
, 2, op1
)))
8554 tem
= op0
, op0
= op1
, op1
= tem
;
8556 gen_reload (out
, op0
, opnum
, type
);
8558 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8559 This fixes a problem on the 32K where the stack pointer cannot
8560 be used as an operand of an add insn. */
8562 if (rtx_equal_p (op0
, op1
))
8565 insn
= emit_insn_if_valid_for_reload (gen_add2_insn (out
, op1
));
8568 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8569 set_dst_reg_note (insn
, REG_EQUIV
, in
, out
);
8573 /* If that failed, copy the address register to the reload register.
8574 Then add the constant to the reload register. */
8576 gcc_assert (!reg_overlap_mentioned_p (out
, op0
));
8577 gen_reload (out
, op1
, opnum
, type
);
8578 insn
= emit_insn (gen_add2_insn (out
, op0
));
8579 set_dst_reg_note (insn
, REG_EQUIV
, in
, out
);
8582 /* If we need a memory location to do the move, do it that way. */
8583 else if ((tem1
= replaced_subreg (in
), tem2
= replaced_subreg (out
),
8584 (REG_P (tem1
) && REG_P (tem2
)))
8585 && REGNO (tem1
) < FIRST_PSEUDO_REGISTER
8586 && REGNO (tem2
) < FIRST_PSEUDO_REGISTER
8587 && targetm
.secondary_memory_needed (GET_MODE (out
),
8588 REGNO_REG_CLASS (REGNO (tem1
)),
8589 REGNO_REG_CLASS (REGNO (tem2
))))
8591 /* Get the memory to use and rewrite both registers to its mode. */
8592 rtx loc
= get_secondary_mem (in
, GET_MODE (out
), opnum
, type
);
8594 if (GET_MODE (loc
) != GET_MODE (out
))
8595 out
= gen_rtx_REG (GET_MODE (loc
), reg_or_subregno (out
));
8597 if (GET_MODE (loc
) != GET_MODE (in
))
8598 in
= gen_rtx_REG (GET_MODE (loc
), reg_or_subregno (in
));
8600 gen_reload (loc
, in
, opnum
, type
);
8601 gen_reload (out
, loc
, opnum
, type
);
8603 else if (REG_P (out
) && UNARY_P (in
))
8609 op1
= find_replacement (&XEXP (in
, 0));
8610 if (op1
!= XEXP (in
, 0))
8611 in
= gen_rtx_fmt_e (GET_CODE (in
), GET_MODE (in
), op1
);
8613 /* First, try a plain SET. */
8614 set
= emit_insn_if_valid_for_reload (gen_rtx_SET (out
, in
));
8618 /* If that failed, move the inner operand to the reload
8619 register, and try the same unop with the inner expression
8620 replaced with the reload register. */
8622 if (GET_MODE (op1
) != GET_MODE (out
))
8623 out_moded
= gen_rtx_REG (GET_MODE (op1
), REGNO (out
));
8627 gen_reload (out_moded
, op1
, opnum
, type
);
8629 rtx temp
= gen_rtx_SET (out
, gen_rtx_fmt_e (GET_CODE (in
), GET_MODE (in
),
8631 rtx_insn
*insn
= emit_insn_if_valid_for_reload (temp
);
8634 set_unique_reg_note (insn
, REG_EQUIV
, in
);
8638 fatal_insn ("failure trying to reload:", in
);
8640 /* If IN is a simple operand, use gen_move_insn. */
8641 else if (OBJECT_P (in
) || GET_CODE (in
) == SUBREG
)
8643 tem
= emit_insn (gen_move_insn (out
, in
));
8644 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8645 mark_jump_label (in
, tem
, 0);
8648 else if (targetm
.have_reload_load_address ())
8649 emit_insn (targetm
.gen_reload_load_address (out
, in
));
8651 /* Otherwise, just write (set OUT IN) and hope for the best. */
8653 emit_insn (gen_rtx_SET (out
, in
));
8655 /* Return the first insn emitted.
8656 We cannot just return get_last_insn, because there may have
8657 been multiple instructions emitted. Also note that gen_move_insn may
8658 emit more than one insn itself, so we cannot assume that there is one
8659 insn emitted per emit_insn_before call. */
8661 return last
? NEXT_INSN (last
) : get_insns ();
8664 /* Delete a previously made output-reload whose result we now believe
8665 is not needed. First we double-check.
8667 INSN is the insn now being processed.
8668 LAST_RELOAD_REG is the hard register number for which we want to delete
8669 the last output reload.
8670 J is the reload-number that originally used REG. The caller has made
8671 certain that reload J doesn't use REG any longer for input.
8672 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8675 delete_output_reload (rtx_insn
*insn
, int j
, int last_reload_reg
,
8678 rtx_insn
*output_reload_insn
= spill_reg_store
[last_reload_reg
];
8679 rtx reg
= spill_reg_stored_to
[last_reload_reg
];
8682 int n_inherited
= 0;
8687 /* It is possible that this reload has been only used to set another reload
8688 we eliminated earlier and thus deleted this instruction too. */
8689 if (output_reload_insn
->deleted ())
8692 /* Get the raw pseudo-register referred to. */
8694 while (GET_CODE (reg
) == SUBREG
)
8695 reg
= SUBREG_REG (reg
);
8696 substed
= reg_equiv_memory_loc (REGNO (reg
));
8698 /* This is unsafe if the operand occurs more often in the current
8699 insn than it is inherited. */
8700 for (k
= n_reloads
- 1; k
>= 0; k
--)
8702 rtx reg2
= rld
[k
].in
;
8705 if (MEM_P (reg2
) || reload_override_in
[k
])
8706 reg2
= rld
[k
].in_reg
;
8708 if (AUTO_INC_DEC
&& rld
[k
].out
&& ! rld
[k
].out_reg
)
8709 reg2
= XEXP (rld
[k
].in_reg
, 0);
8711 while (GET_CODE (reg2
) == SUBREG
)
8712 reg2
= SUBREG_REG (reg2
);
8713 if (rtx_equal_p (reg2
, reg
))
8715 if (reload_inherited
[k
] || reload_override_in
[k
] || k
== j
)
8721 n_occurrences
= count_occurrences (PATTERN (insn
), reg
, 0);
8722 if (CALL_P (insn
) && CALL_INSN_FUNCTION_USAGE (insn
))
8723 n_occurrences
+= count_occurrences (CALL_INSN_FUNCTION_USAGE (insn
),
8726 n_occurrences
+= count_occurrences (PATTERN (insn
),
8727 eliminate_regs (substed
, VOIDmode
,
8729 for (rtx i1
= reg_equiv_alt_mem_list (REGNO (reg
)); i1
; i1
= XEXP (i1
, 1))
8731 gcc_assert (!rtx_equal_p (XEXP (i1
, 0), substed
));
8732 n_occurrences
+= count_occurrences (PATTERN (insn
), XEXP (i1
, 0), 0);
8734 if (n_occurrences
> n_inherited
)
8737 regno
= REGNO (reg
);
8738 nregs
= REG_NREGS (reg
);
8740 /* If the pseudo-reg we are reloading is no longer referenced
8741 anywhere between the store into it and here,
8742 and we're within the same basic block, then the value can only
8743 pass through the reload reg and end up here.
8744 Otherwise, give up--return. */
8745 for (rtx_insn
*i1
= NEXT_INSN (output_reload_insn
);
8746 i1
!= insn
; i1
= NEXT_INSN (i1
))
8748 if (NOTE_INSN_BASIC_BLOCK_P (i1
))
8750 if ((NONJUMP_INSN_P (i1
) || CALL_P (i1
))
8751 && refers_to_regno_p (regno
, regno
+ nregs
, PATTERN (i1
), NULL
))
8753 /* If this is USE in front of INSN, we only have to check that
8754 there are no more references than accounted for by inheritance. */
8755 while (NONJUMP_INSN_P (i1
) && GET_CODE (PATTERN (i1
)) == USE
)
8757 n_occurrences
+= rtx_equal_p (reg
, XEXP (PATTERN (i1
), 0)) != 0;
8758 i1
= NEXT_INSN (i1
);
8760 if (n_occurrences
<= n_inherited
&& i1
== insn
)
8766 /* We will be deleting the insn. Remove the spill reg information. */
8767 for (k
= hard_regno_nregs (last_reload_reg
, GET_MODE (reg
)); k
-- > 0; )
8769 spill_reg_store
[last_reload_reg
+ k
] = 0;
8770 spill_reg_stored_to
[last_reload_reg
+ k
] = 0;
8773 /* The caller has already checked that REG dies or is set in INSN.
8774 It has also checked that we are optimizing, and thus some
8775 inaccuracies in the debugging information are acceptable.
8776 So we could just delete output_reload_insn. But in some cases
8777 we can improve the debugging information without sacrificing
8778 optimization - maybe even improving the code: See if the pseudo
8779 reg has been completely replaced with reload regs. If so, delete
8780 the store insn and forget we had a stack slot for the pseudo. */
8781 if (rld
[j
].out
!= rld
[j
].in
8782 && REG_N_DEATHS (REGNO (reg
)) == 1
8783 && REG_N_SETS (REGNO (reg
)) == 1
8784 && REG_BASIC_BLOCK (REGNO (reg
)) >= NUM_FIXED_BLOCKS
8785 && find_regno_note (insn
, REG_DEAD
, REGNO (reg
)))
8789 /* We know that it was used only between here and the beginning of
8790 the current basic block. (We also know that the last use before
8791 INSN was the output reload we are thinking of deleting, but never
8792 mind that.) Search that range; see if any ref remains. */
8793 for (i2
= PREV_INSN (insn
); i2
; i2
= PREV_INSN (i2
))
8795 rtx set
= single_set (i2
);
8797 /* Uses which just store in the pseudo don't count,
8798 since if they are the only uses, they are dead. */
8799 if (set
!= 0 && SET_DEST (set
) == reg
)
8801 if (LABEL_P (i2
) || JUMP_P (i2
))
8803 if ((NONJUMP_INSN_P (i2
) || CALL_P (i2
))
8804 && reg_mentioned_p (reg
, PATTERN (i2
)))
8806 /* Some other ref remains; just delete the output reload we
8808 delete_address_reloads (output_reload_insn
, insn
);
8809 delete_insn (output_reload_insn
);
8814 /* Delete the now-dead stores into this pseudo. Note that this
8815 loop also takes care of deleting output_reload_insn. */
8816 for (i2
= PREV_INSN (insn
); i2
; i2
= PREV_INSN (i2
))
8818 rtx set
= single_set (i2
);
8820 if (set
!= 0 && SET_DEST (set
) == reg
)
8822 delete_address_reloads (i2
, insn
);
8825 if (LABEL_P (i2
) || JUMP_P (i2
))
8829 /* For the debugging info, say the pseudo lives in this reload reg. */
8830 reg_renumber
[REGNO (reg
)] = REGNO (new_reload_reg
);
8831 if (ira_conflicts_p
)
8832 /* Inform IRA about the change. */
8833 ira_mark_allocation_change (REGNO (reg
));
8834 alter_reg (REGNO (reg
), -1, false);
8838 delete_address_reloads (output_reload_insn
, insn
);
8839 delete_insn (output_reload_insn
);
8843 /* We are going to delete DEAD_INSN. Recursively delete loads of
8844 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8845 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8847 delete_address_reloads (rtx_insn
*dead_insn
, rtx_insn
*current_insn
)
8849 rtx set
= single_set (dead_insn
);
8851 rtx_insn
*prev
, *next
;
8854 rtx dst
= SET_DEST (set
);
8856 delete_address_reloads_1 (dead_insn
, XEXP (dst
, 0), current_insn
);
8858 /* If we deleted the store from a reloaded post_{in,de}c expression,
8859 we can delete the matching adds. */
8860 prev
= PREV_INSN (dead_insn
);
8861 next
= NEXT_INSN (dead_insn
);
8862 if (! prev
|| ! next
)
8864 set
= single_set (next
);
8865 set2
= single_set (prev
);
8867 || GET_CODE (SET_SRC (set
)) != PLUS
|| GET_CODE (SET_SRC (set2
)) != PLUS
8868 || !CONST_INT_P (XEXP (SET_SRC (set
), 1))
8869 || !CONST_INT_P (XEXP (SET_SRC (set2
), 1)))
8871 dst
= SET_DEST (set
);
8872 if (! rtx_equal_p (dst
, SET_DEST (set2
))
8873 || ! rtx_equal_p (dst
, XEXP (SET_SRC (set
), 0))
8874 || ! rtx_equal_p (dst
, XEXP (SET_SRC (set2
), 0))
8875 || (INTVAL (XEXP (SET_SRC (set
), 1))
8876 != -INTVAL (XEXP (SET_SRC (set2
), 1))))
8878 delete_related_insns (prev
);
8879 delete_related_insns (next
);
8882 /* Subfunction of delete_address_reloads: process registers found in X. */
8884 delete_address_reloads_1 (rtx_insn
*dead_insn
, rtx x
, rtx_insn
*current_insn
)
8886 rtx_insn
*prev
, *i2
;
8889 enum rtx_code code
= GET_CODE (x
);
8893 const char *fmt
= GET_RTX_FORMAT (code
);
8894 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
8897 delete_address_reloads_1 (dead_insn
, XEXP (x
, i
), current_insn
);
8898 else if (fmt
[i
] == 'E')
8900 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
8901 delete_address_reloads_1 (dead_insn
, XVECEXP (x
, i
, j
),
8908 if (spill_reg_order
[REGNO (x
)] < 0)
8911 /* Scan backwards for the insn that sets x. This might be a way back due
8913 for (prev
= PREV_INSN (dead_insn
); prev
; prev
= PREV_INSN (prev
))
8915 code
= GET_CODE (prev
);
8916 if (code
== CODE_LABEL
|| code
== JUMP_INSN
)
8920 if (reg_set_p (x
, PATTERN (prev
)))
8922 if (reg_referenced_p (x
, PATTERN (prev
)))
8925 if (! prev
|| INSN_UID (prev
) < reload_first_uid
)
8927 /* Check that PREV only sets the reload register. */
8928 set
= single_set (prev
);
8931 dst
= SET_DEST (set
);
8933 || ! rtx_equal_p (dst
, x
))
8935 if (! reg_set_p (dst
, PATTERN (dead_insn
)))
8937 /* Check if DST was used in a later insn -
8938 it might have been inherited. */
8939 for (i2
= NEXT_INSN (dead_insn
); i2
; i2
= NEXT_INSN (i2
))
8945 if (reg_referenced_p (dst
, PATTERN (i2
)))
8947 /* If there is a reference to the register in the current insn,
8948 it might be loaded in a non-inherited reload. If no other
8949 reload uses it, that means the register is set before
8951 if (i2
== current_insn
)
8953 for (j
= n_reloads
- 1; j
>= 0; j
--)
8954 if ((rld
[j
].reg_rtx
== dst
&& reload_inherited
[j
])
8955 || reload_override_in
[j
] == dst
)
8957 for (j
= n_reloads
- 1; j
>= 0; j
--)
8958 if (rld
[j
].in
&& rld
[j
].reg_rtx
== dst
)
8967 /* If DST is still live at CURRENT_INSN, check if it is used for
8968 any reload. Note that even if CURRENT_INSN sets DST, we still
8969 have to check the reloads. */
8970 if (i2
== current_insn
)
8972 for (j
= n_reloads
- 1; j
>= 0; j
--)
8973 if ((rld
[j
].reg_rtx
== dst
&& reload_inherited
[j
])
8974 || reload_override_in
[j
] == dst
)
8976 /* ??? We can't finish the loop here, because dst might be
8977 allocated to a pseudo in this block if no reload in this
8978 block needs any of the classes containing DST - see
8979 spill_hard_reg. There is no easy way to tell this, so we
8980 have to scan till the end of the basic block. */
8982 if (reg_set_p (dst
, PATTERN (i2
)))
8986 delete_address_reloads_1 (prev
, SET_SRC (set
), current_insn
);
8987 reg_reloaded_contents
[REGNO (dst
)] = -1;
8991 /* Output reload-insns to reload VALUE into RELOADREG.
8992 VALUE is an autoincrement or autodecrement RTX whose operand
8993 is a register or memory location;
8994 so reloading involves incrementing that location.
8995 IN is either identical to VALUE, or some cheaper place to reload from.
8997 INC_AMOUNT is the number to increment or decrement by (always positive).
8998 This cannot be deduced from VALUE. */
9001 inc_for_reload (rtx reloadreg
, rtx in
, rtx value
, poly_int64 inc_amount
)
9003 /* REG or MEM to be copied and incremented. */
9004 rtx incloc
= find_replacement (&XEXP (value
, 0));
9005 /* Nonzero if increment after copying. */
9006 int post
= (GET_CODE (value
) == POST_DEC
|| GET_CODE (value
) == POST_INC
9007 || GET_CODE (value
) == POST_MODIFY
);
9012 rtx real_in
= in
== value
? incloc
: in
;
9014 /* No hard register is equivalent to this register after
9015 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9016 we could inc/dec that register as well (maybe even using it for
9017 the source), but I'm not sure it's worth worrying about. */
9019 reg_last_reload_reg
[REGNO (incloc
)] = 0;
9021 if (GET_CODE (value
) == PRE_MODIFY
|| GET_CODE (value
) == POST_MODIFY
)
9023 gcc_assert (GET_CODE (XEXP (value
, 1)) == PLUS
);
9024 inc
= find_replacement (&XEXP (XEXP (value
, 1), 1));
9028 if (GET_CODE (value
) == PRE_DEC
|| GET_CODE (value
) == POST_DEC
)
9029 inc_amount
= -inc_amount
;
9031 inc
= gen_int_mode (inc_amount
, Pmode
);
9034 /* If this is post-increment, first copy the location to the reload reg. */
9035 if (post
&& real_in
!= reloadreg
)
9036 emit_insn (gen_move_insn (reloadreg
, real_in
));
9040 /* See if we can directly increment INCLOC. Use a method similar to
9041 that in gen_reload. */
9043 last
= get_last_insn ();
9044 add_insn
= emit_insn (gen_rtx_SET (incloc
,
9045 gen_rtx_PLUS (GET_MODE (incloc
),
9048 code
= recog_memoized (add_insn
);
9051 extract_insn (add_insn
);
9052 if (constrain_operands (1, get_enabled_alternatives (add_insn
)))
9054 /* If this is a pre-increment and we have incremented the value
9055 where it lives, copy the incremented value to RELOADREG to
9056 be used as an address. */
9059 emit_insn (gen_move_insn (reloadreg
, incloc
));
9063 delete_insns_since (last
);
9066 /* If couldn't do the increment directly, must increment in RELOADREG.
9067 The way we do this depends on whether this is pre- or post-increment.
9068 For pre-increment, copy INCLOC to the reload register, increment it
9069 there, then save back. */
9073 if (in
!= reloadreg
)
9074 emit_insn (gen_move_insn (reloadreg
, real_in
));
9075 emit_insn (gen_add2_insn (reloadreg
, inc
));
9076 emit_insn (gen_move_insn (incloc
, reloadreg
));
9081 Because this might be a jump insn or a compare, and because RELOADREG
9082 may not be available after the insn in an input reload, we must do
9083 the incrementation before the insn being reloaded for.
9085 We have already copied IN to RELOADREG. Increment the copy in
9086 RELOADREG, save that back, then decrement RELOADREG so it has
9087 the original value. */
9089 emit_insn (gen_add2_insn (reloadreg
, inc
));
9090 emit_insn (gen_move_insn (incloc
, reloadreg
));
9091 if (CONST_INT_P (inc
))
9092 emit_insn (gen_add2_insn (reloadreg
,
9093 gen_int_mode (-INTVAL (inc
),
9094 GET_MODE (reloadreg
))));
9096 emit_insn (gen_sub2_insn (reloadreg
, inc
));