1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2024 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
30 #include "stringpool.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
38 #include "print-tree.h"
39 #include "langhooks.h"
40 #include "tree-inline.h"
47 /* Data type for the expressions representing sizes of data types.
48 It is the first integer type laid out. */
49 tree sizetype_tab
[(int) stk_type_kind_last
];
51 /* If nonzero, this is an upper limit on alignment of structure fields.
52 The value is measured in bits. */
53 unsigned int maximum_field_alignment
= TARGET_DEFAULT_PACK_STRUCT
* BITS_PER_UNIT
;
55 static tree
self_referential_size (tree
);
56 static void finalize_record_size (record_layout_info
);
57 static void finalize_type_size (tree
);
58 static void place_union_field (record_layout_info
, tree
);
59 static int excess_unit_span (HOST_WIDE_INT
, HOST_WIDE_INT
, HOST_WIDE_INT
,
61 extern void debug_rli (record_layout_info
);
63 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
64 to serve as the actual size-expression for a type or decl. */
67 variable_size (tree size
)
70 if (TREE_CONSTANT (size
))
73 /* If the size is self-referential, we can't make a SAVE_EXPR (see
74 save_expr for the rationale). But we can do something else. */
75 if (CONTAINS_PLACEHOLDER_P (size
))
76 return self_referential_size (size
);
78 /* If we are in the global binding level, we can't make a SAVE_EXPR
79 since it may end up being shared across functions, so it is up
80 to the front-end to deal with this case. */
81 if (lang_hooks
.decls
.global_bindings_p ())
84 return save_expr (size
);
87 /* An array of functions used for self-referential size computation. */
88 static GTY(()) vec
<tree
, va_gc
> *size_functions
;
90 /* Return true if T is a self-referential component reference. */
93 self_referential_component_ref_p (tree t
)
95 if (TREE_CODE (t
) != COMPONENT_REF
)
98 while (REFERENCE_CLASS_P (t
))
99 t
= TREE_OPERAND (t
, 0);
101 return (TREE_CODE (t
) == PLACEHOLDER_EXPR
);
104 /* Similar to copy_tree_r but do not copy component references involving
105 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
106 and substituted in substitute_in_expr. */
109 copy_self_referential_tree_r (tree
*tp
, int *walk_subtrees
, void *data
)
111 enum tree_code code
= TREE_CODE (*tp
);
113 /* Stop at types, decls, constants like copy_tree_r. */
114 if (TREE_CODE_CLASS (code
) == tcc_type
115 || TREE_CODE_CLASS (code
) == tcc_declaration
116 || TREE_CODE_CLASS (code
) == tcc_constant
)
122 /* This is the pattern built in ada/make_aligning_type. */
123 else if (code
== ADDR_EXPR
124 && TREE_CODE (TREE_OPERAND (*tp
, 0)) == PLACEHOLDER_EXPR
)
130 /* Default case: the component reference. */
131 else if (self_referential_component_ref_p (*tp
))
137 /* We're not supposed to have them in self-referential size trees
138 because we wouldn't properly control when they are evaluated.
139 However, not creating superfluous SAVE_EXPRs requires accurate
140 tracking of readonly-ness all the way down to here, which we
141 cannot always guarantee in practice. So punt in this case. */
142 else if (code
== SAVE_EXPR
)
143 return error_mark_node
;
145 else if (code
== STATEMENT_LIST
)
148 return copy_tree_r (tp
, walk_subtrees
, data
);
151 /* Given a SIZE expression that is self-referential, return an equivalent
152 expression to serve as the actual size expression for a type. */
155 self_referential_size (tree size
)
157 static unsigned HOST_WIDE_INT fnno
= 0;
158 vec
<tree
> self_refs
= vNULL
;
159 tree param_type_list
= NULL
, param_decl_list
= NULL
;
160 tree t
, ref
, return_type
, fntype
, fnname
, fndecl
;
163 vec
<tree
, va_gc
> *args
= NULL
;
165 /* Do not factor out simple operations. */
166 t
= skip_simple_constant_arithmetic (size
);
167 if (TREE_CODE (t
) == CALL_EXPR
|| self_referential_component_ref_p (t
))
170 /* Collect the list of self-references in the expression. */
171 find_placeholder_in_expr (size
, &self_refs
);
172 gcc_assert (self_refs
.length () > 0);
174 /* Obtain a private copy of the expression. */
176 if (walk_tree (&t
, copy_self_referential_tree_r
, NULL
, NULL
) != NULL_TREE
)
180 /* Build the parameter and argument lists in parallel; also
181 substitute the former for the latter in the expression. */
182 vec_alloc (args
, self_refs
.length ());
183 FOR_EACH_VEC_ELT (self_refs
, i
, ref
)
185 tree subst
, param_name
, param_type
, param_decl
;
189 /* We shouldn't have true variables here. */
190 gcc_assert (TREE_READONLY (ref
));
193 /* This is the pattern built in ada/make_aligning_type. */
194 else if (TREE_CODE (ref
) == ADDR_EXPR
)
196 /* Default case: the component reference. */
198 subst
= TREE_OPERAND (ref
, 1);
200 sprintf (buf
, "p%d", i
);
201 param_name
= get_identifier (buf
);
202 param_type
= TREE_TYPE (ref
);
204 = build_decl (input_location
, PARM_DECL
, param_name
, param_type
);
205 DECL_ARG_TYPE (param_decl
) = param_type
;
206 DECL_ARTIFICIAL (param_decl
) = 1;
207 TREE_READONLY (param_decl
) = 1;
209 size
= substitute_in_expr (size
, subst
, param_decl
);
211 param_type_list
= tree_cons (NULL_TREE
, param_type
, param_type_list
);
212 param_decl_list
= chainon (param_decl
, param_decl_list
);
213 args
->quick_push (ref
);
216 self_refs
.release ();
218 /* Append 'void' to indicate that the number of parameters is fixed. */
219 param_type_list
= tree_cons (NULL_TREE
, void_type_node
, param_type_list
);
221 /* The 3 lists have been created in reverse order. */
222 param_type_list
= nreverse (param_type_list
);
223 param_decl_list
= nreverse (param_decl_list
);
225 /* Build the function type. */
226 return_type
= TREE_TYPE (size
);
227 fntype
= build_function_type (return_type
, param_type_list
);
229 /* Build the function declaration. */
230 sprintf (buf
, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED
, fnno
++);
231 fnname
= get_file_function_name (buf
);
232 fndecl
= build_decl (input_location
, FUNCTION_DECL
, fnname
, fntype
);
233 for (t
= param_decl_list
; t
; t
= DECL_CHAIN (t
))
234 DECL_CONTEXT (t
) = fndecl
;
235 DECL_ARGUMENTS (fndecl
) = param_decl_list
;
237 = build_decl (input_location
, RESULT_DECL
, 0, return_type
);
238 DECL_CONTEXT (DECL_RESULT (fndecl
)) = fndecl
;
240 /* The function has been created by the compiler and we don't
241 want to emit debug info for it. */
242 DECL_ARTIFICIAL (fndecl
) = 1;
243 DECL_IGNORED_P (fndecl
) = 1;
245 /* It is supposed to be "const" and never throw. */
246 TREE_READONLY (fndecl
) = 1;
247 TREE_NOTHROW (fndecl
) = 1;
249 /* We want it to be inlined when this is deemed profitable, as
250 well as discarded if every call has been integrated. */
251 DECL_DECLARED_INLINE_P (fndecl
) = 1;
253 /* It is made up of a unique return statement. */
254 DECL_INITIAL (fndecl
) = make_node (BLOCK
);
255 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl
)) = fndecl
;
256 t
= build2 (MODIFY_EXPR
, return_type
, DECL_RESULT (fndecl
), size
);
257 DECL_SAVED_TREE (fndecl
) = build1 (RETURN_EXPR
, void_type_node
, t
);
258 TREE_STATIC (fndecl
) = 1;
260 /* Put it onto the list of size functions. */
261 vec_safe_push (size_functions
, fndecl
);
263 /* Replace the original expression with a call to the size function. */
264 return build_call_expr_loc_vec (UNKNOWN_LOCATION
, fndecl
, args
);
267 /* Take, queue and compile all the size functions. It is essential that
268 the size functions be gimplified at the very end of the compilation
269 in order to guarantee transparent handling of self-referential sizes.
270 Otherwise the GENERIC inliner would not be able to inline them back
271 at each of their call sites, thus creating artificial non-constant
272 size expressions which would trigger nasty problems later on. */
275 finalize_size_functions (void)
280 for (i
= 0; size_functions
&& size_functions
->iterate (i
, &fndecl
); i
++)
282 allocate_struct_function (fndecl
, false);
284 dump_function (TDI_original
, fndecl
);
286 /* As these functions are used to describe the layout of variable-length
287 structures, debug info generation needs their implementation. */
288 debug_hooks
->size_function (fndecl
);
289 gimplify_function_tree (fndecl
);
290 cgraph_node::finalize_function (fndecl
, false);
293 vec_free (size_functions
);
296 /* Return a machine mode of class MCLASS with SIZE bits of precision,
297 if one exists. The mode may have padding bits as well the SIZE
298 value bits. If LIMIT is nonzero, disregard modes wider than
299 MAX_FIXED_MODE_SIZE. */
302 mode_for_size (poly_uint64 size
, enum mode_class mclass
, int limit
)
307 if (limit
&& maybe_gt (size
, (unsigned int) MAX_FIXED_MODE_SIZE
))
308 return opt_machine_mode ();
310 /* Get the first mode which has this size, in the specified class. */
311 FOR_EACH_MODE_IN_CLASS (mode
, mclass
)
312 if (known_eq (GET_MODE_PRECISION (mode
), size
))
315 if (mclass
== MODE_INT
|| mclass
== MODE_PARTIAL_INT
)
316 for (i
= 0; i
< NUM_INT_N_ENTS
; i
++)
317 if (known_eq (int_n_data
[i
].bitsize
, size
)
318 && int_n_enabled_p
[i
])
319 return int_n_data
[i
].m
;
321 return opt_machine_mode ();
324 /* Similar, except passed a tree node. */
327 mode_for_size_tree (const_tree size
, enum mode_class mclass
, int limit
)
329 unsigned HOST_WIDE_INT uhwi
;
332 if (!tree_fits_uhwi_p (size
))
333 return opt_machine_mode ();
334 uhwi
= tree_to_uhwi (size
);
337 return opt_machine_mode ();
338 return mode_for_size (ui
, mclass
, limit
);
341 /* Return the narrowest mode of class MCLASS that contains at least
342 SIZE bits, if such a mode exists. */
345 smallest_mode_for_size (poly_uint64 size
, enum mode_class mclass
)
347 machine_mode mode
= VOIDmode
;
350 /* Get the first mode which has at least this size, in the
352 FOR_EACH_MODE_IN_CLASS (mode
, mclass
)
353 if (known_ge (GET_MODE_PRECISION (mode
), size
))
356 if (mode
== VOIDmode
)
357 return opt_machine_mode ();
359 if (mclass
== MODE_INT
|| mclass
== MODE_PARTIAL_INT
)
360 for (i
= 0; i
< NUM_INT_N_ENTS
; i
++)
361 if (known_ge (int_n_data
[i
].bitsize
, size
)
362 && known_lt (int_n_data
[i
].bitsize
, GET_MODE_PRECISION (mode
))
363 && int_n_enabled_p
[i
])
364 mode
= int_n_data
[i
].m
;
369 /* Return an integer mode of exactly the same size as MODE, if one exists. */
372 int_mode_for_mode (machine_mode mode
)
374 switch (GET_MODE_CLASS (mode
))
377 case MODE_PARTIAL_INT
:
378 return as_a
<scalar_int_mode
> (mode
);
380 case MODE_COMPLEX_INT
:
381 case MODE_COMPLEX_FLOAT
:
383 case MODE_DECIMAL_FLOAT
:
388 case MODE_VECTOR_BOOL
:
389 case MODE_VECTOR_INT
:
390 case MODE_VECTOR_FLOAT
:
391 case MODE_VECTOR_FRACT
:
392 case MODE_VECTOR_ACCUM
:
393 case MODE_VECTOR_UFRACT
:
394 case MODE_VECTOR_UACCUM
:
395 return int_mode_for_size (GET_MODE_BITSIZE (mode
), 0);
398 return opt_scalar_int_mode ();
402 return opt_scalar_int_mode ();
412 /* Find a mode that can be used for efficient bitwise operations on MODE,
416 bitwise_mode_for_mode (machine_mode mode
)
418 /* Quick exit if we already have a suitable mode. */
419 scalar_int_mode int_mode
;
420 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
421 && GET_MODE_BITSIZE (int_mode
) <= MAX_FIXED_MODE_SIZE
)
424 /* Reuse the sanity checks from int_mode_for_mode. */
425 gcc_checking_assert ((int_mode_for_mode (mode
), true));
427 poly_int64 bitsize
= GET_MODE_BITSIZE (mode
);
429 /* Try to replace complex modes with complex modes. In general we
430 expect both components to be processed independently, so we only
431 care whether there is a register for the inner mode. */
432 if (COMPLEX_MODE_P (mode
))
434 machine_mode trial
= mode
;
435 if ((GET_MODE_CLASS (trial
) == MODE_COMPLEX_INT
436 || mode_for_size (bitsize
, MODE_COMPLEX_INT
, false).exists (&trial
))
437 && have_regs_of_mode
[GET_MODE_INNER (trial
)])
441 /* Try to replace vector modes with vector modes. Also try using vector
442 modes if an integer mode would be too big. */
443 if (VECTOR_MODE_P (mode
)
444 || maybe_gt (bitsize
, MAX_FIXED_MODE_SIZE
))
446 machine_mode trial
= mode
;
447 if ((GET_MODE_CLASS (trial
) == MODE_VECTOR_INT
448 || mode_for_size (bitsize
, MODE_VECTOR_INT
, 0).exists (&trial
))
449 && have_regs_of_mode
[trial
]
450 && targetm
.vector_mode_supported_p (trial
))
454 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
455 return mode_for_size (bitsize
, MODE_INT
, true);
458 /* Find a type that can be used for efficient bitwise operations on MODE.
459 Return null if no such mode exists. */
462 bitwise_type_for_mode (machine_mode mode
)
464 if (!bitwise_mode_for_mode (mode
).exists (&mode
))
467 unsigned int inner_size
= GET_MODE_UNIT_BITSIZE (mode
);
468 tree inner_type
= build_nonstandard_integer_type (inner_size
, true);
470 if (VECTOR_MODE_P (mode
))
471 return build_vector_type_for_mode (inner_type
, mode
);
473 if (COMPLEX_MODE_P (mode
))
474 return build_complex_type (inner_type
);
476 gcc_checking_assert (GET_MODE_INNER (mode
) == mode
);
480 /* Find a mode that can be used for efficient bitwise operations on SIZE
481 bits, if one exists. */
484 bitwise_mode_for_size (poly_uint64 size
)
486 if (known_le (size
, (unsigned int) MAX_FIXED_MODE_SIZE
))
487 return mode_for_size (size
, MODE_INT
, true);
489 machine_mode mode
, ret
= VOIDmode
;
490 FOR_EACH_MODE_FROM (mode
, MIN_MODE_VECTOR_INT
)
491 if (known_eq (GET_MODE_BITSIZE (mode
), size
)
492 && (ret
== VOIDmode
|| GET_MODE_INNER (mode
) == QImode
)
493 && have_regs_of_mode
[mode
]
494 && targetm
.vector_mode_supported_p (mode
))
496 if (GET_MODE_INNER (mode
) == QImode
)
498 else if (ret
== VOIDmode
)
503 return opt_machine_mode ();
506 /* Find a mode that is suitable for representing a vector with NUNITS
507 elements of mode INNERMODE, if one exists. The returned mode can be
508 either an integer mode or a vector mode. */
511 mode_for_vector (scalar_mode innermode
, poly_uint64 nunits
)
515 /* First, look for a supported vector type. */
516 if (SCALAR_FLOAT_MODE_P (innermode
))
517 mode
= MIN_MODE_VECTOR_FLOAT
;
518 else if (SCALAR_FRACT_MODE_P (innermode
))
519 mode
= MIN_MODE_VECTOR_FRACT
;
520 else if (SCALAR_UFRACT_MODE_P (innermode
))
521 mode
= MIN_MODE_VECTOR_UFRACT
;
522 else if (SCALAR_ACCUM_MODE_P (innermode
))
523 mode
= MIN_MODE_VECTOR_ACCUM
;
524 else if (SCALAR_UACCUM_MODE_P (innermode
))
525 mode
= MIN_MODE_VECTOR_UACCUM
;
527 mode
= MIN_MODE_VECTOR_INT
;
529 /* Only check the broader vector_mode_supported_any_target_p here.
530 We'll filter through target-specific availability and
531 vector_mode_supported_p later in vector_type_mode. */
532 FOR_EACH_MODE_FROM (mode
, mode
)
533 if (known_eq (GET_MODE_NUNITS (mode
), nunits
)
534 && GET_MODE_INNER (mode
) == innermode
535 && targetm
.vector_mode_supported_any_target_p (mode
))
538 /* For integers, try mapping it to a same-sized scalar mode. */
539 if (GET_MODE_CLASS (innermode
) == MODE_INT
)
541 poly_uint64 nbits
= nunits
* GET_MODE_BITSIZE (innermode
);
542 if (int_mode_for_size (nbits
, 0).exists (&mode
)
543 && have_regs_of_mode
[mode
])
547 return opt_machine_mode ();
550 /* If a piece of code is using vector mode VECTOR_MODE and also wants
551 to operate on elements of mode ELEMENT_MODE, return the vector mode
552 it should use for those elements. If NUNITS is nonzero, ensure that
553 the mode has exactly NUNITS elements, otherwise pick whichever vector
554 size pairs the most naturally with VECTOR_MODE; this may mean choosing
555 a mode with a different size and/or number of elements, depending on
556 what the target prefers. Return an empty opt_machine_mode if there
557 is no supported vector mode with the required properties.
559 Unlike mode_for_vector. any returned mode is guaranteed to satisfy
560 both VECTOR_MODE_P and targetm.vector_mode_supported_p. */
563 related_vector_mode (machine_mode vector_mode
, scalar_mode element_mode
,
566 gcc_assert (VECTOR_MODE_P (vector_mode
));
567 return targetm
.vectorize
.related_mode (vector_mode
, element_mode
, nunits
);
570 /* If a piece of code is using vector mode VECTOR_MODE and also wants
571 to operate on integer vectors with the same element size and number
572 of elements, return the vector mode it should use. Return an empty
573 opt_machine_mode if there is no supported vector mode with the
576 Unlike mode_for_vector. any returned mode is guaranteed to satisfy
577 both VECTOR_MODE_P and targetm.vector_mode_supported_p. */
580 related_int_vector_mode (machine_mode vector_mode
)
582 gcc_assert (VECTOR_MODE_P (vector_mode
));
583 scalar_int_mode int_mode
;
584 if (int_mode_for_mode (GET_MODE_INNER (vector_mode
)).exists (&int_mode
))
585 return related_vector_mode (vector_mode
, int_mode
,
586 GET_MODE_NUNITS (vector_mode
));
587 return opt_machine_mode ();
590 /* Return the alignment of MODE. This will be bounded by 1 and
591 BIGGEST_ALIGNMENT. */
594 get_mode_alignment (machine_mode mode
)
596 return MIN (BIGGEST_ALIGNMENT
, MAX (1, mode_base_align
[mode
]*BITS_PER_UNIT
));
599 /* Return the natural mode of an array, given that it is SIZE bytes in
600 total and has elements of type ELEM_TYPE. */
603 mode_for_array (tree elem_type
, tree size
)
606 poly_uint64 int_size
, int_elem_size
;
607 unsigned HOST_WIDE_INT num_elems
;
610 /* One-element arrays get the component type's mode. */
611 elem_size
= TYPE_SIZE (elem_type
);
612 if (simple_cst_equal (size
, elem_size
))
613 return TYPE_MODE (elem_type
);
616 if (poly_int_tree_p (size
, &int_size
)
617 && poly_int_tree_p (elem_size
, &int_elem_size
)
618 && maybe_ne (int_elem_size
, 0U)
619 && constant_multiple_p (int_size
, int_elem_size
, &num_elems
))
621 machine_mode elem_mode
= TYPE_MODE (elem_type
);
623 if (targetm
.array_mode (elem_mode
, num_elems
).exists (&mode
))
625 if (targetm
.array_mode_supported_p (elem_mode
, num_elems
))
628 return mode_for_size_tree (size
, MODE_INT
, limit_p
).else_blk ();
631 /* Subroutine of layout_decl: Force alignment required for the data type.
632 But if the decl itself wants greater alignment, don't override that. */
635 do_type_align (tree type
, tree decl
)
637 if (TYPE_ALIGN (type
) > DECL_ALIGN (decl
))
639 SET_DECL_ALIGN (decl
, TYPE_ALIGN (type
));
640 if (TREE_CODE (decl
) == FIELD_DECL
)
641 DECL_USER_ALIGN (decl
) = TYPE_USER_ALIGN (type
);
643 if (TYPE_WARN_IF_NOT_ALIGN (type
) > DECL_WARN_IF_NOT_ALIGN (decl
))
644 SET_DECL_WARN_IF_NOT_ALIGN (decl
, TYPE_WARN_IF_NOT_ALIGN (type
));
647 /* Set the size, mode and alignment of a ..._DECL node.
648 TYPE_DECL does need this for C++.
649 Note that LABEL_DECL and CONST_DECL nodes do not need this,
650 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
651 Don't call layout_decl for them.
653 KNOWN_ALIGN is the amount of alignment we can assume this
654 decl has with no special effort. It is relevant only for FIELD_DECLs
655 and depends on the previous fields.
656 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
657 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
658 the record will be aligned to suit. */
661 layout_decl (tree decl
, unsigned int known_align
)
663 tree type
= TREE_TYPE (decl
);
664 enum tree_code code
= TREE_CODE (decl
);
666 location_t loc
= DECL_SOURCE_LOCATION (decl
);
668 if (code
== CONST_DECL
)
671 gcc_assert (code
== VAR_DECL
|| code
== PARM_DECL
|| code
== RESULT_DECL
672 || code
== TYPE_DECL
|| code
== FIELD_DECL
);
674 rtl
= DECL_RTL_IF_SET (decl
);
676 if (type
== error_mark_node
)
677 type
= void_type_node
;
679 /* Usually the size and mode come from the data type without change,
680 however, the front-end may set the explicit width of the field, so its
681 size may not be the same as the size of its type. This happens with
682 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
683 also happens with other fields. For example, the C++ front-end creates
684 zero-sized fields corresponding to empty base classes, and depends on
685 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
686 size in bytes from the size in bits. If we have already set the mode,
687 don't set it again since we can be called twice for FIELD_DECLs. */
689 DECL_UNSIGNED (decl
) = TYPE_UNSIGNED (type
);
690 if (DECL_MODE (decl
) == VOIDmode
)
691 SET_DECL_MODE (decl
, TYPE_MODE (type
));
693 if (DECL_SIZE (decl
) == 0)
695 DECL_SIZE (decl
) = TYPE_SIZE (type
);
696 DECL_SIZE_UNIT (decl
) = TYPE_SIZE_UNIT (type
);
698 else if (DECL_SIZE_UNIT (decl
) == 0)
699 DECL_SIZE_UNIT (decl
)
700 = fold_convert_loc (loc
, sizetype
,
701 size_binop_loc (loc
, CEIL_DIV_EXPR
, DECL_SIZE (decl
),
704 if (code
!= FIELD_DECL
)
705 /* For non-fields, update the alignment from the type. */
706 do_type_align (type
, decl
);
708 /* For fields, it's a bit more complicated... */
710 bool old_user_align
= DECL_USER_ALIGN (decl
);
711 bool zero_bitfield
= false;
712 bool packed_p
= DECL_PACKED (decl
);
715 if (DECL_BIT_FIELD (decl
))
717 DECL_BIT_FIELD_TYPE (decl
) = type
;
719 /* A zero-length bit-field affects the alignment of the next
720 field. In essence such bit-fields are not influenced by
721 any packing due to #pragma pack or attribute packed. */
722 if (integer_zerop (DECL_SIZE (decl
))
723 && ! targetm
.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl
)))
725 zero_bitfield
= true;
727 if (PCC_BITFIELD_TYPE_MATTERS
)
728 do_type_align (type
, decl
);
731 #ifdef EMPTY_FIELD_BOUNDARY
732 if (EMPTY_FIELD_BOUNDARY
> DECL_ALIGN (decl
))
734 SET_DECL_ALIGN (decl
, EMPTY_FIELD_BOUNDARY
);
735 DECL_USER_ALIGN (decl
) = 0;
741 /* See if we can use an ordinary integer mode for a bit-field.
742 Conditions are: a fixed size that is correct for another mode,
743 occupying a complete byte or bytes on proper boundary. */
744 if (TYPE_SIZE (type
) != 0
745 && TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
746 && GET_MODE_CLASS (TYPE_MODE (type
)) == MODE_INT
)
749 if (mode_for_size_tree (DECL_SIZE (decl
),
750 MODE_INT
, 1).exists (&xmode
))
752 unsigned int xalign
= GET_MODE_ALIGNMENT (xmode
);
753 if (!(xalign
> BITS_PER_UNIT
&& DECL_PACKED (decl
))
754 && (known_align
== 0 || known_align
>= xalign
))
756 SET_DECL_ALIGN (decl
, MAX (xalign
, DECL_ALIGN (decl
)));
757 SET_DECL_MODE (decl
, xmode
);
758 DECL_BIT_FIELD (decl
) = 0;
763 /* Turn off DECL_BIT_FIELD if we won't need it set. */
764 if (TYPE_MODE (type
) == BLKmode
&& DECL_MODE (decl
) == BLKmode
765 && known_align
>= TYPE_ALIGN (type
)
766 && DECL_ALIGN (decl
) >= TYPE_ALIGN (type
))
767 DECL_BIT_FIELD (decl
) = 0;
769 else if (packed_p
&& DECL_USER_ALIGN (decl
))
770 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
771 round up; we'll reduce it again below. We want packing to
772 supersede USER_ALIGN inherited from the type, but defer to
773 alignment explicitly specified on the field decl. */;
775 do_type_align (type
, decl
);
777 /* If the field is packed and not explicitly aligned, give it the
778 minimum alignment. Note that do_type_align may set
779 DECL_USER_ALIGN, so we need to check old_user_align instead. */
782 SET_DECL_ALIGN (decl
, MIN (DECL_ALIGN (decl
), BITS_PER_UNIT
));
784 if (! packed_p
&& ! DECL_USER_ALIGN (decl
))
786 /* Some targets (i.e. i386, VMS) limit struct field alignment
787 to a lower boundary than alignment of variables unless
788 it was overridden by attribute aligned. */
789 #ifdef BIGGEST_FIELD_ALIGNMENT
790 SET_DECL_ALIGN (decl
, MIN (DECL_ALIGN (decl
),
791 (unsigned) BIGGEST_FIELD_ALIGNMENT
));
793 #ifdef ADJUST_FIELD_ALIGN
794 SET_DECL_ALIGN (decl
, ADJUST_FIELD_ALIGN (decl
, TREE_TYPE (decl
),
800 mfa
= initial_max_fld_align
* BITS_PER_UNIT
;
802 mfa
= maximum_field_alignment
;
803 /* Should this be controlled by DECL_USER_ALIGN, too? */
805 SET_DECL_ALIGN (decl
, MIN (DECL_ALIGN (decl
), mfa
));
808 /* Evaluate nonconstant size only once, either now or as soon as safe. */
809 if (DECL_SIZE (decl
) != 0 && TREE_CODE (DECL_SIZE (decl
)) != INTEGER_CST
)
810 DECL_SIZE (decl
) = variable_size (DECL_SIZE (decl
));
811 if (DECL_SIZE_UNIT (decl
) != 0
812 && TREE_CODE (DECL_SIZE_UNIT (decl
)) != INTEGER_CST
)
813 DECL_SIZE_UNIT (decl
) = variable_size (DECL_SIZE_UNIT (decl
));
815 /* If requested, warn about definitions of large data objects. */
816 if ((code
== PARM_DECL
|| (code
== VAR_DECL
&& !DECL_NONLOCAL_FRAME (decl
)))
817 && !DECL_EXTERNAL (decl
))
819 tree size
= DECL_SIZE_UNIT (decl
);
821 if (size
!= 0 && TREE_CODE (size
) == INTEGER_CST
)
823 /* -Wlarger-than= argument of HOST_WIDE_INT_MAX is treated
824 as if PTRDIFF_MAX had been specified, with the value
825 being that on the target rather than the host. */
826 unsigned HOST_WIDE_INT max_size
= warn_larger_than_size
;
827 if (max_size
== HOST_WIDE_INT_MAX
)
828 max_size
= tree_to_shwi (TYPE_MAX_VALUE (ptrdiff_type_node
));
830 if (compare_tree_int (size
, max_size
) > 0)
831 warning (OPT_Wlarger_than_
, "size of %q+D %E bytes exceeds "
832 "maximum object size %wu",
833 decl
, size
, max_size
);
837 /* If the RTL was already set, update its mode and mem attributes. */
840 PUT_MODE (rtl
, DECL_MODE (decl
));
841 SET_DECL_RTL (decl
, 0);
843 set_mem_attributes (rtl
, decl
, 1);
844 SET_DECL_RTL (decl
, rtl
);
848 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
849 results of a previous call to layout_decl and calls it again. */
852 relayout_decl (tree decl
)
854 DECL_SIZE (decl
) = DECL_SIZE_UNIT (decl
) = 0;
855 SET_DECL_MODE (decl
, VOIDmode
);
856 if (!DECL_USER_ALIGN (decl
))
857 SET_DECL_ALIGN (decl
, 0);
858 if (DECL_RTL_SET_P (decl
))
859 SET_DECL_RTL (decl
, 0);
861 layout_decl (decl
, 0);
864 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
865 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
866 is to be passed to all other layout functions for this record. It is the
867 responsibility of the caller to call `free' for the storage returned.
868 Note that garbage collection is not permitted until we finish laying
872 start_record_layout (tree t
)
874 record_layout_info rli
= XNEW (struct record_layout_info_s
);
878 /* If the type has a minimum specified alignment (via an attribute
879 declaration, for example) use it -- otherwise, start with a
880 one-byte alignment. */
881 rli
->record_align
= MAX (BITS_PER_UNIT
, TYPE_ALIGN (t
));
882 rli
->unpacked_align
= rli
->record_align
;
883 rli
->offset_align
= MAX (rli
->record_align
, BIGGEST_ALIGNMENT
);
885 #ifdef STRUCTURE_SIZE_BOUNDARY
886 /* Packed structures don't need to have minimum size. */
887 if (! TYPE_PACKED (t
))
891 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
892 tmp
= (unsigned) STRUCTURE_SIZE_BOUNDARY
;
893 if (maximum_field_alignment
!= 0)
894 tmp
= MIN (tmp
, maximum_field_alignment
);
895 rli
->record_align
= MAX (rli
->record_align
, tmp
);
899 rli
->offset
= size_zero_node
;
900 rli
->bitpos
= bitsize_zero_node
;
902 rli
->pending_statics
= 0;
903 rli
->packed_maybe_necessary
= 0;
904 rli
->remaining_in_alignment
= 0;
909 /* Fold sizetype value X to bitsizetype, given that X represents a type
913 bits_from_bytes (tree x
)
915 if (POLY_INT_CST_P (x
))
916 /* The runtime calculation isn't allowed to overflow sizetype;
917 increasing the runtime values must always increase the size
918 or offset of the object. This means that the object imposes
919 a maximum value on the runtime parameters, but we don't record
921 return build_poly_int_cst
923 poly_wide_int::from (poly_int_cst_value (x
),
924 TYPE_PRECISION (bitsizetype
),
925 TYPE_SIGN (TREE_TYPE (x
))));
926 x
= fold_convert (bitsizetype
, x
);
927 gcc_checking_assert (x
);
931 /* Return the combined bit position for the byte offset OFFSET and the
934 These functions operate on byte and bit positions present in FIELD_DECLs
935 and assume that these expressions result in no (intermediate) overflow.
936 This assumption is necessary to fold the expressions as much as possible,
937 so as to avoid creating artificially variable-sized types in languages
938 supporting variable-sized types like Ada. */
941 bit_from_pos (tree offset
, tree bitpos
)
943 return size_binop (PLUS_EXPR
, bitpos
,
944 size_binop (MULT_EXPR
, bits_from_bytes (offset
),
948 /* Return the combined truncated byte position for the byte offset OFFSET and
949 the bit position BITPOS. */
952 byte_from_pos (tree offset
, tree bitpos
)
955 if (TREE_CODE (bitpos
) == MULT_EXPR
956 && tree_int_cst_equal (TREE_OPERAND (bitpos
, 1), bitsize_unit_node
))
957 bytepos
= TREE_OPERAND (bitpos
, 0);
959 bytepos
= size_binop (TRUNC_DIV_EXPR
, bitpos
, bitsize_unit_node
);
960 return size_binop (PLUS_EXPR
, offset
, fold_convert (sizetype
, bytepos
));
963 /* Split the bit position POS into a byte offset *POFFSET and a bit
964 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
967 pos_from_bit (tree
*poffset
, tree
*pbitpos
, unsigned int off_align
,
970 tree toff_align
= bitsize_int (off_align
);
971 if (TREE_CODE (pos
) == MULT_EXPR
972 && tree_int_cst_equal (TREE_OPERAND (pos
, 1), toff_align
))
974 *poffset
= size_binop (MULT_EXPR
,
975 fold_convert (sizetype
, TREE_OPERAND (pos
, 0)),
976 size_int (off_align
/ BITS_PER_UNIT
));
977 *pbitpos
= bitsize_zero_node
;
981 *poffset
= size_binop (MULT_EXPR
,
982 fold_convert (sizetype
,
983 size_binop (FLOOR_DIV_EXPR
, pos
,
985 size_int (off_align
/ BITS_PER_UNIT
));
986 *pbitpos
= size_binop (FLOOR_MOD_EXPR
, pos
, toff_align
);
990 /* Given a pointer to bit and byte offsets and an offset alignment,
991 normalize the offsets so they are within the alignment. */
994 normalize_offset (tree
*poffset
, tree
*pbitpos
, unsigned int off_align
)
996 /* If the bit position is now larger than it should be, adjust it
998 if (compare_tree_int (*pbitpos
, off_align
) >= 0)
1000 tree offset
, bitpos
;
1001 pos_from_bit (&offset
, &bitpos
, off_align
, *pbitpos
);
1002 *poffset
= size_binop (PLUS_EXPR
, *poffset
, offset
);
1007 /* Print debugging information about the information in RLI. */
1010 debug_rli (record_layout_info rli
)
1012 print_node_brief (stderr
, "type", rli
->t
, 0);
1013 print_node_brief (stderr
, "\noffset", rli
->offset
, 0);
1014 print_node_brief (stderr
, " bitpos", rli
->bitpos
, 0);
1016 fprintf (stderr
, "\naligns: rec = %u, unpack = %u, off = %u\n",
1017 rli
->record_align
, rli
->unpacked_align
,
1020 /* The ms_struct code is the only that uses this. */
1021 if (targetm
.ms_bitfield_layout_p (rli
->t
))
1022 fprintf (stderr
, "remaining in alignment = %u\n", rli
->remaining_in_alignment
);
1024 if (rli
->packed_maybe_necessary
)
1025 fprintf (stderr
, "packed may be necessary\n");
1027 if (!vec_safe_is_empty (rli
->pending_statics
))
1029 fprintf (stderr
, "pending statics:\n");
1030 debug (rli
->pending_statics
);
1034 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
1035 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
1038 normalize_rli (record_layout_info rli
)
1040 normalize_offset (&rli
->offset
, &rli
->bitpos
, rli
->offset_align
);
1043 /* Returns the size in bytes allocated so far. */
1046 rli_size_unit_so_far (record_layout_info rli
)
1048 return byte_from_pos (rli
->offset
, rli
->bitpos
);
1051 /* Returns the size in bits allocated so far. */
1054 rli_size_so_far (record_layout_info rli
)
1056 return bit_from_pos (rli
->offset
, rli
->bitpos
);
1059 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
1060 the next available location within the record is given by KNOWN_ALIGN.
1061 Update the variable alignment fields in RLI, and return the alignment
1062 to give the FIELD. */
1065 update_alignment_for_field (record_layout_info rli
, tree field
,
1066 unsigned int known_align
)
1068 /* The alignment required for FIELD. */
1069 unsigned int desired_align
;
1070 /* The type of this field. */
1071 tree type
= TREE_TYPE (field
);
1072 /* True if the field was explicitly aligned by the user. */
1076 /* Do not attempt to align an ERROR_MARK node */
1077 if (TREE_CODE (type
) == ERROR_MARK
)
1080 /* Lay out the field so we know what alignment it needs. */
1081 layout_decl (field
, known_align
);
1082 desired_align
= DECL_ALIGN (field
);
1083 user_align
= DECL_USER_ALIGN (field
);
1085 is_bitfield
= (type
!= error_mark_node
1086 && DECL_BIT_FIELD_TYPE (field
)
1087 && ! integer_zerop (TYPE_SIZE (type
)));
1089 /* Record must have at least as much alignment as any field.
1090 Otherwise, the alignment of the field within the record is
1092 if (targetm
.ms_bitfield_layout_p (rli
->t
))
1094 /* Here, the alignment of the underlying type of a bitfield can
1095 affect the alignment of a record; even a zero-sized field
1096 can do this. The alignment should be to the alignment of
1097 the type, except that for zero-size bitfields this only
1098 applies if there was an immediately prior, nonzero-size
1099 bitfield. (That's the way it is, experimentally.) */
1101 || ((DECL_SIZE (field
) == NULL_TREE
1102 || !integer_zerop (DECL_SIZE (field
)))
1103 ? !DECL_PACKED (field
)
1105 && DECL_BIT_FIELD_TYPE (rli
->prev_field
)
1106 && ! integer_zerop (DECL_SIZE (rli
->prev_field
)))))
1108 unsigned int type_align
= TYPE_ALIGN (type
);
1109 if (!is_bitfield
&& DECL_PACKED (field
))
1110 type_align
= desired_align
;
1112 type_align
= MAX (type_align
, desired_align
);
1113 if (maximum_field_alignment
!= 0)
1114 type_align
= MIN (type_align
, maximum_field_alignment
);
1115 rli
->record_align
= MAX (rli
->record_align
, type_align
);
1116 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
1119 else if (is_bitfield
&& PCC_BITFIELD_TYPE_MATTERS
)
1121 /* Named bit-fields cause the entire structure to have the
1122 alignment implied by their type. Some targets also apply the same
1123 rules to unnamed bitfields. */
1124 if (DECL_NAME (field
) != 0
1125 || targetm
.align_anon_bitfield ())
1127 unsigned int type_align
= TYPE_ALIGN (type
);
1129 #ifdef ADJUST_FIELD_ALIGN
1130 if (! TYPE_USER_ALIGN (type
))
1131 type_align
= ADJUST_FIELD_ALIGN (field
, type
, type_align
);
1134 /* Targets might chose to handle unnamed and hence possibly
1135 zero-width bitfield. Those are not influenced by #pragmas
1136 or packed attributes. */
1137 if (integer_zerop (DECL_SIZE (field
)))
1139 if (initial_max_fld_align
)
1140 type_align
= MIN (type_align
,
1141 initial_max_fld_align
* BITS_PER_UNIT
);
1143 else if (maximum_field_alignment
!= 0)
1144 type_align
= MIN (type_align
, maximum_field_alignment
);
1145 else if (DECL_PACKED (field
))
1146 type_align
= MIN (type_align
, BITS_PER_UNIT
);
1148 /* The alignment of the record is increased to the maximum
1149 of the current alignment, the alignment indicated on the
1150 field (i.e., the alignment specified by an __aligned__
1151 attribute), and the alignment indicated by the type of
1153 rli
->record_align
= MAX (rli
->record_align
, desired_align
);
1154 rli
->record_align
= MAX (rli
->record_align
, type_align
);
1157 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
1158 user_align
|= TYPE_USER_ALIGN (type
);
1163 rli
->record_align
= MAX (rli
->record_align
, desired_align
);
1164 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
1167 TYPE_USER_ALIGN (rli
->t
) |= user_align
;
1169 return desired_align
;
1172 /* Issue a warning if the record alignment, RECORD_ALIGN, is less than
1173 the field alignment of FIELD or FIELD isn't aligned. */
1176 handle_warn_if_not_align (tree field
, unsigned int record_align
)
1178 tree type
= TREE_TYPE (field
);
1180 if (type
== error_mark_node
)
1183 unsigned int warn_if_not_align
= 0;
1187 if (warn_if_not_aligned
)
1189 warn_if_not_align
= DECL_WARN_IF_NOT_ALIGN (field
);
1190 if (!warn_if_not_align
)
1191 warn_if_not_align
= TYPE_WARN_IF_NOT_ALIGN (type
);
1192 if (warn_if_not_align
)
1193 opt_w
= OPT_Wif_not_aligned
;
1196 if (!warn_if_not_align
1197 && warn_packed_not_aligned
1198 && lookup_attribute ("aligned", TYPE_ATTRIBUTES (type
)))
1200 warn_if_not_align
= TYPE_ALIGN (type
);
1201 opt_w
= OPT_Wpacked_not_aligned
;
1204 if (!warn_if_not_align
)
1207 tree context
= DECL_CONTEXT (field
);
1209 warn_if_not_align
/= BITS_PER_UNIT
;
1210 record_align
/= BITS_PER_UNIT
;
1211 if ((record_align
% warn_if_not_align
) != 0)
1212 warning (opt_w
, "alignment %u of %qT is less than %u",
1213 record_align
, context
, warn_if_not_align
);
1215 tree off
= byte_position (field
);
1216 if (!multiple_of_p (TREE_TYPE (off
), off
, size_int (warn_if_not_align
)))
1218 if (TREE_CODE (off
) == INTEGER_CST
)
1219 warning (opt_w
, "%q+D offset %E in %qT isn%'t aligned to %u",
1220 field
, off
, context
, warn_if_not_align
);
1222 warning (opt_w
, "%q+D offset %E in %qT may not be aligned to %u",
1223 field
, off
, context
, warn_if_not_align
);
1227 /* Called from place_field to handle unions. */
1230 place_union_field (record_layout_info rli
, tree field
)
1232 update_alignment_for_field (rli
, field
, /*known_align=*/0);
1234 DECL_FIELD_OFFSET (field
) = size_zero_node
;
1235 DECL_FIELD_BIT_OFFSET (field
) = bitsize_zero_node
;
1236 SET_DECL_OFFSET_ALIGN (field
, BIGGEST_ALIGNMENT
);
1237 handle_warn_if_not_align (field
, rli
->record_align
);
1239 /* If this is an ERROR_MARK return *after* having set the
1240 field at the start of the union. This helps when parsing
1242 if (TREE_CODE (TREE_TYPE (field
)) == ERROR_MARK
)
1245 if (AGGREGATE_TYPE_P (TREE_TYPE (field
))
1246 && TYPE_TYPELESS_STORAGE (TREE_TYPE (field
)))
1247 TYPE_TYPELESS_STORAGE (rli
->t
) = 1;
1249 /* We might see a flexible array member field (with no DECL_SIZE_UNIT), use
1250 zero size for such field. */
1251 tree field_size_unit
= DECL_SIZE_UNIT (field
)
1252 ? DECL_SIZE_UNIT (field
)
1253 : build_int_cst (sizetype
, 0);
1254 /* We assume the union's size will be a multiple of a byte so we don't
1255 bother with BITPOS. */
1256 if (TREE_CODE (rli
->t
) == UNION_TYPE
)
1257 rli
->offset
= size_binop (MAX_EXPR
, rli
->offset
, field_size_unit
);
1258 else if (TREE_CODE (rli
->t
) == QUAL_UNION_TYPE
)
1259 rli
->offset
= fold_build3 (COND_EXPR
, sizetype
, DECL_QUALIFIER (field
),
1260 field_size_unit
, rli
->offset
);
1263 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1264 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1265 units of alignment than the underlying TYPE. */
1267 excess_unit_span (HOST_WIDE_INT byte_offset
, HOST_WIDE_INT bit_offset
,
1268 HOST_WIDE_INT size
, HOST_WIDE_INT align
, tree type
)
1270 /* Note that the calculation of OFFSET might overflow; we calculate it so
1271 that we still get the right result as long as ALIGN is a power of two. */
1272 unsigned HOST_WIDE_INT offset
= byte_offset
* BITS_PER_UNIT
+ bit_offset
;
1274 offset
= offset
% align
;
1275 return ((offset
+ size
+ align
- 1) / align
1276 > tree_to_uhwi (TYPE_SIZE (type
)) / align
);
1279 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1280 is a FIELD_DECL to be added after those fields already present in
1281 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1282 callers that desire that behavior must manually perform that step.) */
1285 place_field (record_layout_info rli
, tree field
)
1287 /* The alignment required for FIELD. */
1288 unsigned int desired_align
;
1289 /* The alignment FIELD would have if we just dropped it into the
1290 record as it presently stands. */
1291 unsigned int known_align
;
1292 unsigned int actual_align
;
1293 /* The type of this field. */
1294 tree type
= TREE_TYPE (field
);
1296 gcc_assert (TREE_CODE (field
) != ERROR_MARK
);
1298 /* If FIELD is static, then treat it like a separate variable, not
1299 really like a structure field. If it is a FUNCTION_DECL, it's a
1300 method. In both cases, all we do is lay out the decl, and we do
1301 it *after* the record is laid out. */
1304 vec_safe_push (rli
->pending_statics
, field
);
1308 /* Enumerators and enum types which are local to this class need not
1309 be laid out. Likewise for initialized constant fields. */
1310 else if (TREE_CODE (field
) != FIELD_DECL
)
1313 /* Unions are laid out very differently than records, so split
1314 that code off to another function. */
1315 else if (TREE_CODE (rli
->t
) != RECORD_TYPE
)
1317 place_union_field (rli
, field
);
1321 else if (TREE_CODE (type
) == ERROR_MARK
)
1323 /* Place this field at the current allocation position, so we
1324 maintain monotonicity. */
1325 DECL_FIELD_OFFSET (field
) = rli
->offset
;
1326 DECL_FIELD_BIT_OFFSET (field
) = rli
->bitpos
;
1327 SET_DECL_OFFSET_ALIGN (field
, rli
->offset_align
);
1328 handle_warn_if_not_align (field
, rli
->record_align
);
1332 if (AGGREGATE_TYPE_P (type
)
1333 && TYPE_TYPELESS_STORAGE (type
))
1334 TYPE_TYPELESS_STORAGE (rli
->t
) = 1;
1336 /* Work out the known alignment so far. Note that A & (-A) is the
1337 value of the least-significant bit in A that is one. */
1338 if (! integer_zerop (rli
->bitpos
))
1339 known_align
= least_bit_hwi (tree_to_uhwi (rli
->bitpos
));
1340 else if (integer_zerop (rli
->offset
))
1342 else if (tree_fits_uhwi_p (rli
->offset
))
1343 known_align
= (BITS_PER_UNIT
1344 * least_bit_hwi (tree_to_uhwi (rli
->offset
)));
1346 known_align
= rli
->offset_align
;
1348 desired_align
= update_alignment_for_field (rli
, field
, known_align
);
1349 if (known_align
== 0)
1350 known_align
= MAX (BIGGEST_ALIGNMENT
, rli
->record_align
);
1352 if (warn_packed
&& DECL_PACKED (field
))
1354 if (known_align
>= TYPE_ALIGN (type
))
1356 if (TYPE_ALIGN (type
) > desired_align
)
1358 if (STRICT_ALIGNMENT
)
1359 warning (OPT_Wattributes
, "packed attribute causes "
1360 "inefficient alignment for %q+D", field
);
1361 /* Don't warn if DECL_PACKED was set by the type. */
1362 else if (!TYPE_PACKED (rli
->t
))
1363 warning (OPT_Wattributes
, "packed attribute is "
1364 "unnecessary for %q+D", field
);
1368 rli
->packed_maybe_necessary
= 1;
1371 /* Does this field automatically have alignment it needs by virtue
1372 of the fields that precede it and the record's own alignment? */
1373 if (known_align
< desired_align
1374 && (! targetm
.ms_bitfield_layout_p (rli
->t
)
1375 || rli
->prev_field
== NULL
))
1377 /* No, we need to skip space before this field.
1378 Bump the cumulative size to multiple of field alignment. */
1380 if (!targetm
.ms_bitfield_layout_p (rli
->t
)
1381 && DECL_SOURCE_LOCATION (field
) != BUILTINS_LOCATION
1382 && !TYPE_ARTIFICIAL (rli
->t
))
1383 warning (OPT_Wpadded
, "padding struct to align %q+D", field
);
1385 /* If the alignment is still within offset_align, just align
1386 the bit position. */
1387 if (desired_align
< rli
->offset_align
)
1388 rli
->bitpos
= round_up (rli
->bitpos
, desired_align
);
1391 /* First adjust OFFSET by the partial bits, then align. */
1393 = size_binop (PLUS_EXPR
, rli
->offset
,
1394 fold_convert (sizetype
,
1395 size_binop (CEIL_DIV_EXPR
, rli
->bitpos
,
1396 bitsize_unit_node
)));
1397 rli
->bitpos
= bitsize_zero_node
;
1399 rli
->offset
= round_up (rli
->offset
, desired_align
/ BITS_PER_UNIT
);
1402 if (! TREE_CONSTANT (rli
->offset
))
1403 rli
->offset_align
= desired_align
;
1406 /* Handle compatibility with PCC. Note that if the record has any
1407 variable-sized fields, we need not worry about compatibility. */
1408 if (PCC_BITFIELD_TYPE_MATTERS
1409 && ! targetm
.ms_bitfield_layout_p (rli
->t
)
1410 && TREE_CODE (field
) == FIELD_DECL
1411 && type
!= error_mark_node
1412 && DECL_BIT_FIELD (field
)
1413 && (! DECL_PACKED (field
)
1414 /* Enter for these packed fields only to issue a warning. */
1415 || TYPE_ALIGN (type
) <= BITS_PER_UNIT
)
1416 && maximum_field_alignment
== 0
1417 && ! integer_zerop (DECL_SIZE (field
))
1418 && tree_fits_uhwi_p (DECL_SIZE (field
))
1419 && tree_fits_uhwi_p (rli
->offset
)
1420 && tree_fits_uhwi_p (TYPE_SIZE (type
)))
1422 unsigned int type_align
= TYPE_ALIGN (type
);
1423 tree dsize
= DECL_SIZE (field
);
1424 HOST_WIDE_INT field_size
= tree_to_uhwi (dsize
);
1425 HOST_WIDE_INT offset
= tree_to_uhwi (rli
->offset
);
1426 HOST_WIDE_INT bit_offset
= tree_to_shwi (rli
->bitpos
);
1428 #ifdef ADJUST_FIELD_ALIGN
1429 if (! TYPE_USER_ALIGN (type
))
1430 type_align
= ADJUST_FIELD_ALIGN (field
, type
, type_align
);
1433 /* A bit field may not span more units of alignment of its type
1434 than its type itself. Advance to next boundary if necessary. */
1435 if (excess_unit_span (offset
, bit_offset
, field_size
, type_align
, type
))
1437 if (DECL_PACKED (field
))
1439 if (warn_packed_bitfield_compat
== 1)
1442 "offset of packed bit-field %qD has changed in GCC 4.4",
1446 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1449 if (! DECL_PACKED (field
))
1450 TYPE_USER_ALIGN (rli
->t
) |= TYPE_USER_ALIGN (type
);
1452 SET_TYPE_WARN_IF_NOT_ALIGN (rli
->t
,
1453 TYPE_WARN_IF_NOT_ALIGN (type
));
1456 #ifdef BITFIELD_NBYTES_LIMITED
1457 if (BITFIELD_NBYTES_LIMITED
1458 && ! targetm
.ms_bitfield_layout_p (rli
->t
)
1459 && TREE_CODE (field
) == FIELD_DECL
1460 && type
!= error_mark_node
1461 && DECL_BIT_FIELD_TYPE (field
)
1462 && ! DECL_PACKED (field
)
1463 && ! integer_zerop (DECL_SIZE (field
))
1464 && tree_fits_uhwi_p (DECL_SIZE (field
))
1465 && tree_fits_uhwi_p (rli
->offset
)
1466 && tree_fits_uhwi_p (TYPE_SIZE (type
)))
1468 unsigned int type_align
= TYPE_ALIGN (type
);
1469 tree dsize
= DECL_SIZE (field
);
1470 HOST_WIDE_INT field_size
= tree_to_uhwi (dsize
);
1471 HOST_WIDE_INT offset
= tree_to_uhwi (rli
->offset
);
1472 HOST_WIDE_INT bit_offset
= tree_to_shwi (rli
->bitpos
);
1474 #ifdef ADJUST_FIELD_ALIGN
1475 if (! TYPE_USER_ALIGN (type
))
1476 type_align
= ADJUST_FIELD_ALIGN (field
, type
, type_align
);
1479 if (maximum_field_alignment
!= 0)
1480 type_align
= MIN (type_align
, maximum_field_alignment
);
1481 /* ??? This test is opposite the test in the containing if
1482 statement, so this code is unreachable currently. */
1483 else if (DECL_PACKED (field
))
1484 type_align
= MIN (type_align
, BITS_PER_UNIT
);
1486 /* A bit field may not span the unit of alignment of its type.
1487 Advance to next boundary if necessary. */
1488 if (excess_unit_span (offset
, bit_offset
, field_size
, type_align
, type
))
1489 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1491 TYPE_USER_ALIGN (rli
->t
) |= TYPE_USER_ALIGN (type
);
1492 SET_TYPE_WARN_IF_NOT_ALIGN (rli
->t
,
1493 TYPE_WARN_IF_NOT_ALIGN (type
));
1497 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1499 When a bit field is inserted into a packed record, the whole
1500 size of the underlying type is used by one or more same-size
1501 adjacent bitfields. (That is, if its long:3, 32 bits is
1502 used in the record, and any additional adjacent long bitfields are
1503 packed into the same chunk of 32 bits. However, if the size
1504 changes, a new field of that size is allocated.) In an unpacked
1505 record, this is the same as using alignment, but not equivalent
1508 Note: for compatibility, we use the type size, not the type alignment
1509 to determine alignment, since that matches the documentation */
1511 if (targetm
.ms_bitfield_layout_p (rli
->t
))
1513 tree prev_saved
= rli
->prev_field
;
1514 tree prev_type
= prev_saved
? DECL_BIT_FIELD_TYPE (prev_saved
) : NULL
;
1516 /* This is a bitfield if it exists. */
1517 if (rli
->prev_field
)
1519 bool realign_p
= known_align
< desired_align
;
1521 /* If both are bitfields, nonzero, and the same size, this is
1522 the middle of a run. Zero declared size fields are special
1523 and handled as "end of run". (Note: it's nonzero declared
1524 size, but equal type sizes!) (Since we know that both
1525 the current and previous fields are bitfields by the
1526 time we check it, DECL_SIZE must be present for both.) */
1527 if (DECL_BIT_FIELD_TYPE (field
)
1528 && !integer_zerop (DECL_SIZE (field
))
1529 && !integer_zerop (DECL_SIZE (rli
->prev_field
))
1530 && tree_fits_shwi_p (DECL_SIZE (rli
->prev_field
))
1531 && tree_fits_uhwi_p (TYPE_SIZE (type
))
1532 && simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (prev_type
)))
1534 /* We're in the middle of a run of equal type size fields; make
1535 sure we realign if we run out of bits. (Not decl size,
1537 HOST_WIDE_INT bitsize
= tree_to_uhwi (DECL_SIZE (field
));
1539 if (rli
->remaining_in_alignment
< bitsize
)
1541 HOST_WIDE_INT typesize
= tree_to_uhwi (TYPE_SIZE (type
));
1543 /* out of bits; bump up to next 'word'. */
1545 = size_binop (PLUS_EXPR
, rli
->bitpos
,
1546 bitsize_int (rli
->remaining_in_alignment
));
1547 rli
->prev_field
= field
;
1548 if (typesize
< bitsize
)
1549 rli
->remaining_in_alignment
= 0;
1551 rli
->remaining_in_alignment
= typesize
- bitsize
;
1555 rli
->remaining_in_alignment
-= bitsize
;
1561 /* End of a run: if leaving a run of bitfields of the same type
1562 size, we have to "use up" the rest of the bits of the type
1565 Compute the new position as the sum of the size for the prior
1566 type and where we first started working on that type.
1567 Note: since the beginning of the field was aligned then
1568 of course the end will be too. No round needed. */
1570 if (!integer_zerop (DECL_SIZE (rli
->prev_field
)))
1573 = size_binop (PLUS_EXPR
, rli
->bitpos
,
1574 bitsize_int (rli
->remaining_in_alignment
));
1577 /* We "use up" size zero fields; the code below should behave
1578 as if the prior field was not a bitfield. */
1581 /* Cause a new bitfield to be captured, either this time (if
1582 currently a bitfield) or next time we see one. */
1583 if (!DECL_BIT_FIELD_TYPE (field
)
1584 || integer_zerop (DECL_SIZE (field
)))
1585 rli
->prev_field
= NULL
;
1588 /* Does this field automatically have alignment it needs by virtue
1589 of the fields that precede it and the record's own alignment? */
1592 /* If the alignment is still within offset_align, just align
1593 the bit position. */
1594 if (desired_align
< rli
->offset_align
)
1595 rli
->bitpos
= round_up (rli
->bitpos
, desired_align
);
1598 /* First adjust OFFSET by the partial bits, then align. */
1599 tree d
= size_binop (CEIL_DIV_EXPR
, rli
->bitpos
,
1601 rli
->offset
= size_binop (PLUS_EXPR
, rli
->offset
,
1602 fold_convert (sizetype
, d
));
1603 rli
->bitpos
= bitsize_zero_node
;
1605 rli
->offset
= round_up (rli
->offset
,
1606 desired_align
/ BITS_PER_UNIT
);
1609 if (! TREE_CONSTANT (rli
->offset
))
1610 rli
->offset_align
= desired_align
;
1613 normalize_rli (rli
);
1616 /* If we're starting a new run of same type size bitfields
1617 (or a run of non-bitfields), set up the "first of the run"
1620 That is, if the current field is not a bitfield, or if there
1621 was a prior bitfield the type sizes differ, or if there wasn't
1622 a prior bitfield the size of the current field is nonzero.
1624 Note: we must be sure to test ONLY the type size if there was
1625 a prior bitfield and ONLY for the current field being zero if
1628 if (!DECL_BIT_FIELD_TYPE (field
)
1629 || (prev_saved
!= NULL
1630 ? !simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (prev_type
))
1631 : !integer_zerop (DECL_SIZE (field
))))
1633 /* Never smaller than a byte for compatibility. */
1634 unsigned int type_align
= BITS_PER_UNIT
;
1636 /* (When not a bitfield), we could be seeing a flex array (with
1637 no DECL_SIZE). Since we won't be using remaining_in_alignment
1638 until we see a bitfield (and come by here again) we just skip
1640 if (DECL_SIZE (field
) != NULL
1641 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field
)))
1642 && tree_fits_uhwi_p (DECL_SIZE (field
)))
1644 unsigned HOST_WIDE_INT bitsize
1645 = tree_to_uhwi (DECL_SIZE (field
));
1646 unsigned HOST_WIDE_INT typesize
1647 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field
)));
1649 if (typesize
< bitsize
)
1650 rli
->remaining_in_alignment
= 0;
1652 rli
->remaining_in_alignment
= typesize
- bitsize
;
1655 /* Now align (conventionally) for the new type. */
1656 if (! DECL_PACKED (field
))
1657 type_align
= TYPE_ALIGN (TREE_TYPE (field
));
1659 if (maximum_field_alignment
!= 0)
1660 type_align
= MIN (type_align
, maximum_field_alignment
);
1662 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1664 /* If we really aligned, don't allow subsequent bitfields
1666 rli
->prev_field
= NULL
;
1670 /* Offset so far becomes the position of this field after normalizing. */
1671 normalize_rli (rli
);
1672 DECL_FIELD_OFFSET (field
) = rli
->offset
;
1673 DECL_FIELD_BIT_OFFSET (field
) = rli
->bitpos
;
1674 SET_DECL_OFFSET_ALIGN (field
, rli
->offset_align
);
1675 handle_warn_if_not_align (field
, rli
->record_align
);
1677 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1678 if (TREE_CODE (DECL_FIELD_OFFSET (field
)) != INTEGER_CST
)
1679 DECL_FIELD_OFFSET (field
) = variable_size (DECL_FIELD_OFFSET (field
));
1681 /* If this field ended up more aligned than we thought it would be (we
1682 approximate this by seeing if its position changed), lay out the field
1683 again; perhaps we can use an integral mode for it now. */
1684 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field
)))
1685 actual_align
= least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
)));
1686 else if (integer_zerop (DECL_FIELD_OFFSET (field
)))
1687 actual_align
= MAX (BIGGEST_ALIGNMENT
, rli
->record_align
);
1688 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field
)))
1689 actual_align
= (BITS_PER_UNIT
1690 * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field
))));
1692 actual_align
= DECL_OFFSET_ALIGN (field
);
1693 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1694 store / extract bit field operations will check the alignment of the
1695 record against the mode of bit fields. */
1697 if (known_align
!= actual_align
)
1698 layout_decl (field
, actual_align
);
1700 if (rli
->prev_field
== NULL
&& DECL_BIT_FIELD_TYPE (field
))
1701 rli
->prev_field
= field
;
1703 /* Now add size of this field to the size of the record. If the size is
1704 not constant, treat the field as being a multiple of bytes and just
1705 adjust the offset, resetting the bit position. Otherwise, apportion the
1706 size amongst the bit position and offset. First handle the case of an
1707 unspecified size, which can happen when we have an invalid nested struct
1708 definition, such as struct j { struct j { int i; } }. The error message
1709 is printed in finish_struct. */
1710 if (DECL_SIZE (field
) == 0)
1712 else if (TREE_CODE (DECL_SIZE (field
)) != INTEGER_CST
1713 || TREE_OVERFLOW (DECL_SIZE (field
)))
1716 = size_binop (PLUS_EXPR
, rli
->offset
,
1717 fold_convert (sizetype
,
1718 size_binop (CEIL_DIV_EXPR
, rli
->bitpos
,
1719 bitsize_unit_node
)));
1721 = size_binop (PLUS_EXPR
, rli
->offset
, DECL_SIZE_UNIT (field
));
1722 rli
->bitpos
= bitsize_zero_node
;
1723 rli
->offset_align
= MIN (rli
->offset_align
, desired_align
);
1725 if (!multiple_of_p (bitsizetype
, DECL_SIZE (field
),
1726 bitsize_int (rli
->offset_align
)))
1728 tree type
= strip_array_types (TREE_TYPE (field
));
1729 /* The above adjusts offset_align just based on the start of the
1730 field. The field might not have a size that is a multiple of
1731 that offset_align though. If the field is an array of fixed
1732 sized elements, assume there can be any multiple of those
1733 sizes. If it is a variable length aggregate or array of
1734 variable length aggregates, assume worst that the end is
1735 just BITS_PER_UNIT aligned. */
1736 if (TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
)
1738 if (TREE_INT_CST_LOW (TYPE_SIZE (type
)))
1740 unsigned HOST_WIDE_INT sz
1741 = least_bit_hwi (TREE_INT_CST_LOW (TYPE_SIZE (type
)));
1742 rli
->offset_align
= MIN (rli
->offset_align
, sz
);
1746 rli
->offset_align
= MIN (rli
->offset_align
, BITS_PER_UNIT
);
1749 else if (targetm
.ms_bitfield_layout_p (rli
->t
))
1751 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
, DECL_SIZE (field
));
1753 /* If FIELD is the last field and doesn't end at the full length
1754 of the type then pad the struct out to the full length of the
1756 if (DECL_BIT_FIELD_TYPE (field
)
1757 && !integer_zerop (DECL_SIZE (field
)))
1759 /* We have to scan, because non-field DECLS are also here. */
1761 while ((probe
= DECL_CHAIN (probe
)))
1762 if (TREE_CODE (probe
) == FIELD_DECL
)
1765 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
,
1766 bitsize_int (rli
->remaining_in_alignment
));
1769 normalize_rli (rli
);
1773 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
, DECL_SIZE (field
));
1774 normalize_rli (rli
);
1778 /* Assuming that all the fields have been laid out, this function uses
1779 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1780 indicated by RLI. */
1783 finalize_record_size (record_layout_info rli
)
1785 tree unpadded_size
, unpadded_size_unit
;
1787 /* Now we want just byte and bit offsets, so set the offset alignment
1788 to be a byte and then normalize. */
1789 rli
->offset_align
= BITS_PER_UNIT
;
1790 normalize_rli (rli
);
1792 /* Determine the desired alignment. */
1793 #ifdef ROUND_TYPE_ALIGN
1794 SET_TYPE_ALIGN (rli
->t
, ROUND_TYPE_ALIGN (rli
->t
, TYPE_ALIGN (rli
->t
),
1795 rli
->record_align
));
1797 SET_TYPE_ALIGN (rli
->t
, MAX (TYPE_ALIGN (rli
->t
), rli
->record_align
));
1800 /* Compute the size so far. Be sure to allow for extra bits in the
1801 size in bytes. We have guaranteed above that it will be no more
1802 than a single byte. */
1803 unpadded_size
= rli_size_so_far (rli
);
1804 unpadded_size_unit
= rli_size_unit_so_far (rli
);
1805 if (! integer_zerop (rli
->bitpos
))
1807 = size_binop (PLUS_EXPR
, unpadded_size_unit
, size_one_node
);
1809 /* Round the size up to be a multiple of the required alignment. */
1810 TYPE_SIZE (rli
->t
) = round_up (unpadded_size
, TYPE_ALIGN (rli
->t
));
1811 TYPE_SIZE_UNIT (rli
->t
)
1812 = round_up (unpadded_size_unit
, TYPE_ALIGN_UNIT (rli
->t
));
1814 if (TREE_CONSTANT (unpadded_size
)
1815 && simple_cst_equal (unpadded_size
, TYPE_SIZE (rli
->t
)) == 0
1816 && input_location
!= BUILTINS_LOCATION
1817 && !TYPE_ARTIFICIAL (rli
->t
))
1820 = size_binop (MINUS_EXPR
, TYPE_SIZE_UNIT (rli
->t
), unpadded_size_unit
);
1821 warning (OPT_Wpadded
,
1822 "padding struct size to alignment boundary with %E bytes", pad_size
);
1825 if (warn_packed
&& TREE_CODE (rli
->t
) == RECORD_TYPE
1826 && TYPE_PACKED (rli
->t
) && ! rli
->packed_maybe_necessary
1827 && TREE_CONSTANT (unpadded_size
))
1831 #ifdef ROUND_TYPE_ALIGN
1833 = ROUND_TYPE_ALIGN (rli
->t
, TYPE_ALIGN (rli
->t
), rli
->unpacked_align
);
1835 rli
->unpacked_align
= MAX (TYPE_ALIGN (rli
->t
), rli
->unpacked_align
);
1838 unpacked_size
= round_up (TYPE_SIZE (rli
->t
), rli
->unpacked_align
);
1839 if (simple_cst_equal (unpacked_size
, TYPE_SIZE (rli
->t
)))
1841 if (TYPE_NAME (rli
->t
))
1845 if (TREE_CODE (TYPE_NAME (rli
->t
)) == IDENTIFIER_NODE
)
1846 name
= TYPE_NAME (rli
->t
);
1848 name
= DECL_NAME (TYPE_NAME (rli
->t
));
1850 if (STRICT_ALIGNMENT
)
1851 warning (OPT_Wpacked
, "packed attribute causes inefficient "
1852 "alignment for %qE", name
);
1854 warning (OPT_Wpacked
,
1855 "packed attribute is unnecessary for %qE", name
);
1859 if (STRICT_ALIGNMENT
)
1860 warning (OPT_Wpacked
,
1861 "packed attribute causes inefficient alignment");
1863 warning (OPT_Wpacked
, "packed attribute is unnecessary");
1869 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1872 compute_record_mode (tree type
)
1875 machine_mode mode
= VOIDmode
;
1877 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1878 However, if possible, we use a mode that fits in a register
1879 instead, in order to allow for better optimization down the
1881 SET_TYPE_MODE (type
, BLKmode
);
1883 poly_uint64 type_size
;
1884 if (!poly_int_tree_p (TYPE_SIZE (type
), &type_size
))
1887 /* A record which has any BLKmode members must itself be
1888 BLKmode; it can't go in a register. Unless the member is
1889 BLKmode only because it isn't aligned. */
1890 for (field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
1892 if (TREE_CODE (field
) != FIELD_DECL
)
1895 poly_uint64 field_size
;
1896 if (TREE_CODE (TREE_TYPE (field
)) == ERROR_MARK
1897 || (TYPE_MODE (TREE_TYPE (field
)) == BLKmode
1898 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field
))
1899 && !(TYPE_SIZE (TREE_TYPE (field
)) != 0
1900 && integer_zerop (TYPE_SIZE (TREE_TYPE (field
)))))
1901 || !tree_fits_poly_uint64_p (bit_position (field
))
1902 || DECL_SIZE (field
) == 0
1903 || !poly_int_tree_p (DECL_SIZE (field
), &field_size
))
1906 /* If this field is the whole struct, remember its mode so
1907 that, say, we can put a double in a class into a DF
1908 register instead of forcing it to live in the stack. */
1909 if (known_eq (field_size
, type_size
)
1910 /* Partial int types (e.g. __int20) may have TYPE_SIZE equal to
1911 wider types (e.g. int32), despite precision being less. Ensure
1912 that the TYPE_MODE of the struct does not get set to the partial
1913 int mode if there is a wider type also in the struct. */
1914 && known_gt (GET_MODE_PRECISION (DECL_MODE (field
)),
1915 GET_MODE_PRECISION (mode
)))
1916 mode
= DECL_MODE (field
);
1918 /* With some targets, it is sub-optimal to access an aligned
1919 BLKmode structure as a scalar. */
1920 if (targetm
.member_type_forces_blk (field
, mode
))
1924 /* If we only have one real field; use its mode if that mode's size
1925 matches the type's size. This generally only applies to RECORD_TYPE.
1926 For UNION_TYPE, if the widest field is MODE_INT then use that mode.
1927 If the widest field is MODE_PARTIAL_INT, and the union will be passed
1928 by reference, then use that mode. */
1929 if ((TREE_CODE (type
) == RECORD_TYPE
1930 || (TREE_CODE (type
) == UNION_TYPE
1931 && (GET_MODE_CLASS (mode
) == MODE_INT
1932 || (GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
1933 && (targetm
.calls
.pass_by_reference
1934 (pack_cumulative_args (0),
1935 function_arg_info (type
, mode
, /*named=*/false)))))))
1937 && known_eq (GET_MODE_BITSIZE (mode
), type_size
))
1940 mode
= mode_for_size_tree (TYPE_SIZE (type
), MODE_INT
, 1).else_blk ();
1942 /* If structure's known alignment is less than what the scalar
1943 mode would need, and it matters, then stick with BLKmode. */
1946 && ! (TYPE_ALIGN (type
) >= BIGGEST_ALIGNMENT
1947 || TYPE_ALIGN (type
) >= GET_MODE_ALIGNMENT (mode
)))
1949 /* If this is the only reason this type is BLKmode, then
1950 don't force containing types to be BLKmode. */
1951 TYPE_NO_FORCE_BLK (type
) = 1;
1955 SET_TYPE_MODE (type
, mode
);
1958 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1962 finalize_type_size (tree type
)
1964 /* Normally, use the alignment corresponding to the mode chosen.
1965 However, where strict alignment is not required, avoid
1966 over-aligning structures, since most compilers do not do this
1968 bool tua_cleared_p
= false;
1969 if (TYPE_MODE (type
) != BLKmode
1970 && TYPE_MODE (type
) != VOIDmode
1971 && (STRICT_ALIGNMENT
|| !AGGREGATE_TYPE_P (type
)))
1973 unsigned mode_align
= GET_MODE_ALIGNMENT (TYPE_MODE (type
));
1975 /* Don't override a larger alignment requirement coming from a user
1976 alignment of one of the fields. */
1977 if (mode_align
>= TYPE_ALIGN (type
))
1979 SET_TYPE_ALIGN (type
, mode_align
);
1980 /* Remember that we're about to reset this flag. */
1981 tua_cleared_p
= TYPE_USER_ALIGN (type
);
1982 TYPE_USER_ALIGN (type
) = false;
1986 /* Do machine-dependent extra alignment. */
1987 #ifdef ROUND_TYPE_ALIGN
1988 SET_TYPE_ALIGN (type
,
1989 ROUND_TYPE_ALIGN (type
, TYPE_ALIGN (type
), BITS_PER_UNIT
));
1992 /* If we failed to find a simple way to calculate the unit size
1993 of the type, find it by division. */
1994 if (TYPE_SIZE_UNIT (type
) == 0 && TYPE_SIZE (type
) != 0)
1995 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1996 result will fit in sizetype. We will get more efficient code using
1997 sizetype, so we force a conversion. */
1998 TYPE_SIZE_UNIT (type
)
1999 = fold_convert (sizetype
,
2000 size_binop (FLOOR_DIV_EXPR
, TYPE_SIZE (type
),
2001 bitsize_unit_node
));
2003 if (TYPE_SIZE (type
) != 0)
2005 TYPE_SIZE (type
) = round_up (TYPE_SIZE (type
), TYPE_ALIGN (type
));
2006 TYPE_SIZE_UNIT (type
)
2007 = round_up (TYPE_SIZE_UNIT (type
), TYPE_ALIGN_UNIT (type
));
2010 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
2011 if (TYPE_SIZE (type
) != 0 && TREE_CODE (TYPE_SIZE (type
)) != INTEGER_CST
)
2012 TYPE_SIZE (type
) = variable_size (TYPE_SIZE (type
));
2013 if (TYPE_SIZE_UNIT (type
) != 0
2014 && TREE_CODE (TYPE_SIZE_UNIT (type
)) != INTEGER_CST
)
2015 TYPE_SIZE_UNIT (type
) = variable_size (TYPE_SIZE_UNIT (type
));
2017 /* Handle empty records as per the x86-64 psABI. */
2018 TYPE_EMPTY_P (type
) = targetm
.calls
.empty_record_p (type
);
2020 /* Also layout any other variants of the type. */
2021 if (TYPE_NEXT_VARIANT (type
)
2022 || type
!= TYPE_MAIN_VARIANT (type
))
2025 /* Record layout info of this variant. */
2026 tree size
= TYPE_SIZE (type
);
2027 tree size_unit
= TYPE_SIZE_UNIT (type
);
2028 unsigned int align
= TYPE_ALIGN (type
);
2029 unsigned int precision
= TYPE_PRECISION (type
);
2030 unsigned int user_align
= TYPE_USER_ALIGN (type
);
2031 machine_mode mode
= TYPE_MODE (type
);
2032 bool empty_p
= TYPE_EMPTY_P (type
);
2033 bool typeless
= AGGREGATE_TYPE_P (type
) && TYPE_TYPELESS_STORAGE (type
);
2035 /* Copy it into all variants. */
2036 for (variant
= TYPE_MAIN_VARIANT (type
);
2037 variant
!= NULL_TREE
;
2038 variant
= TYPE_NEXT_VARIANT (variant
))
2040 TYPE_SIZE (variant
) = size
;
2041 TYPE_SIZE_UNIT (variant
) = size_unit
;
2042 unsigned valign
= align
;
2043 if (TYPE_USER_ALIGN (variant
))
2045 valign
= MAX (valign
, TYPE_ALIGN (variant
));
2046 /* If we reset TYPE_USER_ALIGN on the main variant, we might
2047 need to reset it on the variants too. TYPE_MODE will be set
2048 to MODE in this variant, so we can use that. */
2049 if (tua_cleared_p
&& GET_MODE_ALIGNMENT (mode
) >= valign
)
2050 TYPE_USER_ALIGN (variant
) = false;
2053 TYPE_USER_ALIGN (variant
) = user_align
;
2054 SET_TYPE_ALIGN (variant
, valign
);
2055 TYPE_PRECISION (variant
) = precision
;
2056 SET_TYPE_MODE (variant
, mode
);
2057 TYPE_EMPTY_P (variant
) = empty_p
;
2058 if (AGGREGATE_TYPE_P (variant
))
2059 TYPE_TYPELESS_STORAGE (variant
) = typeless
;
2064 /* Return a new underlying object for a bitfield started with FIELD. */
2067 start_bitfield_representative (tree field
)
2069 tree repr
= make_node (FIELD_DECL
);
2070 DECL_FIELD_OFFSET (repr
) = DECL_FIELD_OFFSET (field
);
2071 /* Force the representative to begin at a BITS_PER_UNIT aligned
2072 boundary - C++ may use tail-padding of a base object to
2073 continue packing bits so the bitfield region does not start
2074 at bit zero (see g++.dg/abi/bitfield5.C for example).
2075 Unallocated bits may happen for other reasons as well,
2076 for example Ada which allows explicit bit-granular structure layout. */
2077 DECL_FIELD_BIT_OFFSET (repr
)
2078 = size_binop (BIT_AND_EXPR
,
2079 DECL_FIELD_BIT_OFFSET (field
),
2080 bitsize_int (~(BITS_PER_UNIT
- 1)));
2081 SET_DECL_OFFSET_ALIGN (repr
, DECL_OFFSET_ALIGN (field
));
2082 DECL_SIZE (repr
) = DECL_SIZE (field
);
2083 DECL_SIZE_UNIT (repr
) = DECL_SIZE_UNIT (field
);
2084 DECL_PACKED (repr
) = DECL_PACKED (field
);
2085 DECL_CONTEXT (repr
) = DECL_CONTEXT (field
);
2086 /* There are no indirect accesses to this field. If we introduce
2087 some then they have to use the record alias set. This makes
2088 sure to properly conflict with [indirect] accesses to addressable
2089 fields of the bitfield group. */
2090 DECL_NONADDRESSABLE_P (repr
) = 1;
2094 /* Finish up a bitfield group that was started by creating the underlying
2095 object REPR with the last field in the bitfield group FIELD. */
2098 finish_bitfield_representative (tree repr
, tree field
)
2100 unsigned HOST_WIDE_INT bitsize
, maxbitsize
;
2103 size
= size_diffop (DECL_FIELD_OFFSET (field
),
2104 DECL_FIELD_OFFSET (repr
));
2105 while (TREE_CODE (size
) == COMPOUND_EXPR
)
2106 size
= TREE_OPERAND (size
, 1);
2107 gcc_assert (tree_fits_uhwi_p (size
));
2108 bitsize
= (tree_to_uhwi (size
) * BITS_PER_UNIT
2109 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
2110 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
))
2111 + tree_to_uhwi (DECL_SIZE (field
)));
2113 /* Round up bitsize to multiples of BITS_PER_UNIT. */
2114 bitsize
= (bitsize
+ BITS_PER_UNIT
- 1) & ~(BITS_PER_UNIT
- 1);
2116 /* Now nothing tells us how to pad out bitsize ... */
2117 if (TREE_CODE (DECL_CONTEXT (field
)) == RECORD_TYPE
)
2119 nextf
= DECL_CHAIN (field
);
2120 while (nextf
&& TREE_CODE (nextf
) != FIELD_DECL
)
2121 nextf
= DECL_CHAIN (nextf
);
2128 /* If there was an error, the field may be not laid out
2129 correctly. Don't bother to do anything. */
2130 if (TREE_TYPE (nextf
) == error_mark_node
)
2132 TREE_TYPE (repr
) = error_mark_node
;
2135 maxsize
= size_diffop (DECL_FIELD_OFFSET (nextf
),
2136 DECL_FIELD_OFFSET (repr
));
2137 if (tree_fits_uhwi_p (maxsize
))
2139 maxbitsize
= (tree_to_uhwi (maxsize
) * BITS_PER_UNIT
2140 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf
))
2141 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
2142 /* If the group ends within a bitfield nextf does not need to be
2143 aligned to BITS_PER_UNIT. Thus round up. */
2144 maxbitsize
= (maxbitsize
+ BITS_PER_UNIT
- 1) & ~(BITS_PER_UNIT
- 1);
2147 maxbitsize
= bitsize
;
2151 /* Note that if the C++ FE sets up tail-padding to be re-used it
2152 creates a as-base variant of the type with TYPE_SIZE adjusted
2153 accordingly. So it is safe to include tail-padding here. */
2154 tree aggsize
= lang_hooks
.types
.unit_size_without_reusable_padding
2155 (DECL_CONTEXT (field
));
2156 tree maxsize
= size_diffop (aggsize
, DECL_FIELD_OFFSET (repr
));
2157 /* We cannot generally rely on maxsize to fold to an integer constant,
2158 so use bitsize as fallback for this case. */
2159 if (tree_fits_uhwi_p (maxsize
))
2160 maxbitsize
= (tree_to_uhwi (maxsize
) * BITS_PER_UNIT
2161 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
2163 maxbitsize
= bitsize
;
2166 /* Only if we don't artificially break up the representative in
2167 the middle of a large bitfield with different possibly
2168 overlapping representatives. And all representatives start
2170 gcc_assert (maxbitsize
% BITS_PER_UNIT
== 0);
2172 /* Find the smallest nice mode to use. */
2173 opt_scalar_int_mode mode_iter
;
2174 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
2175 if (GET_MODE_BITSIZE (mode_iter
.require ()) >= bitsize
)
2178 scalar_int_mode mode
;
2179 if (!mode_iter
.exists (&mode
)
2180 || GET_MODE_BITSIZE (mode
) > maxbitsize
2181 || GET_MODE_BITSIZE (mode
) > MAX_FIXED_MODE_SIZE
)
2183 if (TREE_CODE (TREE_TYPE (field
)) == BITINT_TYPE
)
2185 struct bitint_info info
;
2186 unsigned prec
= TYPE_PRECISION (TREE_TYPE (field
));
2187 bool ok
= targetm
.c
.bitint_type_info (prec
, &info
);
2189 scalar_int_mode limb_mode
2190 = as_a
<scalar_int_mode
> (info
.abi_limb_mode
);
2191 unsigned lprec
= GET_MODE_PRECISION (limb_mode
);
2194 /* For middle/large/huge _BitInt prefer bitsize being a multiple
2195 of limb precision. */
2196 unsigned HOST_WIDE_INT bsz
= CEIL (bitsize
, lprec
) * lprec
;
2197 if (bsz
<= maxbitsize
)
2201 /* We really want a BLKmode representative only as a last resort,
2202 considering the member b in
2203 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
2204 Otherwise we simply want to split the representative up
2205 allowing for overlaps within the bitfield region as required for
2206 struct { int a : 7; int b : 7;
2207 int c : 10; int d; } __attribute__((packed));
2208 [0, 15] HImode for a and b, [8, 23] HImode for c. */
2209 DECL_SIZE (repr
) = bitsize_int (bitsize
);
2210 DECL_SIZE_UNIT (repr
) = size_int (bitsize
/ BITS_PER_UNIT
);
2211 SET_DECL_MODE (repr
, BLKmode
);
2212 TREE_TYPE (repr
) = build_array_type_nelts (unsigned_char_type_node
,
2213 bitsize
/ BITS_PER_UNIT
);
2217 unsigned HOST_WIDE_INT modesize
= GET_MODE_BITSIZE (mode
);
2218 DECL_SIZE (repr
) = bitsize_int (modesize
);
2219 DECL_SIZE_UNIT (repr
) = size_int (modesize
/ BITS_PER_UNIT
);
2220 SET_DECL_MODE (repr
, mode
);
2221 TREE_TYPE (repr
) = lang_hooks
.types
.type_for_mode (mode
, 1);
2224 /* Remember whether the bitfield group is at the end of the
2225 structure or not. */
2226 DECL_CHAIN (repr
) = nextf
;
2229 /* Compute and set FIELD_DECLs for the underlying objects we should
2230 use for bitfield access for the structure T. */
2233 finish_bitfield_layout (tree t
)
2236 tree repr
= NULL_TREE
;
2238 if (TREE_CODE (t
) == QUAL_UNION_TYPE
)
2241 for (prev
= NULL_TREE
, field
= TYPE_FIELDS (t
);
2242 field
; field
= DECL_CHAIN (field
))
2244 if (TREE_CODE (field
) != FIELD_DECL
)
2247 /* In the C++ memory model, consecutive bit fields in a structure are
2248 considered one memory location and updating a memory location
2249 may not store into adjacent memory locations. */
2251 && DECL_BIT_FIELD_TYPE (field
))
2253 /* Start new representative. */
2254 repr
= start_bitfield_representative (field
);
2257 && ! DECL_BIT_FIELD_TYPE (field
))
2259 /* Finish off new representative. */
2260 finish_bitfield_representative (repr
, prev
);
2263 else if (DECL_BIT_FIELD_TYPE (field
))
2265 gcc_assert (repr
!= NULL_TREE
);
2267 /* Zero-size bitfields finish off a representative and
2268 do not have a representative themselves. This is
2269 required by the C++ memory model. */
2270 if (integer_zerop (DECL_SIZE (field
)))
2272 finish_bitfield_representative (repr
, prev
);
2276 /* We assume that either DECL_FIELD_OFFSET of the representative
2277 and each bitfield member is a constant or they are equal.
2278 This is because we need to be able to compute the bit-offset
2279 of each field relative to the representative in get_bit_range
2280 during RTL expansion.
2281 If these constraints are not met, simply force a new
2282 representative to be generated. That will at most
2283 generate worse code but still maintain correctness with
2284 respect to the C++ memory model. */
2285 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr
))
2286 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field
)))
2287 || operand_equal_p (DECL_FIELD_OFFSET (repr
),
2288 DECL_FIELD_OFFSET (field
), 0)))
2290 finish_bitfield_representative (repr
, prev
);
2291 repr
= start_bitfield_representative (field
);
2298 DECL_BIT_FIELD_REPRESENTATIVE (field
) = repr
;
2300 if (TREE_CODE (t
) == RECORD_TYPE
)
2304 finish_bitfield_representative (repr
, field
);
2310 finish_bitfield_representative (repr
, prev
);
2313 /* Do all of the work required to layout the type indicated by RLI,
2314 once the fields have been laid out. This function will call `free'
2315 for RLI, unless FREE_P is false. Passing a value other than false
2316 for FREE_P is bad practice; this option only exists to support the
2320 finish_record_layout (record_layout_info rli
, int free_p
)
2324 /* Compute the final size. */
2325 finalize_record_size (rli
);
2327 /* Compute the TYPE_MODE for the record. */
2328 compute_record_mode (rli
->t
);
2330 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2331 finalize_type_size (rli
->t
);
2333 /* Compute bitfield representatives. */
2334 finish_bitfield_layout (rli
->t
);
2336 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2337 With C++ templates, it is too early to do this when the attribute
2339 for (variant
= TYPE_NEXT_VARIANT (rli
->t
); variant
;
2340 variant
= TYPE_NEXT_VARIANT (variant
))
2342 TYPE_PACKED (variant
) = TYPE_PACKED (rli
->t
);
2343 TYPE_REVERSE_STORAGE_ORDER (variant
)
2344 = TYPE_REVERSE_STORAGE_ORDER (rli
->t
);
2347 /* Lay out any static members. This is done now because their type
2348 may use the record's type. */
2349 while (!vec_safe_is_empty (rli
->pending_statics
))
2350 layout_decl (rli
->pending_statics
->pop (), 0);
2355 vec_free (rli
->pending_statics
);
2361 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2362 NAME, its fields are chained in reverse on FIELDS.
2364 If ALIGN_TYPE is non-null, it is given the same alignment as
2368 finish_builtin_struct (tree type
, const char *name
, tree fields
,
2373 for (tail
= NULL_TREE
; fields
; tail
= fields
, fields
= next
)
2375 DECL_FIELD_CONTEXT (fields
) = type
;
2376 next
= DECL_CHAIN (fields
);
2377 DECL_CHAIN (fields
) = tail
;
2379 TYPE_FIELDS (type
) = tail
;
2383 SET_TYPE_ALIGN (type
, TYPE_ALIGN (align_type
));
2384 TYPE_USER_ALIGN (type
) = TYPE_USER_ALIGN (align_type
);
2385 SET_TYPE_WARN_IF_NOT_ALIGN (type
,
2386 TYPE_WARN_IF_NOT_ALIGN (align_type
));
2390 #if 0 /* not yet, should get fixed properly later */
2391 TYPE_NAME (type
) = make_type_decl (get_identifier (name
), type
);
2393 TYPE_NAME (type
) = build_decl (BUILTINS_LOCATION
,
2394 TYPE_DECL
, get_identifier (name
), type
);
2396 TYPE_STUB_DECL (type
) = TYPE_NAME (type
);
2397 layout_decl (TYPE_NAME (type
), 0);
2400 /* Compute TYPE_MODE for TYPE (which is ARRAY_TYPE). */
2402 void compute_array_mode (tree type
)
2404 gcc_assert (TREE_CODE (type
) == ARRAY_TYPE
);
2406 SET_TYPE_MODE (type
, BLKmode
);
2407 if (TYPE_SIZE (type
) != 0
2408 && ! targetm
.member_type_forces_blk (type
, VOIDmode
)
2409 /* BLKmode elements force BLKmode aggregate;
2410 else extract/store fields may lose. */
2411 && (TYPE_MODE (TREE_TYPE (type
)) != BLKmode
2412 || TYPE_NO_FORCE_BLK (TREE_TYPE (type
))))
2414 SET_TYPE_MODE (type
, mode_for_array (TREE_TYPE (type
),
2416 if (TYPE_MODE (type
) != BLKmode
2417 && STRICT_ALIGNMENT
&& TYPE_ALIGN (type
) < BIGGEST_ALIGNMENT
2418 && TYPE_ALIGN (type
) < GET_MODE_ALIGNMENT (TYPE_MODE (type
)))
2420 TYPE_NO_FORCE_BLK (type
) = 1;
2421 SET_TYPE_MODE (type
, BLKmode
);
2426 /* Calculate the mode, size, and alignment for TYPE.
2427 For an array type, calculate the element separation as well.
2428 Record TYPE on the chain of permanent or temporary types
2429 so that dbxout will find out about it.
2431 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2432 layout_type does nothing on such a type.
2434 If the type is incomplete, its TYPE_SIZE remains zero. */
2437 layout_type (tree type
)
2441 if (type
== error_mark_node
)
2444 /* We don't want finalize_type_size to copy an alignment attribute to
2445 variants that don't have it. */
2446 type
= TYPE_MAIN_VARIANT (type
);
2448 /* Do nothing if type has been laid out before. */
2449 if (TYPE_SIZE (type
))
2452 switch (TREE_CODE (type
))
2455 /* This kind of type is the responsibility
2456 of the language-specific code. */
2463 scalar_int_mode mode
2464 = smallest_int_mode_for_size (TYPE_PRECISION (type
)).require ();
2465 SET_TYPE_MODE (type
, mode
);
2466 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (mode
));
2467 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2468 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (mode
));
2474 struct bitint_info info
;
2476 bool ok
= targetm
.c
.bitint_type_info (TYPE_PRECISION (type
), &info
);
2478 scalar_int_mode limb_mode
2479 = as_a
<scalar_int_mode
> (info
.abi_limb_mode
);
2480 if (TYPE_PRECISION (type
) <= GET_MODE_PRECISION (limb_mode
))
2482 SET_TYPE_MODE (type
, limb_mode
);
2483 gcc_assert (info
.abi_limb_mode
== info
.limb_mode
);
2488 SET_TYPE_MODE (type
, BLKmode
);
2489 cnt
= CEIL (TYPE_PRECISION (type
), GET_MODE_PRECISION (limb_mode
));
2490 gcc_assert (info
.abi_limb_mode
== info
.limb_mode
2491 || !info
.big_endian
== !WORDS_BIG_ENDIAN
);
2493 TYPE_SIZE (type
) = bitsize_int (cnt
* GET_MODE_BITSIZE (limb_mode
));
2494 TYPE_SIZE_UNIT (type
) = size_int (cnt
* GET_MODE_SIZE (limb_mode
));
2495 SET_TYPE_ALIGN (type
, GET_MODE_ALIGNMENT (limb_mode
));
2498 /* Use same mode as compute_record_mode would use for a structure
2499 containing cnt limb_mode elements. */
2500 machine_mode mode
= mode_for_size_tree (TYPE_SIZE (type
),
2501 MODE_INT
, 1).else_blk ();
2502 if (mode
== BLKmode
)
2504 finalize_type_size (type
);
2505 SET_TYPE_MODE (type
, mode
);
2506 if (STRICT_ALIGNMENT
2507 && !(TYPE_ALIGN (type
) >= BIGGEST_ALIGNMENT
2508 || TYPE_ALIGN (type
) >= GET_MODE_ALIGNMENT (mode
)))
2510 /* If this is the only reason this type is BLKmode, then
2511 don't force containing types to be BLKmode. */
2512 TYPE_NO_FORCE_BLK (type
) = 1;
2513 SET_TYPE_MODE (type
, BLKmode
);
2515 if (TYPE_NEXT_VARIANT (type
) || type
!= TYPE_MAIN_VARIANT (type
))
2516 for (tree variant
= TYPE_MAIN_VARIANT (type
);
2517 variant
!= NULL_TREE
;
2518 variant
= TYPE_NEXT_VARIANT (variant
))
2520 SET_TYPE_MODE (variant
, mode
);
2521 if (STRICT_ALIGNMENT
2522 && !(TYPE_ALIGN (variant
) >= BIGGEST_ALIGNMENT
2523 || (TYPE_ALIGN (variant
)
2524 >= GET_MODE_ALIGNMENT (mode
))))
2526 TYPE_NO_FORCE_BLK (variant
) = 1;
2527 SET_TYPE_MODE (variant
, BLKmode
);
2537 /* Allow the caller to choose the type mode, which is how decimal
2538 floats are distinguished from binary ones. */
2539 if (TYPE_MODE (type
) == VOIDmode
)
2541 (type
, float_mode_for_size (TYPE_PRECISION (type
)).require ());
2542 scalar_float_mode mode
= as_a
<scalar_float_mode
> (TYPE_MODE (type
));
2543 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (mode
));
2544 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (mode
));
2548 case FIXED_POINT_TYPE
:
2550 /* TYPE_MODE (type) has been set already. */
2551 scalar_mode mode
= SCALAR_TYPE_MODE (type
);
2552 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (mode
));
2553 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (mode
));
2558 TYPE_UNSIGNED (type
) = TYPE_UNSIGNED (TREE_TYPE (type
));
2559 if (TYPE_MODE (TREE_TYPE (type
)) == BLKmode
)
2561 gcc_checking_assert (TREE_CODE (TREE_TYPE (type
)) == BITINT_TYPE
);
2562 SET_TYPE_MODE (type
, BLKmode
);
2564 = int_const_binop (MULT_EXPR
, TYPE_SIZE (TREE_TYPE (type
)),
2566 TYPE_SIZE_UNIT (type
)
2567 = int_const_binop (MULT_EXPR
, TYPE_SIZE_UNIT (TREE_TYPE (type
)),
2571 SET_TYPE_MODE (type
,
2572 GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type
))));
2574 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2575 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2580 poly_uint64 nunits
= TYPE_VECTOR_SUBPARTS (type
);
2581 tree innertype
= TREE_TYPE (type
);
2583 /* Find an appropriate mode for the vector type. */
2584 if (TYPE_MODE (type
) == VOIDmode
)
2585 SET_TYPE_MODE (type
,
2586 mode_for_vector (SCALAR_TYPE_MODE (innertype
),
2587 nunits
).else_blk ());
2589 TYPE_SATURATING (type
) = TYPE_SATURATING (TREE_TYPE (type
));
2590 TYPE_UNSIGNED (type
) = TYPE_UNSIGNED (TREE_TYPE (type
));
2591 /* Several boolean vector elements may fit in a single unit. */
2592 if (VECTOR_BOOLEAN_TYPE_P (type
)
2593 && type
->type_common
.mode
!= BLKmode
)
2594 TYPE_SIZE_UNIT (type
)
2595 = size_int (GET_MODE_SIZE (type
->type_common
.mode
));
2597 TYPE_SIZE_UNIT (type
) = int_const_binop (MULT_EXPR
,
2598 TYPE_SIZE_UNIT (innertype
),
2600 TYPE_SIZE (type
) = int_const_binop
2602 bits_from_bytes (TYPE_SIZE_UNIT (type
)),
2603 bitsize_int (BITS_PER_UNIT
));
2605 /* For vector types, we do not default to the mode's alignment.
2606 Instead, query a target hook, defaulting to natural alignment.
2607 This prevents ABI changes depending on whether or not native
2608 vector modes are supported. */
2609 SET_TYPE_ALIGN (type
, targetm
.vector_alignment (type
));
2611 /* However, if the underlying mode requires a bigger alignment than
2612 what the target hook provides, we cannot use the mode. For now,
2613 simply reject that case. */
2614 gcc_assert (TYPE_ALIGN (type
)
2615 >= GET_MODE_ALIGNMENT (TYPE_MODE (type
)));
2620 /* This is an incomplete type and so doesn't have a size. */
2621 SET_TYPE_ALIGN (type
, 1);
2622 TYPE_USER_ALIGN (type
) = 0;
2623 SET_TYPE_MODE (type
, VOIDmode
);
2627 TYPE_SIZE (type
) = bitsize_int (POINTER_SIZE
);
2628 TYPE_SIZE_UNIT (type
) = size_int (POINTER_SIZE_UNITS
);
2629 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2630 integral, which may be an __intN. */
2631 SET_TYPE_MODE (type
, int_mode_for_size (POINTER_SIZE
, 0).require ());
2632 TYPE_PRECISION (type
) = POINTER_SIZE
;
2637 /* It's hard to see what the mode and size of a function ought to
2638 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2639 make it consistent with that. */
2640 SET_TYPE_MODE (type
,
2641 int_mode_for_size (FUNCTION_BOUNDARY
, 0).else_blk ());
2642 TYPE_SIZE (type
) = bitsize_int (FUNCTION_BOUNDARY
);
2643 TYPE_SIZE_UNIT (type
) = size_int (FUNCTION_BOUNDARY
/ BITS_PER_UNIT
);
2647 case REFERENCE_TYPE
:
2649 scalar_int_mode mode
= SCALAR_INT_TYPE_MODE (type
);
2650 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (mode
));
2651 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (mode
));
2652 TYPE_UNSIGNED (type
) = 1;
2653 TYPE_PRECISION (type
) = GET_MODE_PRECISION (mode
);
2659 tree index
= TYPE_DOMAIN (type
);
2660 tree element
= TREE_TYPE (type
);
2662 /* We need to know both bounds in order to compute the size. */
2663 if (index
&& TYPE_MAX_VALUE (index
) && TYPE_MIN_VALUE (index
)
2664 && TYPE_SIZE (element
))
2666 tree ub
= TYPE_MAX_VALUE (index
);
2667 tree lb
= TYPE_MIN_VALUE (index
);
2668 tree element_size
= TYPE_SIZE (element
);
2671 /* Make sure that an array of zero-sized element is zero-sized
2672 regardless of its extent. */
2673 if (integer_zerop (element_size
))
2674 length
= size_zero_node
;
2676 /* The computation should happen in the original signedness so
2677 that (possible) negative values are handled appropriately
2678 when determining overflow. */
2681 /* ??? When it is obvious that the range is signed
2682 represent it using ssizetype. */
2683 if (TREE_CODE (lb
) == INTEGER_CST
2684 && TREE_CODE (ub
) == INTEGER_CST
2685 && TYPE_UNSIGNED (TREE_TYPE (lb
))
2686 && tree_int_cst_lt (ub
, lb
))
2688 lb
= wide_int_to_tree (ssizetype
,
2689 offset_int::from (wi::to_wide (lb
),
2691 ub
= wide_int_to_tree (ssizetype
,
2692 offset_int::from (wi::to_wide (ub
),
2696 = fold_convert (sizetype
,
2697 size_binop (PLUS_EXPR
,
2698 build_int_cst (TREE_TYPE (lb
), 1),
2699 size_binop (MINUS_EXPR
, ub
, lb
)));
2702 /* ??? We have no way to distinguish a null-sized array from an
2703 array spanning the whole sizetype range, so we arbitrarily
2704 decide that [0, -1] is the only valid representation. */
2705 if (integer_zerop (length
)
2706 && TREE_OVERFLOW (length
)
2707 && integer_zerop (lb
))
2708 length
= size_zero_node
;
2710 TYPE_SIZE (type
) = size_binop (MULT_EXPR
, element_size
,
2711 bits_from_bytes (length
));
2713 /* If we know the size of the element, calculate the total size
2714 directly, rather than do some division thing below. This
2715 optimization helps Fortran assumed-size arrays (where the
2716 size of the array is determined at runtime) substantially. */
2717 if (TYPE_SIZE_UNIT (element
))
2718 TYPE_SIZE_UNIT (type
)
2719 = size_binop (MULT_EXPR
, TYPE_SIZE_UNIT (element
), length
);
2722 /* Now round the alignment and size,
2723 using machine-dependent criteria if any. */
2725 unsigned align
= TYPE_ALIGN (element
);
2726 if (TYPE_USER_ALIGN (type
))
2727 align
= MAX (align
, TYPE_ALIGN (type
));
2729 TYPE_USER_ALIGN (type
) = TYPE_USER_ALIGN (element
);
2730 if (!TYPE_WARN_IF_NOT_ALIGN (type
))
2731 SET_TYPE_WARN_IF_NOT_ALIGN (type
,
2732 TYPE_WARN_IF_NOT_ALIGN (element
));
2733 #ifdef ROUND_TYPE_ALIGN
2734 align
= ROUND_TYPE_ALIGN (type
, align
, BITS_PER_UNIT
);
2736 align
= MAX (align
, BITS_PER_UNIT
);
2738 SET_TYPE_ALIGN (type
, align
);
2739 compute_array_mode (type
);
2740 if (AGGREGATE_TYPE_P (element
))
2741 TYPE_TYPELESS_STORAGE (type
) = TYPE_TYPELESS_STORAGE (element
);
2742 /* When the element size is constant, check that it is at least as
2743 large as the element alignment. */
2744 if (TYPE_SIZE_UNIT (element
)
2745 && TREE_CODE (TYPE_SIZE_UNIT (element
)) == INTEGER_CST
2746 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2748 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element
))
2749 && !integer_zerop (TYPE_SIZE_UNIT (element
)))
2751 if (compare_tree_int (TYPE_SIZE_UNIT (element
),
2752 TYPE_ALIGN_UNIT (element
)) < 0)
2753 error ("alignment of array elements is greater than "
2755 else if (TYPE_ALIGN_UNIT (element
) > 1
2756 && (wi::zext (wi::to_wide (TYPE_SIZE_UNIT (element
)),
2757 ffs_hwi (TYPE_ALIGN_UNIT (element
)) - 1)
2759 error ("size of array element is not a multiple of its "
2767 case QUAL_UNION_TYPE
:
2770 record_layout_info rli
;
2772 /* Initialize the layout information. */
2773 rli
= start_record_layout (type
);
2775 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2776 in the reverse order in building the COND_EXPR that denotes
2777 its size. We reverse them again later. */
2778 if (TREE_CODE (type
) == QUAL_UNION_TYPE
)
2779 TYPE_FIELDS (type
) = nreverse (TYPE_FIELDS (type
));
2781 /* Place all the fields. */
2782 for (field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
2783 place_field (rli
, field
);
2785 if (TREE_CODE (type
) == QUAL_UNION_TYPE
)
2786 TYPE_FIELDS (type
) = nreverse (TYPE_FIELDS (type
));
2788 /* Finish laying out the record. */
2789 finish_record_layout (rli
, /*free_p=*/true);
2797 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2798 records and unions, finish_record_layout already called this
2800 if (!RECORD_OR_UNION_TYPE_P (type
))
2801 finalize_type_size (type
);
2803 /* We should never see alias sets on incomplete aggregates. And we
2804 should not call layout_type on not incomplete aggregates. */
2805 if (AGGREGATE_TYPE_P (type
))
2806 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type
));
2809 /* Return the least alignment required for type TYPE. */
2812 min_align_of_type (tree type
)
2814 unsigned int align
= TYPE_ALIGN (type
);
2815 if (!TYPE_USER_ALIGN (type
))
2817 align
= MIN (align
, BIGGEST_ALIGNMENT
);
2818 #ifdef BIGGEST_FIELD_ALIGNMENT
2819 align
= MIN (align
, BIGGEST_FIELD_ALIGNMENT
);
2821 unsigned int field_align
= align
;
2822 #ifdef ADJUST_FIELD_ALIGN
2823 field_align
= ADJUST_FIELD_ALIGN (NULL_TREE
, type
, field_align
);
2825 align
= MIN (align
, field_align
);
2827 return align
/ BITS_PER_UNIT
;
2830 /* Create and return a type for signed integers of PRECISION bits. */
2833 make_signed_type (int precision
)
2835 tree type
= make_node (INTEGER_TYPE
);
2837 TYPE_PRECISION (type
) = precision
;
2839 fixup_signed_type (type
);
2843 /* Create and return a type for unsigned integers of PRECISION bits. */
2846 make_unsigned_type (int precision
)
2848 tree type
= make_node (INTEGER_TYPE
);
2850 TYPE_PRECISION (type
) = precision
;
2852 fixup_unsigned_type (type
);
2856 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2860 make_fract_type (int precision
, int unsignedp
, int satp
)
2862 tree type
= make_node (FIXED_POINT_TYPE
);
2864 TYPE_PRECISION (type
) = precision
;
2867 TYPE_SATURATING (type
) = 1;
2869 /* Lay out the type: set its alignment, size, etc. */
2870 TYPE_UNSIGNED (type
) = unsignedp
;
2871 enum mode_class mclass
= unsignedp
? MODE_UFRACT
: MODE_FRACT
;
2872 SET_TYPE_MODE (type
, mode_for_size (precision
, mclass
, 0).require ());
2878 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2882 make_accum_type (int precision
, int unsignedp
, int satp
)
2884 tree type
= make_node (FIXED_POINT_TYPE
);
2886 TYPE_PRECISION (type
) = precision
;
2889 TYPE_SATURATING (type
) = 1;
2891 /* Lay out the type: set its alignment, size, etc. */
2892 TYPE_UNSIGNED (type
) = unsignedp
;
2893 enum mode_class mclass
= unsignedp
? MODE_UACCUM
: MODE_ACCUM
;
2894 SET_TYPE_MODE (type
, mode_for_size (precision
, mclass
, 0).require ());
2900 /* Initialize sizetypes so layout_type can use them. */
2903 initialize_sizetypes (void)
2905 int precision
, bprecision
;
2907 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2908 if (strcmp (SIZETYPE
, "unsigned int") == 0)
2909 precision
= INT_TYPE_SIZE
;
2910 else if (strcmp (SIZETYPE
, "long unsigned int") == 0)
2911 precision
= LONG_TYPE_SIZE
;
2912 else if (strcmp (SIZETYPE
, "long long unsigned int") == 0)
2913 precision
= LONG_LONG_TYPE_SIZE
;
2914 else if (strcmp (SIZETYPE
, "short unsigned int") == 0)
2915 precision
= SHORT_TYPE_SIZE
;
2921 for (i
= 0; i
< NUM_INT_N_ENTS
; i
++)
2922 if (int_n_enabled_p
[i
])
2924 char name
[50], altname
[50];
2925 sprintf (name
, "__int%d unsigned", int_n_data
[i
].bitsize
);
2926 sprintf (altname
, "__int%d__ unsigned", int_n_data
[i
].bitsize
);
2928 if (strcmp (name
, SIZETYPE
) == 0
2929 || strcmp (altname
, SIZETYPE
) == 0)
2931 precision
= int_n_data
[i
].bitsize
;
2934 if (precision
== -1)
2939 = MIN (precision
+ LOG2_BITS_PER_UNIT
+ 1, MAX_FIXED_MODE_SIZE
);
2941 = GET_MODE_PRECISION (smallest_int_mode_for_size (bprecision
).require ());
2942 if (bprecision
> HOST_BITS_PER_DOUBLE_INT
)
2943 bprecision
= HOST_BITS_PER_DOUBLE_INT
;
2945 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2946 sizetype
= make_node (INTEGER_TYPE
);
2947 TYPE_NAME (sizetype
) = get_identifier ("sizetype");
2948 TYPE_PRECISION (sizetype
) = precision
;
2949 TYPE_UNSIGNED (sizetype
) = 1;
2950 bitsizetype
= make_node (INTEGER_TYPE
);
2951 TYPE_NAME (bitsizetype
) = get_identifier ("bitsizetype");
2952 TYPE_PRECISION (bitsizetype
) = bprecision
;
2953 TYPE_UNSIGNED (bitsizetype
) = 1;
2955 /* Now layout both types manually. */
2956 scalar_int_mode mode
= smallest_int_mode_for_size (precision
).require ();
2957 SET_TYPE_MODE (sizetype
, mode
);
2958 SET_TYPE_ALIGN (sizetype
, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype
)));
2959 TYPE_SIZE (sizetype
) = bitsize_int (precision
);
2960 TYPE_SIZE_UNIT (sizetype
) = size_int (GET_MODE_SIZE (mode
));
2961 set_min_and_max_values_for_integral_type (sizetype
, precision
, UNSIGNED
);
2963 mode
= smallest_int_mode_for_size (bprecision
).require ();
2964 SET_TYPE_MODE (bitsizetype
, mode
);
2965 SET_TYPE_ALIGN (bitsizetype
, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype
)));
2966 TYPE_SIZE (bitsizetype
) = bitsize_int (bprecision
);
2967 TYPE_SIZE_UNIT (bitsizetype
) = size_int (GET_MODE_SIZE (mode
));
2968 set_min_and_max_values_for_integral_type (bitsizetype
, bprecision
, UNSIGNED
);
2970 /* Create the signed variants of *sizetype. */
2971 ssizetype
= make_signed_type (TYPE_PRECISION (sizetype
));
2972 TYPE_NAME (ssizetype
) = get_identifier ("ssizetype");
2973 sbitsizetype
= make_signed_type (TYPE_PRECISION (bitsizetype
));
2974 TYPE_NAME (sbitsizetype
) = get_identifier ("sbitsizetype");
2977 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2978 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2979 for TYPE, based on the PRECISION and whether or not the TYPE
2980 IS_UNSIGNED. PRECISION need not correspond to a width supported
2981 natively by the hardware; for example, on a machine with 8-bit,
2982 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2986 set_min_and_max_values_for_integral_type (tree type
,
2990 /* For bitfields with zero width we end up creating integer types
2991 with zero precision. Don't assign any minimum/maximum values
2992 to those types, they don't have any valid value. */
2996 gcc_assert (precision
<= WIDE_INT_MAX_PRECISION
);
2998 TYPE_MIN_VALUE (type
)
2999 = wide_int_to_tree (type
, wi::min_value (precision
, sgn
));
3000 TYPE_MAX_VALUE (type
)
3001 = wide_int_to_tree (type
, wi::max_value (precision
, sgn
));
3004 /* Set the extreme values of TYPE based on its precision in bits,
3005 then lay it out. Used when make_signed_type won't do
3006 because the tree code is not INTEGER_TYPE. */
3009 fixup_signed_type (tree type
)
3011 int precision
= TYPE_PRECISION (type
);
3013 set_min_and_max_values_for_integral_type (type
, precision
, SIGNED
);
3015 /* Lay out the type: set its alignment, size, etc. */
3019 /* Set the extreme values of TYPE based on its precision in bits,
3020 then lay it out. This is used both in `make_unsigned_type'
3021 and for enumeral types. */
3024 fixup_unsigned_type (tree type
)
3026 int precision
= TYPE_PRECISION (type
);
3028 TYPE_UNSIGNED (type
) = 1;
3030 set_min_and_max_values_for_integral_type (type
, precision
, UNSIGNED
);
3032 /* Lay out the type: set its alignment, size, etc. */
3036 /* Construct an iterator for a bitfield that spans BITSIZE bits,
3039 BITREGION_START is the bit position of the first bit in this
3040 sequence of bit fields. BITREGION_END is the last bit in this
3041 sequence. If these two fields are non-zero, we should restrict the
3042 memory access to that range. Otherwise, we are allowed to touch
3043 any adjacent non bit-fields.
3045 ALIGN is the alignment of the underlying object in bits.
3046 VOLATILEP says whether the bitfield is volatile. */
3048 bit_field_mode_iterator
3049 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
3050 poly_int64 bitregion_start
,
3051 poly_int64 bitregion_end
,
3052 unsigned int align
, bool volatilep
)
3053 : m_mode (NARROWEST_INT_MODE
), m_bitsize (bitsize
),
3054 m_bitpos (bitpos
), m_bitregion_start (bitregion_start
),
3055 m_bitregion_end (bitregion_end
), m_align (align
),
3056 m_volatilep (volatilep
), m_count (0)
3058 if (known_eq (m_bitregion_end
, 0))
3060 /* We can assume that any aligned chunk of ALIGN bits that overlaps
3061 the bitfield is mapped and won't trap, provided that ALIGN isn't
3062 too large. The cap is the biggest required alignment for data,
3063 or at least the word size. And force one such chunk at least. */
3064 unsigned HOST_WIDE_INT units
3065 = MIN (align
, MAX (BIGGEST_ALIGNMENT
, BITS_PER_WORD
));
3068 HOST_WIDE_INT end
= bitpos
+ bitsize
+ units
- 1;
3069 m_bitregion_end
= end
- end
% units
- 1;
3073 /* Calls to this function return successively larger modes that can be used
3074 to represent the bitfield. Return true if another bitfield mode is
3075 available, storing it in *OUT_MODE if so. */
3078 bit_field_mode_iterator::next_mode (scalar_int_mode
*out_mode
)
3080 scalar_int_mode mode
;
3081 for (; m_mode
.exists (&mode
); m_mode
= GET_MODE_WIDER_MODE (mode
))
3083 unsigned int unit
= GET_MODE_BITSIZE (mode
);
3085 /* Skip modes that don't have full precision. */
3086 if (unit
!= GET_MODE_PRECISION (mode
))
3089 /* Stop if the mode is too wide to handle efficiently. */
3090 if (unit
> MAX_FIXED_MODE_SIZE
)
3093 /* Don't deliver more than one multiword mode; the smallest one
3095 if (m_count
> 0 && unit
> BITS_PER_WORD
)
3098 /* Skip modes that are too small. */
3099 unsigned HOST_WIDE_INT substart
= (unsigned HOST_WIDE_INT
) m_bitpos
% unit
;
3100 unsigned HOST_WIDE_INT subend
= substart
+ m_bitsize
;
3104 /* Stop if the mode goes outside the bitregion. */
3105 HOST_WIDE_INT start
= m_bitpos
- substart
;
3106 if (maybe_ne (m_bitregion_start
, 0)
3107 && maybe_lt (start
, m_bitregion_start
))
3109 HOST_WIDE_INT end
= start
+ unit
;
3110 if (maybe_gt (end
, m_bitregion_end
+ 1))
3113 /* Stop if the mode requires too much alignment. */
3114 if (GET_MODE_ALIGNMENT (mode
) > m_align
3115 && targetm
.slow_unaligned_access (mode
, m_align
))
3119 m_mode
= GET_MODE_WIDER_MODE (mode
);
3126 /* Return true if smaller modes are generally preferred for this kind
3130 bit_field_mode_iterator::prefer_smaller_modes ()
3133 ? targetm
.narrow_volatile_bitfield ()
3134 : !SLOW_BYTE_ACCESS
);
3137 /* Find the best machine mode to use when referencing a bit field of length
3138 BITSIZE bits starting at BITPOS.
3140 BITREGION_START is the bit position of the first bit in this
3141 sequence of bit fields. BITREGION_END is the last bit in this
3142 sequence. If these two fields are non-zero, we should restrict the
3143 memory access to that range. Otherwise, we are allowed to touch
3144 any adjacent non bit-fields.
3146 The chosen mode must have no more than LARGEST_MODE_BITSIZE bits.
3147 INT_MAX is a suitable value for LARGEST_MODE_BITSIZE if the caller
3148 doesn't want to apply a specific limit.
3150 If no mode meets all these conditions, we return VOIDmode.
3152 The underlying object is known to be aligned to a boundary of ALIGN bits.
3154 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
3155 smallest mode meeting these conditions.
3157 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
3158 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
3161 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
3162 decide which of the above modes should be used. */
3165 get_best_mode (int bitsize
, int bitpos
,
3166 poly_uint64 bitregion_start
, poly_uint64 bitregion_end
,
3168 unsigned HOST_WIDE_INT largest_mode_bitsize
, bool volatilep
,
3169 scalar_int_mode
*best_mode
)
3171 bit_field_mode_iterator
iter (bitsize
, bitpos
, bitregion_start
,
3172 bitregion_end
, align
, volatilep
);
3173 scalar_int_mode mode
;
3175 while (iter
.next_mode (&mode
)
3176 /* ??? For historical reasons, reject modes that would normally
3177 receive greater alignment, even if unaligned accesses are
3178 acceptable. This has both advantages and disadvantages.
3179 Removing this check means that something like:
3181 struct s { unsigned int x; unsigned int y; };
3182 int f (struct s *s) { return s->x == 0 && s->y == 0; }
3184 can be implemented using a single load and compare on
3185 64-bit machines that have no alignment restrictions.
3186 For example, on powerpc64-linux-gnu, we would generate:
3208 However, accessing more than one field can make life harder
3209 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
3210 has a series of unsigned short copies followed by a series of
3211 unsigned short comparisons. With this check, both the copies
3212 and comparisons remain 16-bit accesses and FRE is able
3213 to eliminate the latter. Without the check, the comparisons
3214 can be done using 2 64-bit operations, which FRE isn't able
3215 to handle in the same way.
3217 Either way, it would probably be worth disabling this check
3218 during expand. One particular example where removing the
3219 check would help is the get_best_mode call in store_bit_field.
3220 If we are given a memory bitregion of 128 bits that is aligned
3221 to a 64-bit boundary, and the bitfield we want to modify is
3222 in the second half of the bitregion, this check causes
3223 store_bitfield to turn the memory into a 64-bit reference
3224 to the _first_ half of the region. We later use
3225 adjust_bitfield_address to get a reference to the correct half,
3226 but doing so looks to adjust_bitfield_address as though we are
3227 moving past the end of the original object, so it drops the
3228 associated MEM_EXPR and MEM_OFFSET. Removing the check
3229 causes store_bit_field to keep a 128-bit memory reference,
3230 so that the final bitfield reference still has a MEM_EXPR
3232 && GET_MODE_ALIGNMENT (mode
) <= align
3233 && GET_MODE_BITSIZE (mode
) <= largest_mode_bitsize
)
3237 if (iter
.prefer_smaller_modes ())
3244 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
3245 SIGN). The returned constants are made to be usable in TARGET_MODE. */
3248 get_mode_bounds (scalar_int_mode mode
, int sign
,
3249 scalar_int_mode target_mode
,
3250 rtx
*mmin
, rtx
*mmax
)
3252 unsigned size
= GET_MODE_PRECISION (mode
);
3253 unsigned HOST_WIDE_INT min_val
, max_val
;
3255 gcc_assert (size
<= HOST_BITS_PER_WIDE_INT
);
3257 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
3260 if (STORE_FLAG_VALUE
< 0)
3262 min_val
= STORE_FLAG_VALUE
;
3268 max_val
= STORE_FLAG_VALUE
;
3273 min_val
= -(HOST_WIDE_INT_1U
<< (size
- 1));
3274 max_val
= (HOST_WIDE_INT_1U
<< (size
- 1)) - 1;
3279 max_val
= (HOST_WIDE_INT_1U
<< (size
- 1) << 1) - 1;
3282 *mmin
= gen_int_mode (min_val
, target_mode
);
3283 *mmax
= gen_int_mode (max_val
, target_mode
);
3286 #include "gt-stor-layout.h"