1 /* Scalar evolution detector.
2 Copyright (C) 2003-2024 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <s.pop@laposte.net>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
24 This pass analyzes the evolution of scalar variables in loop
25 structures. The algorithm is based on the SSA representation,
26 and on the loop hierarchy tree. This algorithm is not based on
27 the notion of versions of a variable, as it was the case for the
28 previous implementations of the scalar evolution algorithm, but
29 it assumes that each defined name is unique.
31 The notation used in this file is called "chains of recurrences",
32 and has been proposed by Eugene Zima, Robert Van Engelen, and
33 others for describing induction variables in programs. For example
34 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
35 when entering in the loop_1 and has a step 2 in this loop, in other
36 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
37 this chain of recurrence (or chrec [shrek]) can contain the name of
38 other variables, in which case they are called parametric chrecs.
39 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
40 is the value of "a". In most of the cases these parametric chrecs
41 are fully instantiated before their use because symbolic names can
42 hide some difficult cases such as self-references described later
43 (see the Fibonacci example).
45 A short sketch of the algorithm is:
47 Given a scalar variable to be analyzed, follow the SSA edge to
50 - When the definition is a GIMPLE_ASSIGN: if the right hand side
51 (RHS) of the definition cannot be statically analyzed, the answer
52 of the analyzer is: "don't know".
53 Otherwise, for all the variables that are not yet analyzed in the
54 RHS, try to determine their evolution, and finally try to
55 evaluate the operation of the RHS that gives the evolution
56 function of the analyzed variable.
58 - When the definition is a condition-phi-node: determine the
59 evolution function for all the branches of the phi node, and
60 finally merge these evolutions (see chrec_merge).
62 - When the definition is a loop-phi-node: determine its initial
63 condition, that is the SSA edge defined in an outer loop, and
64 keep it symbolic. Then determine the SSA edges that are defined
65 in the body of the loop. Follow the inner edges until ending on
66 another loop-phi-node of the same analyzed loop. If the reached
67 loop-phi-node is not the starting loop-phi-node, then we keep
68 this definition under a symbolic form. If the reached
69 loop-phi-node is the same as the starting one, then we compute a
70 symbolic stride on the return path. The result is then the
71 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
75 Example 1: Illustration of the basic algorithm.
81 | if (c > 10) exit_loop
84 Suppose that we want to know the number of iterations of the
85 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
86 ask the scalar evolution analyzer two questions: what's the
87 scalar evolution (scev) of "c", and what's the scev of "10". For
88 "10" the answer is "10" since it is a scalar constant. For the
89 scalar variable "c", it follows the SSA edge to its definition,
90 "c = b + 1", and then asks again what's the scev of "b".
91 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
92 c)", where the initial condition is "a", and the inner loop edge
93 is "c". The initial condition is kept under a symbolic form (it
94 may be the case that the copy constant propagation has done its
95 work and we end with the constant "3" as one of the edges of the
96 loop-phi-node). The update edge is followed to the end of the
97 loop, and until reaching again the starting loop-phi-node: b -> c
98 -> b. At this point we have drawn a path from "b" to "b" from
99 which we compute the stride in the loop: in this example it is
100 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
101 that the scev for "b" is known, it is possible to compute the
102 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
103 determine the number of iterations in the loop_1, we have to
104 instantiate_parameters (loop_1, {a + 1, +, 1}_1), that gives after some
105 more analysis the scev {4, +, 1}_1, or in other words, this is
106 the function "f (x) = x + 4", where x is the iteration count of
107 the loop_1. Now we have to solve the inequality "x + 4 > 10",
108 and take the smallest iteration number for which the loop is
109 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
110 there are 8 iterations. In terms of loop normalization, we have
111 created a variable that is implicitly defined, "x" or just "_1",
112 and all the other analyzed scalars of the loop are defined in
113 function of this variable:
119 or in terms of a C program:
122 | for (x = 0; x <= 7; x++)
128 Example 2a: Illustration of the algorithm on nested loops.
139 For analyzing the scalar evolution of "a", the algorithm follows
140 the SSA edge into the loop's body: "a -> b". "b" is an inner
141 loop-phi-node, and its analysis as in Example 1, gives:
146 Following the SSA edge for the initial condition, we end on "c = a
147 + 2", and then on the starting loop-phi-node "a". From this point,
148 the loop stride is computed: back on "c = a + 2" we get a "+2" in
149 the loop_1, then on the loop-phi-node "b" we compute the overall
150 effect of the inner loop that is "b = c + 30", and we get a "+30"
151 in the loop_1. That means that the overall stride in loop_1 is
152 equal to "+32", and the result is:
157 Example 2b: Multivariate chains of recurrences.
170 Analyzing the access function of array A with
171 instantiate_parameters (loop_1, "j + k"), we obtain the
172 instantiation and the analysis of the scalar variables "j" and "k"
173 in loop_1. This leads to the scalar evolution {4, +, 1}_1: the end
174 value of loop_2 for "j" is 4, and the evolution of "k" in loop_1 is
175 {0, +, 1}_1. To obtain the evolution function in loop_3 and
176 instantiate the scalar variables up to loop_1, one has to use:
177 instantiate_scev (block_before_loop (loop_1), loop_3, "j + k").
178 The result of this call is {{0, +, 1}_1, +, 1}_2.
180 Example 3: Higher degree polynomials.
194 instantiate_parameters (loop_1, {5, +, a}_1) -> {5, +, 2, +, 1}_1
195 instantiate_parameters (loop_1, {5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
197 Example 4: Lucas, Fibonacci, or mixers in general.
209 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
210 following semantics: during the first iteration of the loop_1, the
211 variable contains the value 1, and then it contains the value "c".
212 Note that this syntax is close to the syntax of the loop-phi-node:
213 "a -> (1, c)_1" vs. "a = phi (1, c)".
215 The symbolic chrec representation contains all the semantics of the
216 original code. What is more difficult is to use this information.
218 Example 5: Flip-flops, or exchangers.
230 Based on these symbolic chrecs, it is possible to refine this
231 information into the more precise PERIODIC_CHRECs:
236 This transformation is not yet implemented.
240 You can find a more detailed description of the algorithm in:
241 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
242 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
243 this is a preliminary report and some of the details of the
244 algorithm have changed. I'm working on a research report that
245 updates the description of the algorithms to reflect the design
246 choices used in this implementation.
248 A set of slides show a high level overview of the algorithm and run
249 an example through the scalar evolution analyzer:
250 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
252 The slides that I have presented at the GCC Summit'04 are available
253 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
258 #include "coretypes.h"
262 #include "optabs-query.h"
266 #include "gimple-pretty-print.h"
267 #include "fold-const.h"
268 #include "gimplify.h"
269 #include "gimple-iterator.h"
270 #include "gimplify-me.h"
271 #include "tree-cfg.h"
272 #include "tree-ssa-loop-ivopts.h"
273 #include "tree-ssa-loop-manip.h"
274 #include "tree-ssa-loop-niter.h"
275 #include "tree-ssa-loop.h"
276 #include "tree-ssa.h"
278 #include "tree-chrec.h"
279 #include "tree-affine.h"
280 #include "tree-scalar-evolution.h"
281 #include "dumpfile.h"
282 #include "tree-ssa-propagate.h"
283 #include "gimple-fold.h"
284 #include "tree-into-ssa.h"
285 #include "builtins.h"
286 #include "case-cfn-macros.h"
288 static tree
analyze_scalar_evolution_1 (class loop
*, tree
);
289 static tree
analyze_scalar_evolution_for_address_of (class loop
*loop
,
292 /* The cached information about an SSA name with version NAME_VERSION,
293 claiming that below basic block with index INSTANTIATED_BELOW, the
294 value of the SSA name can be expressed as CHREC. */
296 struct GTY((for_user
)) scev_info_str
{
297 unsigned int name_version
;
298 int instantiated_below
;
302 /* Counters for the scev database. */
303 static unsigned nb_set_scev
= 0;
304 static unsigned nb_get_scev
= 0;
306 struct scev_info_hasher
: ggc_ptr_hash
<scev_info_str
>
308 static hashval_t
hash (scev_info_str
*i
);
309 static bool equal (const scev_info_str
*a
, const scev_info_str
*b
);
312 static GTY (()) hash_table
<scev_info_hasher
> *scalar_evolution_info
;
315 /* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
317 static inline struct scev_info_str
*
318 new_scev_info_str (basic_block instantiated_below
, tree var
)
320 struct scev_info_str
*res
;
322 res
= ggc_alloc
<scev_info_str
> ();
323 res
->name_version
= SSA_NAME_VERSION (var
);
324 res
->chrec
= chrec_not_analyzed_yet
;
325 res
->instantiated_below
= instantiated_below
->index
;
330 /* Computes a hash function for database element ELT. */
333 scev_info_hasher::hash (scev_info_str
*elt
)
335 return elt
->name_version
^ elt
->instantiated_below
;
338 /* Compares database elements E1 and E2. */
341 scev_info_hasher::equal (const scev_info_str
*elt1
, const scev_info_str
*elt2
)
343 return (elt1
->name_version
== elt2
->name_version
344 && elt1
->instantiated_below
== elt2
->instantiated_below
);
347 /* Get the scalar evolution of VAR for INSTANTIATED_BELOW basic block.
348 A first query on VAR returns chrec_not_analyzed_yet. */
351 find_var_scev_info (basic_block instantiated_below
, tree var
)
353 struct scev_info_str
*res
;
354 struct scev_info_str tmp
;
356 tmp
.name_version
= SSA_NAME_VERSION (var
);
357 tmp
.instantiated_below
= instantiated_below
->index
;
358 scev_info_str
**slot
= scalar_evolution_info
->find_slot (&tmp
, INSERT
);
361 *slot
= new_scev_info_str (instantiated_below
, var
);
368 /* Hashtable helpers for a temporary hash-table used when
369 analyzing a scalar evolution, instantiating a CHREC or
372 class instantiate_cache_type
376 vec
<scev_info_str
> entries
;
378 instantiate_cache_type () : map (NULL
), entries (vNULL
) {}
379 ~instantiate_cache_type ();
380 tree
get (unsigned slot
) { return entries
[slot
].chrec
; }
381 void set (unsigned slot
, tree chrec
) { entries
[slot
].chrec
= chrec
; }
384 instantiate_cache_type::~instantiate_cache_type ()
393 /* Cache to avoid infinite recursion when instantiating an SSA name.
394 Live during the outermost analyze_scalar_evolution, instantiate_scev
395 or resolve_mixers call. */
396 static instantiate_cache_type
*global_cache
;
399 /* Return true when PHI is a loop-phi-node. */
402 loop_phi_node_p (gimple
*phi
)
404 /* The implementation of this function is based on the following
405 property: "all the loop-phi-nodes of a loop are contained in the
406 loop's header basic block". */
408 return loop_containing_stmt (phi
)->header
== gimple_bb (phi
);
411 /* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
412 In general, in the case of multivariate evolutions we want to get
413 the evolution in different loops. LOOP specifies the level for
414 which to get the evolution.
418 | for (j = 0; j < 100; j++)
420 | for (k = 0; k < 100; k++)
422 | i = k + j; - Here the value of i is a function of j, k.
424 | ... = i - Here the value of i is a function of j.
426 | ... = i - Here the value of i is a scalar.
432 | i_1 = phi (i_0, i_2)
436 This loop has the same effect as:
437 LOOP_1 has the same effect as:
441 The overall effect of the loop, "i_0 + 20" in the previous example,
442 is obtained by passing in the parameters: LOOP = 1,
443 EVOLUTION_FN = {i_0, +, 2}_1.
447 compute_overall_effect_of_inner_loop (class loop
*loop
, tree evolution_fn
)
451 if (evolution_fn
== chrec_dont_know
)
452 return chrec_dont_know
;
454 else if (TREE_CODE (evolution_fn
) == POLYNOMIAL_CHREC
)
456 class loop
*inner_loop
= get_chrec_loop (evolution_fn
);
458 if (inner_loop
== loop
459 || flow_loop_nested_p (loop
, inner_loop
))
461 tree nb_iter
= number_of_latch_executions (inner_loop
);
463 if (nb_iter
== chrec_dont_know
)
464 return chrec_dont_know
;
469 /* evolution_fn is the evolution function in LOOP. Get
470 its value in the nb_iter-th iteration. */
471 res
= chrec_apply (inner_loop
->num
, evolution_fn
, nb_iter
);
473 if (chrec_contains_symbols_defined_in_loop (res
, loop
->num
))
474 res
= instantiate_parameters (loop
, res
);
476 /* Continue the computation until ending on a parent of LOOP. */
477 return compute_overall_effect_of_inner_loop (loop
, res
);
484 /* If the evolution function is an invariant, there is nothing to do. */
485 else if (no_evolution_in_loop_p (evolution_fn
, loop
->num
, &val
) && val
)
489 return chrec_dont_know
;
492 /* Associate CHREC to SCALAR. */
495 set_scalar_evolution (basic_block instantiated_below
, tree scalar
, tree chrec
)
499 if (TREE_CODE (scalar
) != SSA_NAME
)
502 scalar_info
= find_var_scev_info (instantiated_below
, scalar
);
506 if (dump_flags
& TDF_SCEV
)
508 fprintf (dump_file
, "(set_scalar_evolution \n");
509 fprintf (dump_file
, " instantiated_below = %d \n",
510 instantiated_below
->index
);
511 fprintf (dump_file
, " (scalar = ");
512 print_generic_expr (dump_file
, scalar
);
513 fprintf (dump_file
, ")\n (scalar_evolution = ");
514 print_generic_expr (dump_file
, chrec
);
515 fprintf (dump_file
, "))\n");
517 if (dump_flags
& TDF_STATS
)
521 *scalar_info
= chrec
;
524 /* Retrieve the chrec associated to SCALAR instantiated below
525 INSTANTIATED_BELOW block. */
528 get_scalar_evolution (basic_block instantiated_below
, tree scalar
)
534 if (dump_flags
& TDF_SCEV
)
536 fprintf (dump_file
, "(get_scalar_evolution \n");
537 fprintf (dump_file
, " (scalar = ");
538 print_generic_expr (dump_file
, scalar
);
539 fprintf (dump_file
, ")\n");
541 if (dump_flags
& TDF_STATS
)
545 if (VECTOR_TYPE_P (TREE_TYPE (scalar
))
546 || TREE_CODE (TREE_TYPE (scalar
)) == COMPLEX_TYPE
)
547 /* For chrec_dont_know we keep the symbolic form. */
550 switch (TREE_CODE (scalar
))
553 if (SSA_NAME_IS_DEFAULT_DEF (scalar
))
556 res
= *find_var_scev_info (instantiated_below
, scalar
);
566 res
= chrec_not_analyzed_yet
;
570 if (dump_file
&& (dump_flags
& TDF_SCEV
))
572 fprintf (dump_file
, " (scalar_evolution = ");
573 print_generic_expr (dump_file
, res
);
574 fprintf (dump_file
, "))\n");
581 /* Depth first search algorithm. */
592 scev_dfs (class loop
*loop_
, gphi
*phi_
, tree init_cond_
)
593 : loop (loop_
), loop_phi_node (phi_
), init_cond (init_cond_
) {}
594 t_bool
get_ev (tree
*, tree
);
597 t_bool
follow_ssa_edge_expr (gimple
*, tree
, tree
*, int);
598 t_bool
follow_ssa_edge_binary (gimple
*at_stmt
,
599 tree type
, tree rhs0
, enum tree_code code
,
600 tree rhs1
, tree
*evolution_of_loop
, int limit
);
601 t_bool
follow_ssa_edge_in_condition_phi_branch (int i
,
603 tree
*evolution_of_branch
,
604 tree init_cond
, int limit
);
605 t_bool
follow_ssa_edge_in_condition_phi (gphi
*condition_phi
,
606 tree
*evolution_of_loop
, int limit
);
607 t_bool
follow_ssa_edge_inner_loop_phi (gphi
*loop_phi_node
,
608 tree
*evolution_of_loop
, int limit
);
609 tree
add_to_evolution (tree chrec_before
, enum tree_code code
,
610 tree to_add
, gimple
*at_stmt
);
611 tree
add_to_evolution_1 (tree chrec_before
, tree to_add
, gimple
*at_stmt
);
619 scev_dfs::get_ev (tree
*ev_fn
, tree arg
)
621 *ev_fn
= chrec_dont_know
;
622 return follow_ssa_edge_expr (loop_phi_node
, arg
, ev_fn
, 0);
625 /* Helper function for add_to_evolution. Returns the evolution
626 function for an assignment of the form "a = b + c", where "a" and
627 "b" are on the strongly connected component. CHREC_BEFORE is the
628 information that we already have collected up to this point.
629 TO_ADD is the evolution of "c".
631 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
632 evolution the expression TO_ADD, otherwise construct an evolution
633 part for this loop. */
636 scev_dfs::add_to_evolution_1 (tree chrec_before
, tree to_add
, gimple
*at_stmt
)
638 tree type
, left
, right
;
639 unsigned loop_nb
= loop
->num
;
642 switch (TREE_CODE (chrec_before
))
644 case POLYNOMIAL_CHREC
:
645 chloop
= get_chrec_loop (chrec_before
);
647 || flow_loop_nested_p (chloop
, loop
))
651 type
= chrec_type (chrec_before
);
653 /* When there is no evolution part in this loop, build it. */
658 right
= SCALAR_FLOAT_TYPE_P (type
)
659 ? build_real (type
, dconst0
)
660 : build_int_cst (type
, 0);
664 var
= CHREC_VARIABLE (chrec_before
);
665 left
= CHREC_LEFT (chrec_before
);
666 right
= CHREC_RIGHT (chrec_before
);
669 to_add
= chrec_convert (type
, to_add
, at_stmt
);
670 right
= chrec_convert_rhs (type
, right
, at_stmt
);
671 right
= chrec_fold_plus (chrec_type (right
), right
, to_add
);
672 return build_polynomial_chrec (var
, left
, right
);
676 gcc_assert (flow_loop_nested_p (loop
, chloop
));
678 /* Search the evolution in LOOP_NB. */
679 left
= add_to_evolution_1 (CHREC_LEFT (chrec_before
),
681 right
= CHREC_RIGHT (chrec_before
);
682 right
= chrec_convert_rhs (chrec_type (left
), right
, at_stmt
);
683 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before
),
688 /* These nodes do not depend on a loop. */
689 if (chrec_before
== chrec_dont_know
)
690 return chrec_dont_know
;
693 right
= chrec_convert_rhs (chrec_type (left
), to_add
, at_stmt
);
694 /* When we add the first evolution we need to replace the symbolic
695 evolution we've put in when the DFS reached the loop PHI node
696 with the initial value. There's only a limited cases of
697 extra operations ontop of that symbol allowed, namely
698 sign-conversions we can look through. For other cases we leave
699 the symbolic initial condition which causes build_polynomial_chrec
700 to return chrec_dont_know. See PR42512, PR66375 and PR107176 for
701 cases we mishandled before. */
702 STRIP_NOPS (chrec_before
);
703 if (chrec_before
== gimple_phi_result (loop_phi_node
))
704 left
= fold_convert (TREE_TYPE (left
), init_cond
);
705 return build_polynomial_chrec (loop_nb
, left
, right
);
709 /* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
712 Description (provided for completeness, for those who read code in
713 a plane, and for my poor 62 bytes brain that would have forgotten
714 all this in the next two or three months):
716 The algorithm of translation of programs from the SSA representation
717 into the chrecs syntax is based on a pattern matching. After having
718 reconstructed the overall tree expression for a loop, there are only
719 two cases that can arise:
721 1. a = loop-phi (init, a + expr)
722 2. a = loop-phi (init, expr)
724 where EXPR is either a scalar constant with respect to the analyzed
725 loop (this is a degree 0 polynomial), or an expression containing
726 other loop-phi definitions (these are higher degree polynomials).
733 | a = phi (init, a + 5)
740 | a = phi (inita, 2 * b + 3)
741 | b = phi (initb, b + 1)
744 For the first case, the semantics of the SSA representation is:
746 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
748 that is, there is a loop index "x" that determines the scalar value
749 of the variable during the loop execution. During the first
750 iteration, the value is that of the initial condition INIT, while
751 during the subsequent iterations, it is the sum of the initial
752 condition with the sum of all the values of EXPR from the initial
753 iteration to the before last considered iteration.
755 For the second case, the semantics of the SSA program is:
757 | a (x) = init, if x = 0;
758 | expr (x - 1), otherwise.
760 The second case corresponds to the PEELED_CHREC, whose syntax is
761 close to the syntax of a loop-phi-node:
763 | phi (init, expr) vs. (init, expr)_x
765 The proof of the translation algorithm for the first case is a
766 proof by structural induction based on the degree of EXPR.
769 When EXPR is a constant with respect to the analyzed loop, or in
770 other words when EXPR is a polynomial of degree 0, the evolution of
771 the variable A in the loop is an affine function with an initial
772 condition INIT, and a step EXPR. In order to show this, we start
773 from the semantics of the SSA representation:
775 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
777 and since "expr (j)" is a constant with respect to "j",
779 f (x) = init + x * expr
781 Finally, based on the semantics of the pure sum chrecs, by
782 identification we get the corresponding chrecs syntax:
784 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
785 f (x) -> {init, +, expr}_x
788 Suppose that EXPR is a polynomial of degree N with respect to the
789 analyzed loop_x for which we have already determined that it is
790 written under the chrecs syntax:
792 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
794 We start from the semantics of the SSA program:
796 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
798 | f (x) = init + \sum_{j = 0}^{x - 1}
799 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
801 | f (x) = init + \sum_{j = 0}^{x - 1}
802 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
804 | f (x) = init + \sum_{k = 0}^{n - 1}
805 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
807 | f (x) = init + \sum_{k = 0}^{n - 1}
808 | (b_k * \binom{x}{k + 1})
810 | f (x) = init + b_0 * \binom{x}{1} + ...
811 | + b_{n-1} * \binom{x}{n}
813 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
814 | + b_{n-1} * \binom{x}{n}
817 And finally from the definition of the chrecs syntax, we identify:
818 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
820 This shows the mechanism that stands behind the add_to_evolution
821 function. An important point is that the use of symbolic
822 parameters avoids the need of an analysis schedule.
829 | a = phi (inita, a + 2 + b)
830 | b = phi (initb, b + 1)
833 When analyzing "a", the algorithm keeps "b" symbolically:
835 | a -> {inita, +, 2 + b}_1
837 Then, after instantiation, the analyzer ends on the evolution:
839 | a -> {inita, +, 2 + initb, +, 1}_1
844 scev_dfs::add_to_evolution (tree chrec_before
, enum tree_code code
,
845 tree to_add
, gimple
*at_stmt
)
847 tree type
= chrec_type (to_add
);
848 tree res
= NULL_TREE
;
850 if (to_add
== NULL_TREE
)
853 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
854 instantiated at this point. */
855 if (TREE_CODE (to_add
) == POLYNOMIAL_CHREC
)
856 /* This should not happen. */
857 return chrec_dont_know
;
859 if (dump_file
&& (dump_flags
& TDF_SCEV
))
861 fprintf (dump_file
, "(add_to_evolution \n");
862 fprintf (dump_file
, " (loop_nb = %d)\n", loop
->num
);
863 fprintf (dump_file
, " (chrec_before = ");
864 print_generic_expr (dump_file
, chrec_before
);
865 fprintf (dump_file
, ")\n (to_add = ");
866 print_generic_expr (dump_file
, to_add
);
867 fprintf (dump_file
, ")\n");
870 if (code
== MINUS_EXPR
)
871 to_add
= chrec_fold_multiply (type
, to_add
, SCALAR_FLOAT_TYPE_P (type
)
872 ? build_real (type
, dconstm1
)
873 : build_int_cst_type (type
, -1));
875 res
= add_to_evolution_1 (chrec_before
, to_add
, at_stmt
);
877 if (dump_file
&& (dump_flags
& TDF_SCEV
))
879 fprintf (dump_file
, " (res = ");
880 print_generic_expr (dump_file
, res
);
881 fprintf (dump_file
, "))\n");
888 /* Follow the ssa edge into the binary expression RHS0 CODE RHS1.
889 Return true if the strongly connected component has been found. */
892 scev_dfs::follow_ssa_edge_binary (gimple
*at_stmt
, tree type
, tree rhs0
,
893 enum tree_code code
, tree rhs1
,
894 tree
*evolution_of_loop
, int limit
)
896 t_bool res
= t_false
;
901 case POINTER_PLUS_EXPR
:
903 if (TREE_CODE (rhs0
) == SSA_NAME
)
905 if (TREE_CODE (rhs1
) == SSA_NAME
)
907 /* Match an assignment under the form:
910 /* We want only assignments of form "name + name" contribute to
911 LIMIT, as the other cases do not necessarily contribute to
912 the complexity of the expression. */
915 evol
= *evolution_of_loop
;
916 res
= follow_ssa_edge_expr (at_stmt
, rhs0
, &evol
, limit
);
918 *evolution_of_loop
= add_to_evolution
919 (chrec_convert (type
, evol
, at_stmt
), code
, rhs1
, at_stmt
);
920 else if (res
== t_false
)
922 res
= follow_ssa_edge_expr
923 (at_stmt
, rhs1
, evolution_of_loop
, limit
);
925 *evolution_of_loop
= add_to_evolution
926 (chrec_convert (type
, *evolution_of_loop
, at_stmt
),
927 code
, rhs0
, at_stmt
);
932 gcc_unreachable (); /* Handled in caller. */
935 else if (TREE_CODE (rhs1
) == SSA_NAME
)
937 /* Match an assignment under the form:
939 res
= follow_ssa_edge_expr (at_stmt
, rhs1
, evolution_of_loop
, limit
);
941 *evolution_of_loop
= add_to_evolution
942 (chrec_convert (type
, *evolution_of_loop
, at_stmt
),
943 code
, rhs0
, at_stmt
);
947 /* Otherwise, match an assignment under the form:
949 /* And there is nothing to do. */
954 /* This case is under the form "opnd0 = rhs0 - rhs1". */
955 if (TREE_CODE (rhs0
) == SSA_NAME
)
956 gcc_unreachable (); /* Handled in caller. */
958 /* Otherwise, match an assignment under the form:
960 /* And there is nothing to do. */
971 /* Checks whether the I-th argument of a PHI comes from a backedge. */
974 backedge_phi_arg_p (gphi
*phi
, int i
)
976 const_edge e
= gimple_phi_arg_edge (phi
, i
);
978 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
979 about updating it anywhere, and this should work as well most of the
981 if (e
->flags
& EDGE_IRREDUCIBLE_LOOP
)
987 /* Helper function for one branch of the condition-phi-node. Return
988 true if the strongly connected component has been found following
992 scev_dfs::follow_ssa_edge_in_condition_phi_branch (int i
,
994 tree
*evolution_of_branch
,
995 tree init_cond
, int limit
)
997 tree branch
= PHI_ARG_DEF (condition_phi
, i
);
998 *evolution_of_branch
= chrec_dont_know
;
1000 /* Do not follow back edges (they must belong to an irreducible loop, which
1001 we really do not want to worry about). */
1002 if (backedge_phi_arg_p (condition_phi
, i
))
1005 if (TREE_CODE (branch
) == SSA_NAME
)
1007 *evolution_of_branch
= init_cond
;
1008 return follow_ssa_edge_expr (condition_phi
, branch
,
1009 evolution_of_branch
, limit
);
1012 /* This case occurs when one of the condition branches sets
1013 the variable to a constant: i.e. a phi-node like
1014 "a_2 = PHI <a_7(5), 2(6)>;".
1016 FIXME: This case have to be refined correctly:
1017 in some cases it is possible to say something better than
1018 chrec_dont_know, for example using a wrap-around notation. */
1022 /* This function merges the branches of a condition-phi-node in a
1026 scev_dfs::follow_ssa_edge_in_condition_phi (gphi
*condition_phi
,
1027 tree
*evolution_of_loop
, int limit
)
1030 tree init
= *evolution_of_loop
;
1031 tree evolution_of_branch
;
1032 t_bool res
= follow_ssa_edge_in_condition_phi_branch (0, condition_phi
,
1033 &evolution_of_branch
,
1035 if (res
== t_false
|| res
== t_dont_know
)
1038 *evolution_of_loop
= evolution_of_branch
;
1040 n
= gimple_phi_num_args (condition_phi
);
1041 for (i
= 1; i
< n
; i
++)
1043 /* Quickly give up when the evolution of one of the branches is
1045 if (*evolution_of_loop
== chrec_dont_know
)
1048 /* Increase the limit by the PHI argument number to avoid exponential
1049 time and memory complexity. */
1050 res
= follow_ssa_edge_in_condition_phi_branch (i
, condition_phi
,
1051 &evolution_of_branch
,
1053 if (res
== t_false
|| res
== t_dont_know
)
1056 *evolution_of_loop
= chrec_merge (*evolution_of_loop
,
1057 evolution_of_branch
);
1063 /* Follow an SSA edge in an inner loop. It computes the overall
1064 effect of the loop, and following the symbolic initial conditions,
1065 it follows the edges in the parent loop. The inner loop is
1066 considered as a single statement. */
1069 scev_dfs::follow_ssa_edge_inner_loop_phi (gphi
*loop_phi_node
,
1070 tree
*evolution_of_loop
, int limit
)
1072 class loop
*loop
= loop_containing_stmt (loop_phi_node
);
1073 tree ev
= analyze_scalar_evolution (loop
, PHI_RESULT (loop_phi_node
));
1075 /* Sometimes, the inner loop is too difficult to analyze, and the
1076 result of the analysis is a symbolic parameter. */
1077 if (ev
== PHI_RESULT (loop_phi_node
))
1079 t_bool res
= t_false
;
1080 int i
, n
= gimple_phi_num_args (loop_phi_node
);
1082 for (i
= 0; i
< n
; i
++)
1084 tree arg
= PHI_ARG_DEF (loop_phi_node
, i
);
1087 /* Follow the edges that exit the inner loop. */
1088 bb
= gimple_phi_arg_edge (loop_phi_node
, i
)->src
;
1089 if (!flow_bb_inside_loop_p (loop
, bb
))
1090 res
= follow_ssa_edge_expr (loop_phi_node
,
1091 arg
, evolution_of_loop
, limit
);
1096 /* If the path crosses this loop-phi, give up. */
1098 *evolution_of_loop
= chrec_dont_know
;
1103 /* Otherwise, compute the overall effect of the inner loop. */
1104 ev
= compute_overall_effect_of_inner_loop (loop
, ev
);
1105 return follow_ssa_edge_expr (loop_phi_node
, ev
, evolution_of_loop
, limit
);
1108 /* Follow the ssa edge into the expression EXPR.
1109 Return true if the strongly connected component has been found. */
1112 scev_dfs::follow_ssa_edge_expr (gimple
*at_stmt
, tree expr
,
1113 tree
*evolution_of_loop
, int limit
)
1115 gphi
*halting_phi
= loop_phi_node
;
1116 enum tree_code code
;
1117 tree type
, rhs0
, rhs1
= NULL_TREE
;
1119 /* The EXPR is one of the following cases:
1123 - a POINTER_PLUS_EXPR,
1125 - other cases are not yet handled. */
1127 /* For SSA_NAME look at the definition statement, handling
1128 PHI nodes and otherwise expand appropriately for the expression
1130 if (TREE_CODE (expr
) == SSA_NAME
)
1132 gimple
*def
= SSA_NAME_DEF_STMT (expr
);
1134 if (gimple_nop_p (def
))
1137 /* Give up if the path is longer than the MAX that we allow. */
1138 if (limit
> param_scev_max_expr_complexity
)
1140 *evolution_of_loop
= chrec_dont_know
;
1144 if (gphi
*phi
= dyn_cast
<gphi
*>(def
))
1146 if (!loop_phi_node_p (phi
))
1147 /* DEF is a condition-phi-node. Follow the branches, and
1148 record their evolutions. Finally, merge the collected
1149 information and set the approximation to the main
1151 return follow_ssa_edge_in_condition_phi (phi
, evolution_of_loop
,
1154 /* When the analyzed phi is the halting_phi, the
1155 depth-first search is over: we have found a path from
1156 the halting_phi to itself in the loop. */
1157 if (phi
== halting_phi
)
1159 *evolution_of_loop
= expr
;
1163 /* Otherwise, the evolution of the HALTING_PHI depends
1164 on the evolution of another loop-phi-node, i.e. the
1165 evolution function is a higher degree polynomial. */
1166 class loop
*def_loop
= loop_containing_stmt (def
);
1167 if (def_loop
== loop
)
1171 if (flow_loop_nested_p (loop
, def_loop
))
1172 return follow_ssa_edge_inner_loop_phi (phi
, evolution_of_loop
,
1179 /* At this level of abstraction, the program is just a set
1180 of GIMPLE_ASSIGNs and PHI_NODEs. In principle there is no
1181 other def to be handled. */
1182 if (!is_gimple_assign (def
))
1185 code
= gimple_assign_rhs_code (def
);
1186 switch (get_gimple_rhs_class (code
))
1188 case GIMPLE_BINARY_RHS
:
1189 rhs0
= gimple_assign_rhs1 (def
);
1190 rhs1
= gimple_assign_rhs2 (def
);
1192 case GIMPLE_UNARY_RHS
:
1193 case GIMPLE_SINGLE_RHS
:
1194 rhs0
= gimple_assign_rhs1 (def
);
1199 type
= TREE_TYPE (gimple_assign_lhs (def
));
1204 code
= TREE_CODE (expr
);
1205 type
= TREE_TYPE (expr
);
1206 /* Via follow_ssa_edge_inner_loop_phi we arrive here with the
1207 GENERIC scalar evolution of the inner loop. */
1211 rhs0
= TREE_OPERAND (expr
, 0);
1213 case POINTER_PLUS_EXPR
:
1216 rhs0
= TREE_OPERAND (expr
, 0);
1217 rhs1
= TREE_OPERAND (expr
, 1);
1218 STRIP_USELESS_TYPE_CONVERSION (rhs0
);
1219 STRIP_USELESS_TYPE_CONVERSION (rhs1
);
1230 /* This assignment is under the form "a_1 = (cast) rhs. We cannot
1231 validate any precision altering conversion during the SCC
1232 analysis, so don't even try. */
1233 if (!tree_nop_conversion_p (type
, TREE_TYPE (rhs0
)))
1235 t_bool res
= follow_ssa_edge_expr (at_stmt
, rhs0
,
1236 evolution_of_loop
, limit
);
1238 *evolution_of_loop
= chrec_convert (type
, *evolution_of_loop
,
1244 /* This assignment is under the form "a_1 = 7". */
1249 /* Handle &MEM[ptr + CST] which is equivalent to POINTER_PLUS_EXPR. */
1250 if (TREE_CODE (TREE_OPERAND (rhs0
, 0)) != MEM_REF
)
1252 tree mem
= TREE_OPERAND (rhs0
, 0);
1253 rhs0
= TREE_OPERAND (mem
, 0);
1254 rhs1
= TREE_OPERAND (mem
, 1);
1255 code
= POINTER_PLUS_EXPR
;
1258 case POINTER_PLUS_EXPR
:
1261 /* This case is under the form "rhs0 +- rhs1". */
1262 if (TREE_CODE (rhs0
) == SSA_NAME
1263 && (TREE_CODE (rhs1
) != SSA_NAME
|| code
== MINUS_EXPR
))
1265 /* Match an assignment under the form:
1267 t_bool res
= follow_ssa_edge_expr (at_stmt
, rhs0
,
1268 evolution_of_loop
, limit
);
1270 *evolution_of_loop
= add_to_evolution
1271 (chrec_convert (type
, *evolution_of_loop
, at_stmt
),
1272 code
, rhs1
, at_stmt
);
1275 /* Else search for the SCC in both rhs0 and rhs1. */
1276 return follow_ssa_edge_binary (at_stmt
, type
, rhs0
, code
, rhs1
,
1277 evolution_of_loop
, limit
);
1285 /* This section selects the loops that will be good candidates for the
1286 scalar evolution analysis. For the moment, greedily select all the
1287 loop nests we could analyze. */
1289 /* For a loop with a single exit edge, return the COND_EXPR that
1290 guards the exit edge. If the expression is too difficult to
1291 analyze, then give up. */
1294 get_loop_exit_condition (const class loop
*loop
)
1296 return get_loop_exit_condition (single_exit (loop
));
1299 /* If the statement just before the EXIT_EDGE contains a condition then
1300 return the condition, otherwise NULL. */
1303 get_loop_exit_condition (const_edge exit_edge
)
1307 if (dump_file
&& (dump_flags
& TDF_SCEV
))
1308 fprintf (dump_file
, "(get_loop_exit_condition \n ");
1311 res
= safe_dyn_cast
<gcond
*> (*gsi_last_bb (exit_edge
->src
));
1313 if (dump_file
&& (dump_flags
& TDF_SCEV
))
1315 print_gimple_stmt (dump_file
, res
, 0);
1316 fprintf (dump_file
, ")\n");
1323 /* Simplify PEELED_CHREC represented by (init_cond, arg) in LOOP.
1324 Handle below case and return the corresponding POLYNOMIAL_CHREC:
1326 # i_17 = PHI <i_13(5), 0(3)>
1327 # _20 = PHI <_5(5), start_4(D)(3)>
1330 _5 = start_4(D) + i_13;
1332 Though variable _20 appears as a PEELED_CHREC in the form of
1333 (start_4, _5)_LOOP, it's a POLYNOMIAL_CHREC like {start_4, 1}_LOOP.
1338 simplify_peeled_chrec (class loop
*loop
, tree arg
, tree init_cond
)
1340 aff_tree aff1
, aff2
;
1341 tree ev
, left
, right
, type
, step_val
;
1342 hash_map
<tree
, name_expansion
*> *peeled_chrec_map
= NULL
;
1344 ev
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, arg
));
1345 if (ev
== NULL_TREE
|| TREE_CODE (ev
) != POLYNOMIAL_CHREC
)
1346 return chrec_dont_know
;
1348 left
= CHREC_LEFT (ev
);
1349 right
= CHREC_RIGHT (ev
);
1350 type
= TREE_TYPE (left
);
1351 step_val
= chrec_fold_plus (type
, init_cond
, right
);
1353 /* Transform (init, {left, right}_LOOP)_LOOP to {init, right}_LOOP
1354 if "left" equals to "init + right". */
1355 if (operand_equal_p (left
, step_val
, 0))
1357 if (dump_file
&& (dump_flags
& TDF_SCEV
))
1358 fprintf (dump_file
, "Simplify PEELED_CHREC into POLYNOMIAL_CHREC.\n");
1360 return build_polynomial_chrec (loop
->num
, init_cond
, right
);
1363 /* The affine code only deals with pointer and integer types. */
1364 if (!POINTER_TYPE_P (type
)
1365 && !INTEGRAL_TYPE_P (type
))
1366 return chrec_dont_know
;
1368 /* Try harder to check if they are equal. */
1369 tree_to_aff_combination_expand (left
, type
, &aff1
, &peeled_chrec_map
);
1370 tree_to_aff_combination_expand (step_val
, type
, &aff2
, &peeled_chrec_map
);
1371 free_affine_expand_cache (&peeled_chrec_map
);
1372 aff_combination_scale (&aff2
, -1);
1373 aff_combination_add (&aff1
, &aff2
);
1375 /* Transform (init, {left, right}_LOOP)_LOOP to {init, right}_LOOP
1376 if "left" equals to "init + right". */
1377 if (aff_combination_zero_p (&aff1
))
1379 if (dump_file
&& (dump_flags
& TDF_SCEV
))
1380 fprintf (dump_file
, "Simplify PEELED_CHREC into POLYNOMIAL_CHREC.\n");
1382 return build_polynomial_chrec (loop
->num
, init_cond
, right
);
1384 return chrec_dont_know
;
1387 /* Given a LOOP_PHI_NODE, this function determines the evolution
1388 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1391 analyze_evolution_in_loop (gphi
*loop_phi_node
,
1394 int i
, n
= gimple_phi_num_args (loop_phi_node
);
1395 tree evolution_function
= chrec_not_analyzed_yet
;
1396 class loop
*loop
= loop_containing_stmt (loop_phi_node
);
1398 static bool simplify_peeled_chrec_p
= true;
1400 if (dump_file
&& (dump_flags
& TDF_SCEV
))
1402 fprintf (dump_file
, "(analyze_evolution_in_loop \n");
1403 fprintf (dump_file
, " (loop_phi_node = ");
1404 print_gimple_stmt (dump_file
, loop_phi_node
, 0);
1405 fprintf (dump_file
, ")\n");
1408 for (i
= 0; i
< n
; i
++)
1410 tree arg
= PHI_ARG_DEF (loop_phi_node
, i
);
1411 tree ev_fn
= chrec_dont_know
;
1414 /* Select the edges that enter the loop body. */
1415 bb
= gimple_phi_arg_edge (loop_phi_node
, i
)->src
;
1416 if (!flow_bb_inside_loop_p (loop
, bb
))
1419 if (TREE_CODE (arg
) == SSA_NAME
)
1423 /* Pass in the initial condition to the follow edge function. */
1424 scev_dfs
dfs (loop
, loop_phi_node
, init_cond
);
1425 res
= dfs
.get_ev (&ev_fn
, arg
);
1427 /* If ev_fn has no evolution in the inner loop, and the
1428 init_cond is not equal to ev_fn, then we have an
1429 ambiguity between two possible values, as we cannot know
1430 the number of iterations at this point. */
1431 if (TREE_CODE (ev_fn
) != POLYNOMIAL_CHREC
1432 && no_evolution_in_loop_p (ev_fn
, loop
->num
, &val
) && val
1433 && !operand_equal_p (init_cond
, ev_fn
, 0))
1434 ev_fn
= chrec_dont_know
;
1439 /* When it is impossible to go back on the same
1440 loop_phi_node by following the ssa edges, the
1441 evolution is represented by a peeled chrec, i.e. the
1442 first iteration, EV_FN has the value INIT_COND, then
1443 all the other iterations it has the value of ARG.
1444 For the moment, PEELED_CHREC nodes are not built. */
1447 ev_fn
= chrec_dont_know
;
1448 /* Try to recognize POLYNOMIAL_CHREC which appears in
1449 the form of PEELED_CHREC, but guard the process with
1450 a bool variable to keep the analyzer from infinite
1451 recurrence for real PEELED_RECs. */
1452 if (simplify_peeled_chrec_p
&& TREE_CODE (arg
) == SSA_NAME
)
1454 simplify_peeled_chrec_p
= false;
1455 ev_fn
= simplify_peeled_chrec (loop
, arg
, init_cond
);
1456 simplify_peeled_chrec_p
= true;
1460 /* When there are multiple back edges of the loop (which in fact never
1461 happens currently, but nevertheless), merge their evolutions. */
1462 evolution_function
= chrec_merge (evolution_function
, ev_fn
);
1464 if (evolution_function
== chrec_dont_know
)
1468 if (dump_file
&& (dump_flags
& TDF_SCEV
))
1470 fprintf (dump_file
, " (evolution_function = ");
1471 print_generic_expr (dump_file
, evolution_function
);
1472 fprintf (dump_file
, "))\n");
1475 return evolution_function
;
1478 /* Looks to see if VAR is a copy of a constant (via straightforward assignments
1479 or degenerate phi's). If so, returns the constant; else, returns VAR. */
1482 follow_copies_to_constant (tree var
)
1485 while (TREE_CODE (res
) == SSA_NAME
1486 /* We face not updated SSA form in multiple places and this walk
1487 may end up in sibling loops so we have to guard it. */
1488 && !name_registered_for_update_p (res
))
1490 gimple
*def
= SSA_NAME_DEF_STMT (res
);
1491 if (gphi
*phi
= dyn_cast
<gphi
*> (def
))
1493 if (tree rhs
= degenerate_phi_result (phi
))
1498 else if (gimple_assign_single_p (def
))
1499 /* Will exit loop if not an SSA_NAME. */
1500 res
= gimple_assign_rhs1 (def
);
1504 if (CONSTANT_CLASS_P (res
))
1509 /* Given a loop-phi-node, return the initial conditions of the
1510 variable on entry of the loop. When the CCP has propagated
1511 constants into the loop-phi-node, the initial condition is
1512 instantiated, otherwise the initial condition is kept symbolic.
1513 This analyzer does not analyze the evolution outside the current
1514 loop, and leaves this task to the on-demand tree reconstructor. */
1517 analyze_initial_condition (gphi
*loop_phi_node
)
1520 tree init_cond
= chrec_not_analyzed_yet
;
1521 class loop
*loop
= loop_containing_stmt (loop_phi_node
);
1523 if (dump_file
&& (dump_flags
& TDF_SCEV
))
1525 fprintf (dump_file
, "(analyze_initial_condition \n");
1526 fprintf (dump_file
, " (loop_phi_node = \n");
1527 print_gimple_stmt (dump_file
, loop_phi_node
, 0);
1528 fprintf (dump_file
, ")\n");
1531 n
= gimple_phi_num_args (loop_phi_node
);
1532 for (i
= 0; i
< n
; i
++)
1534 tree branch
= PHI_ARG_DEF (loop_phi_node
, i
);
1535 basic_block bb
= gimple_phi_arg_edge (loop_phi_node
, i
)->src
;
1537 /* When the branch is oriented to the loop's body, it does
1538 not contribute to the initial condition. */
1539 if (flow_bb_inside_loop_p (loop
, bb
))
1542 if (init_cond
== chrec_not_analyzed_yet
)
1548 if (TREE_CODE (branch
) == SSA_NAME
)
1550 init_cond
= chrec_dont_know
;
1554 init_cond
= chrec_merge (init_cond
, branch
);
1557 /* Ooops -- a loop without an entry??? */
1558 if (init_cond
== chrec_not_analyzed_yet
)
1559 init_cond
= chrec_dont_know
;
1561 /* We may not have fully constant propagated IL. Handle degenerate PHIs here
1562 to not miss important early loop unrollings. */
1563 init_cond
= follow_copies_to_constant (init_cond
);
1565 if (dump_file
&& (dump_flags
& TDF_SCEV
))
1567 fprintf (dump_file
, " (init_cond = ");
1568 print_generic_expr (dump_file
, init_cond
);
1569 fprintf (dump_file
, "))\n");
1575 /* Analyze the scalar evolution for LOOP_PHI_NODE. */
1578 interpret_loop_phi (class loop
*loop
, gphi
*loop_phi_node
)
1580 class loop
*phi_loop
= loop_containing_stmt (loop_phi_node
);
1583 gcc_assert (phi_loop
== loop
);
1585 /* Otherwise really interpret the loop phi. */
1586 init_cond
= analyze_initial_condition (loop_phi_node
);
1587 return analyze_evolution_in_loop (loop_phi_node
, init_cond
);
1590 /* This function merges the branches of a condition-phi-node,
1591 contained in the outermost loop, and whose arguments are already
1595 interpret_condition_phi (class loop
*loop
, gphi
*condition_phi
)
1597 int i
, n
= gimple_phi_num_args (condition_phi
);
1598 tree res
= chrec_not_analyzed_yet
;
1600 for (i
= 0; i
< n
; i
++)
1604 if (backedge_phi_arg_p (condition_phi
, i
))
1606 res
= chrec_dont_know
;
1610 branch_chrec
= analyze_scalar_evolution
1611 (loop
, PHI_ARG_DEF (condition_phi
, i
));
1613 res
= chrec_merge (res
, branch_chrec
);
1614 if (res
== chrec_dont_know
)
1621 /* Interpret the operation RHS1 OP RHS2. If we didn't
1622 analyze this node before, follow the definitions until ending
1623 either on an analyzed GIMPLE_ASSIGN, or on a loop-phi-node. On the
1624 return path, this function propagates evolutions (ala constant copy
1625 propagation). OPND1 is not a GIMPLE expression because we could
1626 analyze the effect of an inner loop: see interpret_loop_phi. */
1629 interpret_rhs_expr (class loop
*loop
, gimple
*at_stmt
,
1630 tree type
, tree rhs1
, enum tree_code code
, tree rhs2
)
1632 tree res
, chrec1
, chrec2
, ctype
;
1635 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
)
1637 if (is_gimple_min_invariant (rhs1
))
1638 return chrec_convert (type
, rhs1
, at_stmt
);
1640 if (code
== SSA_NAME
)
1641 return chrec_convert (type
, analyze_scalar_evolution (loop
, rhs1
),
1648 if (TREE_CODE (TREE_OPERAND (rhs1
, 0)) == MEM_REF
1649 || handled_component_p (TREE_OPERAND (rhs1
, 0)))
1652 poly_int64 bitsize
, bitpos
;
1653 int unsignedp
, reversep
;
1659 base
= get_inner_reference (TREE_OPERAND (rhs1
, 0),
1660 &bitsize
, &bitpos
, &offset
, &mode
,
1661 &unsignedp
, &reversep
, &volatilep
);
1663 if (TREE_CODE (base
) == MEM_REF
)
1665 rhs2
= TREE_OPERAND (base
, 1);
1666 rhs1
= TREE_OPERAND (base
, 0);
1668 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1669 chrec2
= analyze_scalar_evolution (loop
, rhs2
);
1670 chrec1
= chrec_convert (type
, chrec1
, at_stmt
);
1671 chrec2
= chrec_convert (TREE_TYPE (rhs2
), chrec2
, at_stmt
);
1672 chrec1
= instantiate_parameters (loop
, chrec1
);
1673 chrec2
= instantiate_parameters (loop
, chrec2
);
1674 res
= chrec_fold_plus (type
, chrec1
, chrec2
);
1678 chrec1
= analyze_scalar_evolution_for_address_of (loop
, base
);
1679 chrec1
= chrec_convert (type
, chrec1
, at_stmt
);
1683 if (offset
!= NULL_TREE
)
1685 chrec2
= analyze_scalar_evolution (loop
, offset
);
1686 chrec2
= chrec_convert (TREE_TYPE (offset
), chrec2
, at_stmt
);
1687 chrec2
= instantiate_parameters (loop
, chrec2
);
1688 res
= chrec_fold_plus (type
, res
, chrec2
);
1691 if (maybe_ne (bitpos
, 0))
1693 unitpos
= size_int (exact_div (bitpos
, BITS_PER_UNIT
));
1694 chrec3
= analyze_scalar_evolution (loop
, unitpos
);
1695 chrec3
= chrec_convert (TREE_TYPE (unitpos
), chrec3
, at_stmt
);
1696 chrec3
= instantiate_parameters (loop
, chrec3
);
1697 res
= chrec_fold_plus (type
, res
, chrec3
);
1701 res
= chrec_dont_know
;
1704 case POINTER_PLUS_EXPR
:
1705 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1706 chrec2
= analyze_scalar_evolution (loop
, rhs2
);
1707 chrec1
= chrec_convert (type
, chrec1
, at_stmt
);
1708 chrec2
= chrec_convert (TREE_TYPE (rhs2
), chrec2
, at_stmt
);
1709 chrec1
= instantiate_parameters (loop
, chrec1
);
1710 chrec2
= instantiate_parameters (loop
, chrec2
);
1711 res
= chrec_fold_plus (type
, chrec1
, chrec2
);
1715 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1716 chrec2
= analyze_scalar_evolution (loop
, rhs2
);
1718 /* When the stmt is conditionally executed re-write the CHREC
1719 into a form that has well-defined behavior on overflow. */
1721 && INTEGRAL_TYPE_P (type
)
1722 && ! TYPE_OVERFLOW_WRAPS (type
)
1723 && ! dominated_by_p (CDI_DOMINATORS
, loop
->latch
,
1724 gimple_bb (at_stmt
)))
1725 ctype
= unsigned_type_for (type
);
1726 chrec1
= chrec_convert (ctype
, chrec1
, at_stmt
);
1727 chrec2
= chrec_convert (ctype
, chrec2
, at_stmt
);
1728 chrec1
= instantiate_parameters (loop
, chrec1
);
1729 chrec2
= instantiate_parameters (loop
, chrec2
);
1730 res
= chrec_fold_plus (ctype
, chrec1
, chrec2
);
1732 res
= chrec_convert (type
, res
, at_stmt
);
1736 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1737 chrec2
= analyze_scalar_evolution (loop
, rhs2
);
1739 /* When the stmt is conditionally executed re-write the CHREC
1740 into a form that has well-defined behavior on overflow. */
1742 && INTEGRAL_TYPE_P (type
)
1743 && ! TYPE_OVERFLOW_WRAPS (type
)
1744 && ! dominated_by_p (CDI_DOMINATORS
,
1745 loop
->latch
, gimple_bb (at_stmt
)))
1746 ctype
= unsigned_type_for (type
);
1747 chrec1
= chrec_convert (ctype
, chrec1
, at_stmt
);
1748 chrec2
= chrec_convert (ctype
, chrec2
, at_stmt
);
1749 chrec1
= instantiate_parameters (loop
, chrec1
);
1750 chrec2
= instantiate_parameters (loop
, chrec2
);
1751 res
= chrec_fold_minus (ctype
, chrec1
, chrec2
);
1753 res
= chrec_convert (type
, res
, at_stmt
);
1757 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1759 /* When the stmt is conditionally executed re-write the CHREC
1760 into a form that has well-defined behavior on overflow. */
1762 && INTEGRAL_TYPE_P (type
)
1763 && ! TYPE_OVERFLOW_WRAPS (type
)
1764 && ! dominated_by_p (CDI_DOMINATORS
,
1765 loop
->latch
, gimple_bb (at_stmt
)))
1766 ctype
= unsigned_type_for (type
);
1767 chrec1
= chrec_convert (ctype
, chrec1
, at_stmt
);
1768 /* TYPE may be integer, real or complex, so use fold_convert. */
1769 chrec1
= instantiate_parameters (loop
, chrec1
);
1770 res
= chrec_fold_multiply (ctype
, chrec1
,
1771 fold_convert (ctype
, integer_minus_one_node
));
1773 res
= chrec_convert (type
, res
, at_stmt
);
1777 /* Handle ~X as -1 - X. */
1778 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1779 chrec1
= chrec_convert (type
, chrec1
, at_stmt
);
1780 chrec1
= instantiate_parameters (loop
, chrec1
);
1781 res
= chrec_fold_minus (type
,
1782 fold_convert (type
, integer_minus_one_node
),
1787 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1788 chrec2
= analyze_scalar_evolution (loop
, rhs2
);
1790 /* When the stmt is conditionally executed re-write the CHREC
1791 into a form that has well-defined behavior on overflow. */
1793 && INTEGRAL_TYPE_P (type
)
1794 && ! TYPE_OVERFLOW_WRAPS (type
)
1795 && ! dominated_by_p (CDI_DOMINATORS
,
1796 loop
->latch
, gimple_bb (at_stmt
)))
1797 ctype
= unsigned_type_for (type
);
1798 chrec1
= chrec_convert (ctype
, chrec1
, at_stmt
);
1799 chrec2
= chrec_convert (ctype
, chrec2
, at_stmt
);
1800 chrec1
= instantiate_parameters (loop
, chrec1
);
1801 chrec2
= instantiate_parameters (loop
, chrec2
);
1802 res
= chrec_fold_multiply (ctype
, chrec1
, chrec2
);
1804 res
= chrec_convert (type
, res
, at_stmt
);
1809 /* Handle A<<B as A * (1<<B). */
1810 tree uns
= unsigned_type_for (type
);
1811 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1812 chrec2
= analyze_scalar_evolution (loop
, rhs2
);
1813 chrec1
= chrec_convert (uns
, chrec1
, at_stmt
);
1814 chrec1
= instantiate_parameters (loop
, chrec1
);
1815 chrec2
= instantiate_parameters (loop
, chrec2
);
1817 tree one
= build_int_cst (uns
, 1);
1818 chrec2
= fold_build2 (LSHIFT_EXPR
, uns
, one
, chrec2
);
1819 res
= chrec_fold_multiply (uns
, chrec1
, chrec2
);
1820 res
= chrec_convert (type
, res
, at_stmt
);
1825 /* In case we have a truncation of a widened operation that in
1826 the truncated type has undefined overflow behavior analyze
1827 the operation done in an unsigned type of the same precision
1828 as the final truncation. We cannot derive a scalar evolution
1829 for the widened operation but for the truncated result. */
1830 if (TREE_CODE (type
) == INTEGER_TYPE
1831 && TREE_CODE (TREE_TYPE (rhs1
)) == INTEGER_TYPE
1832 && TYPE_PRECISION (type
) < TYPE_PRECISION (TREE_TYPE (rhs1
))
1833 && TYPE_OVERFLOW_UNDEFINED (type
)
1834 && TREE_CODE (rhs1
) == SSA_NAME
1835 && (def
= SSA_NAME_DEF_STMT (rhs1
))
1836 && is_gimple_assign (def
)
1837 && TREE_CODE_CLASS (gimple_assign_rhs_code (def
)) == tcc_binary
1838 && TREE_CODE (gimple_assign_rhs2 (def
)) == INTEGER_CST
)
1840 tree utype
= unsigned_type_for (type
);
1841 chrec1
= interpret_rhs_expr (loop
, at_stmt
, utype
,
1842 gimple_assign_rhs1 (def
),
1843 gimple_assign_rhs_code (def
),
1844 gimple_assign_rhs2 (def
));
1847 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1848 res
= chrec_convert (type
, chrec1
, at_stmt
, true, rhs1
);
1852 /* Given int variable A, handle A&0xffff as (int)(unsigned short)A.
1853 If A is SCEV and its value is in the range of representable set
1854 of type unsigned short, the result expression is a (no-overflow)
1856 res
= chrec_dont_know
;
1857 if (tree_fits_uhwi_p (rhs2
))
1860 unsigned HOST_WIDE_INT val
= tree_to_uhwi (rhs2
);
1863 /* Skip if value of rhs2 wraps in unsigned HOST_WIDE_INT or
1864 it's not the maximum value of a smaller type than rhs1. */
1866 && (precision
= exact_log2 (val
)) > 0
1867 && (unsigned) precision
< TYPE_PRECISION (TREE_TYPE (rhs1
)))
1869 tree utype
= build_nonstandard_integer_type (precision
, 1);
1871 if (TYPE_PRECISION (utype
) < TYPE_PRECISION (TREE_TYPE (rhs1
)))
1873 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1874 chrec1
= chrec_convert (utype
, chrec1
, at_stmt
);
1875 res
= chrec_convert (TREE_TYPE (rhs1
), chrec1
, at_stmt
);
1882 res
= chrec_dont_know
;
1889 /* Interpret the expression EXPR. */
1892 interpret_expr (class loop
*loop
, gimple
*at_stmt
, tree expr
)
1894 enum tree_code code
;
1895 tree type
= TREE_TYPE (expr
), op0
, op1
;
1897 if (automatically_generated_chrec_p (expr
))
1900 if (TREE_CODE (expr
) == POLYNOMIAL_CHREC
1901 || TREE_CODE (expr
) == CALL_EXPR
1902 || get_gimple_rhs_class (TREE_CODE (expr
)) == GIMPLE_TERNARY_RHS
)
1903 return chrec_dont_know
;
1905 extract_ops_from_tree (expr
, &code
, &op0
, &op1
);
1907 return interpret_rhs_expr (loop
, at_stmt
, type
,
1911 /* Interpret the rhs of the assignment STMT. */
1914 interpret_gimple_assign (class loop
*loop
, gimple
*stmt
)
1916 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
1917 enum tree_code code
= gimple_assign_rhs_code (stmt
);
1919 return interpret_rhs_expr (loop
, stmt
, type
,
1920 gimple_assign_rhs1 (stmt
), code
,
1921 gimple_assign_rhs2 (stmt
));
1926 /* This section contains all the entry points:
1927 - number_of_iterations_in_loop,
1928 - analyze_scalar_evolution,
1929 - instantiate_parameters.
1932 /* Helper recursive function. */
1935 analyze_scalar_evolution_1 (class loop
*loop
, tree var
)
1939 class loop
*def_loop
;
1942 if (TREE_CODE (var
) != SSA_NAME
)
1943 return interpret_expr (loop
, NULL
, var
);
1945 def
= SSA_NAME_DEF_STMT (var
);
1946 bb
= gimple_bb (def
);
1947 def_loop
= bb
->loop_father
;
1949 if (!flow_bb_inside_loop_p (loop
, bb
))
1951 /* Keep symbolic form, but look through obvious copies for constants. */
1952 res
= follow_copies_to_constant (var
);
1956 if (loop
!= def_loop
)
1958 res
= analyze_scalar_evolution_1 (def_loop
, var
);
1959 class loop
*loop_to_skip
= superloop_at_depth (def_loop
,
1960 loop_depth (loop
) + 1);
1961 res
= compute_overall_effect_of_inner_loop (loop_to_skip
, res
);
1962 if (chrec_contains_symbols_defined_in_loop (res
, loop
->num
))
1963 res
= analyze_scalar_evolution_1 (loop
, res
);
1967 switch (gimple_code (def
))
1970 res
= interpret_gimple_assign (loop
, def
);
1974 if (loop_phi_node_p (def
))
1975 res
= interpret_loop_phi (loop
, as_a
<gphi
*> (def
));
1977 res
= interpret_condition_phi (loop
, as_a
<gphi
*> (def
));
1981 res
= chrec_dont_know
;
1987 /* Keep the symbolic form. */
1988 if (res
== chrec_dont_know
)
1991 if (loop
== def_loop
)
1992 set_scalar_evolution (block_before_loop (loop
), var
, res
);
1997 /* Analyzes and returns the scalar evolution of the ssa_name VAR in
1998 LOOP. LOOP is the loop in which the variable is used.
2000 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
2001 pointer to the statement that uses this variable, in order to
2002 determine the evolution function of the variable, use the following
2005 loop_p loop = loop_containing_stmt (stmt);
2006 tree chrec_with_symbols = analyze_scalar_evolution (loop, var);
2007 tree chrec_instantiated = instantiate_parameters (loop, chrec_with_symbols);
2011 analyze_scalar_evolution (class loop
*loop
, tree var
)
2015 /* ??? Fix callers. */
2019 if (dump_file
&& (dump_flags
& TDF_SCEV
))
2021 fprintf (dump_file
, "(analyze_scalar_evolution \n");
2022 fprintf (dump_file
, " (loop_nb = %d)\n", loop
->num
);
2023 fprintf (dump_file
, " (scalar = ");
2024 print_generic_expr (dump_file
, var
);
2025 fprintf (dump_file
, ")\n");
2028 res
= get_scalar_evolution (block_before_loop (loop
), var
);
2029 if (res
== chrec_not_analyzed_yet
)
2031 /* We'll recurse into instantiate_scev, avoid tearing down the
2032 instantiate cache repeatedly and keep it live from here. */
2036 global_cache
= new instantiate_cache_type
;
2039 res
= analyze_scalar_evolution_1 (loop
, var
);
2042 delete global_cache
;
2043 global_cache
= NULL
;
2047 if (dump_file
&& (dump_flags
& TDF_SCEV
))
2048 fprintf (dump_file
, ")\n");
2053 /* If CHREC doesn't overflow, set the nonwrapping flag. */
2055 void record_nonwrapping_chrec (tree chrec
)
2057 CHREC_NOWRAP(chrec
) = 1;
2059 if (dump_file
&& (dump_flags
& TDF_SCEV
))
2061 fprintf (dump_file
, "(record_nonwrapping_chrec: ");
2062 print_generic_expr (dump_file
, chrec
);
2063 fprintf (dump_file
, ")\n");
2067 /* Return true if CHREC's nonwrapping flag is set. */
2069 bool nonwrapping_chrec_p (tree chrec
)
2071 if (!chrec
|| TREE_CODE(chrec
) != POLYNOMIAL_CHREC
)
2074 return CHREC_NOWRAP(chrec
);
2077 /* Analyzes and returns the scalar evolution of VAR address in LOOP. */
2080 analyze_scalar_evolution_for_address_of (class loop
*loop
, tree var
)
2082 return analyze_scalar_evolution (loop
, build_fold_addr_expr (var
));
2085 /* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
2086 WRTO_LOOP (which should be a superloop of USE_LOOP)
2088 FOLDED_CASTS is set to true if resolve_mixers used
2089 chrec_convert_aggressive (TODO -- not really, we are way too conservative
2090 at the moment in order to keep things simple).
2092 To illustrate the meaning of USE_LOOP and WRTO_LOOP, consider the following
2095 for (i = 0; i < 100; i++) -- loop 1
2097 for (j = 0; j < 100; j++) -- loop 2
2104 for (t = 0; t < 100; t++) -- loop 3
2111 Both k1 and k2 are invariants in loop3, thus
2112 analyze_scalar_evolution_in_loop (loop3, loop3, k1) = k1
2113 analyze_scalar_evolution_in_loop (loop3, loop3, k2) = k2
2115 As they are invariant, it does not matter whether we consider their
2116 usage in loop 3 or loop 2, hence
2117 analyze_scalar_evolution_in_loop (loop2, loop3, k1) =
2118 analyze_scalar_evolution_in_loop (loop2, loop2, k1) = i
2119 analyze_scalar_evolution_in_loop (loop2, loop3, k2) =
2120 analyze_scalar_evolution_in_loop (loop2, loop2, k2) = [0,+,1]_2
2122 Similarly for their evolutions with respect to loop 1. The values of K2
2123 in the use in loop 2 vary independently on loop 1, thus we cannot express
2124 the evolution with respect to loop 1:
2125 analyze_scalar_evolution_in_loop (loop1, loop3, k1) =
2126 analyze_scalar_evolution_in_loop (loop1, loop2, k1) = [0,+,1]_1
2127 analyze_scalar_evolution_in_loop (loop1, loop3, k2) =
2128 analyze_scalar_evolution_in_loop (loop1, loop2, k2) = dont_know
2130 The value of k2 in the use in loop 1 is known, though:
2131 analyze_scalar_evolution_in_loop (loop1, loop1, k1) = [0,+,1]_1
2132 analyze_scalar_evolution_in_loop (loop1, loop1, k2) = 100
2136 analyze_scalar_evolution_in_loop (class loop
*wrto_loop
, class loop
*use_loop
,
2137 tree version
, bool *folded_casts
)
2140 tree ev
= version
, tmp
;
2142 /* We cannot just do
2144 tmp = analyze_scalar_evolution (use_loop, version);
2145 ev = resolve_mixers (wrto_loop, tmp, folded_casts);
2147 as resolve_mixers would query the scalar evolution with respect to
2148 wrto_loop. For example, in the situation described in the function
2149 comment, suppose that wrto_loop = loop1, use_loop = loop3 and
2152 analyze_scalar_evolution (use_loop, version) = k2
2154 and resolve_mixers (loop1, k2, folded_casts) finds that the value of
2155 k2 in loop 1 is 100, which is a wrong result, since we are interested
2156 in the value in loop 3.
2158 Instead, we need to proceed from use_loop to wrto_loop loop by loop,
2159 each time checking that there is no evolution in the inner loop. */
2162 *folded_casts
= false;
2165 tmp
= analyze_scalar_evolution (use_loop
, ev
);
2166 ev
= resolve_mixers (use_loop
, tmp
, folded_casts
);
2168 if (use_loop
== wrto_loop
)
2171 /* If the value of the use changes in the inner loop, we cannot express
2172 its value in the outer loop (we might try to return interval chrec,
2173 but we do not have a user for it anyway) */
2174 if (!no_evolution_in_loop_p (ev
, use_loop
->num
, &val
)
2176 return chrec_dont_know
;
2178 use_loop
= loop_outer (use_loop
);
2183 /* Computes a hash function for database element ELT. */
2185 static inline hashval_t
2186 hash_idx_scev_info (const void *elt_
)
2188 unsigned idx
= ((size_t) elt_
) - 2;
2189 return scev_info_hasher::hash (&global_cache
->entries
[idx
]);
2192 /* Compares database elements E1 and E2. */
2195 eq_idx_scev_info (const void *e1
, const void *e2
)
2197 unsigned idx1
= ((size_t) e1
) - 2;
2198 return scev_info_hasher::equal (&global_cache
->entries
[idx1
],
2199 (const scev_info_str
*) e2
);
2202 /* Returns from CACHE the slot number of the cached chrec for NAME. */
2205 get_instantiated_value_entry (instantiate_cache_type
&cache
,
2206 tree name
, edge instantiate_below
)
2210 cache
.map
= htab_create (10, hash_idx_scev_info
, eq_idx_scev_info
, NULL
);
2211 cache
.entries
.create (10);
2215 e
.name_version
= SSA_NAME_VERSION (name
);
2216 e
.instantiated_below
= instantiate_below
->dest
->index
;
2217 void **slot
= htab_find_slot_with_hash (cache
.map
, &e
,
2218 scev_info_hasher::hash (&e
), INSERT
);
2221 e
.chrec
= chrec_not_analyzed_yet
;
2222 *slot
= (void *)(size_t)(cache
.entries
.length () + 2);
2223 cache
.entries
.safe_push (e
);
2226 return ((size_t)*slot
) - 2;
2230 /* Return the closed_loop_phi node for VAR. If there is none, return
2234 loop_closed_phi_def (tree var
)
2241 if (var
== NULL_TREE
2242 || TREE_CODE (var
) != SSA_NAME
)
2245 loop
= loop_containing_stmt (SSA_NAME_DEF_STMT (var
));
2246 exit
= single_exit (loop
);
2250 for (psi
= gsi_start_phis (exit
->dest
); !gsi_end_p (psi
); gsi_next (&psi
))
2253 if (PHI_ARG_DEF_FROM_EDGE (phi
, exit
) == var
)
2254 return PHI_RESULT (phi
);
2260 static tree
instantiate_scev_r (edge
, class loop
*, class loop
*,
2263 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2264 and EVOLUTION_LOOP, that were left under a symbolic form.
2266 CHREC is an SSA_NAME to be instantiated.
2268 CACHE is the cache of already instantiated values.
2270 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2271 conversions that may wrap in signed/pointer type are folded, as long
2272 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2273 then we don't do such fold.
2275 SIZE_EXPR is used for computing the size of the expression to be
2276 instantiated, and to stop if it exceeds some limit. */
2279 instantiate_scev_name (edge instantiate_below
,
2280 class loop
*evolution_loop
, class loop
*inner_loop
,
2282 bool *fold_conversions
,
2286 class loop
*def_loop
;
2287 basic_block def_bb
= gimple_bb (SSA_NAME_DEF_STMT (chrec
));
2289 /* A parameter, nothing to do. */
2291 || !dominated_by_p (CDI_DOMINATORS
, def_bb
, instantiate_below
->dest
))
2294 /* We cache the value of instantiated variable to avoid exponential
2295 time complexity due to reevaluations. We also store the convenient
2296 value in the cache in order to prevent infinite recursion -- we do
2297 not want to instantiate the SSA_NAME if it is in a mixer
2298 structure. This is used for avoiding the instantiation of
2299 recursively defined functions, such as:
2301 | a_2 -> {0, +, 1, +, a_2}_1 */
2303 unsigned si
= get_instantiated_value_entry (*global_cache
,
2304 chrec
, instantiate_below
);
2305 if (global_cache
->get (si
) != chrec_not_analyzed_yet
)
2306 return global_cache
->get (si
);
2308 /* On recursion return chrec_dont_know. */
2309 global_cache
->set (si
, chrec_dont_know
);
2311 def_loop
= find_common_loop (evolution_loop
, def_bb
->loop_father
);
2313 if (! dominated_by_p (CDI_DOMINATORS
,
2314 def_loop
->header
, instantiate_below
->dest
))
2316 gimple
*def
= SSA_NAME_DEF_STMT (chrec
);
2317 if (gassign
*ass
= dyn_cast
<gassign
*> (def
))
2319 switch (gimple_assign_rhs_class (ass
))
2321 case GIMPLE_UNARY_RHS
:
2323 tree op0
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2324 inner_loop
, gimple_assign_rhs1 (ass
),
2325 fold_conversions
, size_expr
);
2326 if (op0
== chrec_dont_know
)
2327 return chrec_dont_know
;
2328 res
= fold_build1 (gimple_assign_rhs_code (ass
),
2329 TREE_TYPE (chrec
), op0
);
2332 case GIMPLE_BINARY_RHS
:
2334 tree op0
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2335 inner_loop
, gimple_assign_rhs1 (ass
),
2336 fold_conversions
, size_expr
);
2337 if (op0
== chrec_dont_know
)
2338 return chrec_dont_know
;
2339 tree op1
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2340 inner_loop
, gimple_assign_rhs2 (ass
),
2341 fold_conversions
, size_expr
);
2342 if (op1
== chrec_dont_know
)
2343 return chrec_dont_know
;
2344 res
= fold_build2 (gimple_assign_rhs_code (ass
),
2345 TREE_TYPE (chrec
), op0
, op1
);
2349 res
= chrec_dont_know
;
2353 res
= chrec_dont_know
;
2354 global_cache
->set (si
, res
);
2358 /* If the analysis yields a parametric chrec, instantiate the
2360 res
= analyze_scalar_evolution (def_loop
, chrec
);
2362 /* Don't instantiate default definitions. */
2363 if (TREE_CODE (res
) == SSA_NAME
2364 && SSA_NAME_IS_DEFAULT_DEF (res
))
2367 /* Don't instantiate loop-closed-ssa phi nodes. */
2368 else if (TREE_CODE (res
) == SSA_NAME
2369 && loop_depth (loop_containing_stmt (SSA_NAME_DEF_STMT (res
)))
2370 > loop_depth (def_loop
))
2373 res
= loop_closed_phi_def (chrec
);
2377 /* When there is no loop_closed_phi_def, it means that the
2378 variable is not used after the loop: try to still compute the
2379 value of the variable when exiting the loop. */
2380 if (res
== NULL_TREE
)
2382 loop_p loop
= loop_containing_stmt (SSA_NAME_DEF_STMT (chrec
));
2383 res
= analyze_scalar_evolution (loop
, chrec
);
2384 res
= compute_overall_effect_of_inner_loop (loop
, res
);
2385 res
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2387 fold_conversions
, size_expr
);
2389 else if (dominated_by_p (CDI_DOMINATORS
,
2390 gimple_bb (SSA_NAME_DEF_STMT (res
)),
2391 instantiate_below
->dest
))
2392 res
= chrec_dont_know
;
2395 else if (res
!= chrec_dont_know
)
2398 && def_bb
->loop_father
!= inner_loop
2399 && !flow_loop_nested_p (def_bb
->loop_father
, inner_loop
))
2400 /* ??? We could try to compute the overall effect of the loop here. */
2401 res
= chrec_dont_know
;
2403 res
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2405 fold_conversions
, size_expr
);
2408 /* Store the correct value to the cache. */
2409 global_cache
->set (si
, res
);
2413 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2414 and EVOLUTION_LOOP, that were left under a symbolic form.
2416 CHREC is a polynomial chain of recurrence to be instantiated.
2418 CACHE is the cache of already instantiated values.
2420 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2421 conversions that may wrap in signed/pointer type are folded, as long
2422 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2423 then we don't do such fold.
2425 SIZE_EXPR is used for computing the size of the expression to be
2426 instantiated, and to stop if it exceeds some limit. */
2429 instantiate_scev_poly (edge instantiate_below
,
2430 class loop
*evolution_loop
, class loop
*,
2431 tree chrec
, bool *fold_conversions
, int size_expr
)
2434 tree op0
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2435 get_chrec_loop (chrec
),
2436 CHREC_LEFT (chrec
), fold_conversions
,
2438 if (op0
== chrec_dont_know
)
2439 return chrec_dont_know
;
2441 op1
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2442 get_chrec_loop (chrec
),
2443 CHREC_RIGHT (chrec
), fold_conversions
,
2445 if (op1
== chrec_dont_know
)
2446 return chrec_dont_know
;
2448 if (CHREC_LEFT (chrec
) != op0
2449 || CHREC_RIGHT (chrec
) != op1
)
2451 op1
= chrec_convert_rhs (chrec_type (op0
), op1
, NULL
);
2452 chrec
= build_polynomial_chrec (CHREC_VARIABLE (chrec
), op0
, op1
);
2458 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2459 and EVOLUTION_LOOP, that were left under a symbolic form.
2461 "C0 CODE C1" is a binary expression of type TYPE to be instantiated.
2463 CACHE is the cache of already instantiated values.
2465 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2466 conversions that may wrap in signed/pointer type are folded, as long
2467 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2468 then we don't do such fold.
2470 SIZE_EXPR is used for computing the size of the expression to be
2471 instantiated, and to stop if it exceeds some limit. */
2474 instantiate_scev_binary (edge instantiate_below
,
2475 class loop
*evolution_loop
, class loop
*inner_loop
,
2476 tree chrec
, enum tree_code code
,
2477 tree type
, tree c0
, tree c1
,
2478 bool *fold_conversions
, int size_expr
)
2481 tree op0
= instantiate_scev_r (instantiate_below
, evolution_loop
, inner_loop
,
2482 c0
, fold_conversions
, size_expr
);
2483 if (op0
== chrec_dont_know
)
2484 return chrec_dont_know
;
2486 /* While we eventually compute the same op1 if c0 == c1 the process
2487 of doing this is expensive so the following short-cut prevents
2488 exponential compile-time behavior. */
2491 op1
= instantiate_scev_r (instantiate_below
, evolution_loop
, inner_loop
,
2492 c1
, fold_conversions
, size_expr
);
2493 if (op1
== chrec_dont_know
)
2494 return chrec_dont_know
;
2502 op0
= chrec_convert (type
, op0
, NULL
);
2503 op1
= chrec_convert_rhs (type
, op1
, NULL
);
2507 case POINTER_PLUS_EXPR
:
2509 return chrec_fold_plus (type
, op0
, op1
);
2512 return chrec_fold_minus (type
, op0
, op1
);
2515 return chrec_fold_multiply (type
, op0
, op1
);
2522 return chrec
? chrec
: fold_build2 (code
, type
, c0
, c1
);
2525 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2526 and EVOLUTION_LOOP, that were left under a symbolic form.
2528 "CHREC" that stands for a convert expression "(TYPE) OP" is to be
2531 CACHE is the cache of already instantiated values.
2533 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2534 conversions that may wrap in signed/pointer type are folded, as long
2535 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2536 then we don't do such fold.
2538 SIZE_EXPR is used for computing the size of the expression to be
2539 instantiated, and to stop if it exceeds some limit. */
2542 instantiate_scev_convert (edge instantiate_below
,
2543 class loop
*evolution_loop
, class loop
*inner_loop
,
2544 tree chrec
, tree type
, tree op
,
2545 bool *fold_conversions
, int size_expr
)
2547 tree op0
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2549 fold_conversions
, size_expr
);
2551 if (op0
== chrec_dont_know
)
2552 return chrec_dont_know
;
2554 if (fold_conversions
)
2556 tree tmp
= chrec_convert_aggressive (type
, op0
, fold_conversions
);
2560 /* If we used chrec_convert_aggressive, we can no longer assume that
2561 signed chrecs do not overflow, as chrec_convert does, so avoid
2562 calling it in that case. */
2563 if (*fold_conversions
)
2565 if (chrec
&& op0
== op
)
2568 return fold_convert (type
, op0
);
2572 return chrec_convert (type
, op0
, NULL
);
2575 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2576 and EVOLUTION_LOOP, that were left under a symbolic form.
2578 CHREC is a BIT_NOT_EXPR or a NEGATE_EXPR expression to be instantiated.
2579 Handle ~X as -1 - X.
2580 Handle -X as -1 * X.
2582 CACHE is the cache of already instantiated values.
2584 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2585 conversions that may wrap in signed/pointer type are folded, as long
2586 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2587 then we don't do such fold.
2589 SIZE_EXPR is used for computing the size of the expression to be
2590 instantiated, and to stop if it exceeds some limit. */
2593 instantiate_scev_not (edge instantiate_below
,
2594 class loop
*evolution_loop
, class loop
*inner_loop
,
2596 enum tree_code code
, tree type
, tree op
,
2597 bool *fold_conversions
, int size_expr
)
2599 tree op0
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2601 fold_conversions
, size_expr
);
2603 if (op0
== chrec_dont_know
)
2604 return chrec_dont_know
;
2608 op0
= chrec_convert (type
, op0
, NULL
);
2613 return chrec_fold_minus
2614 (type
, fold_convert (type
, integer_minus_one_node
), op0
);
2617 return chrec_fold_multiply
2618 (type
, fold_convert (type
, integer_minus_one_node
), op0
);
2625 return chrec
? chrec
: fold_build1 (code
, type
, op0
);
2628 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2629 and EVOLUTION_LOOP, that were left under a symbolic form.
2631 CHREC is the scalar evolution to instantiate.
2633 CACHE is the cache of already instantiated values.
2635 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2636 conversions that may wrap in signed/pointer type are folded, as long
2637 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2638 then we don't do such fold.
2640 SIZE_EXPR is used for computing the size of the expression to be
2641 instantiated, and to stop if it exceeds some limit. */
2644 instantiate_scev_r (edge instantiate_below
,
2645 class loop
*evolution_loop
, class loop
*inner_loop
,
2647 bool *fold_conversions
, int size_expr
)
2649 /* Give up if the expression is larger than the MAX that we allow. */
2650 if (size_expr
++ > param_scev_max_expr_size
)
2651 return chrec_dont_know
;
2653 if (chrec
== NULL_TREE
2654 || automatically_generated_chrec_p (chrec
)
2655 || is_gimple_min_invariant (chrec
))
2658 switch (TREE_CODE (chrec
))
2661 return instantiate_scev_name (instantiate_below
, evolution_loop
,
2663 fold_conversions
, size_expr
);
2665 case POLYNOMIAL_CHREC
:
2666 return instantiate_scev_poly (instantiate_below
, evolution_loop
,
2668 fold_conversions
, size_expr
);
2670 case POINTER_PLUS_EXPR
:
2674 return instantiate_scev_binary (instantiate_below
, evolution_loop
,
2676 TREE_CODE (chrec
), chrec_type (chrec
),
2677 TREE_OPERAND (chrec
, 0),
2678 TREE_OPERAND (chrec
, 1),
2679 fold_conversions
, size_expr
);
2682 return instantiate_scev_convert (instantiate_below
, evolution_loop
,
2684 TREE_TYPE (chrec
), TREE_OPERAND (chrec
, 0),
2685 fold_conversions
, size_expr
);
2689 return instantiate_scev_not (instantiate_below
, evolution_loop
,
2691 TREE_CODE (chrec
), TREE_TYPE (chrec
),
2692 TREE_OPERAND (chrec
, 0),
2693 fold_conversions
, size_expr
);
2696 if (is_gimple_min_invariant (chrec
))
2699 case SCEV_NOT_KNOWN
:
2700 return chrec_dont_know
;
2706 if (CONSTANT_CLASS_P (chrec
))
2708 return chrec_dont_know
;
2712 /* Analyze all the parameters of the chrec that were left under a
2713 symbolic form. INSTANTIATE_BELOW is the basic block that stops the
2714 recursive instantiation of parameters: a parameter is a variable
2715 that is defined in a basic block that dominates INSTANTIATE_BELOW or
2716 a function parameter. */
2719 instantiate_scev (edge instantiate_below
, class loop
*evolution_loop
,
2724 if (dump_file
&& (dump_flags
& TDF_SCEV
))
2726 fprintf (dump_file
, "(instantiate_scev \n");
2727 fprintf (dump_file
, " (instantiate_below = %d -> %d)\n",
2728 instantiate_below
->src
->index
, instantiate_below
->dest
->index
);
2730 fprintf (dump_file
, " (evolution_loop = %d)\n", evolution_loop
->num
);
2731 fprintf (dump_file
, " (chrec = ");
2732 print_generic_expr (dump_file
, chrec
);
2733 fprintf (dump_file
, ")\n");
2739 global_cache
= new instantiate_cache_type
;
2743 res
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2744 NULL
, chrec
, NULL
, 0);
2748 delete global_cache
;
2749 global_cache
= NULL
;
2752 if (dump_file
&& (dump_flags
& TDF_SCEV
))
2754 fprintf (dump_file
, " (res = ");
2755 print_generic_expr (dump_file
, res
);
2756 fprintf (dump_file
, "))\n");
2762 /* Similar to instantiate_parameters, but does not introduce the
2763 evolutions in outer loops for LOOP invariants in CHREC, and does not
2764 care about causing overflows, as long as they do not affect value
2765 of an expression. */
2768 resolve_mixers (class loop
*loop
, tree chrec
, bool *folded_casts
)
2771 bool fold_conversions
= false;
2774 global_cache
= new instantiate_cache_type
;
2778 tree ret
= instantiate_scev_r (loop_preheader_edge (loop
), loop
, NULL
,
2779 chrec
, &fold_conversions
, 0);
2781 if (folded_casts
&& !*folded_casts
)
2782 *folded_casts
= fold_conversions
;
2786 delete global_cache
;
2787 global_cache
= NULL
;
2793 /* Entry point for the analysis of the number of iterations pass.
2794 This function tries to safely approximate the number of iterations
2795 the loop will run. When this property is not decidable at compile
2796 time, the result is chrec_dont_know. Otherwise the result is a
2797 scalar or a symbolic parameter. When the number of iterations may
2798 be equal to zero and the property cannot be determined at compile
2799 time, the result is a COND_EXPR that represents in a symbolic form
2800 the conditions under which the number of iterations is not zero.
2802 Example of analysis: suppose that the loop has an exit condition:
2804 "if (b > 49) goto end_loop;"
2806 and that in a previous analysis we have determined that the
2807 variable 'b' has an evolution function:
2809 "EF = {23, +, 5}_2".
2811 When we evaluate the function at the point 5, i.e. the value of the
2812 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2813 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2814 the loop body has been executed 6 times. */
2817 number_of_latch_executions (class loop
*loop
)
2820 class tree_niter_desc niter_desc
;
2824 /* Determine whether the number of iterations in loop has already
2826 res
= loop
->nb_iterations
;
2830 may_be_zero
= NULL_TREE
;
2832 if (dump_file
&& (dump_flags
& TDF_SCEV
))
2833 fprintf (dump_file
, "(number_of_iterations_in_loop = \n");
2835 res
= chrec_dont_know
;
2836 exit
= single_exit (loop
);
2838 if (exit
&& number_of_iterations_exit (loop
, exit
, &niter_desc
, false))
2840 may_be_zero
= niter_desc
.may_be_zero
;
2841 res
= niter_desc
.niter
;
2844 if (res
== chrec_dont_know
2846 || integer_zerop (may_be_zero
))
2848 else if (integer_nonzerop (may_be_zero
))
2849 res
= build_int_cst (TREE_TYPE (res
), 0);
2851 else if (COMPARISON_CLASS_P (may_be_zero
))
2852 res
= fold_build3 (COND_EXPR
, TREE_TYPE (res
), may_be_zero
,
2853 build_int_cst (TREE_TYPE (res
), 0), res
);
2855 res
= chrec_dont_know
;
2857 if (dump_file
&& (dump_flags
& TDF_SCEV
))
2859 fprintf (dump_file
, " (set_nb_iterations_in_loop = ");
2860 print_generic_expr (dump_file
, res
);
2861 fprintf (dump_file
, "))\n");
2864 loop
->nb_iterations
= res
;
2869 /* Counters for the stats. */
2875 unsigned nb_affine_multivar
;
2876 unsigned nb_higher_poly
;
2877 unsigned nb_chrec_dont_know
;
2878 unsigned nb_undetermined
;
2881 /* Reset the counters. */
2884 reset_chrecs_counters (struct chrec_stats
*stats
)
2886 stats
->nb_chrecs
= 0;
2887 stats
->nb_affine
= 0;
2888 stats
->nb_affine_multivar
= 0;
2889 stats
->nb_higher_poly
= 0;
2890 stats
->nb_chrec_dont_know
= 0;
2891 stats
->nb_undetermined
= 0;
2894 /* Dump the contents of a CHREC_STATS structure. */
2897 dump_chrecs_stats (FILE *file
, struct chrec_stats
*stats
)
2899 fprintf (file
, "\n(\n");
2900 fprintf (file
, "-----------------------------------------\n");
2901 fprintf (file
, "%d\taffine univariate chrecs\n", stats
->nb_affine
);
2902 fprintf (file
, "%d\taffine multivariate chrecs\n", stats
->nb_affine_multivar
);
2903 fprintf (file
, "%d\tdegree greater than 2 polynomials\n",
2904 stats
->nb_higher_poly
);
2905 fprintf (file
, "%d\tchrec_dont_know chrecs\n", stats
->nb_chrec_dont_know
);
2906 fprintf (file
, "-----------------------------------------\n");
2907 fprintf (file
, "%d\ttotal chrecs\n", stats
->nb_chrecs
);
2908 fprintf (file
, "%d\twith undetermined coefficients\n",
2909 stats
->nb_undetermined
);
2910 fprintf (file
, "-----------------------------------------\n");
2911 fprintf (file
, "%d\tchrecs in the scev database\n",
2912 (int) scalar_evolution_info
->elements ());
2913 fprintf (file
, "%d\tsets in the scev database\n", nb_set_scev
);
2914 fprintf (file
, "%d\tgets in the scev database\n", nb_get_scev
);
2915 fprintf (file
, "-----------------------------------------\n");
2916 fprintf (file
, ")\n\n");
2919 /* Gather statistics about CHREC. */
2922 gather_chrec_stats (tree chrec
, struct chrec_stats
*stats
)
2924 if (dump_file
&& (dump_flags
& TDF_STATS
))
2926 fprintf (dump_file
, "(classify_chrec ");
2927 print_generic_expr (dump_file
, chrec
);
2928 fprintf (dump_file
, "\n");
2933 if (chrec
== NULL_TREE
)
2935 stats
->nb_undetermined
++;
2939 switch (TREE_CODE (chrec
))
2941 case POLYNOMIAL_CHREC
:
2942 if (evolution_function_is_affine_p (chrec
))
2944 if (dump_file
&& (dump_flags
& TDF_STATS
))
2945 fprintf (dump_file
, " affine_univariate\n");
2948 else if (evolution_function_is_affine_multivariate_p (chrec
, 0))
2950 if (dump_file
&& (dump_flags
& TDF_STATS
))
2951 fprintf (dump_file
, " affine_multivariate\n");
2952 stats
->nb_affine_multivar
++;
2956 if (dump_file
&& (dump_flags
& TDF_STATS
))
2957 fprintf (dump_file
, " higher_degree_polynomial\n");
2958 stats
->nb_higher_poly
++;
2967 if (chrec_contains_undetermined (chrec
))
2969 if (dump_file
&& (dump_flags
& TDF_STATS
))
2970 fprintf (dump_file
, " undetermined\n");
2971 stats
->nb_undetermined
++;
2974 if (dump_file
&& (dump_flags
& TDF_STATS
))
2975 fprintf (dump_file
, ")\n");
2978 /* Classify the chrecs of the whole database. */
2981 gather_stats_on_scev_database (void)
2983 struct chrec_stats stats
;
2988 reset_chrecs_counters (&stats
);
2990 hash_table
<scev_info_hasher
>::iterator iter
;
2992 FOR_EACH_HASH_TABLE_ELEMENT (*scalar_evolution_info
, elt
, scev_info_str
*,
2994 gather_chrec_stats (elt
->chrec
, &stats
);
2996 dump_chrecs_stats (dump_file
, &stats
);
3000 /* Initialize the analysis of scalar evolutions for LOOPS. */
3003 scev_initialize (void)
3005 gcc_assert (! scev_initialized_p ()
3006 && loops_state_satisfies_p (cfun
, LOOPS_NORMAL
));
3008 scalar_evolution_info
= hash_table
<scev_info_hasher
>::create_ggc (100);
3010 for (auto loop
: loops_list (cfun
, 0))
3011 loop
->nb_iterations
= NULL_TREE
;
3014 /* Return true if SCEV is initialized. */
3017 scev_initialized_p (void)
3019 return scalar_evolution_info
!= NULL
;
3022 /* Cleans up the information cached by the scalar evolutions analysis
3023 in the hash table. */
3026 scev_reset_htab (void)
3028 if (!scalar_evolution_info
)
3031 scalar_evolution_info
->empty ();
3034 /* Cleans up the information cached by the scalar evolutions analysis
3035 in the hash table and in the loop->nb_iterations. */
3042 for (auto loop
: loops_list (cfun
, 0))
3043 loop
->nb_iterations
= NULL_TREE
;
3046 /* Return true if the IV calculation in TYPE can overflow based on the knowledge
3047 of the upper bound on the number of iterations of LOOP, the BASE and STEP
3050 We do not use information whether TYPE can overflow so it is safe to
3051 use this test even for derived IVs not computed every iteration or
3052 hypotetical IVs to be inserted into code. */
3055 iv_can_overflow_p (class loop
*loop
, tree type
, tree base
, tree step
)
3058 wide_int base_min
, base_max
, step_min
, step_max
, type_min
, type_max
;
3059 signop sgn
= TYPE_SIGN (type
);
3062 if (integer_zerop (step
))
3065 if (!INTEGRAL_TYPE_P (TREE_TYPE (base
))
3066 || !get_range_query (cfun
)->range_of_expr (r
, base
)
3068 || r
.undefined_p ())
3071 base_min
= r
.lower_bound ();
3072 base_max
= r
.upper_bound ();
3074 if (!INTEGRAL_TYPE_P (TREE_TYPE (step
))
3075 || !get_range_query (cfun
)->range_of_expr (r
, step
)
3077 || r
.undefined_p ())
3080 step_min
= r
.lower_bound ();
3081 step_max
= r
.upper_bound ();
3083 if (!get_max_loop_iterations (loop
, &nit
))
3086 type_min
= wi::min_value (type
);
3087 type_max
= wi::max_value (type
);
3089 /* Just sanity check that we don't see values out of the range of the type.
3090 In this case the arithmetics bellow would overflow. */
3091 gcc_checking_assert (wi::ge_p (base_min
, type_min
, sgn
)
3092 && wi::le_p (base_max
, type_max
, sgn
));
3094 /* Account the possible increment in the last ieration. */
3095 wi::overflow_type overflow
= wi::OVF_NONE
;
3096 nit
= wi::add (nit
, 1, SIGNED
, &overflow
);
3100 /* NIT is typeless and can exceed the precision of the type. In this case
3101 overflow is always possible, because we know STEP is non-zero. */
3102 if (wi::min_precision (nit
, UNSIGNED
) > TYPE_PRECISION (type
))
3104 wide_int nit2
= wide_int::from (nit
, TYPE_PRECISION (type
), UNSIGNED
);
3106 /* If step can be positive, check that nit*step <= type_max-base.
3107 This can be done by unsigned arithmetic and we only need to watch overflow
3108 in the multiplication. The right hand side can always be represented in
3110 if (sgn
== UNSIGNED
|| !wi::neg_p (step_max
))
3112 wi::overflow_type overflow
= wi::OVF_NONE
;
3113 if (wi::gtu_p (wi::mul (step_max
, nit2
, UNSIGNED
, &overflow
),
3114 type_max
- base_max
)
3118 /* If step can be negative, check that nit*(-step) <= base_min-type_min. */
3119 if (sgn
== SIGNED
&& wi::neg_p (step_min
))
3121 wi::overflow_type overflow
, overflow2
;
3122 overflow
= overflow2
= wi::OVF_NONE
;
3123 if (wi::gtu_p (wi::mul (wi::neg (step_min
, &overflow2
),
3124 nit2
, UNSIGNED
, &overflow
),
3125 base_min
- type_min
)
3126 || overflow
|| overflow2
)
3133 /* Given EV with form of "(type) {inner_base, inner_step}_loop", this
3134 function tries to derive condition under which it can be simplified
3135 into "{(type)inner_base, (type)inner_step}_loop". The condition is
3136 the maximum number that inner iv can iterate. */
3139 derive_simple_iv_with_niters (tree ev
, tree
*niters
)
3141 if (!CONVERT_EXPR_P (ev
))
3144 tree inner_ev
= TREE_OPERAND (ev
, 0);
3145 if (TREE_CODE (inner_ev
) != POLYNOMIAL_CHREC
)
3148 tree init
= CHREC_LEFT (inner_ev
);
3149 tree step
= CHREC_RIGHT (inner_ev
);
3150 if (TREE_CODE (init
) != INTEGER_CST
3151 || TREE_CODE (step
) != INTEGER_CST
|| integer_zerop (step
))
3154 tree type
= TREE_TYPE (ev
);
3155 tree inner_type
= TREE_TYPE (inner_ev
);
3156 if (TYPE_PRECISION (inner_type
) >= TYPE_PRECISION (type
))
3159 /* Type conversion in "(type) {inner_base, inner_step}_loop" can be
3160 folded only if inner iv won't overflow. We compute the maximum
3161 number the inner iv can iterate before overflowing and return the
3162 simplified affine iv. */
3164 init
= fold_convert (type
, init
);
3165 step
= fold_convert (type
, step
);
3166 ev
= build_polynomial_chrec (CHREC_VARIABLE (inner_ev
), init
, step
);
3167 if (tree_int_cst_sign_bit (step
))
3169 tree bound
= lower_bound_in_type (inner_type
, inner_type
);
3170 delta
= fold_build2 (MINUS_EXPR
, type
, init
, fold_convert (type
, bound
));
3171 step
= fold_build1 (NEGATE_EXPR
, type
, step
);
3175 tree bound
= upper_bound_in_type (inner_type
, inner_type
);
3176 delta
= fold_build2 (MINUS_EXPR
, type
, fold_convert (type
, bound
), init
);
3178 *niters
= fold_build2 (FLOOR_DIV_EXPR
, type
, delta
, step
);
3182 /* Checks whether use of OP in USE_LOOP behaves as a simple affine iv with
3183 respect to WRTO_LOOP and returns its base and step in IV if possible
3184 (see analyze_scalar_evolution_in_loop for more details on USE_LOOP
3185 and WRTO_LOOP). If ALLOW_NONCONSTANT_STEP is true, we want step to be
3186 invariant in LOOP. Otherwise we require it to be an integer constant.
3188 IV->no_overflow is set to true if we are sure the iv cannot overflow (e.g.
3189 because it is computed in signed arithmetics). Consequently, adding an
3192 for (i = IV->base; ; i += IV->step)
3194 is only safe if IV->no_overflow is false, or TYPE_OVERFLOW_UNDEFINED is
3195 false for the type of the induction variable, or you can prove that i does
3196 not wrap by some other argument. Otherwise, this might introduce undefined
3200 for (; ; i = (type) ((unsigned type) i + (unsigned type) iv->step))
3202 must be used instead.
3204 When IV_NITERS is not NULL, this function also checks case in which OP
3205 is a conversion of an inner simple iv of below form:
3207 (outer_type){inner_base, inner_step}_loop.
3209 If type of inner iv has smaller precision than outer_type, it can't be
3210 folded into {(outer_type)inner_base, (outer_type)inner_step}_loop because
3211 the inner iv could overflow/wrap. In this case, we derive a condition
3212 under which the inner iv won't overflow/wrap and do the simplification.
3213 The derived condition normally is the maximum number the inner iv can
3214 iterate, and will be stored in IV_NITERS. This is useful in loop niter
3215 analysis, to derive break conditions when a loop must terminate, when is
3219 simple_iv_with_niters (class loop
*wrto_loop
, class loop
*use_loop
,
3220 tree op
, affine_iv
*iv
, tree
*iv_niters
,
3221 bool allow_nonconstant_step
)
3223 enum tree_code code
;
3224 tree type
, ev
, base
, e
;
3228 iv
->base
= NULL_TREE
;
3229 iv
->step
= NULL_TREE
;
3230 iv
->no_overflow
= false;
3232 type
= TREE_TYPE (op
);
3233 if (!POINTER_TYPE_P (type
)
3234 && !INTEGRAL_TYPE_P (type
))
3237 ev
= analyze_scalar_evolution_in_loop (wrto_loop
, use_loop
, op
,
3239 if (chrec_contains_undetermined (ev
)
3240 || chrec_contains_symbols_defined_in_loop (ev
, wrto_loop
->num
))
3243 if (tree_does_not_contain_chrecs (ev
))
3246 tree ev_type
= TREE_TYPE (ev
);
3247 if (POINTER_TYPE_P (ev_type
))
3250 iv
->step
= build_int_cst (ev_type
, 0);
3251 iv
->no_overflow
= true;
3255 /* If we can derive valid scalar evolution with assumptions. */
3256 if (iv_niters
&& TREE_CODE (ev
) != POLYNOMIAL_CHREC
)
3257 ev
= derive_simple_iv_with_niters (ev
, iv_niters
);
3259 if (TREE_CODE (ev
) != POLYNOMIAL_CHREC
)
3262 if (CHREC_VARIABLE (ev
) != (unsigned) wrto_loop
->num
)
3265 iv
->step
= CHREC_RIGHT (ev
);
3266 if ((!allow_nonconstant_step
&& TREE_CODE (iv
->step
) != INTEGER_CST
)
3267 || tree_contains_chrecs (iv
->step
, NULL
))
3270 iv
->base
= CHREC_LEFT (ev
);
3271 if (tree_contains_chrecs (iv
->base
, NULL
))
3274 iv
->no_overflow
= !folded_casts
&& nowrap_type_p (type
);
3276 if (!iv
->no_overflow
3277 && !iv_can_overflow_p (wrto_loop
, type
, iv
->base
, iv
->step
))
3278 iv
->no_overflow
= true;
3280 /* Try to simplify iv base:
3282 (signed T) ((unsigned T)base + step) ;; TREE_TYPE (base) == signed T
3283 == (signed T)(unsigned T)base + step
3286 If we can prove operation (base + step) doesn't overflow or underflow.
3287 Specifically, we try to prove below conditions are satisfied:
3289 base <= UPPER_BOUND (type) - step ;;step > 0
3290 base >= LOWER_BOUND (type) - step ;;step < 0
3292 This is done by proving the reverse conditions are false using loop's
3295 The is necessary to make loop niter, or iv overflow analysis easier
3298 int foo (int *a, signed char s, signed char l)
3301 for (i = s; i < l; i++)
3306 Note variable I is firstly converted to type unsigned char, incremented,
3307 then converted back to type signed char. */
3309 if (wrto_loop
->num
!= use_loop
->num
)
3312 if (!CONVERT_EXPR_P (iv
->base
) || TREE_CODE (iv
->step
) != INTEGER_CST
)
3315 type
= TREE_TYPE (iv
->base
);
3316 e
= TREE_OPERAND (iv
->base
, 0);
3317 if (!tree_nop_conversion_p (type
, TREE_TYPE (e
))
3318 || TREE_CODE (e
) != PLUS_EXPR
3319 || TREE_CODE (TREE_OPERAND (e
, 1)) != INTEGER_CST
3320 || !tree_int_cst_equal (iv
->step
,
3321 fold_convert (type
, TREE_OPERAND (e
, 1))))
3323 e
= TREE_OPERAND (e
, 0);
3324 if (!CONVERT_EXPR_P (e
))
3326 base
= TREE_OPERAND (e
, 0);
3327 if (!useless_type_conversion_p (type
, TREE_TYPE (base
)))
3330 if (tree_int_cst_sign_bit (iv
->step
))
3333 extreme
= wi::min_value (type
);
3338 extreme
= wi::max_value (type
);
3340 wi::overflow_type overflow
= wi::OVF_NONE
;
3341 extreme
= wi::sub (extreme
, wi::to_wide (iv
->step
),
3342 TYPE_SIGN (type
), &overflow
);
3345 e
= fold_build2 (code
, boolean_type_node
, base
,
3346 wide_int_to_tree (type
, extreme
));
3347 e
= simplify_using_initial_conditions (use_loop
, e
);
3348 if (!integer_zerop (e
))
3351 if (POINTER_TYPE_P (TREE_TYPE (base
)))
3352 code
= POINTER_PLUS_EXPR
;
3356 iv
->base
= fold_build2 (code
, TREE_TYPE (base
), base
, iv
->step
);
3360 /* Like simple_iv_with_niters, but return TRUE when OP behaves as a simple
3361 affine iv unconditionally. */
3364 simple_iv (class loop
*wrto_loop
, class loop
*use_loop
, tree op
,
3365 affine_iv
*iv
, bool allow_nonconstant_step
)
3367 return simple_iv_with_niters (wrto_loop
, use_loop
, op
, iv
,
3368 NULL
, allow_nonconstant_step
);
3371 /* Finalize the scalar evolution analysis. */
3374 scev_finalize (void)
3376 if (!scalar_evolution_info
)
3378 scalar_evolution_info
->empty ();
3379 scalar_evolution_info
= NULL
;
3380 free_numbers_of_iterations_estimates (cfun
);
3383 /* Returns true if the expression EXPR is considered to be too expensive
3384 for scev_const_prop. Sets *COND_OVERFLOW_P to true when the
3385 expression might contain a sub-expression that is subject to undefined
3386 overflow behavior and conditionally evaluated. */
3389 expression_expensive_p (tree expr
, bool *cond_overflow_p
,
3390 hash_map
<tree
, uint64_t> &cache
, uint64_t &cost
)
3392 enum tree_code code
;
3394 if (is_gimple_val (expr
))
3397 code
= TREE_CODE (expr
);
3398 if (code
== TRUNC_DIV_EXPR
3399 || code
== CEIL_DIV_EXPR
3400 || code
== FLOOR_DIV_EXPR
3401 || code
== ROUND_DIV_EXPR
3402 || code
== TRUNC_MOD_EXPR
3403 || code
== CEIL_MOD_EXPR
3404 || code
== FLOOR_MOD_EXPR
3405 || code
== ROUND_MOD_EXPR
3406 || code
== EXACT_DIV_EXPR
)
3408 /* Division by power of two is usually cheap, so we allow it.
3409 Forbid anything else. */
3410 if (!integer_pow2p (TREE_OPERAND (expr
, 1)))
3415 uint64_t &local_cost
= cache
.get_or_insert (expr
, &visited_p
);
3418 uint64_t tem
= cost
+ local_cost
;
3426 uint64_t op_cost
= 0;
3427 if (code
== CALL_EXPR
)
3430 call_expr_arg_iterator iter
;
3431 /* Even though is_inexpensive_builtin might say true, we will get a
3432 library call for popcount when backend does not have an instruction
3433 to do so. We consider this to be expensive and generate
3434 __builtin_popcount only when backend defines it. */
3436 combined_fn cfn
= get_call_combined_fn (expr
);
3440 optab
= popcount_optab
;
3448 /* Check if opcode for popcount is available in the mode required. */
3449 if (optab_handler (optab
,
3450 TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (expr
, 0))))
3451 == CODE_FOR_nothing
)
3454 mode
= TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (expr
, 0)));
3455 scalar_int_mode int_mode
;
3457 /* If the mode is of 2 * UNITS_PER_WORD size, we can handle
3458 double-word popcount by emitting two single-word popcount
3460 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
3461 && GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
3462 && (optab_handler (optab
, word_mode
)
3463 != CODE_FOR_nothing
))
3465 /* If popcount is available for a wider mode, we emulate the
3466 operation for a narrow mode by first zero-extending the value
3467 and then computing popcount in the wider mode. Analogue for
3468 ctz. For clz we do the same except that we additionally have
3469 to subtract the difference of the mode precisions from the
3471 if (is_a
<scalar_int_mode
> (mode
, &int_mode
))
3473 machine_mode wider_mode_iter
;
3474 FOR_EACH_WIDER_MODE (wider_mode_iter
, mode
)
3475 if (optab_handler (optab
, wider_mode_iter
)
3476 != CODE_FOR_nothing
)
3477 goto check_call_args
;
3478 /* Operation ctz may be emulated via clz in expand_ctz. */
3479 if (optab
== ctz_optab
)
3481 FOR_EACH_WIDER_MODE_FROM (wider_mode_iter
, mode
)
3482 if (optab_handler (clz_optab
, wider_mode_iter
)
3483 != CODE_FOR_nothing
)
3484 goto check_call_args
;
3493 || !is_inexpensive_builtin (get_callee_fndecl (expr
)))
3499 FOR_EACH_CALL_EXPR_ARG (arg
, iter
, expr
)
3500 if (expression_expensive_p (arg
, cond_overflow_p
, cache
, op_cost
))
3502 *cache
.get (expr
) += op_cost
;
3503 cost
+= op_cost
+ 1;
3507 if (code
== COND_EXPR
)
3509 if (expression_expensive_p (TREE_OPERAND (expr
, 0), cond_overflow_p
,
3511 || (EXPR_P (TREE_OPERAND (expr
, 1))
3512 && EXPR_P (TREE_OPERAND (expr
, 2)))
3513 /* If either branch has side effects or could trap. */
3514 || TREE_SIDE_EFFECTS (TREE_OPERAND (expr
, 1))
3515 || generic_expr_could_trap_p (TREE_OPERAND (expr
, 1))
3516 || TREE_SIDE_EFFECTS (TREE_OPERAND (expr
, 0))
3517 || generic_expr_could_trap_p (TREE_OPERAND (expr
, 0))
3518 || expression_expensive_p (TREE_OPERAND (expr
, 1), cond_overflow_p
,
3520 || expression_expensive_p (TREE_OPERAND (expr
, 2), cond_overflow_p
,
3523 /* Conservatively assume there's overflow for now. */
3524 *cond_overflow_p
= true;
3525 *cache
.get (expr
) += op_cost
;
3526 cost
+= op_cost
+ 1;
3530 switch (TREE_CODE_CLASS (code
))
3533 case tcc_comparison
:
3534 if (expression_expensive_p (TREE_OPERAND (expr
, 1), cond_overflow_p
,
3540 if (expression_expensive_p (TREE_OPERAND (expr
, 0), cond_overflow_p
,
3543 *cache
.get (expr
) += op_cost
;
3544 cost
+= op_cost
+ 1;
3553 expression_expensive_p (tree expr
, bool *cond_overflow_p
)
3555 hash_map
<tree
, uint64_t> cache
;
3556 uint64_t expanded_size
= 0;
3557 *cond_overflow_p
= false;
3558 return (expression_expensive_p (expr
, cond_overflow_p
, cache
, expanded_size
)
3559 /* ??? Both the explicit unsharing and gimplification of expr will
3560 expand shared trees to multiple copies.
3561 Guard against exponential growth by counting the visits and
3562 comparing againt the number of original nodes. Allow a tiny
3563 bit of duplication to catch some additional optimizations. */
3564 || expanded_size
> (cache
.elements () + 1));
3567 /* Match.pd function to match bitwise inductive expression.
3571 tmp_9 = _3 & tmp_12; */
3572 extern bool gimple_bitwise_induction_p (tree
, tree
*, tree (*)(tree
));
3574 /* Return the inductive expression of bitwise operation if possible,
3575 otherwise returns DEF. */
3577 analyze_and_compute_bitwise_induction_effect (class loop
* loop
,
3579 unsigned HOST_WIDE_INT niter
)
3581 tree match_op
[3],inv
, bitwise_scev
;
3582 tree type
= TREE_TYPE (phidef
);
3583 gphi
* header_phi
= NULL
;
3585 /* Match things like op2(MATCH_OP[2]), op1(MATCH_OP[1]), phidef(PHIDEF)
3587 op2 = PHI <phidef, inv>
3591 phidef = op1 & op2; */
3592 if (!gimple_bitwise_induction_p (phidef
, &match_op
[0], NULL
)
3593 || TREE_CODE (match_op
[2]) != SSA_NAME
3594 || !(header_phi
= dyn_cast
<gphi
*> (SSA_NAME_DEF_STMT (match_op
[2])))
3595 || gimple_bb (header_phi
) != loop
->header
3596 || gimple_phi_num_args (header_phi
) != 2)
3599 if (PHI_ARG_DEF_FROM_EDGE (header_phi
, loop_latch_edge (loop
)) != phidef
)
3602 bitwise_scev
= analyze_scalar_evolution (loop
, match_op
[1]);
3603 bitwise_scev
= instantiate_parameters (loop
, bitwise_scev
);
3605 /* Make sure bits is in range of type precision. */
3606 if (TREE_CODE (bitwise_scev
) != POLYNOMIAL_CHREC
3607 || !INTEGRAL_TYPE_P (TREE_TYPE (bitwise_scev
))
3608 || !tree_fits_uhwi_p (CHREC_LEFT (bitwise_scev
))
3609 || tree_to_uhwi (CHREC_LEFT (bitwise_scev
)) >= TYPE_PRECISION (type
)
3610 || !tree_fits_shwi_p (CHREC_RIGHT (bitwise_scev
)))
3615 INDUCTION_BIT_CLEAR
,
3618 INDUCTION_BIT_RESET
,
3623 enum bit_op_kind induction_kind
;
3624 enum tree_code code1
3625 = gimple_assign_rhs_code (SSA_NAME_DEF_STMT (phidef
));
3626 enum tree_code code2
3627 = gimple_assign_rhs_code (SSA_NAME_DEF_STMT (match_op
[0]));
3629 /* BIT_CLEAR: A &= ~(1 << bit)
3630 BIT_RESET: A ^= (1 << bit).
3631 BIT_IOR: A |= (1 << bit)
3632 BIT_ZERO: A &= (1 << bit)
3633 BIT_ALL: A |= ~(1 << bit)
3634 BIT_XOR: A ^= ~(1 << bit).
3635 bit is induction variable. */
3639 induction_kind
= code2
== BIT_NOT_EXPR
3640 ? INDUCTION_BIT_CLEAR
3644 induction_kind
= code2
== BIT_NOT_EXPR
3646 : INDUCTION_BIT_IOR
;
3649 induction_kind
= code2
== BIT_NOT_EXPR
3651 : INDUCTION_BIT_RESET
;
3653 /* A ^ ~(1 << bit) is equal to ~(A ^ (1 << bit)). */
3655 gcc_assert (code2
== BIT_XOR_EXPR
);
3656 induction_kind
= INDUCTION_BIT_XOR
;
3662 if (induction_kind
== INDUCTION_ZERO
)
3663 return build_zero_cst (type
);
3664 if (induction_kind
== INDUCTION_ALL
)
3665 return build_all_ones_cst (type
);
3667 wide_int bits
= wi::zero (TYPE_PRECISION (type
));
3668 HOST_WIDE_INT bit_start
= tree_to_shwi (CHREC_LEFT (bitwise_scev
));
3669 HOST_WIDE_INT step
= tree_to_shwi (CHREC_RIGHT (bitwise_scev
));
3670 HOST_WIDE_INT bit_final
= bit_start
+ step
* niter
;
3672 /* bit_start, bit_final in range of [0,TYPE_PRECISION)
3673 implies all bits are set in range. */
3674 if (bit_final
>= TYPE_PRECISION (type
)
3678 /* Loop tripcount should be niter + 1. */
3679 for (unsigned i
= 0; i
!= niter
+ 1; i
++)
3681 bits
= wi::set_bit (bits
, bit_start
);
3685 bool inverted
= false;
3686 switch (induction_kind
)
3688 case INDUCTION_BIT_CLEAR
:
3689 code1
= BIT_AND_EXPR
;
3692 case INDUCTION_BIT_IOR
:
3693 code1
= BIT_IOR_EXPR
;
3695 case INDUCTION_BIT_RESET
:
3696 code1
= BIT_XOR_EXPR
;
3698 /* A ^= ~(1 << bit) is special, when loop tripcount is even,
3699 it's equal to A ^= bits, else A ^= ~bits. */
3700 case INDUCTION_BIT_XOR
:
3701 code1
= BIT_XOR_EXPR
;
3710 bits
= wi::bit_not (bits
);
3712 inv
= PHI_ARG_DEF_FROM_EDGE (header_phi
, loop_preheader_edge (loop
));
3713 return fold_build2 (code1
, type
, inv
, wide_int_to_tree (type
, bits
));
3716 /* Match.pd function to match bitop with invariant expression
3719 extern bool gimple_bitop_with_inv_p (tree
, tree
*, tree (*)(tree
));
3721 /* Return the inductive expression of bitop with invariant if possible,
3722 otherwise returns DEF. */
3724 analyze_and_compute_bitop_with_inv_effect (class loop
* loop
, tree phidef
,
3727 tree match_op
[2],inv
;
3728 tree type
= TREE_TYPE (phidef
);
3729 gphi
* header_phi
= NULL
;
3730 enum tree_code code
;
3731 /* match thing like op0 (match[0]), op1 (match[1]), phidef (PHIDEF)
3733 op1 = PHI <phidef, inv>
3735 if op0 is an invariant, it could change to
3736 phidef = op0 & inv. */
3738 def
= SSA_NAME_DEF_STMT (phidef
);
3739 if (!(is_gimple_assign (def
)
3740 && ((code
= gimple_assign_rhs_code (def
)), true)
3741 && (code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
3742 || code
== BIT_XOR_EXPR
)))
3745 match_op
[0] = gimple_assign_rhs1 (def
);
3746 match_op
[1] = gimple_assign_rhs2 (def
);
3748 if (expr_invariant_in_loop_p (loop
, match_op
[1]))
3749 std::swap (match_op
[0], match_op
[1]);
3751 if (TREE_CODE (match_op
[1]) != SSA_NAME
3752 || !expr_invariant_in_loop_p (loop
, match_op
[0])
3753 || !(header_phi
= dyn_cast
<gphi
*> (SSA_NAME_DEF_STMT (match_op
[1])))
3754 || gimple_bb (header_phi
) != loop
->header
3755 || gimple_phi_num_args (header_phi
) != 2)
3758 if (PHI_ARG_DEF_FROM_EDGE (header_phi
, loop_latch_edge (loop
)) != phidef
)
3761 enum tree_code code1
3762 = gimple_assign_rhs_code (def
);
3764 if (code1
== BIT_XOR_EXPR
)
3766 if (!tree_fits_uhwi_p (niter
))
3768 unsigned HOST_WIDE_INT niter_num
;
3769 niter_num
= tree_to_uhwi (niter
);
3770 if (niter_num
% 2 != 0)
3771 match_op
[0] = build_zero_cst (type
);
3774 inv
= PHI_ARG_DEF_FROM_EDGE (header_phi
, loop_preheader_edge (loop
));
3775 return fold_build2 (code1
, type
, inv
, match_op
[0]);
3778 /* Do final value replacement for LOOP, return true if we did anything. */
3781 final_value_replacement_loop (class loop
*loop
)
3783 /* If we do not know exact number of iterations of the loop, we cannot
3784 replace the final value. */
3785 edge exit
= single_exit (loop
);
3789 tree niter
= number_of_latch_executions (loop
);
3790 if (niter
== chrec_dont_know
)
3793 /* Ensure that it is possible to insert new statements somewhere. */
3794 if (!single_pred_p (exit
->dest
))
3795 split_loop_exit_edge (exit
);
3797 /* Set stmt insertion pointer. All stmts are inserted before this point. */
3800 = superloop_at_depth (loop
,
3801 loop_depth (exit
->dest
->loop_father
) + 1);
3805 for (psi
= gsi_start_phis (exit
->dest
); !gsi_end_p (psi
); )
3807 gphi
*phi
= psi
.phi ();
3808 tree rslt
= PHI_RESULT (phi
);
3809 tree phidef
= PHI_ARG_DEF_FROM_EDGE (phi
, exit
);
3811 if (virtual_operand_p (def
))
3817 if (!POINTER_TYPE_P (TREE_TYPE (def
))
3818 && !INTEGRAL_TYPE_P (TREE_TYPE (def
)))
3825 def
= analyze_scalar_evolution_in_loop (ex_loop
, loop
, def
,
3828 tree bitinv_def
, bit_def
;
3829 unsigned HOST_WIDE_INT niter_num
;
3831 if (def
!= chrec_dont_know
)
3832 def
= compute_overall_effect_of_inner_loop (ex_loop
, def
);
3834 /* Handle bitop with invariant induction expression.
3837 for (int i =0 ;i < 32; i++)
3839 if bit2 is an invariant in loop which could simple to
3841 else if ((bitinv_def
3842 = analyze_and_compute_bitop_with_inv_effect (loop
,
3846 /* Handle bitwise induction expression.
3849 for (int i = 0; i != 64; i+=3)
3852 RES can't be analyzed out by SCEV because it is not polynomially
3853 expressible, but in fact final value of RES can be replaced by
3854 RES & CONSTANT where CONSTANT all ones with bit {0,3,6,9,... ,63}
3855 being cleared, similar for BIT_IOR_EXPR/BIT_XOR_EXPR. */
3856 else if (tree_fits_uhwi_p (niter
)
3857 && (niter_num
= tree_to_uhwi (niter
)) != 0
3858 && niter_num
< TYPE_PRECISION (TREE_TYPE (phidef
))
3860 = analyze_and_compute_bitwise_induction_effect (loop
,
3865 bool cond_overflow_p
;
3866 if (!tree_does_not_contain_chrecs (def
)
3867 || chrec_contains_symbols_defined_in_loop (def
, ex_loop
->num
)
3868 /* Moving the computation from the loop may prolong life range
3869 of some ssa names, which may cause problems if they appear
3870 on abnormal edges. */
3871 || contains_abnormal_ssa_name_p (def
)
3872 /* Do not emit expensive expressions. The rationale is that
3873 when someone writes a code like
3875 while (n > 45) n -= 45;
3877 he probably knows that n is not large, and does not want it
3878 to be turned into n %= 45. */
3879 || expression_expensive_p (def
, &cond_overflow_p
))
3881 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3883 fprintf (dump_file
, "not replacing:\n ");
3884 print_gimple_stmt (dump_file
, phi
, 0);
3885 fprintf (dump_file
, "\n");
3891 /* Eliminate the PHI node and replace it by a computation outside
3895 fprintf (dump_file
, "\nfinal value replacement:\n ");
3896 print_gimple_stmt (dump_file
, phi
, 0);
3897 fprintf (dump_file
, " with expr: ");
3898 print_generic_expr (dump_file
, def
);
3899 fprintf (dump_file
, "\n");
3902 /* ??? Here we'd like to have a unshare_expr that would assign
3903 shared sub-trees to new temporary variables either gimplified
3904 to a GIMPLE sequence or to a statement list (keeping this a
3905 GENERIC interface). */
3906 def
= unshare_expr (def
);
3907 auto loc
= gimple_phi_arg_location (phi
, exit
->dest_idx
);
3908 remove_phi_node (&psi
, false);
3910 /* Propagate constants immediately, but leave an unused initialization
3911 around to avoid invalidating the SCEV cache. */
3912 if (CONSTANT_CLASS_P (def
) && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rslt
))
3913 replace_uses_by (rslt
, def
);
3915 /* Create the replacement statements. */
3917 def
= force_gimple_operand (def
, &stmts
, false, NULL_TREE
);
3918 gassign
*ass
= gimple_build_assign (rslt
, def
);
3919 gimple_set_location (ass
, loc
);
3920 gimple_seq_add_stmt (&stmts
, ass
);
3922 /* If def's type has undefined overflow and there were folded
3923 casts, rewrite all stmts added for def into arithmetics
3924 with defined overflow behavior. */
3926 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (def
))
3927 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (def
)))
3930 gimple_stmt_iterator gsi2
;
3931 gsi2
= gsi_start (stmts
);
3932 while (!gsi_end_p (gsi2
))
3934 gimple
*stmt
= gsi_stmt (gsi2
);
3935 if (is_gimple_assign (stmt
)
3936 && arith_code_with_undefined_signed_overflow
3937 (gimple_assign_rhs_code (stmt
)))
3938 rewrite_to_defined_overflow (&gsi2
);
3942 gimple_stmt_iterator gsi
= gsi_after_labels (exit
->dest
);
3943 gsi_insert_seq_before (&gsi
, stmts
, GSI_SAME_STMT
);
3946 fprintf (dump_file
, " final stmt:\n ");
3947 print_gimple_stmt (dump_file
, SSA_NAME_DEF_STMT (rslt
), 0);
3948 fprintf (dump_file
, "\n");
3955 #include "gt-tree-scalar-evolution.h"