1 /* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004-2024 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
27 #include "tree-pass.h"
29 #include "gimple-pretty-print.h"
30 #include "diagnostic-core.h"
31 #include "stor-layout.h"
32 #include "fold-const.h"
36 #include "gimple-iterator.h"
38 #include "tree-ssa-loop-ivopts.h"
39 #include "tree-ssa-loop-niter.h"
40 #include "tree-ssa-loop.h"
42 #include "tree-chrec.h"
43 #include "tree-scalar-evolution.h"
45 #include "internal-fn.h"
46 #include "gimple-range.h"
50 /* The maximum number of dominator BBs we search for conditions
51 of loop header copies we use for simplifying a conditional
53 #define MAX_DOMINATORS_TO_WALK 8
57 Analysis of number of iterations of an affine exit test.
61 /* Bounds on some value, BELOW <= X <= UP. */
68 /* Splits expression EXPR to a variable part VAR and constant OFFSET. */
71 split_to_var_and_offset (tree expr
, tree
*var
, mpz_t offset
)
73 tree type
= TREE_TYPE (expr
);
78 mpz_set_ui (offset
, 0);
80 switch (TREE_CODE (expr
))
87 case POINTER_PLUS_EXPR
:
88 op0
= TREE_OPERAND (expr
, 0);
89 op1
= TREE_OPERAND (expr
, 1);
91 if (TREE_CODE (op1
) != INTEGER_CST
)
95 /* Always sign extend the offset. */
96 wi::to_mpz (wi::to_wide (op1
), offset
, SIGNED
);
98 mpz_neg (offset
, offset
);
102 *var
= build_int_cst_type (type
, 0);
103 wi::to_mpz (wi::to_wide (expr
), offset
, TYPE_SIGN (type
));
111 /* From condition C0 CMP C1 derives information regarding the value range
112 of VAR, which is of TYPE. Results are stored in to BELOW and UP. */
115 refine_value_range_using_guard (tree type
, tree var
,
116 tree c0
, enum tree_code cmp
, tree c1
,
117 mpz_t below
, mpz_t up
)
119 tree varc0
, varc1
, ctype
;
121 mpz_t mint
, maxt
, minc1
, maxc1
;
122 bool no_wrap
= nowrap_type_p (type
);
124 signop sgn
= TYPE_SIGN (type
);
132 STRIP_SIGN_NOPS (c0
);
133 STRIP_SIGN_NOPS (c1
);
134 ctype
= TREE_TYPE (c0
);
135 if (!useless_type_conversion_p (ctype
, type
))
141 /* We could derive quite precise information from EQ_EXPR, however,
142 such a guard is unlikely to appear, so we do not bother with
147 /* NE_EXPR comparisons do not contain much of useful information,
148 except for cases of comparing with bounds. */
149 if (TREE_CODE (c1
) != INTEGER_CST
150 || !INTEGRAL_TYPE_P (type
))
153 /* Ensure that the condition speaks about an expression in the same
155 ctype
= TREE_TYPE (c0
);
156 if (TYPE_PRECISION (ctype
) != TYPE_PRECISION (type
))
158 c0
= fold_convert (type
, c0
);
159 c1
= fold_convert (type
, c1
);
161 if (operand_equal_p (var
, c0
, 0))
163 /* Case of comparing VAR with its below/up bounds. */
165 wi::to_mpz (wi::to_wide (c1
), valc1
, TYPE_SIGN (type
));
166 if (mpz_cmp (valc1
, below
) == 0)
168 if (mpz_cmp (valc1
, up
) == 0)
173 /* Case of comparing with the bounds of the type. */
174 wide_int min
= wi::min_value (type
);
175 wide_int max
= wi::max_value (type
);
177 if (wi::to_wide (c1
) == min
)
179 if (wi::to_wide (c1
) == max
)
183 /* Quick return if no useful information. */
195 split_to_var_and_offset (expand_simple_operations (c0
), &varc0
, offc0
);
196 split_to_var_and_offset (expand_simple_operations (c1
), &varc1
, offc1
);
198 /* We are only interested in comparisons of expressions based on VAR. */
199 if (operand_equal_p (var
, varc1
, 0))
201 std::swap (varc0
, varc1
);
202 mpz_swap (offc0
, offc1
);
203 cmp
= swap_tree_comparison (cmp
);
205 else if (!operand_equal_p (var
, varc0
, 0))
214 get_type_static_bounds (type
, mint
, maxt
);
217 int_range_max
r (TREE_TYPE (varc1
));
218 /* Setup range information for varc1. */
219 if (integer_zerop (varc1
))
221 wi::to_mpz (0, minc1
, TYPE_SIGN (type
));
222 wi::to_mpz (0, maxc1
, TYPE_SIGN (type
));
224 else if (TREE_CODE (varc1
) == SSA_NAME
225 && INTEGRAL_TYPE_P (type
)
226 && get_range_query (cfun
)->range_of_expr (r
, varc1
)
230 gcc_assert (wi::le_p (r
.lower_bound (), r
.upper_bound (), sgn
));
231 wi::to_mpz (r
.lower_bound (), minc1
, sgn
);
232 wi::to_mpz (r
.upper_bound (), maxc1
, sgn
);
236 mpz_set (minc1
, mint
);
237 mpz_set (maxc1
, maxt
);
240 /* Compute valid range information for varc1 + offc1. Note nothing
241 useful can be derived if it overflows or underflows. Overflow or
242 underflow could happen when:
244 offc1 > 0 && varc1 + offc1 > MAX_VAL (type)
245 offc1 < 0 && varc1 + offc1 < MIN_VAL (type). */
246 mpz_add (minc1
, minc1
, offc1
);
247 mpz_add (maxc1
, maxc1
, offc1
);
249 || mpz_sgn (offc1
) == 0
250 || (mpz_sgn (offc1
) < 0 && mpz_cmp (minc1
, mint
) >= 0)
251 || (mpz_sgn (offc1
) > 0 && mpz_cmp (maxc1
, maxt
) <= 0));
255 if (mpz_cmp (minc1
, mint
) < 0)
256 mpz_set (minc1
, mint
);
257 if (mpz_cmp (maxc1
, maxt
) > 0)
258 mpz_set (maxc1
, maxt
);
263 mpz_sub_ui (maxc1
, maxc1
, 1);
268 mpz_add_ui (minc1
, minc1
, 1);
271 /* Compute range information for varc0. If there is no overflow,
272 the condition implied that
274 (varc0) cmp (varc1 + offc1 - offc0)
276 We can possibly improve the upper bound of varc0 if cmp is LE_EXPR,
277 or the below bound if cmp is GE_EXPR.
279 To prove there is no overflow/underflow, we need to check below
281 1) cmp == LE_EXPR && offc0 > 0
283 (varc0 + offc0) doesn't overflow
284 && (varc1 + offc1 - offc0) doesn't underflow
286 2) cmp == LE_EXPR && offc0 < 0
288 (varc0 + offc0) doesn't underflow
289 && (varc1 + offc1 - offc0) doesn't overfloe
291 In this case, (varc0 + offc0) will never underflow if we can
292 prove (varc1 + offc1 - offc0) doesn't overflow.
294 3) cmp == GE_EXPR && offc0 < 0
296 (varc0 + offc0) doesn't underflow
297 && (varc1 + offc1 - offc0) doesn't overflow
299 4) cmp == GE_EXPR && offc0 > 0
301 (varc0 + offc0) doesn't overflow
302 && (varc1 + offc1 - offc0) doesn't underflow
304 In this case, (varc0 + offc0) will never overflow if we can
305 prove (varc1 + offc1 - offc0) doesn't underflow.
307 Note we only handle case 2 and 4 in below code. */
309 mpz_sub (minc1
, minc1
, offc0
);
310 mpz_sub (maxc1
, maxc1
, offc0
);
312 || mpz_sgn (offc0
) == 0
314 && mpz_sgn (offc0
) < 0 && mpz_cmp (maxc1
, maxt
) <= 0)
316 && mpz_sgn (offc0
) > 0 && mpz_cmp (minc1
, mint
) >= 0));
322 if (mpz_cmp (up
, maxc1
) > 0)
327 if (mpz_cmp (below
, minc1
) < 0)
328 mpz_set (below
, minc1
);
340 /* Stores estimate on the minimum/maximum value of the expression VAR + OFF
341 in TYPE to MIN and MAX. */
344 determine_value_range (class loop
*loop
, tree type
, tree var
, mpz_t off
,
345 mpz_t min
, mpz_t max
)
351 enum value_range_kind rtype
= VR_VARYING
;
353 /* If the expression is a constant, we know its value exactly. */
354 if (integer_zerop (var
))
361 get_type_static_bounds (type
, min
, max
);
363 /* See if we have some range info from VRP. */
364 if (TREE_CODE (var
) == SSA_NAME
&& INTEGRAL_TYPE_P (type
))
366 edge e
= loop_preheader_edge (loop
);
367 signop sgn
= TYPE_SIGN (type
);
370 /* Either for VAR itself... */
371 int_range_max
var_range (TREE_TYPE (var
));
372 get_range_query (cfun
)->range_of_expr (var_range
, var
);
373 if (var_range
.varying_p () || var_range
.undefined_p ())
377 if (!var_range
.undefined_p ())
379 minv
= var_range
.lower_bound ();
380 maxv
= var_range
.upper_bound ();
383 /* Or for PHI results in loop->header where VAR is used as
384 PHI argument from the loop preheader edge. */
385 int_range_max
phi_range (TREE_TYPE (var
));
386 for (gsi
= gsi_start_phis (loop
->header
); !gsi_end_p (gsi
); gsi_next (&gsi
))
388 gphi
*phi
= gsi
.phi ();
389 if (PHI_ARG_DEF_FROM_EDGE (phi
, e
) == var
390 && get_range_query (cfun
)->range_of_expr (phi_range
,
391 gimple_phi_result (phi
))
392 && !phi_range
.varying_p ()
393 && !phi_range
.undefined_p ())
395 if (rtype
!= VR_RANGE
)
398 minv
= phi_range
.lower_bound ();
399 maxv
= phi_range
.upper_bound ();
403 minv
= wi::max (minv
, phi_range
.lower_bound (), sgn
);
404 maxv
= wi::min (maxv
, phi_range
.upper_bound (), sgn
);
405 /* If the PHI result range are inconsistent with
406 the VAR range, give up on looking at the PHI
407 results. This can happen if VR_UNDEFINED is
409 if (wi::gt_p (minv
, maxv
, sgn
))
411 int_range_max
vr (TREE_TYPE (var
));
412 get_range_query (cfun
)->range_of_expr (vr
, var
);
413 if (vr
.varying_p () || vr
.undefined_p ())
417 if (!vr
.undefined_p ())
419 minv
= vr
.lower_bound ();
420 maxv
= vr
.upper_bound ();
429 if (rtype
!= VR_RANGE
)
436 gcc_assert (wi::le_p (minv
, maxv
, sgn
));
437 wi::to_mpz (minv
, minm
, sgn
);
438 wi::to_mpz (maxv
, maxm
, sgn
);
440 /* Now walk the dominators of the loop header and use the entry
441 guards to refine the estimates. */
442 for (bb
= loop
->header
;
443 bb
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
) && cnt
< MAX_DOMINATORS_TO_WALK
;
444 bb
= get_immediate_dominator (CDI_DOMINATORS
, bb
))
450 if (!single_pred_p (bb
))
452 e
= single_pred_edge (bb
);
454 if (!(e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
457 gcond
*cond
= as_a
<gcond
*> (*gsi_last_bb (e
->src
));
458 c0
= gimple_cond_lhs (cond
);
459 cmp
= gimple_cond_code (cond
);
460 c1
= gimple_cond_rhs (cond
);
462 if (e
->flags
& EDGE_FALSE_VALUE
)
463 cmp
= invert_tree_comparison (cmp
, false);
465 refine_value_range_using_guard (type
, var
, c0
, cmp
, c1
, minm
, maxm
);
469 mpz_add (minm
, minm
, off
);
470 mpz_add (maxm
, maxm
, off
);
471 /* If the computation may not wrap or off is zero, then this
472 is always fine. If off is negative and minv + off isn't
473 smaller than type's minimum, or off is positive and
474 maxv + off isn't bigger than type's maximum, use the more
475 precise range too. */
476 if (nowrap_type_p (type
)
477 || mpz_sgn (off
) == 0
478 || (mpz_sgn (off
) < 0 && mpz_cmp (minm
, min
) >= 0)
479 || (mpz_sgn (off
) > 0 && mpz_cmp (maxm
, max
) <= 0))
491 /* If the computation may wrap, we know nothing about the value, except for
492 the range of the type. */
493 if (!nowrap_type_p (type
))
496 /* Since the addition of OFF does not wrap, if OFF is positive, then we may
497 add it to MIN, otherwise to MAX. */
498 if (mpz_sgn (off
) < 0)
499 mpz_add (max
, max
, off
);
501 mpz_add (min
, min
, off
);
504 /* Stores the bounds on the difference of the values of the expressions
505 (var + X) and (var + Y), computed in TYPE, to BNDS. */
508 bound_difference_of_offsetted_base (tree type
, mpz_t x
, mpz_t y
,
511 int rel
= mpz_cmp (x
, y
);
512 bool may_wrap
= !nowrap_type_p (type
);
514 /* If X == Y, then the expressions are always equal.
515 If X > Y, there are the following possibilities:
516 a) neither of var + X and var + Y overflow or underflow, or both of
517 them do. Then their difference is X - Y.
518 b) var + X overflows, and var + Y does not. Then the values of the
519 expressions are var + X - M and var + Y, where M is the range of
520 the type, and their difference is X - Y - M.
521 c) var + Y underflows and var + X does not. Their difference again
523 Therefore, if the arithmetics in type does not overflow, then the
524 bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
525 Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
526 (X - Y, X - Y + M). */
530 mpz_set_ui (bnds
->below
, 0);
531 mpz_set_ui (bnds
->up
, 0);
536 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type
)), m
, UNSIGNED
);
537 mpz_add_ui (m
, m
, 1);
538 mpz_sub (bnds
->up
, x
, y
);
539 mpz_set (bnds
->below
, bnds
->up
);
544 mpz_sub (bnds
->below
, bnds
->below
, m
);
546 mpz_add (bnds
->up
, bnds
->up
, m
);
550 /* From condition C0 CMP C1 derives information regarding the
551 difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
552 and stores it to BNDS. */
555 refine_bounds_using_guard (tree type
, tree varx
, mpz_t offx
,
556 tree vary
, mpz_t offy
,
557 tree c0
, enum tree_code cmp
, tree c1
,
560 tree varc0
, varc1
, ctype
;
561 mpz_t offc0
, offc1
, loffx
, loffy
, bnd
;
563 bool no_wrap
= nowrap_type_p (type
);
572 STRIP_SIGN_NOPS (c0
);
573 STRIP_SIGN_NOPS (c1
);
574 ctype
= TREE_TYPE (c0
);
575 if (!useless_type_conversion_p (ctype
, type
))
581 /* We could derive quite precise information from EQ_EXPR, however, such
582 a guard is unlikely to appear, so we do not bother with handling
587 /* NE_EXPR comparisons do not contain much of useful information, except for
588 special case of comparing with the bounds of the type. */
589 if (TREE_CODE (c1
) != INTEGER_CST
590 || !INTEGRAL_TYPE_P (type
))
593 /* Ensure that the condition speaks about an expression in the same type
595 ctype
= TREE_TYPE (c0
);
596 if (TYPE_PRECISION (ctype
) != TYPE_PRECISION (type
))
598 c0
= fold_convert (type
, c0
);
599 c1
= fold_convert (type
, c1
);
601 if (TYPE_MIN_VALUE (type
)
602 && operand_equal_p (c1
, TYPE_MIN_VALUE (type
), 0))
607 if (TYPE_MAX_VALUE (type
)
608 && operand_equal_p (c1
, TYPE_MAX_VALUE (type
), 0))
621 split_to_var_and_offset (expand_simple_operations (c0
), &varc0
, offc0
);
622 split_to_var_and_offset (expand_simple_operations (c1
), &varc1
, offc1
);
624 /* We are only interested in comparisons of expressions based on VARX and
625 VARY. TODO -- we might also be able to derive some bounds from
626 expressions containing just one of the variables. */
628 if (operand_equal_p (varx
, varc1
, 0))
630 std::swap (varc0
, varc1
);
631 mpz_swap (offc0
, offc1
);
632 cmp
= swap_tree_comparison (cmp
);
635 if (!operand_equal_p (varx
, varc0
, 0)
636 || !operand_equal_p (vary
, varc1
, 0))
639 mpz_init_set (loffx
, offx
);
640 mpz_init_set (loffy
, offy
);
642 if (cmp
== GT_EXPR
|| cmp
== GE_EXPR
)
644 std::swap (varx
, vary
);
645 mpz_swap (offc0
, offc1
);
646 mpz_swap (loffx
, loffy
);
647 cmp
= swap_tree_comparison (cmp
);
651 /* If there is no overflow, the condition implies that
653 (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
655 The overflows and underflows may complicate things a bit; each
656 overflow decreases the appropriate offset by M, and underflow
657 increases it by M. The above inequality would not necessarily be
660 -- VARX + OFFX underflows and VARX + OFFC0 does not, or
661 VARX + OFFC0 overflows, but VARX + OFFX does not.
662 This may only happen if OFFX < OFFC0.
663 -- VARY + OFFY overflows and VARY + OFFC1 does not, or
664 VARY + OFFC1 underflows and VARY + OFFY does not.
665 This may only happen if OFFY > OFFC1. */
674 x_ok
= (integer_zerop (varx
)
675 || mpz_cmp (loffx
, offc0
) >= 0);
676 y_ok
= (integer_zerop (vary
)
677 || mpz_cmp (loffy
, offc1
) <= 0);
683 mpz_sub (bnd
, loffx
, loffy
);
684 mpz_add (bnd
, bnd
, offc1
);
685 mpz_sub (bnd
, bnd
, offc0
);
688 mpz_sub_ui (bnd
, bnd
, 1);
693 if (mpz_cmp (bnds
->below
, bnd
) < 0)
694 mpz_set (bnds
->below
, bnd
);
698 if (mpz_cmp (bnd
, bnds
->up
) < 0)
699 mpz_set (bnds
->up
, bnd
);
711 /* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
712 The subtraction is considered to be performed in arbitrary precision,
715 We do not attempt to be too clever regarding the value ranges of X and
716 Y; most of the time, they are just integers or ssa names offsetted by
717 integer. However, we try to use the information contained in the
718 comparisons before the loop (usually created by loop header copying). */
721 bound_difference (class loop
*loop
, tree x
, tree y
, bounds
*bnds
)
723 tree type
= TREE_TYPE (x
);
732 /* Get rid of unnecessary casts, but preserve the value of
737 mpz_init (bnds
->below
);
741 split_to_var_and_offset (x
, &varx
, offx
);
742 split_to_var_and_offset (y
, &vary
, offy
);
744 if (!integer_zerop (varx
)
745 && operand_equal_p (varx
, vary
, 0))
747 /* Special case VARX == VARY -- we just need to compare the
748 offsets. The matters are a bit more complicated in the
749 case addition of offsets may wrap. */
750 bound_difference_of_offsetted_base (type
, offx
, offy
, bnds
);
754 /* Otherwise, use the value ranges to determine the initial
755 estimates on below and up. */
756 auto_mpz minx
, maxx
, miny
, maxy
;
757 determine_value_range (loop
, type
, varx
, offx
, minx
, maxx
);
758 determine_value_range (loop
, type
, vary
, offy
, miny
, maxy
);
760 mpz_sub (bnds
->below
, minx
, maxy
);
761 mpz_sub (bnds
->up
, maxx
, miny
);
764 /* If both X and Y are constants, we cannot get any more precise. */
765 if (integer_zerop (varx
) && integer_zerop (vary
))
768 /* Now walk the dominators of the loop header and use the entry
769 guards to refine the estimates. */
770 for (bb
= loop
->header
;
771 bb
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
) && cnt
< MAX_DOMINATORS_TO_WALK
;
772 bb
= get_immediate_dominator (CDI_DOMINATORS
, bb
))
774 if (!single_pred_p (bb
))
776 e
= single_pred_edge (bb
);
778 if (!(e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
781 gcond
*cond
= as_a
<gcond
*> (*gsi_last_bb (e
->src
));
782 c0
= gimple_cond_lhs (cond
);
783 cmp
= gimple_cond_code (cond
);
784 c1
= gimple_cond_rhs (cond
);
786 if (e
->flags
& EDGE_FALSE_VALUE
)
787 cmp
= invert_tree_comparison (cmp
, false);
789 refine_bounds_using_guard (type
, varx
, offx
, vary
, offy
,
799 /* Update the bounds in BNDS that restrict the value of X to the bounds
800 that restrict the value of X + DELTA. X can be obtained as a
801 difference of two values in TYPE. */
804 bounds_add (bounds
*bnds
, const widest_int
&delta
, tree type
)
809 wi::to_mpz (delta
, mdelta
, SIGNED
);
812 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type
)), max
, UNSIGNED
);
814 mpz_add (bnds
->up
, bnds
->up
, mdelta
);
815 mpz_add (bnds
->below
, bnds
->below
, mdelta
);
817 if (mpz_cmp (bnds
->up
, max
) > 0)
818 mpz_set (bnds
->up
, max
);
821 if (mpz_cmp (bnds
->below
, max
) < 0)
822 mpz_set (bnds
->below
, max
);
828 /* Update the bounds in BNDS that restrict the value of X to the bounds
829 that restrict the value of -X. */
832 bounds_negate (bounds
*bnds
)
836 mpz_init_set (tmp
, bnds
->up
);
837 mpz_neg (bnds
->up
, bnds
->below
);
838 mpz_neg (bnds
->below
, tmp
);
842 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
845 inverse (tree x
, tree mask
)
847 tree type
= TREE_TYPE (x
);
849 unsigned ctr
= tree_floor_log2 (mask
);
851 if (TYPE_PRECISION (type
) <= HOST_BITS_PER_WIDE_INT
)
853 unsigned HOST_WIDE_INT ix
;
854 unsigned HOST_WIDE_INT imask
;
855 unsigned HOST_WIDE_INT irslt
= 1;
857 gcc_assert (cst_and_fits_in_hwi (x
));
858 gcc_assert (cst_and_fits_in_hwi (mask
));
860 ix
= int_cst_value (x
);
861 imask
= int_cst_value (mask
);
870 rslt
= build_int_cst_type (type
, irslt
);
874 rslt
= build_int_cst (type
, 1);
877 rslt
= int_const_binop (MULT_EXPR
, rslt
, x
);
878 x
= int_const_binop (MULT_EXPR
, x
, x
);
880 rslt
= int_const_binop (BIT_AND_EXPR
, rslt
, mask
);
886 /* Derives the upper bound BND on the number of executions of loop with exit
887 condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
888 the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
889 that the loop ends through this exit, i.e., the induction variable ever
890 reaches the value of C.
892 The value C is equal to final - base, where final and base are the final and
893 initial value of the actual induction variable in the analysed loop. BNDS
894 bounds the value of this difference when computed in signed type with
895 unbounded range, while the computation of C is performed in an unsigned
896 type with the range matching the range of the type of the induction variable.
897 In particular, BNDS.up contains an upper bound on C in the following cases:
898 -- if the iv must reach its final value without overflow, i.e., if
899 NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
900 -- if final >= base, which we know to hold when BNDS.below >= 0. */
903 number_of_iterations_ne_max (mpz_t bnd
, bool no_overflow
, tree c
, tree s
,
904 bounds
*bnds
, bool exit_must_be_taken
)
908 tree type
= TREE_TYPE (c
);
909 bool bnds_u_valid
= ((no_overflow
&& exit_must_be_taken
)
910 || mpz_sgn (bnds
->below
) >= 0);
913 || (TREE_CODE (c
) == INTEGER_CST
914 && TREE_CODE (s
) == INTEGER_CST
915 && wi::mod_trunc (wi::to_wide (c
), wi::to_wide (s
),
916 TYPE_SIGN (type
)) == 0)
917 || (TYPE_OVERFLOW_UNDEFINED (type
)
918 && multiple_of_p (type
, c
, s
)))
920 /* If C is an exact multiple of S, then its value will be reached before
921 the induction variable overflows (unless the loop is exited in some
922 other way before). Note that the actual induction variable in the
923 loop (which ranges from base to final instead of from 0 to C) may
924 overflow, in which case BNDS.up will not be giving a correct upper
925 bound on C; thus, BNDS_U_VALID had to be computed in advance. */
927 exit_must_be_taken
= true;
930 /* If the induction variable can overflow, the number of iterations is at
931 most the period of the control variable (or infinite, but in that case
932 the whole # of iterations analysis will fail). */
935 max
= wi::mask
<widest_int
> (TYPE_PRECISION (type
)
936 - wi::ctz (wi::to_wide (s
)), false);
937 wi::to_mpz (max
, bnd
, UNSIGNED
);
941 /* Now we know that the induction variable does not overflow, so the loop
942 iterates at most (range of type / S) times. */
943 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type
)), bnd
, UNSIGNED
);
945 /* If the induction variable is guaranteed to reach the value of C before
947 if (exit_must_be_taken
)
949 /* ... then we can strengthen this to C / S, and possibly we can use
950 the upper bound on C given by BNDS. */
951 if (TREE_CODE (c
) == INTEGER_CST
)
952 wi::to_mpz (wi::to_wide (c
), bnd
, UNSIGNED
);
953 else if (bnds_u_valid
)
954 mpz_set (bnd
, bnds
->up
);
958 wi::to_mpz (wi::to_wide (s
), d
, UNSIGNED
);
959 mpz_fdiv_q (bnd
, bnd
, d
);
963 /* Determines number of iterations of loop whose ending condition
964 is IV <> FINAL. TYPE is the type of the iv. The number of
965 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
966 we know that the exit must be taken eventually, i.e., that the IV
967 ever reaches the value FINAL (we derived this earlier, and possibly set
968 NITER->assumptions to make sure this is the case). BNDS contains the
969 bounds on the difference FINAL - IV->base. */
972 number_of_iterations_ne (class loop
*loop
, tree type
, affine_iv
*iv
,
973 tree final
, class tree_niter_desc
*niter
,
974 bool exit_must_be_taken
, bounds
*bnds
)
976 tree niter_type
= unsigned_type_for (type
);
977 tree s
, c
, d
, bits
, assumption
, tmp
, bound
;
979 niter
->control
= *iv
;
980 niter
->bound
= final
;
981 niter
->cmp
= NE_EXPR
;
983 /* Rearrange the terms so that we get inequality S * i <> C, with S
984 positive. Also cast everything to the unsigned type. If IV does
985 not overflow, BNDS bounds the value of C. Also, this is the
986 case if the computation |FINAL - IV->base| does not overflow, i.e.,
987 if BNDS->below in the result is nonnegative. */
988 if (tree_int_cst_sign_bit (iv
->step
))
990 s
= fold_convert (niter_type
,
991 fold_build1 (NEGATE_EXPR
, type
, iv
->step
));
992 c
= fold_build2 (MINUS_EXPR
, niter_type
,
993 fold_convert (niter_type
, iv
->base
),
994 fold_convert (niter_type
, final
));
995 bounds_negate (bnds
);
999 s
= fold_convert (niter_type
, iv
->step
);
1000 c
= fold_build2 (MINUS_EXPR
, niter_type
,
1001 fold_convert (niter_type
, final
),
1002 fold_convert (niter_type
, iv
->base
));
1006 number_of_iterations_ne_max (max
, iv
->no_overflow
, c
, s
, bnds
,
1007 exit_must_be_taken
);
1008 niter
->max
= widest_int::from (wi::from_mpz (niter_type
, max
, false),
1009 TYPE_SIGN (niter_type
));
1011 /* Compute no-overflow information for the control iv. This can be
1012 proven when below two conditions are satisfied:
1014 1) IV evaluates toward FINAL at beginning, i.e:
1015 base <= FINAL ; step > 0
1016 base >= FINAL ; step < 0
1018 2) |FINAL - base| is an exact multiple of step.
1020 Unfortunately, it's hard to prove above conditions after pass loop-ch
1021 because loop with exit condition (IV != FINAL) usually will be guarded
1022 by initial-condition (IV.base - IV.step != FINAL). In this case, we
1023 can alternatively try to prove below conditions:
1025 1') IV evaluates toward FINAL at beginning, i.e:
1026 new_base = base - step < FINAL ; step > 0
1027 && base - step doesn't underflow
1028 new_base = base - step > FINAL ; step < 0
1029 && base - step doesn't overflow
1031 Please refer to PR34114 as an example of loop-ch's impact.
1033 Note, for NE_EXPR, base equals to FINAL is a special case, in
1034 which the loop exits immediately, and the iv does not overflow.
1036 Also note, we prove condition 2) by checking base and final seperately
1037 along with condition 1) or 1'). Since we ensure the difference
1038 computation of c does not wrap with cond below and the adjusted s
1039 will fit a signed type as well as an unsigned we can safely do
1040 this using the type of the IV if it is not pointer typed. */
1042 if (POINTER_TYPE_P (type
))
1044 if (!niter
->control
.no_overflow
1045 && (integer_onep (s
)
1046 || (multiple_of_p (mtype
, fold_convert (mtype
, iv
->base
),
1047 fold_convert (mtype
, s
), false)
1048 && multiple_of_p (mtype
, fold_convert (mtype
, final
),
1049 fold_convert (mtype
, s
), false))))
1051 tree t
, cond
, relaxed_cond
= boolean_false_node
;
1053 if (tree_int_cst_sign_bit (iv
->step
))
1055 cond
= fold_build2 (GE_EXPR
, boolean_type_node
, iv
->base
, final
);
1056 if (TREE_CODE (type
) == INTEGER_TYPE
)
1058 /* Only when base - step doesn't overflow. */
1059 t
= TYPE_MAX_VALUE (type
);
1060 t
= fold_build2 (PLUS_EXPR
, type
, t
, iv
->step
);
1061 t
= fold_build2 (GE_EXPR
, boolean_type_node
, t
, iv
->base
);
1062 if (integer_nonzerop (t
))
1064 t
= fold_build2 (MINUS_EXPR
, type
, iv
->base
, iv
->step
);
1065 relaxed_cond
= fold_build2 (GT_EXPR
, boolean_type_node
, t
,
1072 cond
= fold_build2 (LE_EXPR
, boolean_type_node
, iv
->base
, final
);
1073 if (TREE_CODE (type
) == INTEGER_TYPE
)
1075 /* Only when base - step doesn't underflow. */
1076 t
= TYPE_MIN_VALUE (type
);
1077 t
= fold_build2 (PLUS_EXPR
, type
, t
, iv
->step
);
1078 t
= fold_build2 (LE_EXPR
, boolean_type_node
, t
, iv
->base
);
1079 if (integer_nonzerop (t
))
1081 t
= fold_build2 (MINUS_EXPR
, type
, iv
->base
, iv
->step
);
1082 relaxed_cond
= fold_build2 (LT_EXPR
, boolean_type_node
, t
,
1088 t
= simplify_using_initial_conditions (loop
, cond
);
1089 if (!t
|| !integer_onep (t
))
1090 t
= simplify_using_initial_conditions (loop
, relaxed_cond
);
1092 if (t
&& integer_onep (t
))
1094 niter
->control
.no_overflow
= true;
1095 niter
->niter
= fold_build2 (EXACT_DIV_EXPR
, niter_type
, c
, s
);
1100 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
1101 is infinite. Otherwise, the number of iterations is
1102 (inverse(s/d) * (c/d)) mod (size of mode/d). */
1103 bits
= num_ending_zeros (s
);
1104 bound
= build_low_bits_mask (niter_type
,
1105 (TYPE_PRECISION (niter_type
)
1106 - tree_to_uhwi (bits
)));
1108 d
= fold_binary_to_constant (LSHIFT_EXPR
, niter_type
,
1109 build_int_cst (niter_type
, 1), bits
);
1110 s
= fold_binary_to_constant (RSHIFT_EXPR
, niter_type
, s
, bits
);
1112 if (!exit_must_be_taken
)
1114 /* If we cannot assume that the exit is taken eventually, record the
1115 assumptions for divisibility of c. */
1116 assumption
= fold_build2 (FLOOR_MOD_EXPR
, niter_type
, c
, d
);
1117 assumption
= fold_build2 (EQ_EXPR
, boolean_type_node
,
1118 assumption
, build_int_cst (niter_type
, 0));
1119 if (!integer_nonzerop (assumption
))
1120 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
1121 niter
->assumptions
, assumption
);
1124 c
= fold_build2 (EXACT_DIV_EXPR
, niter_type
, c
, d
);
1125 if (integer_onep (s
))
1131 tmp
= fold_build2 (MULT_EXPR
, niter_type
, c
, inverse (s
, bound
));
1132 niter
->niter
= fold_build2 (BIT_AND_EXPR
, niter_type
, tmp
, bound
);
1137 /* Checks whether we can determine the final value of the control variable
1138 of the loop with ending condition IV0 < IV1 (computed in TYPE).
1139 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
1140 of the step. The assumptions necessary to ensure that the computation
1141 of the final value does not overflow are recorded in NITER. If we
1142 find the final value, we adjust DELTA and return TRUE. Otherwise
1143 we return false. BNDS bounds the value of IV1->base - IV0->base,
1144 and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
1145 true if we know that the exit must be taken eventually. */
1148 number_of_iterations_lt_to_ne (tree type
, affine_iv
*iv0
, affine_iv
*iv1
,
1149 class tree_niter_desc
*niter
,
1150 tree
*delta
, tree step
,
1151 bool exit_must_be_taken
, bounds
*bnds
)
1153 tree niter_type
= TREE_TYPE (step
);
1154 tree mod
= fold_build2 (FLOOR_MOD_EXPR
, niter_type
, *delta
, step
);
1156 tree assumption
= boolean_true_node
, bound
, noloop
;
1157 bool fv_comp_no_overflow
;
1159 if (POINTER_TYPE_P (type
))
1162 if (TREE_CODE (mod
) != INTEGER_CST
)
1164 if (integer_nonzerop (mod
))
1165 mod
= fold_build2 (MINUS_EXPR
, niter_type
, step
, mod
);
1166 tmod
= fold_convert (type1
, mod
);
1169 wi::to_mpz (wi::to_wide (mod
), mmod
, UNSIGNED
);
1170 mpz_neg (mmod
, mmod
);
1172 /* If the induction variable does not overflow and the exit is taken,
1173 then the computation of the final value does not overflow. This is
1174 also obviously the case if the new final value is equal to the
1175 current one. Finally, we postulate this for pointer type variables,
1176 as the code cannot rely on the object to that the pointer points being
1177 placed at the end of the address space (and more pragmatically,
1178 TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
1179 if (integer_zerop (mod
) || POINTER_TYPE_P (type
))
1180 fv_comp_no_overflow
= true;
1181 else if (!exit_must_be_taken
)
1182 fv_comp_no_overflow
= false;
1184 fv_comp_no_overflow
=
1185 (iv0
->no_overflow
&& integer_nonzerop (iv0
->step
))
1186 || (iv1
->no_overflow
&& integer_nonzerop (iv1
->step
));
1188 if (integer_nonzerop (iv0
->step
))
1190 /* The final value of the iv is iv1->base + MOD, assuming that this
1191 computation does not overflow, and that
1192 iv0->base <= iv1->base + MOD. */
1193 if (!fv_comp_no_overflow
)
1195 bound
= fold_build2 (MINUS_EXPR
, type1
,
1196 TYPE_MAX_VALUE (type1
), tmod
);
1197 assumption
= fold_build2 (LE_EXPR
, boolean_type_node
,
1199 if (integer_zerop (assumption
))
1202 if (mpz_cmp (mmod
, bnds
->below
) < 0)
1203 noloop
= boolean_false_node
;
1204 else if (POINTER_TYPE_P (type
))
1205 noloop
= fold_build2 (GT_EXPR
, boolean_type_node
,
1207 fold_build_pointer_plus (iv1
->base
, tmod
));
1209 noloop
= fold_build2 (GT_EXPR
, boolean_type_node
,
1211 fold_build2 (PLUS_EXPR
, type1
,
1216 /* The final value of the iv is iv0->base - MOD, assuming that this
1217 computation does not overflow, and that
1218 iv0->base - MOD <= iv1->base. */
1219 if (!fv_comp_no_overflow
)
1221 bound
= fold_build2 (PLUS_EXPR
, type1
,
1222 TYPE_MIN_VALUE (type1
), tmod
);
1223 assumption
= fold_build2 (GE_EXPR
, boolean_type_node
,
1225 if (integer_zerop (assumption
))
1228 if (mpz_cmp (mmod
, bnds
->below
) < 0)
1229 noloop
= boolean_false_node
;
1230 else if (POINTER_TYPE_P (type
))
1231 noloop
= fold_build2 (GT_EXPR
, boolean_type_node
,
1232 fold_build_pointer_plus (iv0
->base
,
1233 fold_build1 (NEGATE_EXPR
,
1237 noloop
= fold_build2 (GT_EXPR
, boolean_type_node
,
1238 fold_build2 (MINUS_EXPR
, type1
,
1243 if (!integer_nonzerop (assumption
))
1244 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
1247 if (!integer_zerop (noloop
))
1248 niter
->may_be_zero
= fold_build2 (TRUTH_OR_EXPR
, boolean_type_node
,
1251 bounds_add (bnds
, wi::to_widest (mod
), type
);
1252 *delta
= fold_build2 (PLUS_EXPR
, niter_type
, *delta
, mod
);
1257 /* Add assertions to NITER that ensure that the control variable of the loop
1258 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
1259 are TYPE. Returns false if we can prove that there is an overflow, true
1260 otherwise. STEP is the absolute value of the step. */
1263 assert_no_overflow_lt (tree type
, affine_iv
*iv0
, affine_iv
*iv1
,
1264 class tree_niter_desc
*niter
, tree step
)
1266 tree bound
, d
, assumption
, diff
;
1267 tree niter_type
= TREE_TYPE (step
);
1269 if (integer_nonzerop (iv0
->step
))
1271 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
1272 if (iv0
->no_overflow
)
1275 /* If iv0->base is a constant, we can determine the last value before
1276 overflow precisely; otherwise we conservatively assume
1279 if (TREE_CODE (iv0
->base
) == INTEGER_CST
)
1281 d
= fold_build2 (MINUS_EXPR
, niter_type
,
1282 fold_convert (niter_type
, TYPE_MAX_VALUE (type
)),
1283 fold_convert (niter_type
, iv0
->base
));
1284 diff
= fold_build2 (FLOOR_MOD_EXPR
, niter_type
, d
, step
);
1287 diff
= fold_build2 (MINUS_EXPR
, niter_type
, step
,
1288 build_int_cst (niter_type
, 1));
1289 bound
= fold_build2 (MINUS_EXPR
, type
,
1290 TYPE_MAX_VALUE (type
), fold_convert (type
, diff
));
1291 assumption
= fold_build2 (LE_EXPR
, boolean_type_node
,
1296 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
1297 if (iv1
->no_overflow
)
1300 if (TREE_CODE (iv1
->base
) == INTEGER_CST
)
1302 d
= fold_build2 (MINUS_EXPR
, niter_type
,
1303 fold_convert (niter_type
, iv1
->base
),
1304 fold_convert (niter_type
, TYPE_MIN_VALUE (type
)));
1305 diff
= fold_build2 (FLOOR_MOD_EXPR
, niter_type
, d
, step
);
1308 diff
= fold_build2 (MINUS_EXPR
, niter_type
, step
,
1309 build_int_cst (niter_type
, 1));
1310 bound
= fold_build2 (PLUS_EXPR
, type
,
1311 TYPE_MIN_VALUE (type
), fold_convert (type
, diff
));
1312 assumption
= fold_build2 (GE_EXPR
, boolean_type_node
,
1316 if (integer_zerop (assumption
))
1318 if (!integer_nonzerop (assumption
))
1319 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
1320 niter
->assumptions
, assumption
);
1322 iv0
->no_overflow
= true;
1323 iv1
->no_overflow
= true;
1327 /* Add an assumption to NITER that a loop whose ending condition
1328 is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
1329 bounds the value of IV1->base - IV0->base. */
1332 assert_loop_rolls_lt (tree type
, affine_iv
*iv0
, affine_iv
*iv1
,
1333 class tree_niter_desc
*niter
, bounds
*bnds
)
1335 tree assumption
= boolean_true_node
, bound
, diff
;
1336 tree mbz
, mbzl
, mbzr
, type1
;
1337 bool rolls_p
, no_overflow_p
;
1341 /* We are going to compute the number of iterations as
1342 (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
1343 variant of TYPE. This formula only works if
1345 -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
1347 (where MAX is the maximum value of the unsigned variant of TYPE, and
1348 the computations in this formula are performed in full precision,
1349 i.e., without overflows).
1351 Usually, for loops with exit condition iv0->base + step * i < iv1->base,
1352 we have a condition of the form iv0->base - step < iv1->base before the loop,
1353 and for loops iv0->base < iv1->base - step * i the condition
1354 iv0->base < iv1->base + step, due to loop header copying, which enable us
1355 to prove the lower bound.
1357 The upper bound is more complicated. Unless the expressions for initial
1358 and final value themselves contain enough information, we usually cannot
1359 derive it from the context. */
1361 /* First check whether the answer does not follow from the bounds we gathered
1363 if (integer_nonzerop (iv0
->step
))
1364 dstep
= wi::to_widest (iv0
->step
);
1367 dstep
= wi::sext (wi::to_widest (iv1
->step
), TYPE_PRECISION (type
));
1372 wi::to_mpz (dstep
, mstep
, UNSIGNED
);
1373 mpz_neg (mstep
, mstep
);
1374 mpz_add_ui (mstep
, mstep
, 1);
1376 rolls_p
= mpz_cmp (mstep
, bnds
->below
) <= 0;
1379 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type
)), max
, UNSIGNED
);
1380 mpz_add (max
, max
, mstep
);
1381 no_overflow_p
= (mpz_cmp (bnds
->up
, max
) <= 0
1382 /* For pointers, only values lying inside a single object
1383 can be compared or manipulated by pointer arithmetics.
1384 Gcc in general does not allow or handle objects larger
1385 than half of the address space, hence the upper bound
1386 is satisfied for pointers. */
1387 || POINTER_TYPE_P (type
));
1391 if (rolls_p
&& no_overflow_p
)
1395 if (POINTER_TYPE_P (type
))
1398 /* Now the hard part; we must formulate the assumption(s) as expressions, and
1399 we must be careful not to introduce overflow. */
1401 if (integer_nonzerop (iv0
->step
))
1403 diff
= fold_build2 (MINUS_EXPR
, type1
,
1404 iv0
->step
, build_int_cst (type1
, 1));
1406 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
1407 0 address never belongs to any object, we can assume this for
1409 if (!POINTER_TYPE_P (type
))
1411 bound
= fold_build2 (PLUS_EXPR
, type1
,
1412 TYPE_MIN_VALUE (type
), diff
);
1413 assumption
= fold_build2 (GE_EXPR
, boolean_type_node
,
1417 /* And then we can compute iv0->base - diff, and compare it with
1419 mbzl
= fold_build2 (MINUS_EXPR
, type1
,
1420 fold_convert (type1
, iv0
->base
), diff
);
1421 mbzr
= fold_convert (type1
, iv1
->base
);
1425 diff
= fold_build2 (PLUS_EXPR
, type1
,
1426 iv1
->step
, build_int_cst (type1
, 1));
1428 if (!POINTER_TYPE_P (type
))
1430 bound
= fold_build2 (PLUS_EXPR
, type1
,
1431 TYPE_MAX_VALUE (type
), diff
);
1432 assumption
= fold_build2 (LE_EXPR
, boolean_type_node
,
1436 mbzl
= fold_convert (type1
, iv0
->base
);
1437 mbzr
= fold_build2 (MINUS_EXPR
, type1
,
1438 fold_convert (type1
, iv1
->base
), diff
);
1441 if (!integer_nonzerop (assumption
))
1442 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
1443 niter
->assumptions
, assumption
);
1446 mbz
= fold_build2 (GT_EXPR
, boolean_type_node
, mbzl
, mbzr
);
1447 niter
->may_be_zero
= fold_build2 (TRUTH_OR_EXPR
, boolean_type_node
,
1448 niter
->may_be_zero
, mbz
);
1452 /* Determines number of iterations of loop whose ending condition
1453 is IV0 < IV1 which likes: {base, -C} < n, or n < {base, C}.
1454 The number of iterations is stored to NITER. */
1457 number_of_iterations_until_wrap (class loop
*loop
, tree type
, affine_iv
*iv0
,
1458 affine_iv
*iv1
, class tree_niter_desc
*niter
)
1460 tree niter_type
= unsigned_type_for (type
);
1461 tree step
, num
, assumptions
, may_be_zero
, span
;
1462 wide_int high
, low
, max
, min
;
1464 may_be_zero
= fold_build2 (LE_EXPR
, boolean_type_node
, iv1
->base
, iv0
->base
);
1465 if (integer_onep (may_be_zero
))
1468 int prec
= TYPE_PRECISION (type
);
1469 signop sgn
= TYPE_SIGN (type
);
1470 min
= wi::min_value (prec
, sgn
);
1471 max
= wi::max_value (prec
, sgn
);
1473 /* n < {base, C}. */
1474 if (integer_zerop (iv0
->step
) && !tree_int_cst_sign_bit (iv1
->step
))
1477 /* MIN + C - 1 <= n. */
1478 tree last
= wide_int_to_tree (type
, min
+ wi::to_wide (step
) - 1);
1479 assumptions
= fold_build2 (LE_EXPR
, boolean_type_node
, last
, iv0
->base
);
1480 if (integer_zerop (assumptions
))
1483 num
= fold_build2 (MINUS_EXPR
, niter_type
,
1484 wide_int_to_tree (niter_type
, max
),
1485 fold_convert (niter_type
, iv1
->base
));
1487 /* When base has the form iv + 1, if we know iv >= n, then iv + 1 < n
1488 only when iv + 1 overflows, i.e. when iv == TYPE_VALUE_MAX. */
1490 && integer_onep (step
)
1491 && TREE_CODE (iv1
->base
) == PLUS_EXPR
1492 && integer_onep (TREE_OPERAND (iv1
->base
, 1)))
1494 tree cond
= fold_build2 (GE_EXPR
, boolean_type_node
,
1495 TREE_OPERAND (iv1
->base
, 0), iv0
->base
);
1496 cond
= simplify_using_initial_conditions (loop
, cond
);
1497 if (integer_onep (cond
))
1498 may_be_zero
= fold_build2 (EQ_EXPR
, boolean_type_node
,
1499 TREE_OPERAND (iv1
->base
, 0),
1500 TYPE_MAX_VALUE (type
));
1504 if (TREE_CODE (iv1
->base
) == INTEGER_CST
)
1505 low
= wi::to_wide (iv1
->base
) - 1;
1506 else if (TREE_CODE (iv0
->base
) == INTEGER_CST
)
1507 low
= wi::to_wide (iv0
->base
);
1511 /* {base, -C} < n. */
1512 else if (tree_int_cst_sign_bit (iv0
->step
) && integer_zerop (iv1
->step
))
1514 step
= fold_build1 (NEGATE_EXPR
, TREE_TYPE (iv0
->step
), iv0
->step
);
1515 /* MAX - C + 1 >= n. */
1516 tree last
= wide_int_to_tree (type
, max
- wi::to_wide (step
) + 1);
1517 assumptions
= fold_build2 (GE_EXPR
, boolean_type_node
, last
, iv1
->base
);
1518 if (integer_zerop (assumptions
))
1521 num
= fold_build2 (MINUS_EXPR
, niter_type
,
1522 fold_convert (niter_type
, iv0
->base
),
1523 wide_int_to_tree (niter_type
, min
));
1525 if (TREE_CODE (iv0
->base
) == INTEGER_CST
)
1526 high
= wi::to_wide (iv0
->base
) + 1;
1527 else if (TREE_CODE (iv1
->base
) == INTEGER_CST
)
1528 high
= wi::to_wide (iv1
->base
);
1535 /* (delta + step - 1) / step */
1536 step
= fold_convert (niter_type
, step
);
1537 num
= fold_build2 (PLUS_EXPR
, niter_type
, num
, step
);
1538 niter
->niter
= fold_build2 (FLOOR_DIV_EXPR
, niter_type
, num
, step
);
1540 widest_int delta
, s
;
1541 delta
= widest_int::from (high
, sgn
) - widest_int::from (low
, sgn
);
1542 s
= wi::to_widest (step
);
1543 delta
= delta
+ s
- 1;
1544 niter
->max
= wi::udiv_floor (delta
, s
);
1546 niter
->may_be_zero
= may_be_zero
;
1548 if (!integer_nonzerop (assumptions
))
1549 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
1550 niter
->assumptions
, assumptions
);
1552 niter
->control
.no_overflow
= false;
1554 /* Update bound and exit condition as:
1555 bound = niter * STEP + (IVbase - STEP).
1556 { IVbase - STEP, +, STEP } != bound
1557 Here, biasing IVbase by 1 step makes 'bound' be the value before wrap.
1559 tree base_type
= TREE_TYPE (niter
->control
.base
);
1560 if (POINTER_TYPE_P (base_type
))
1562 tree utype
= unsigned_type_for (base_type
);
1564 = fold_build2 (MINUS_EXPR
, utype
,
1565 fold_convert (utype
, niter
->control
.base
),
1566 fold_convert (utype
, niter
->control
.step
));
1567 niter
->control
.base
= fold_convert (base_type
, niter
->control
.base
);
1571 = fold_build2 (MINUS_EXPR
, base_type
, niter
->control
.base
,
1572 niter
->control
.step
);
1574 span
= fold_build2 (MULT_EXPR
, niter_type
, niter
->niter
,
1575 fold_convert (niter_type
, niter
->control
.step
));
1576 niter
->bound
= fold_build2 (PLUS_EXPR
, niter_type
, span
,
1577 fold_convert (niter_type
, niter
->control
.base
));
1578 niter
->bound
= fold_convert (type
, niter
->bound
);
1579 niter
->cmp
= NE_EXPR
;
1584 /* Determines number of iterations of loop whose ending condition
1585 is IV0 < IV1. TYPE is the type of the iv. The number of
1586 iterations is stored to NITER. BNDS bounds the difference
1587 IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
1588 that the exit must be taken eventually. */
1591 number_of_iterations_lt (class loop
*loop
, tree type
, affine_iv
*iv0
,
1592 affine_iv
*iv1
, class tree_niter_desc
*niter
,
1593 bool exit_must_be_taken
, bounds
*bnds
)
1595 tree niter_type
= unsigned_type_for (type
);
1596 tree delta
, step
, s
;
1599 if (integer_nonzerop (iv0
->step
))
1601 niter
->control
= *iv0
;
1602 niter
->cmp
= LT_EXPR
;
1603 niter
->bound
= iv1
->base
;
1607 niter
->control
= *iv1
;
1608 niter
->cmp
= GT_EXPR
;
1609 niter
->bound
= iv0
->base
;
1612 /* {base, -C} < n, or n < {base, C} */
1613 if (tree_int_cst_sign_bit (iv0
->step
)
1614 || (!integer_zerop (iv1
->step
) && !tree_int_cst_sign_bit (iv1
->step
)))
1615 return number_of_iterations_until_wrap (loop
, type
, iv0
, iv1
, niter
);
1617 delta
= fold_build2 (MINUS_EXPR
, niter_type
,
1618 fold_convert (niter_type
, iv1
->base
),
1619 fold_convert (niter_type
, iv0
->base
));
1621 /* First handle the special case that the step is +-1. */
1622 if ((integer_onep (iv0
->step
) && integer_zerop (iv1
->step
))
1623 || (integer_all_onesp (iv1
->step
) && integer_zerop (iv0
->step
)))
1625 /* for (i = iv0->base; i < iv1->base; i++)
1629 for (i = iv1->base; i > iv0->base; i--).
1631 In both cases # of iterations is iv1->base - iv0->base, assuming that
1632 iv1->base >= iv0->base.
1634 First try to derive a lower bound on the value of
1635 iv1->base - iv0->base, computed in full precision. If the difference
1636 is nonnegative, we are done, otherwise we must record the
1639 if (mpz_sgn (bnds
->below
) < 0)
1640 niter
->may_be_zero
= fold_build2 (LT_EXPR
, boolean_type_node
,
1641 iv1
->base
, iv0
->base
);
1642 niter
->niter
= delta
;
1643 niter
->max
= widest_int::from (wi::from_mpz (niter_type
, bnds
->up
, false),
1644 TYPE_SIGN (niter_type
));
1645 niter
->control
.no_overflow
= true;
1649 if (integer_nonzerop (iv0
->step
))
1650 step
= fold_convert (niter_type
, iv0
->step
);
1652 step
= fold_convert (niter_type
,
1653 fold_build1 (NEGATE_EXPR
, type
, iv1
->step
));
1655 /* If we can determine the final value of the control iv exactly, we can
1656 transform the condition to != comparison. In particular, this will be
1657 the case if DELTA is constant. */
1658 if (number_of_iterations_lt_to_ne (type
, iv0
, iv1
, niter
, &delta
, step
,
1659 exit_must_be_taken
, bnds
))
1663 zps
.base
= build_int_cst (niter_type
, 0);
1665 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1666 zps does not overflow. */
1667 zps
.no_overflow
= true;
1669 return number_of_iterations_ne (loop
, type
, &zps
,
1670 delta
, niter
, true, bnds
);
1673 /* Make sure that the control iv does not overflow. */
1674 if (!assert_no_overflow_lt (type
, iv0
, iv1
, niter
, step
))
1677 /* We determine the number of iterations as (delta + step - 1) / step. For
1678 this to work, we must know that iv1->base >= iv0->base - step + 1,
1679 otherwise the loop does not roll. */
1680 assert_loop_rolls_lt (type
, iv0
, iv1
, niter
, bnds
);
1682 s
= fold_build2 (MINUS_EXPR
, niter_type
,
1683 step
, build_int_cst (niter_type
, 1));
1684 delta
= fold_build2 (PLUS_EXPR
, niter_type
, delta
, s
);
1685 niter
->niter
= fold_build2 (FLOOR_DIV_EXPR
, niter_type
, delta
, step
);
1689 wi::to_mpz (wi::to_wide (step
), mstep
, UNSIGNED
);
1690 mpz_add (tmp
, bnds
->up
, mstep
);
1691 mpz_sub_ui (tmp
, tmp
, 1);
1692 mpz_fdiv_q (tmp
, tmp
, mstep
);
1693 niter
->max
= widest_int::from (wi::from_mpz (niter_type
, tmp
, false),
1694 TYPE_SIGN (niter_type
));
1701 /* Determines number of iterations of loop whose ending condition
1702 is IV0 <= IV1. TYPE is the type of the iv. The number of
1703 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
1704 we know that this condition must eventually become false (we derived this
1705 earlier, and possibly set NITER->assumptions to make sure this
1706 is the case). BNDS bounds the difference IV1->base - IV0->base. */
1709 number_of_iterations_le (class loop
*loop
, tree type
, affine_iv
*iv0
,
1710 affine_iv
*iv1
, class tree_niter_desc
*niter
,
1711 bool exit_must_be_taken
, bounds
*bnds
)
1715 if (POINTER_TYPE_P (type
))
1718 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
1719 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1720 value of the type. This we must know anyway, since if it is
1721 equal to this value, the loop rolls forever. We do not check
1722 this condition for pointer type ivs, as the code cannot rely on
1723 the object to that the pointer points being placed at the end of
1724 the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1725 not defined for pointers). */
1727 if (!exit_must_be_taken
&& !POINTER_TYPE_P (type
))
1729 if (integer_nonzerop (iv0
->step
))
1730 assumption
= fold_build2 (NE_EXPR
, boolean_type_node
,
1731 iv1
->base
, TYPE_MAX_VALUE (type
));
1733 assumption
= fold_build2 (NE_EXPR
, boolean_type_node
,
1734 iv0
->base
, TYPE_MIN_VALUE (type
));
1736 if (integer_zerop (assumption
))
1738 if (!integer_nonzerop (assumption
))
1739 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
1740 niter
->assumptions
, assumption
);
1743 if (integer_nonzerop (iv0
->step
))
1745 if (POINTER_TYPE_P (type
))
1746 iv1
->base
= fold_build_pointer_plus_hwi (iv1
->base
, 1);
1748 iv1
->base
= fold_build2 (PLUS_EXPR
, type1
, iv1
->base
,
1749 build_int_cst (type1
, 1));
1751 else if (POINTER_TYPE_P (type
))
1752 iv0
->base
= fold_build_pointer_plus_hwi (iv0
->base
, -1);
1754 iv0
->base
= fold_build2 (MINUS_EXPR
, type1
,
1755 iv0
->base
, build_int_cst (type1
, 1));
1757 bounds_add (bnds
, 1, type1
);
1759 return number_of_iterations_lt (loop
, type
, iv0
, iv1
, niter
, exit_must_be_taken
,
1763 /* Dumps description of affine induction variable IV to FILE. */
1766 dump_affine_iv (FILE *file
, affine_iv
*iv
)
1768 if (!integer_zerop (iv
->step
))
1769 fprintf (file
, "[");
1771 print_generic_expr (dump_file
, iv
->base
, TDF_SLIM
);
1773 if (!integer_zerop (iv
->step
))
1775 fprintf (file
, ", + , ");
1776 print_generic_expr (dump_file
, iv
->step
, TDF_SLIM
);
1777 fprintf (file
, "]%s", iv
->no_overflow
? "(no_overflow)" : "");
1781 /* Determine the number of iterations according to condition (for staying
1782 inside loop) which compares two induction variables using comparison
1783 operator CODE. The induction variable on left side of the comparison
1784 is IV0, the right-hand side is IV1. Both induction variables must have
1785 type TYPE, which must be an integer or pointer type. The steps of the
1786 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1788 LOOP is the loop whose number of iterations we are determining.
1790 ONLY_EXIT is true if we are sure this is the only way the loop could be
1791 exited (including possibly non-returning function calls, exceptions, etc.)
1792 -- in this case we can use the information whether the control induction
1793 variables can overflow or not in a more efficient way.
1795 if EVERY_ITERATION is true, we know the test is executed on every iteration.
1797 The results (number of iterations and assumptions as described in
1798 comments at class tree_niter_desc in tree-ssa-loop.h) are stored to NITER.
1799 Returns false if it fails to determine number of iterations, true if it
1800 was determined (possibly with some assumptions). */
1803 number_of_iterations_cond (class loop
*loop
,
1804 tree type
, affine_iv
*iv0
, enum tree_code code
,
1805 affine_iv
*iv1
, class tree_niter_desc
*niter
,
1806 bool only_exit
, bool every_iteration
)
1808 bool exit_must_be_taken
= false, ret
;
1811 /* If the test is not executed every iteration, wrapping may make the test
1813 TODO: the overflow case can be still used as unreliable estimate of upper
1814 bound. But we have no API to pass it down to number of iterations code
1815 and, at present, it will not use it anyway. */
1816 if (!every_iteration
1817 && (!iv0
->no_overflow
|| !iv1
->no_overflow
1818 || code
== NE_EXPR
|| code
== EQ_EXPR
))
1821 /* The meaning of these assumptions is this:
1823 then the rest of information does not have to be valid
1824 if may_be_zero then the loop does not roll, even if
1826 niter
->assumptions
= boolean_true_node
;
1827 niter
->may_be_zero
= boolean_false_node
;
1828 niter
->niter
= NULL_TREE
;
1830 niter
->bound
= NULL_TREE
;
1831 niter
->cmp
= ERROR_MARK
;
1833 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1834 the control variable is on lhs. */
1835 if (code
== GE_EXPR
|| code
== GT_EXPR
1836 || (code
== NE_EXPR
&& integer_zerop (iv0
->step
)))
1838 std::swap (iv0
, iv1
);
1839 code
= swap_tree_comparison (code
);
1842 if (POINTER_TYPE_P (type
))
1844 /* Comparison of pointers is undefined unless both iv0 and iv1 point
1845 to the same object. If they do, the control variable cannot wrap
1846 (as wrap around the bounds of memory will never return a pointer
1847 that would be guaranteed to point to the same object, even if we
1848 avoid undefined behavior by casting to size_t and back). */
1849 iv0
->no_overflow
= true;
1850 iv1
->no_overflow
= true;
1853 /* If the control induction variable does not overflow and the only exit
1854 from the loop is the one that we analyze, we know it must be taken
1858 if (!integer_zerop (iv0
->step
) && iv0
->no_overflow
)
1859 exit_must_be_taken
= true;
1860 else if (!integer_zerop (iv1
->step
) && iv1
->no_overflow
)
1861 exit_must_be_taken
= true;
1864 /* We can handle cases which neither of the sides of the comparison is
1867 {iv0.base, iv0.step} cmp_code {iv1.base, iv1.step}
1869 {iv0.base, iv0.step - iv1.step} cmp_code {iv1.base, 0}
1871 provided that either below condition is satisfied:
1873 a) the test is NE_EXPR;
1874 b) iv0 and iv1 do not overflow and iv0.step - iv1.step is of
1875 the same sign and of less or equal magnitude than iv0.step
1877 This rarely occurs in practice, but it is simple enough to manage. */
1878 if (!integer_zerop (iv0
->step
) && !integer_zerop (iv1
->step
))
1880 tree step_type
= POINTER_TYPE_P (type
) ? sizetype
: type
;
1881 tree step
= fold_binary_to_constant (MINUS_EXPR
, step_type
,
1882 iv0
->step
, iv1
->step
);
1884 /* For code other than NE_EXPR we have to ensure moving the evolution
1885 of IV1 to that of IV0 does not introduce overflow. */
1886 if (TREE_CODE (step
) != INTEGER_CST
1887 || !iv0
->no_overflow
|| !iv1
->no_overflow
)
1889 if (code
!= NE_EXPR
)
1891 iv0
->no_overflow
= false;
1893 /* If the new step of IV0 has changed sign or is of greater
1894 magnitude then we do not know whether IV0 does overflow
1895 and thus the transform is not valid for code other than NE_EXPR. */
1896 else if (tree_int_cst_sign_bit (step
) != tree_int_cst_sign_bit (iv0
->step
)
1897 || wi::gtu_p (wi::abs (wi::to_widest (step
)),
1898 wi::abs (wi::to_widest (iv0
->step
))))
1900 if (POINTER_TYPE_P (type
) && code
!= NE_EXPR
)
1901 /* For relational pointer compares we have further guarantees
1902 that the pointers always point to the same object (or one
1903 after it) and that objects do not cross the zero page. So
1904 not only is the transform always valid for relational
1905 pointer compares, we also know the resulting IV does not
1908 else if (code
!= NE_EXPR
)
1911 iv0
->no_overflow
= false;
1915 iv1
->step
= build_int_cst (step_type
, 0);
1916 iv1
->no_overflow
= true;
1919 /* If the result of the comparison is a constant, the loop is weird. More
1920 precise handling would be possible, but the situation is not common enough
1921 to waste time on it. */
1922 if (integer_zerop (iv0
->step
) && integer_zerop (iv1
->step
))
1925 /* If the loop exits immediately, there is nothing to do. */
1926 tree tem
= fold_binary (code
, boolean_type_node
, iv0
->base
, iv1
->base
);
1927 if (tem
&& integer_zerop (tem
))
1929 if (!every_iteration
)
1931 niter
->niter
= build_int_cst (unsigned_type_for (type
), 0);
1936 /* OK, now we know we have a senseful loop. Handle several cases, depending
1937 on what comparison operator is used. */
1938 bound_difference (loop
, iv1
->base
, iv0
->base
, &bnds
);
1940 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1943 "Analyzing # of iterations of loop %d\n", loop
->num
);
1945 fprintf (dump_file
, " exit condition ");
1946 dump_affine_iv (dump_file
, iv0
);
1947 fprintf (dump_file
, " %s ",
1948 code
== NE_EXPR
? "!="
1949 : code
== LT_EXPR
? "<"
1951 dump_affine_iv (dump_file
, iv1
);
1952 fprintf (dump_file
, "\n");
1954 fprintf (dump_file
, " bounds on difference of bases: ");
1955 mpz_out_str (dump_file
, 10, bnds
.below
);
1956 fprintf (dump_file
, " ... ");
1957 mpz_out_str (dump_file
, 10, bnds
.up
);
1958 fprintf (dump_file
, "\n");
1964 gcc_assert (integer_zerop (iv1
->step
));
1965 ret
= number_of_iterations_ne (loop
, type
, iv0
, iv1
->base
, niter
,
1966 exit_must_be_taken
, &bnds
);
1970 ret
= number_of_iterations_lt (loop
, type
, iv0
, iv1
, niter
,
1971 exit_must_be_taken
, &bnds
);
1975 ret
= number_of_iterations_le (loop
, type
, iv0
, iv1
, niter
,
1976 exit_must_be_taken
, &bnds
);
1983 mpz_clear (bnds
.up
);
1984 mpz_clear (bnds
.below
);
1986 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1990 fprintf (dump_file
, " result:\n");
1991 if (!integer_nonzerop (niter
->assumptions
))
1993 fprintf (dump_file
, " under assumptions ");
1994 print_generic_expr (dump_file
, niter
->assumptions
, TDF_SLIM
);
1995 fprintf (dump_file
, "\n");
1998 if (!integer_zerop (niter
->may_be_zero
))
2000 fprintf (dump_file
, " zero if ");
2001 print_generic_expr (dump_file
, niter
->may_be_zero
, TDF_SLIM
);
2002 fprintf (dump_file
, "\n");
2005 fprintf (dump_file
, " # of iterations ");
2006 print_generic_expr (dump_file
, niter
->niter
, TDF_SLIM
);
2007 fprintf (dump_file
, ", bounded by ");
2008 print_decu (niter
->max
, dump_file
);
2009 fprintf (dump_file
, "\n");
2012 fprintf (dump_file
, " failed\n\n");
2017 /* Return an expression that computes the popcount of src. */
2020 build_popcount_expr (tree src
)
2023 bool use_ifn
= false;
2024 int prec
= TYPE_PRECISION (TREE_TYPE (src
));
2025 int i_prec
= TYPE_PRECISION (integer_type_node
);
2026 int li_prec
= TYPE_PRECISION (long_integer_type_node
);
2027 int lli_prec
= TYPE_PRECISION (long_long_integer_type_node
);
2029 tree utype
= unsigned_type_for (TREE_TYPE (src
));
2030 src
= fold_convert (utype
, src
);
2032 if (direct_internal_fn_supported_p (IFN_POPCOUNT
, utype
, OPTIMIZE_FOR_BOTH
))
2034 else if (prec
<= i_prec
)
2035 fn
= builtin_decl_implicit (BUILT_IN_POPCOUNT
);
2036 else if (prec
== li_prec
)
2037 fn
= builtin_decl_implicit (BUILT_IN_POPCOUNTL
);
2038 else if (prec
== lli_prec
|| prec
== 2 * lli_prec
)
2039 fn
= builtin_decl_implicit (BUILT_IN_POPCOUNTLL
);
2045 call
= build_call_expr_internal_loc (UNKNOWN_LOCATION
, IFN_POPCOUNT
,
2046 integer_type_node
, 1, src
);
2047 else if (prec
== 2 * lli_prec
)
2049 tree src1
= fold_convert (long_long_unsigned_type_node
,
2050 fold_build2 (RSHIFT_EXPR
, TREE_TYPE (src
),
2052 build_int_cst (integer_type_node
,
2054 tree src2
= fold_convert (long_long_unsigned_type_node
, src
);
2055 tree call1
= build_call_expr (fn
, 1, src1
);
2056 tree call2
= build_call_expr (fn
, 1, src2
);
2057 call
= fold_build2 (PLUS_EXPR
, integer_type_node
, call1
, call2
);
2062 src
= fold_convert (unsigned_type_node
, src
);
2064 call
= build_call_expr (fn
, 1, src
);
2070 /* Utility function to check if OP is defined by a stmt
2071 that is a val - 1. */
2074 ssa_defined_by_minus_one_stmt_p (tree op
, tree val
)
2077 return (TREE_CODE (op
) == SSA_NAME
2078 && (stmt
= SSA_NAME_DEF_STMT (op
))
2079 && is_gimple_assign (stmt
)
2080 && (gimple_assign_rhs_code (stmt
) == PLUS_EXPR
)
2081 && val
== gimple_assign_rhs1 (stmt
)
2082 && integer_minus_onep (gimple_assign_rhs2 (stmt
)));
2085 /* See comment below for number_of_iterations_bitcount.
2086 For popcount, we have:
2101 number_of_iterations_popcount (loop_p loop
, edge exit
,
2102 enum tree_code code
,
2103 class tree_niter_desc
*niter
)
2105 bool modify_before_test
= true;
2108 /* Check that condition for staying inside the loop is like
2110 gcond
*cond_stmt
= safe_dyn_cast
<gcond
*> (*gsi_last_bb (exit
->src
));
2113 || !integer_zerop (gimple_cond_rhs (cond_stmt
))
2114 || TREE_CODE (gimple_cond_lhs (cond_stmt
)) != SSA_NAME
)
2117 tree iv_2
= gimple_cond_lhs (cond_stmt
);
2118 gimple
*iv_2_stmt
= SSA_NAME_DEF_STMT (iv_2
);
2120 /* If the test comes before the iv modification, then these will actually be
2121 iv_1 and a phi node. */
2122 if (gimple_code (iv_2_stmt
) == GIMPLE_PHI
2123 && gimple_bb (iv_2_stmt
) == loop
->header
2124 && gimple_phi_num_args (iv_2_stmt
) == 2
2125 && (TREE_CODE (gimple_phi_arg_def (iv_2_stmt
,
2126 loop_latch_edge (loop
)->dest_idx
))
2129 /* iv_2 is actually one of the inputs to the phi. */
2130 iv_2
= gimple_phi_arg_def (iv_2_stmt
, loop_latch_edge (loop
)->dest_idx
);
2131 iv_2_stmt
= SSA_NAME_DEF_STMT (iv_2
);
2132 modify_before_test
= false;
2135 /* Make sure iv_2_stmt is an and stmt (iv_2 = _1 & iv_1). */
2136 if (!is_gimple_assign (iv_2_stmt
)
2137 || gimple_assign_rhs_code (iv_2_stmt
) != BIT_AND_EXPR
)
2140 tree iv_1
= gimple_assign_rhs1 (iv_2_stmt
);
2141 tree _1
= gimple_assign_rhs2 (iv_2_stmt
);
2143 /* Check that _1 is defined by (_1 = iv_1 + -1).
2144 Also make sure that _1 is the same in and_stmt and _1 defining stmt.
2145 Also canonicalize if _1 and _b11 are revrsed. */
2146 if (ssa_defined_by_minus_one_stmt_p (iv_1
, _1
))
2147 std::swap (iv_1
, _1
);
2148 else if (ssa_defined_by_minus_one_stmt_p (_1
, iv_1
))
2153 /* Check the recurrence. */
2154 gimple
*phi
= SSA_NAME_DEF_STMT (iv_1
);
2155 if (gimple_code (phi
) != GIMPLE_PHI
2156 || (gimple_bb (phi
) != loop_latch_edge (loop
)->dest
)
2157 || (iv_2
!= gimple_phi_arg_def (phi
, loop_latch_edge (loop
)->dest_idx
)))
2160 /* We found a match. */
2161 tree src
= gimple_phi_arg_def (phi
, loop_preheader_edge (loop
)->dest_idx
);
2162 int src_precision
= TYPE_PRECISION (TREE_TYPE (src
));
2164 /* Get the corresponding popcount builtin. */
2165 tree expr
= build_popcount_expr (src
);
2170 max
= src_precision
;
2172 tree may_be_zero
= boolean_false_node
;
2174 if (modify_before_test
)
2176 expr
= fold_build2 (MINUS_EXPR
, integer_type_node
, expr
,
2179 may_be_zero
= fold_build2 (EQ_EXPR
, boolean_type_node
, src
,
2180 build_zero_cst (TREE_TYPE (src
)));
2183 expr
= fold_convert (unsigned_type_node
, expr
);
2185 niter
->assumptions
= boolean_true_node
;
2186 niter
->may_be_zero
= simplify_using_initial_conditions (loop
, may_be_zero
);
2187 niter
->niter
= simplify_using_initial_conditions(loop
, expr
);
2189 if (TREE_CODE (niter
->niter
) == INTEGER_CST
)
2190 niter
->max
= tree_to_uhwi (niter
->niter
);
2194 niter
->bound
= NULL_TREE
;
2195 niter
->cmp
= ERROR_MARK
;
2199 /* Return an expression that counts the leading/trailing zeroes of src.
2201 If define_at_zero is true, then the built expression will be defined to
2202 return the precision of src when src == 0 (using either a conditional
2203 expression or a suitable internal function).
2204 Otherwise, we can elide the conditional expression and let src = 0 invoke
2205 undefined behaviour. */
2208 build_cltz_expr (tree src
, bool leading
, bool define_at_zero
)
2211 internal_fn ifn
= leading
? IFN_CLZ
: IFN_CTZ
;
2212 bool use_ifn
= false;
2213 int prec
= TYPE_PRECISION (TREE_TYPE (src
));
2214 int i_prec
= TYPE_PRECISION (integer_type_node
);
2215 int li_prec
= TYPE_PRECISION (long_integer_type_node
);
2216 int lli_prec
= TYPE_PRECISION (long_long_integer_type_node
);
2218 tree utype
= unsigned_type_for (TREE_TYPE (src
));
2219 src
= fold_convert (utype
, src
);
2221 if (direct_internal_fn_supported_p (ifn
, utype
, OPTIMIZE_FOR_BOTH
))
2223 else if (prec
<= i_prec
)
2224 fn
= leading
? builtin_decl_implicit (BUILT_IN_CLZ
)
2225 : builtin_decl_implicit (BUILT_IN_CTZ
);
2226 else if (prec
== li_prec
)
2227 fn
= leading
? builtin_decl_implicit (BUILT_IN_CLZL
)
2228 : builtin_decl_implicit (BUILT_IN_CTZL
);
2229 else if (prec
== lli_prec
|| prec
== 2 * lli_prec
)
2230 fn
= leading
? builtin_decl_implicit (BUILT_IN_CLZLL
)
2231 : builtin_decl_implicit (BUILT_IN_CTZLL
);
2239 int optab_defined_at_zero
2241 ? CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (utype
), val
)
2242 : CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (utype
), val
));
2243 tree arg2
= NULL_TREE
;
2244 if (define_at_zero
&& optab_defined_at_zero
== 2 && val
== prec
)
2245 arg2
= build_int_cst (integer_type_node
, val
);
2246 call
= build_call_expr_internal_loc (UNKNOWN_LOCATION
, ifn
,
2247 integer_type_node
, arg2
? 2 : 1,
2249 if (define_at_zero
&& arg2
== NULL_TREE
)
2251 tree is_zero
= fold_build2 (NE_EXPR
, boolean_type_node
, src
,
2252 build_zero_cst (TREE_TYPE (src
)));
2253 call
= fold_build3 (COND_EXPR
, integer_type_node
, is_zero
, call
,
2254 build_int_cst (integer_type_node
, prec
));
2257 else if (prec
== 2 * lli_prec
)
2259 tree src1
= fold_convert (long_long_unsigned_type_node
,
2260 fold_build2 (RSHIFT_EXPR
, TREE_TYPE (src
),
2262 build_int_cst (integer_type_node
,
2264 tree src2
= fold_convert (long_long_unsigned_type_node
, src
);
2265 /* We count the zeroes in src1, and add the number in src2 when src1
2268 std::swap (src1
, src2
);
2269 tree call1
= build_call_expr (fn
, 1, src1
);
2270 tree call2
= build_call_expr (fn
, 1, src2
);
2273 tree is_zero2
= fold_build2 (NE_EXPR
, boolean_type_node
, src2
,
2274 build_zero_cst (TREE_TYPE (src2
)));
2275 call2
= fold_build3 (COND_EXPR
, integer_type_node
, is_zero2
, call2
,
2276 build_int_cst (integer_type_node
, lli_prec
));
2278 tree is_zero1
= fold_build2 (NE_EXPR
, boolean_type_node
, src1
,
2279 build_zero_cst (TREE_TYPE (src1
)));
2280 call
= fold_build3 (COND_EXPR
, integer_type_node
, is_zero1
, call1
,
2281 fold_build2 (PLUS_EXPR
, integer_type_node
, call2
,
2282 build_int_cst (integer_type_node
,
2288 src
= fold_convert (unsigned_type_node
, src
);
2290 call
= build_call_expr (fn
, 1, src
);
2291 if (leading
&& prec
< i_prec
)
2292 call
= fold_build2 (MINUS_EXPR
, integer_type_node
, call
,
2293 build_int_cst (integer_type_node
, i_prec
- prec
));
2296 tree is_zero
= fold_build2 (NE_EXPR
, boolean_type_node
, src
,
2297 build_zero_cst (TREE_TYPE (src
)));
2298 call
= fold_build3 (COND_EXPR
, integer_type_node
, is_zero
, call
,
2299 build_int_cst (integer_type_node
, prec
));
2306 /* Returns true if STMT is equivalent to x << 1. */
2309 is_lshift_by_1 (gassign
*stmt
)
2311 if (gimple_assign_rhs_code (stmt
) == LSHIFT_EXPR
2312 && integer_onep (gimple_assign_rhs2 (stmt
)))
2314 if (gimple_assign_rhs_code (stmt
) == MULT_EXPR
2315 && tree_fits_shwi_p (gimple_assign_rhs2 (stmt
))
2316 && tree_to_shwi (gimple_assign_rhs2 (stmt
)) == 2)
2321 /* Returns true if STMT is equivalent to x >> 1. */
2324 is_rshift_by_1 (gassign
*stmt
)
2326 if (!TYPE_UNSIGNED (TREE_TYPE (gimple_assign_lhs (stmt
))))
2328 if (gimple_assign_rhs_code (stmt
) == RSHIFT_EXPR
2329 && integer_onep (gimple_assign_rhs2 (stmt
)))
2331 if (gimple_assign_rhs_code (stmt
) == TRUNC_DIV_EXPR
2332 && tree_fits_shwi_p (gimple_assign_rhs2 (stmt
))
2333 && tree_to_shwi (gimple_assign_rhs2 (stmt
)) == 2)
2338 /* See comment below for number_of_iterations_bitcount.
2339 For c[lt]z, we have:
2342 iv_2 = iv_1 << 1 OR iv_1 >> 1
2345 if (iv & 1 << (prec-1)) OR (iv & 1)
2348 src precision - c[lt]z (src)
2353 number_of_iterations_cltz (loop_p loop
, edge exit
,
2354 enum tree_code code
,
2355 class tree_niter_desc
*niter
)
2357 bool modify_before_test
= true;
2362 /* Check that condition for staying inside the loop is like
2364 gcond
*cond_stmt
= safe_dyn_cast
<gcond
*> (*gsi_last_bb (exit
->src
));
2366 || (code
!= EQ_EXPR
&& code
!= GE_EXPR
)
2367 || !integer_zerop (gimple_cond_rhs (cond_stmt
))
2368 || TREE_CODE (gimple_cond_lhs (cond_stmt
)) != SSA_NAME
)
2371 if (code
== EQ_EXPR
)
2373 /* Make sure we check a bitwise and with a suitable constant */
2374 gimple
*and_stmt
= SSA_NAME_DEF_STMT (gimple_cond_lhs (cond_stmt
));
2375 if (!is_gimple_assign (and_stmt
)
2376 || gimple_assign_rhs_code (and_stmt
) != BIT_AND_EXPR
2377 || !integer_pow2p (gimple_assign_rhs2 (and_stmt
))
2378 || TREE_CODE (gimple_assign_rhs1 (and_stmt
)) != SSA_NAME
)
2381 checked_bit
= tree_log2 (gimple_assign_rhs2 (and_stmt
));
2383 iv_2
= gimple_assign_rhs1 (and_stmt
);
2387 /* We have a GE_EXPR - a signed comparison with zero is equivalent to
2388 testing the leading bit, so check for this pattern too. */
2390 iv_2
= gimple_cond_lhs (cond_stmt
);
2391 tree test_value_type
= TREE_TYPE (iv_2
);
2393 if (TYPE_UNSIGNED (test_value_type
))
2396 gimple
*test_value_stmt
= SSA_NAME_DEF_STMT (iv_2
);
2398 if (is_gimple_assign (test_value_stmt
)
2399 && gimple_assign_rhs_code (test_value_stmt
) == NOP_EXPR
)
2401 /* If the test value comes from a NOP_EXPR, then we need to unwrap
2402 this. We conservatively require that both types have the same
2404 iv_2
= gimple_assign_rhs1 (test_value_stmt
);
2405 tree rhs_type
= TREE_TYPE (iv_2
);
2406 if (TREE_CODE (iv_2
) != SSA_NAME
2407 || TREE_CODE (rhs_type
) != INTEGER_TYPE
2408 || (TYPE_PRECISION (rhs_type
)
2409 != TYPE_PRECISION (test_value_type
)))
2413 checked_bit
= TYPE_PRECISION (test_value_type
) - 1;
2416 gimple
*iv_2_stmt
= SSA_NAME_DEF_STMT (iv_2
);
2418 /* If the test comes before the iv modification, then these will actually be
2419 iv_1 and a phi node. */
2420 if (gimple_code (iv_2_stmt
) == GIMPLE_PHI
2421 && gimple_bb (iv_2_stmt
) == loop
->header
2422 && gimple_phi_num_args (iv_2_stmt
) == 2
2423 && (TREE_CODE (gimple_phi_arg_def (iv_2_stmt
,
2424 loop_latch_edge (loop
)->dest_idx
))
2427 /* iv_2 is actually one of the inputs to the phi. */
2428 iv_2
= gimple_phi_arg_def (iv_2_stmt
, loop_latch_edge (loop
)->dest_idx
);
2429 iv_2_stmt
= SSA_NAME_DEF_STMT (iv_2
);
2430 modify_before_test
= false;
2433 /* Make sure iv_2_stmt is a logical shift by one stmt:
2434 iv_2 = iv_1 {<<|>>} 1 */
2435 if (!is_gimple_assign (iv_2_stmt
))
2437 bool left_shift
= false;
2438 if (!((left_shift
= is_lshift_by_1 (as_a
<gassign
*> (iv_2_stmt
)))
2439 || is_rshift_by_1 (as_a
<gassign
*> (iv_2_stmt
))))
2442 tree iv_1
= gimple_assign_rhs1 (iv_2_stmt
);
2444 /* Check the recurrence. */
2445 gimple
*phi
= SSA_NAME_DEF_STMT (iv_1
);
2446 if (gimple_code (phi
) != GIMPLE_PHI
2447 || (gimple_bb (phi
) != loop_latch_edge (loop
)->dest
)
2448 || (iv_2
!= gimple_phi_arg_def (phi
, loop_latch_edge (loop
)->dest_idx
)))
2451 /* We found a match. */
2452 tree src
= gimple_phi_arg_def (phi
, loop_preheader_edge (loop
)->dest_idx
);
2453 int src_precision
= TYPE_PRECISION (TREE_TYPE (src
));
2455 /* Apply any needed preprocessing to src. */
2456 int num_ignored_bits
;
2458 num_ignored_bits
= src_precision
- checked_bit
- 1;
2460 num_ignored_bits
= checked_bit
;
2462 if (modify_before_test
)
2465 if (num_ignored_bits
!= 0)
2466 src
= fold_build2 (left_shift
? LSHIFT_EXPR
: RSHIFT_EXPR
,
2467 TREE_TYPE (src
), src
,
2468 build_int_cst (integer_type_node
, num_ignored_bits
));
2470 /* Get the corresponding c[lt]z builtin. */
2471 tree expr
= build_cltz_expr (src
, left_shift
, false);
2476 max
= src_precision
- num_ignored_bits
- 1;
2478 expr
= fold_convert (unsigned_type_node
, expr
);
2480 tree assumptions
= fold_build2 (NE_EXPR
, boolean_type_node
, src
,
2481 build_zero_cst (TREE_TYPE (src
)));
2483 niter
->assumptions
= simplify_using_initial_conditions (loop
, assumptions
);
2484 niter
->may_be_zero
= boolean_false_node
;
2485 niter
->niter
= simplify_using_initial_conditions (loop
, expr
);
2487 if (TREE_CODE (niter
->niter
) == INTEGER_CST
)
2488 niter
->max
= tree_to_uhwi (niter
->niter
);
2492 niter
->bound
= NULL_TREE
;
2493 niter
->cmp
= ERROR_MARK
;
2498 /* See comment below for number_of_iterations_bitcount.
2499 For c[lt]z complement, we have:
2502 iv_2 = iv_1 >> 1 OR iv_1 << 1
2508 src precision - c[lt]z (src)
2513 number_of_iterations_cltz_complement (loop_p loop
, edge exit
,
2514 enum tree_code code
,
2515 class tree_niter_desc
*niter
)
2517 bool modify_before_test
= true;
2520 /* Check that condition for staying inside the loop is like
2522 gcond
*cond_stmt
= safe_dyn_cast
<gcond
*> (*gsi_last_bb (exit
->src
));
2525 || !integer_zerop (gimple_cond_rhs (cond_stmt
))
2526 || TREE_CODE (gimple_cond_lhs (cond_stmt
)) != SSA_NAME
)
2529 tree iv_2
= gimple_cond_lhs (cond_stmt
);
2530 gimple
*iv_2_stmt
= SSA_NAME_DEF_STMT (iv_2
);
2532 /* If the test comes before the iv modification, then these will actually be
2533 iv_1 and a phi node. */
2534 if (gimple_code (iv_2_stmt
) == GIMPLE_PHI
2535 && gimple_bb (iv_2_stmt
) == loop
->header
2536 && gimple_phi_num_args (iv_2_stmt
) == 2
2537 && (TREE_CODE (gimple_phi_arg_def (iv_2_stmt
,
2538 loop_latch_edge (loop
)->dest_idx
))
2541 /* iv_2 is actually one of the inputs to the phi. */
2542 iv_2
= gimple_phi_arg_def (iv_2_stmt
, loop_latch_edge (loop
)->dest_idx
);
2543 iv_2_stmt
= SSA_NAME_DEF_STMT (iv_2
);
2544 modify_before_test
= false;
2547 /* Make sure iv_2_stmt is a logical shift by one stmt:
2548 iv_2 = iv_1 {>>|<<} 1 */
2549 if (!is_gimple_assign (iv_2_stmt
))
2551 bool left_shift
= false;
2552 if (!((left_shift
= is_lshift_by_1 (as_a
<gassign
*> (iv_2_stmt
)))
2553 || is_rshift_by_1 (as_a
<gassign
*> (iv_2_stmt
))))
2556 tree iv_1
= gimple_assign_rhs1 (iv_2_stmt
);
2558 /* Check the recurrence. */
2559 gimple
*phi
= SSA_NAME_DEF_STMT (iv_1
);
2560 if (gimple_code (phi
) != GIMPLE_PHI
2561 || (gimple_bb (phi
) != loop_latch_edge (loop
)->dest
)
2562 || (iv_2
!= gimple_phi_arg_def (phi
, loop_latch_edge (loop
)->dest_idx
)))
2565 /* We found a match. */
2566 tree src
= gimple_phi_arg_def (phi
, loop_preheader_edge (loop
)->dest_idx
);
2567 int src_precision
= TYPE_PRECISION (TREE_TYPE (src
));
2569 /* Get the corresponding c[lt]z builtin. */
2570 tree expr
= build_cltz_expr (src
, !left_shift
, true);
2575 expr
= fold_build2 (MINUS_EXPR
, integer_type_node
,
2576 build_int_cst (integer_type_node
, src_precision
),
2579 max
= src_precision
;
2581 tree may_be_zero
= boolean_false_node
;
2583 if (modify_before_test
)
2585 expr
= fold_build2 (MINUS_EXPR
, integer_type_node
, expr
,
2588 may_be_zero
= fold_build2 (EQ_EXPR
, boolean_type_node
, src
,
2589 build_zero_cst (TREE_TYPE (src
)));
2592 expr
= fold_convert (unsigned_type_node
, expr
);
2594 niter
->assumptions
= boolean_true_node
;
2595 niter
->may_be_zero
= simplify_using_initial_conditions (loop
, may_be_zero
);
2596 niter
->niter
= simplify_using_initial_conditions (loop
, expr
);
2598 if (TREE_CODE (niter
->niter
) == INTEGER_CST
)
2599 niter
->max
= tree_to_uhwi (niter
->niter
);
2603 niter
->bound
= NULL_TREE
;
2604 niter
->cmp
= ERROR_MARK
;
2608 /* See if LOOP contains a bit counting idiom. The idiom consists of two parts:
2609 1. A modification to the induction variabler;.
2610 2. A test to determine whether or not to exit the loop.
2612 These can come in either order - i.e.:
2615 iv_1 = PHI <src(2), iv_2(4)>
2622 iv_2 = modify (iv_1)
2628 iv_1 = PHI <src(2), iv_2(4)>
2629 iv_2 = modify (iv_1)
2637 The second form can be generated by copying the loop header out of the loop.
2639 In the first case, the number of latch executions will be equal to the
2640 number of induction variable modifications required before the test fails.
2642 In the second case (modify_before_test), if we assume that the number of
2643 modifications required before the test fails is nonzero, then the number of
2644 latch executions will be one less than this number.
2646 If we recognise the pattern, then we update niter accordingly, and return
2650 number_of_iterations_bitcount (loop_p loop
, edge exit
,
2651 enum tree_code code
,
2652 class tree_niter_desc
*niter
)
2654 return (number_of_iterations_popcount (loop
, exit
, code
, niter
)
2655 || number_of_iterations_cltz (loop
, exit
, code
, niter
)
2656 || number_of_iterations_cltz_complement (loop
, exit
, code
, niter
));
2659 /* Substitute NEW_TREE for OLD in EXPR and fold the result.
2660 If VALUEIZE is non-NULL then OLD and NEW_TREE are ignored and instead
2661 all SSA names are replaced with the result of calling the VALUEIZE
2662 function with the SSA name as argument. */
2665 simplify_replace_tree (tree expr
, tree old
, tree new_tree
,
2666 tree (*valueize
) (tree
, void*), void *context
,
2670 tree ret
= NULL_TREE
, e
, se
;
2675 /* Do not bother to replace constants. */
2676 if (CONSTANT_CLASS_P (expr
))
2681 if (TREE_CODE (expr
) == SSA_NAME
)
2683 new_tree
= valueize (expr
, context
);
2684 if (new_tree
!= expr
)
2688 else if (expr
== old
2689 || operand_equal_p (expr
, old
, 0))
2690 return unshare_expr (new_tree
);
2695 n
= TREE_OPERAND_LENGTH (expr
);
2696 for (i
= 0; i
< n
; i
++)
2698 e
= TREE_OPERAND (expr
, i
);
2699 se
= simplify_replace_tree (e
, old
, new_tree
, valueize
, context
, do_fold
);
2704 ret
= copy_node (expr
);
2706 TREE_OPERAND (ret
, i
) = se
;
2709 return (ret
? (do_fold
? fold (ret
) : ret
) : expr
);
2712 /* Expand definitions of ssa names in EXPR as long as they are simple
2713 enough, and return the new expression. If STOP is specified, stop
2714 expanding if EXPR equals to it. */
2717 expand_simple_operations (tree expr
, tree stop
, hash_map
<tree
, tree
> &cache
)
2720 tree ret
= NULL_TREE
, e
, ee
, e1
;
2721 enum tree_code code
;
2724 if (expr
== NULL_TREE
)
2727 if (is_gimple_min_invariant (expr
))
2730 code
= TREE_CODE (expr
);
2731 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
2733 n
= TREE_OPERAND_LENGTH (expr
);
2734 for (i
= 0; i
< n
; i
++)
2736 e
= TREE_OPERAND (expr
, i
);
2739 /* SCEV analysis feeds us with a proper expression
2740 graph matching the SSA graph. Avoid turning it
2741 into a tree here, thus handle tree sharing
2743 ??? The SSA walk below still turns the SSA graph
2744 into a tree but until we find a testcase do not
2745 introduce additional tree sharing here. */
2747 tree
&cee
= cache
.get_or_insert (e
, &existed_p
);
2753 ee
= expand_simple_operations (e
, stop
, cache
);
2755 *cache
.get (e
) = ee
;
2761 ret
= copy_node (expr
);
2763 TREE_OPERAND (ret
, i
) = ee
;
2769 fold_defer_overflow_warnings ();
2771 fold_undefer_and_ignore_overflow_warnings ();
2775 /* Stop if it's not ssa name or the one we don't want to expand. */
2776 if (TREE_CODE (expr
) != SSA_NAME
|| expr
== stop
)
2779 stmt
= SSA_NAME_DEF_STMT (expr
);
2780 if (gimple_code (stmt
) == GIMPLE_PHI
)
2782 basic_block src
, dest
;
2784 if (gimple_phi_num_args (stmt
) != 1)
2786 e
= PHI_ARG_DEF (stmt
, 0);
2788 /* Avoid propagating through loop exit phi nodes, which
2789 could break loop-closed SSA form restrictions. */
2790 dest
= gimple_bb (stmt
);
2791 src
= single_pred (dest
);
2792 if (TREE_CODE (e
) == SSA_NAME
2793 && src
->loop_father
!= dest
->loop_father
)
2796 return expand_simple_operations (e
, stop
, cache
);
2798 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
2801 /* Avoid expanding to expressions that contain SSA names that need
2802 to take part in abnormal coalescing. */
2804 FOR_EACH_SSA_TREE_OPERAND (e
, stmt
, iter
, SSA_OP_USE
)
2805 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (e
))
2808 e
= gimple_assign_rhs1 (stmt
);
2809 code
= gimple_assign_rhs_code (stmt
);
2810 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
)
2812 if (is_gimple_min_invariant (e
))
2815 if (code
== SSA_NAME
)
2816 return expand_simple_operations (e
, stop
, cache
);
2817 else if (code
== ADDR_EXPR
)
2820 tree base
= get_addr_base_and_unit_offset (TREE_OPERAND (e
, 0),
2823 && TREE_CODE (base
) == MEM_REF
)
2825 ee
= expand_simple_operations (TREE_OPERAND (base
, 0), stop
,
2827 return fold_build2 (POINTER_PLUS_EXPR
, TREE_TYPE (expr
), ee
,
2828 wide_int_to_tree (sizetype
,
2829 mem_ref_offset (base
)
2840 /* Casts are simple. */
2841 ee
= expand_simple_operations (e
, stop
, cache
);
2842 return fold_build1 (code
, TREE_TYPE (expr
), ee
);
2847 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (expr
))
2848 && TYPE_OVERFLOW_TRAPS (TREE_TYPE (expr
)))
2851 case POINTER_PLUS_EXPR
:
2852 /* And increments and decrements by a constant are simple. */
2853 e1
= gimple_assign_rhs2 (stmt
);
2854 if (!is_gimple_min_invariant (e1
))
2857 ee
= expand_simple_operations (e
, stop
, cache
);
2858 return fold_build2 (code
, TREE_TYPE (expr
), ee
, e1
);
2866 expand_simple_operations (tree expr
, tree stop
)
2868 hash_map
<tree
, tree
> cache
;
2869 return expand_simple_operations (expr
, stop
, cache
);
2872 /* Tries to simplify EXPR using the condition COND. Returns the simplified
2873 expression (or EXPR unchanged, if no simplification was possible). */
2876 tree_simplify_using_condition_1 (tree cond
, tree expr
)
2879 tree e
, e0
, e1
, e2
, notcond
;
2880 enum tree_code code
= TREE_CODE (expr
);
2882 if (code
== INTEGER_CST
)
2885 if (code
== TRUTH_OR_EXPR
2886 || code
== TRUTH_AND_EXPR
2887 || code
== COND_EXPR
)
2891 e0
= tree_simplify_using_condition_1 (cond
, TREE_OPERAND (expr
, 0));
2892 if (TREE_OPERAND (expr
, 0) != e0
)
2895 e1
= tree_simplify_using_condition_1 (cond
, TREE_OPERAND (expr
, 1));
2896 if (TREE_OPERAND (expr
, 1) != e1
)
2899 if (code
== COND_EXPR
)
2901 e2
= tree_simplify_using_condition_1 (cond
, TREE_OPERAND (expr
, 2));
2902 if (TREE_OPERAND (expr
, 2) != e2
)
2910 if (code
== COND_EXPR
)
2911 expr
= fold_build3 (code
, boolean_type_node
, e0
, e1
, e2
);
2913 expr
= fold_build2 (code
, boolean_type_node
, e0
, e1
);
2919 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
2920 propagation, and vice versa. Fold does not handle this, since it is
2921 considered too expensive. */
2922 if (TREE_CODE (cond
) == EQ_EXPR
)
2924 e0
= TREE_OPERAND (cond
, 0);
2925 e1
= TREE_OPERAND (cond
, 1);
2927 /* We know that e0 == e1. Check whether we cannot simplify expr
2929 e
= simplify_replace_tree (expr
, e0
, e1
);
2930 if (integer_zerop (e
) || integer_nonzerop (e
))
2933 e
= simplify_replace_tree (expr
, e1
, e0
);
2934 if (integer_zerop (e
) || integer_nonzerop (e
))
2937 if (TREE_CODE (expr
) == EQ_EXPR
)
2939 e0
= TREE_OPERAND (expr
, 0);
2940 e1
= TREE_OPERAND (expr
, 1);
2942 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
2943 e
= simplify_replace_tree (cond
, e0
, e1
);
2944 if (integer_zerop (e
))
2946 e
= simplify_replace_tree (cond
, e1
, e0
);
2947 if (integer_zerop (e
))
2950 if (TREE_CODE (expr
) == NE_EXPR
)
2952 e0
= TREE_OPERAND (expr
, 0);
2953 e1
= TREE_OPERAND (expr
, 1);
2955 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
2956 e
= simplify_replace_tree (cond
, e0
, e1
);
2957 if (integer_zerop (e
))
2958 return boolean_true_node
;
2959 e
= simplify_replace_tree (cond
, e1
, e0
);
2960 if (integer_zerop (e
))
2961 return boolean_true_node
;
2964 /* Check whether COND ==> EXPR. */
2965 notcond
= invert_truthvalue (cond
);
2966 e
= fold_binary (TRUTH_OR_EXPR
, boolean_type_node
, notcond
, expr
);
2967 if (e
&& integer_nonzerop (e
))
2970 /* Check whether COND ==> not EXPR. */
2971 e
= fold_binary (TRUTH_AND_EXPR
, boolean_type_node
, cond
, expr
);
2972 if (e
&& integer_zerop (e
))
2978 /* Tries to simplify EXPR using the condition COND. Returns the simplified
2979 expression (or EXPR unchanged, if no simplification was possible).
2980 Wrapper around tree_simplify_using_condition_1 that ensures that chains
2981 of simple operations in definitions of ssa names in COND are expanded,
2982 so that things like casts or incrementing the value of the bound before
2983 the loop do not cause us to fail. */
2986 tree_simplify_using_condition (tree cond
, tree expr
)
2988 cond
= expand_simple_operations (cond
);
2990 return tree_simplify_using_condition_1 (cond
, expr
);
2993 /* Tries to simplify EXPR using the conditions on entry to LOOP.
2994 Returns the simplified expression (or EXPR unchanged, if no
2995 simplification was possible). */
2998 simplify_using_initial_conditions (class loop
*loop
, tree expr
)
3002 tree cond
, expanded
, backup
;
3005 if (TREE_CODE (expr
) == INTEGER_CST
)
3008 backup
= expanded
= expand_simple_operations (expr
);
3010 /* Limit walking the dominators to avoid quadraticness in
3011 the number of BBs times the number of loops in degenerate
3013 for (bb
= loop
->header
;
3014 bb
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
) && cnt
< MAX_DOMINATORS_TO_WALK
;
3015 bb
= get_immediate_dominator (CDI_DOMINATORS
, bb
))
3017 if (!single_pred_p (bb
))
3019 e
= single_pred_edge (bb
);
3021 if (!(e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
3024 gcond
*stmt
= as_a
<gcond
*> (*gsi_last_bb (e
->src
));
3025 cond
= fold_build2 (gimple_cond_code (stmt
),
3027 gimple_cond_lhs (stmt
),
3028 gimple_cond_rhs (stmt
));
3029 if (e
->flags
& EDGE_FALSE_VALUE
)
3030 cond
= invert_truthvalue (cond
);
3031 expanded
= tree_simplify_using_condition (cond
, expanded
);
3032 /* Break if EXPR is simplified to const values. */
3034 && (integer_zerop (expanded
) || integer_nonzerop (expanded
)))
3040 /* Return the original expression if no simplification is done. */
3041 return operand_equal_p (backup
, expanded
, 0) ? expr
: expanded
;
3044 /* Tries to simplify EXPR using the evolutions of the loop invariants
3045 in the superloops of LOOP. Returns the simplified expression
3046 (or EXPR unchanged, if no simplification was possible). */
3049 simplify_using_outer_evolutions (class loop
*loop
, tree expr
)
3051 enum tree_code code
= TREE_CODE (expr
);
3055 if (is_gimple_min_invariant (expr
))
3058 if (code
== TRUTH_OR_EXPR
3059 || code
== TRUTH_AND_EXPR
3060 || code
== COND_EXPR
)
3064 e0
= simplify_using_outer_evolutions (loop
, TREE_OPERAND (expr
, 0));
3065 if (TREE_OPERAND (expr
, 0) != e0
)
3068 e1
= simplify_using_outer_evolutions (loop
, TREE_OPERAND (expr
, 1));
3069 if (TREE_OPERAND (expr
, 1) != e1
)
3072 if (code
== COND_EXPR
)
3074 e2
= simplify_using_outer_evolutions (loop
, TREE_OPERAND (expr
, 2));
3075 if (TREE_OPERAND (expr
, 2) != e2
)
3083 if (code
== COND_EXPR
)
3084 expr
= fold_build3 (code
, boolean_type_node
, e0
, e1
, e2
);
3086 expr
= fold_build2 (code
, boolean_type_node
, e0
, e1
);
3092 e
= instantiate_parameters (loop
, expr
);
3093 if (is_gimple_min_invariant (e
))
3099 /* Returns true if EXIT is the only possible exit from LOOP. */
3102 loop_only_exit_p (const class loop
*loop
, basic_block
*body
, const_edge exit
)
3104 gimple_stmt_iterator bsi
;
3107 if (exit
!= single_exit (loop
))
3110 for (i
= 0; i
< loop
->num_nodes
; i
++)
3111 for (bsi
= gsi_start_bb (body
[i
]); !gsi_end_p (bsi
); gsi_next (&bsi
))
3112 if (stmt_can_terminate_bb_p (gsi_stmt (bsi
)))
3118 /* Stores description of number of iterations of LOOP derived from
3119 EXIT (an exit edge of the LOOP) in NITER. Returns true if some useful
3120 information could be derived (and fields of NITER have meaning described
3121 in comments at class tree_niter_desc declaration), false otherwise.
3122 When EVERY_ITERATION is true, only tests that are known to be executed
3123 every iteration are considered (i.e. only test that alone bounds the loop).
3124 If AT_STMT is not NULL, this function stores LOOP's condition statement in
3125 it when returning true. */
3128 number_of_iterations_exit_assumptions (class loop
*loop
, edge exit
,
3129 class tree_niter_desc
*niter
,
3130 gcond
**at_stmt
, bool every_iteration
,
3135 enum tree_code code
;
3139 /* The condition at a fake exit (if it exists) does not control its
3141 if (exit
->flags
& EDGE_FAKE
)
3144 /* Nothing to analyze if the loop is known to be infinite. */
3145 if (loop_constraint_set_p (loop
, LOOP_C_INFINITE
))
3148 safe
= dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
);
3150 if (every_iteration
&& !safe
)
3153 niter
->assumptions
= boolean_false_node
;
3154 niter
->control
.base
= NULL_TREE
;
3155 niter
->control
.step
= NULL_TREE
;
3156 niter
->control
.no_overflow
= false;
3157 gcond
*stmt
= safe_dyn_cast
<gcond
*> (*gsi_last_bb (exit
->src
));
3164 /* We want the condition for staying inside loop. */
3165 code
= gimple_cond_code (stmt
);
3166 if (exit
->flags
& EDGE_TRUE_VALUE
)
3167 code
= invert_tree_comparison (code
, false);
3179 return number_of_iterations_cltz (loop
, exit
, code
, niter
);
3185 op0
= gimple_cond_lhs (stmt
);
3186 op1
= gimple_cond_rhs (stmt
);
3187 type
= TREE_TYPE (op0
);
3189 if (TREE_CODE (type
) != INTEGER_TYPE
3190 && !POINTER_TYPE_P (type
))
3193 tree iv0_niters
= NULL_TREE
;
3194 if (!simple_iv_with_niters (loop
, loop_containing_stmt (stmt
),
3195 op0
, &iv0
, safe
? &iv0_niters
: NULL
, false))
3196 return number_of_iterations_bitcount (loop
, exit
, code
, niter
);
3197 tree iv1_niters
= NULL_TREE
;
3198 if (!simple_iv_with_niters (loop
, loop_containing_stmt (stmt
),
3199 op1
, &iv1
, safe
? &iv1_niters
: NULL
, false))
3201 /* Give up on complicated case. */
3202 if (iv0_niters
&& iv1_niters
)
3205 /* We don't want to see undefined signed overflow warnings while
3206 computing the number of iterations. */
3207 fold_defer_overflow_warnings ();
3209 iv0
.base
= expand_simple_operations (iv0
.base
);
3210 iv1
.base
= expand_simple_operations (iv1
.base
);
3211 bool body_from_caller
= true;
3214 body
= get_loop_body (loop
);
3215 body_from_caller
= false;
3217 bool only_exit_p
= loop_only_exit_p (loop
, body
, exit
);
3218 if (!body_from_caller
)
3220 if (!number_of_iterations_cond (loop
, type
, &iv0
, code
, &iv1
, niter
,
3223 fold_undefer_and_ignore_overflow_warnings ();
3227 /* Incorporate additional assumption implied by control iv. */
3228 tree iv_niters
= iv0_niters
? iv0_niters
: iv1_niters
;
3231 tree assumption
= fold_build2 (LE_EXPR
, boolean_type_node
, niter
->niter
,
3232 fold_convert (TREE_TYPE (niter
->niter
),
3235 if (!integer_nonzerop (assumption
))
3236 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
3237 niter
->assumptions
, assumption
);
3239 /* Refine upper bound if possible. */
3240 if (TREE_CODE (iv_niters
) == INTEGER_CST
3241 && niter
->max
> wi::to_widest (iv_niters
))
3242 niter
->max
= wi::to_widest (iv_niters
);
3245 /* There is no assumptions if the loop is known to be finite. */
3246 if (!integer_zerop (niter
->assumptions
)
3247 && loop_constraint_set_p (loop
, LOOP_C_FINITE
))
3248 niter
->assumptions
= boolean_true_node
;
3252 niter
->assumptions
= simplify_using_outer_evolutions (loop
,
3253 niter
->assumptions
);
3254 niter
->may_be_zero
= simplify_using_outer_evolutions (loop
,
3255 niter
->may_be_zero
);
3256 niter
->niter
= simplify_using_outer_evolutions (loop
, niter
->niter
);
3260 = simplify_using_initial_conditions (loop
,
3261 niter
->assumptions
);
3263 = simplify_using_initial_conditions (loop
,
3264 niter
->may_be_zero
);
3266 fold_undefer_and_ignore_overflow_warnings ();
3268 /* If NITER has simplified into a constant, update MAX. */
3269 if (TREE_CODE (niter
->niter
) == INTEGER_CST
)
3270 niter
->max
= wi::to_widest (niter
->niter
);
3272 return (!integer_zerop (niter
->assumptions
));
3275 /* Like number_of_iterations_exit_assumptions, but return TRUE only if
3276 the niter information holds unconditionally. */
3279 number_of_iterations_exit (class loop
*loop
, edge exit
,
3280 class tree_niter_desc
*niter
,
3281 bool warn
, bool every_iteration
,
3285 if (!number_of_iterations_exit_assumptions (loop
, exit
, niter
,
3286 &stmt
, every_iteration
, body
))
3289 if (integer_nonzerop (niter
->assumptions
))
3292 if (warn
&& dump_enabled_p ())
3293 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, stmt
,
3294 "missed loop optimization: niters analysis ends up "
3295 "with assumptions.\n");
3300 /* Try to determine the number of iterations of LOOP. If we succeed,
3301 expression giving number of iterations is returned and *EXIT is
3302 set to the edge from that the information is obtained. Otherwise
3303 chrec_dont_know is returned. */
3306 find_loop_niter (class loop
*loop
, edge
*exit
)
3309 auto_vec
<edge
> exits
= get_loop_exit_edges (loop
);
3311 tree niter
= NULL_TREE
, aniter
;
3312 class tree_niter_desc desc
;
3315 FOR_EACH_VEC_ELT (exits
, i
, ex
)
3317 if (!number_of_iterations_exit (loop
, ex
, &desc
, false))
3320 if (integer_nonzerop (desc
.may_be_zero
))
3322 /* We exit in the first iteration through this exit.
3323 We won't find anything better. */
3324 niter
= build_int_cst (unsigned_type_node
, 0);
3329 if (!integer_zerop (desc
.may_be_zero
))
3332 aniter
= desc
.niter
;
3336 /* Nothing recorded yet. */
3342 /* Prefer constants, the lower the better. */
3343 if (TREE_CODE (aniter
) != INTEGER_CST
)
3346 if (TREE_CODE (niter
) != INTEGER_CST
)
3353 if (tree_int_cst_lt (aniter
, niter
))
3361 return niter
? niter
: chrec_dont_know
;
3364 /* Return true if loop is known to have bounded number of iterations. */
3367 finite_loop_p (class loop
*loop
)
3375 auto_vec
<edge
> exits
= get_loop_exit_edges (loop
);
3378 /* If the loop has a normal exit, we can assume it will terminate. */
3379 FOR_EACH_VEC_ELT (exits
, i
, ex
)
3380 if (!(ex
->flags
& (EDGE_EH
| EDGE_ABNORMAL
| EDGE_FAKE
)))
3383 fprintf (dump_file
, "Assume loop %i to be finite: it has an exit "
3384 "and -ffinite-loops is on or loop was "
3385 "previously finite.\n",
3391 flags
= flags_from_decl_or_type (current_function_decl
);
3392 if ((flags
& (ECF_CONST
|ECF_PURE
)) && !(flags
& ECF_LOOPING_CONST_OR_PURE
))
3394 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3396 "Found loop %i to be finite: it is within "
3397 "pure or const function.\n",
3399 loop
->finite_p
= true;
3403 if (loop
->any_upper_bound
3404 /* Loop with no normal exit will not pass max_loop_iterations. */
3405 || (!loop
->finite_p
&& max_loop_iterations (loop
, &nit
)))
3407 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3408 fprintf (dump_file
, "Found loop %i to be finite: upper bound found.\n",
3410 loop
->finite_p
= true;
3419 Analysis of a number of iterations of a loop by a brute-force evaluation.
3423 /* Bound on the number of iterations we try to evaluate. */
3425 #define MAX_ITERATIONS_TO_TRACK \
3426 ((unsigned) param_max_iterations_to_track)
3428 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
3429 result by a chain of operations such that all but exactly one of their
3430 operands are constants. */
3433 chain_of_csts_start (class loop
*loop
, tree x
)
3435 gimple
*stmt
= SSA_NAME_DEF_STMT (x
);
3437 basic_block bb
= gimple_bb (stmt
);
3438 enum tree_code code
;
3441 || !flow_bb_inside_loop_p (loop
, bb
))
3444 if (gimple_code (stmt
) == GIMPLE_PHI
)
3446 if (bb
== loop
->header
)
3447 return as_a
<gphi
*> (stmt
);
3452 if (gimple_code (stmt
) != GIMPLE_ASSIGN
3453 || gimple_assign_rhs_class (stmt
) == GIMPLE_TERNARY_RHS
)
3456 code
= gimple_assign_rhs_code (stmt
);
3457 if (gimple_references_memory_p (stmt
)
3458 || TREE_CODE_CLASS (code
) == tcc_reference
3459 || (code
== ADDR_EXPR
3460 && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt
))))
3463 use
= SINGLE_SSA_TREE_OPERAND (stmt
, SSA_OP_USE
);
3464 if (use
== NULL_TREE
)
3467 return chain_of_csts_start (loop
, use
);
3470 /* Determines whether the expression X is derived from a result of a phi node
3471 in header of LOOP such that
3473 * the derivation of X consists only from operations with constants
3474 * the initial value of the phi node is constant
3475 * the value of the phi node in the next iteration can be derived from the
3476 value in the current iteration by a chain of operations with constants,
3477 or is also a constant
3479 If such phi node exists, it is returned, otherwise NULL is returned. */
3482 get_base_for (class loop
*loop
, tree x
)
3487 if (is_gimple_min_invariant (x
))
3490 phi
= chain_of_csts_start (loop
, x
);
3494 init
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
3495 next
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (loop
));
3497 if (!is_gimple_min_invariant (init
))
3500 if (TREE_CODE (next
) == SSA_NAME
3501 && chain_of_csts_start (loop
, next
) != phi
)
3507 /* Given an expression X, then
3509 * if X is NULL_TREE, we return the constant BASE.
3510 * if X is a constant, we return the constant X.
3511 * otherwise X is a SSA name, whose value in the considered loop is derived
3512 by a chain of operations with constant from a result of a phi node in
3513 the header of the loop. Then we return value of X when the value of the
3514 result of this phi node is given by the constant BASE. */
3517 get_val_for (tree x
, tree base
)
3521 gcc_checking_assert (is_gimple_min_invariant (base
));
3525 else if (is_gimple_min_invariant (x
))
3528 stmt
= SSA_NAME_DEF_STMT (x
);
3529 if (gimple_code (stmt
) == GIMPLE_PHI
)
3532 gcc_checking_assert (is_gimple_assign (stmt
));
3534 /* STMT must be either an assignment of a single SSA name or an
3535 expression involving an SSA name and a constant. Try to fold that
3536 expression using the value for the SSA name. */
3537 if (gimple_assign_ssa_name_copy_p (stmt
))
3538 return get_val_for (gimple_assign_rhs1 (stmt
), base
);
3539 else if (gimple_assign_rhs_class (stmt
) == GIMPLE_UNARY_RHS
3540 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
)
3541 return fold_build1 (gimple_assign_rhs_code (stmt
),
3542 TREE_TYPE (gimple_assign_lhs (stmt
)),
3543 get_val_for (gimple_assign_rhs1 (stmt
), base
));
3544 else if (gimple_assign_rhs_class (stmt
) == GIMPLE_BINARY_RHS
)
3546 tree rhs1
= gimple_assign_rhs1 (stmt
);
3547 tree rhs2
= gimple_assign_rhs2 (stmt
);
3548 if (TREE_CODE (rhs1
) == SSA_NAME
)
3549 rhs1
= get_val_for (rhs1
, base
);
3550 else if (TREE_CODE (rhs2
) == SSA_NAME
)
3551 rhs2
= get_val_for (rhs2
, base
);
3554 return fold_build2 (gimple_assign_rhs_code (stmt
),
3555 TREE_TYPE (gimple_assign_lhs (stmt
)), rhs1
, rhs2
);
3562 /* Tries to count the number of iterations of LOOP till it exits by EXIT
3563 by brute force -- i.e. by determining the value of the operands of the
3564 condition at EXIT in first few iterations of the loop (assuming that
3565 these values are constant) and determining the first one in that the
3566 condition is not satisfied. Returns the constant giving the number
3567 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
3570 loop_niter_by_eval (class loop
*loop
, edge exit
)
3573 tree op
[2], val
[2], next
[2], aval
[2];
3578 gcond
*cond
= safe_dyn_cast
<gcond
*> (*gsi_last_bb (exit
->src
));
3580 return chrec_dont_know
;
3582 cmp
= gimple_cond_code (cond
);
3583 if (exit
->flags
& EDGE_TRUE_VALUE
)
3584 cmp
= invert_tree_comparison (cmp
, false);
3594 op
[0] = gimple_cond_lhs (cond
);
3595 op
[1] = gimple_cond_rhs (cond
);
3599 return chrec_dont_know
;
3602 for (j
= 0; j
< 2; j
++)
3604 if (is_gimple_min_invariant (op
[j
]))
3607 next
[j
] = NULL_TREE
;
3612 phi
= get_base_for (loop
, op
[j
]);
3614 return chrec_dont_know
;
3615 val
[j
] = PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
3616 next
[j
] = PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (loop
));
3620 /* Don't issue signed overflow warnings. */
3621 fold_defer_overflow_warnings ();
3623 for (i
= 0; i
< MAX_ITERATIONS_TO_TRACK
; i
++)
3625 for (j
= 0; j
< 2; j
++)
3626 aval
[j
] = get_val_for (op
[j
], val
[j
]);
3628 acnd
= fold_binary (cmp
, boolean_type_node
, aval
[0], aval
[1]);
3629 if (acnd
&& integer_zerop (acnd
))
3631 fold_undefer_and_ignore_overflow_warnings ();
3632 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3634 "Proved that loop %d iterates %d times using brute force.\n",
3636 return build_int_cst (unsigned_type_node
, i
);
3639 for (j
= 0; j
< 2; j
++)
3642 val
[j
] = get_val_for (next
[j
], val
[j
]);
3643 if (!is_gimple_min_invariant (val
[j
]))
3645 fold_undefer_and_ignore_overflow_warnings ();
3646 return chrec_dont_know
;
3650 /* If the next iteration would use the same base values
3651 as the current one, there is no point looping further,
3652 all following iterations will be the same as this one. */
3653 if (val
[0] == aval
[0] && val
[1] == aval
[1])
3657 fold_undefer_and_ignore_overflow_warnings ();
3659 return chrec_dont_know
;
3662 /* Finds the exit of the LOOP by that the loop exits after a constant
3663 number of iterations and stores the exit edge to *EXIT. The constant
3664 giving the number of iterations of LOOP is returned. The number of
3665 iterations is determined using loop_niter_by_eval (i.e. by brute force
3666 evaluation). If we are unable to find the exit for that loop_niter_by_eval
3667 determines the number of iterations, chrec_dont_know is returned. */
3670 find_loop_niter_by_eval (class loop
*loop
, edge
*exit
)
3673 auto_vec
<edge
> exits
= get_loop_exit_edges (loop
);
3675 tree niter
= NULL_TREE
, aniter
;
3679 /* Loops with multiple exits are expensive to handle and less important. */
3680 if (!flag_expensive_optimizations
3681 && exits
.length () > 1)
3682 return chrec_dont_know
;
3684 FOR_EACH_VEC_ELT (exits
, i
, ex
)
3686 if (!just_once_each_iteration_p (loop
, ex
->src
))
3689 aniter
= loop_niter_by_eval (loop
, ex
);
3690 if (chrec_contains_undetermined (aniter
))
3694 && !tree_int_cst_lt (aniter
, niter
))
3701 return niter
? niter
: chrec_dont_know
;
3706 Analysis of upper bounds on number of iterations of a loop.
3710 static widest_int
derive_constant_upper_bound_ops (tree
, tree
,
3711 enum tree_code
, tree
);
3713 /* Returns a constant upper bound on the value of the right-hand side of
3714 an assignment statement STMT. */
3717 derive_constant_upper_bound_assign (gimple
*stmt
)
3719 enum tree_code code
= gimple_assign_rhs_code (stmt
);
3720 tree op0
= gimple_assign_rhs1 (stmt
);
3721 tree op1
= gimple_assign_rhs2 (stmt
);
3723 return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt
)),
3727 /* Returns a constant upper bound on the value of expression VAL. VAL
3728 is considered to be unsigned. If its type is signed, its value must
3732 derive_constant_upper_bound (tree val
)
3734 enum tree_code code
;
3737 extract_ops_from_tree (val
, &code
, &op0
, &op1
, &op2
);
3738 return derive_constant_upper_bound_ops (TREE_TYPE (val
), op0
, code
, op1
);
3741 /* Returns a constant upper bound on the value of expression OP0 CODE OP1,
3742 whose type is TYPE. The expression is considered to be unsigned. If
3743 its type is signed, its value must be nonnegative. */
3746 derive_constant_upper_bound_ops (tree type
, tree op0
,
3747 enum tree_code code
, tree op1
)
3750 widest_int bnd
, max
, cst
;
3753 if (INTEGRAL_TYPE_P (type
))
3754 maxt
= TYPE_MAX_VALUE (type
);
3756 maxt
= upper_bound_in_type (type
, type
);
3758 max
= wi::to_widest (maxt
);
3763 return wi::to_widest (op0
);
3766 subtype
= TREE_TYPE (op0
);
3767 if (!TYPE_UNSIGNED (subtype
)
3768 /* If TYPE is also signed, the fact that VAL is nonnegative implies
3769 that OP0 is nonnegative. */
3770 && TYPE_UNSIGNED (type
)
3771 && !tree_expr_nonnegative_p (op0
))
3773 /* If we cannot prove that the casted expression is nonnegative,
3774 we cannot establish more useful upper bound than the precision
3775 of the type gives us. */
3779 /* We now know that op0 is an nonnegative value. Try deriving an upper
3781 bnd
= derive_constant_upper_bound (op0
);
3783 /* If the bound does not fit in TYPE, max. value of TYPE could be
3785 if (wi::ltu_p (max
, bnd
))
3791 case POINTER_PLUS_EXPR
:
3793 if (TREE_CODE (op1
) != INTEGER_CST
3794 || !tree_expr_nonnegative_p (op0
))
3797 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
3798 choose the most logical way how to treat this constant regardless
3799 of the signedness of the type. */
3800 cst
= wi::sext (wi::to_widest (op1
), TYPE_PRECISION (type
));
3801 if (code
!= MINUS_EXPR
)
3804 bnd
= derive_constant_upper_bound (op0
);
3806 if (wi::neg_p (cst
))
3809 /* Avoid CST == 0x80000... */
3810 if (wi::neg_p (cst
))
3813 /* OP0 + CST. We need to check that
3814 BND <= MAX (type) - CST. */
3816 widest_int mmax
= max
- cst
;
3817 if (wi::leu_p (bnd
, mmax
))
3824 /* OP0 - CST, where CST >= 0.
3826 If TYPE is signed, we have already verified that OP0 >= 0, and we
3827 know that the result is nonnegative. This implies that
3830 If TYPE is unsigned, we must additionally know that OP0 >= CST,
3831 otherwise the operation underflows.
3834 /* This should only happen if the type is unsigned; however, for
3835 buggy programs that use overflowing signed arithmetics even with
3836 -fno-wrapv, this condition may also be true for signed values. */
3837 if (wi::ltu_p (bnd
, cst
))
3840 if (TYPE_UNSIGNED (type
))
3842 tree tem
= fold_binary (GE_EXPR
, boolean_type_node
, op0
,
3843 wide_int_to_tree (type
, cst
));
3844 if (!tem
|| integer_nonzerop (tem
))
3853 case FLOOR_DIV_EXPR
:
3854 case EXACT_DIV_EXPR
:
3855 if (TREE_CODE (op1
) != INTEGER_CST
3856 || tree_int_cst_sign_bit (op1
))
3859 bnd
= derive_constant_upper_bound (op0
);
3860 return wi::udiv_floor (bnd
, wi::to_widest (op1
));
3863 if (TREE_CODE (op1
) != INTEGER_CST
3864 || tree_int_cst_sign_bit (op1
))
3866 return wi::to_widest (op1
);
3869 stmt
= SSA_NAME_DEF_STMT (op0
);
3870 if (gimple_code (stmt
) != GIMPLE_ASSIGN
3871 || gimple_assign_lhs (stmt
) != op0
)
3873 return derive_constant_upper_bound_assign (stmt
);
3880 /* Emit a -Waggressive-loop-optimizations warning if needed. */
3883 do_warn_aggressive_loop_optimizations (class loop
*loop
,
3884 widest_int i_bound
, gimple
*stmt
)
3886 /* Don't warn if the loop doesn't have known constant bound. */
3887 if (!loop
->nb_iterations
3888 || TREE_CODE (loop
->nb_iterations
) != INTEGER_CST
3889 || !warn_aggressive_loop_optimizations
3890 /* To avoid warning multiple times for the same loop,
3891 only start warning when we preserve loops. */
3892 || (cfun
->curr_properties
& PROP_loops
) == 0
3893 /* Only warn once per loop. */
3894 || loop
->warned_aggressive_loop_optimizations
3895 /* Only warn if undefined behavior gives us lower estimate than the
3896 known constant bound. */
3897 || wi::cmpu (i_bound
, wi::to_widest (loop
->nb_iterations
)) >= 0
3898 /* And undefined behavior happens unconditionally. */
3899 || !dominated_by_p (CDI_DOMINATORS
, loop
->latch
, gimple_bb (stmt
)))
3902 edge e
= single_exit (loop
);
3906 gimple
*estmt
= last_nondebug_stmt (e
->src
);
3907 char buf
[WIDE_INT_PRINT_BUFFER_SIZE
], *p
;
3909 if (print_dec_buf_size (i_bound
, TYPE_SIGN (TREE_TYPE (loop
->nb_iterations
)),
3911 p
= XALLOCAVEC (char, len
);
3914 print_dec (i_bound
, p
, TYPE_SIGN (TREE_TYPE (loop
->nb_iterations
)));
3915 auto_diagnostic_group d
;
3916 if (warning_at (gimple_location (stmt
), OPT_Waggressive_loop_optimizations
,
3917 "iteration %s invokes undefined behavior", p
))
3918 inform (gimple_location (estmt
), "within this loop");
3919 loop
->warned_aggressive_loop_optimizations
= true;
3922 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
3923 is true if the loop is exited immediately after STMT, and this exit
3924 is taken at last when the STMT is executed BOUND + 1 times.
3925 REALISTIC is true if BOUND is expected to be close to the real number
3926 of iterations. UPPER is true if we are sure the loop iterates at most
3927 BOUND times. I_BOUND is a widest_int upper estimate on BOUND. */
3930 record_estimate (class loop
*loop
, tree bound
, const widest_int
&i_bound
,
3931 gimple
*at_stmt
, bool is_exit
, bool realistic
, bool upper
)
3935 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3937 fprintf (dump_file
, "Statement %s", is_exit
? "(exit)" : "");
3938 print_gimple_stmt (dump_file
, at_stmt
, 0, TDF_SLIM
);
3939 fprintf (dump_file
, " is %sexecuted at most ",
3940 upper
? "" : "probably ");
3941 print_generic_expr (dump_file
, bound
, TDF_SLIM
);
3942 fprintf (dump_file
, " (bounded by ");
3943 print_decu (i_bound
, dump_file
);
3944 fprintf (dump_file
, ") + 1 times in loop %d.\n", loop
->num
);
3947 /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
3948 real number of iterations. */
3949 if (TREE_CODE (bound
) != INTEGER_CST
)
3952 gcc_checking_assert (i_bound
== wi::to_widest (bound
));
3954 if (wi::min_precision (i_bound
, SIGNED
) > bound_wide_int ().get_precision ())
3957 /* If we have a guaranteed upper bound, record it in the appropriate
3958 list, unless this is an !is_exit bound (i.e. undefined behavior in
3959 at_stmt) in a loop with known constant number of iterations. */
3962 || loop
->nb_iterations
== NULL_TREE
3963 || TREE_CODE (loop
->nb_iterations
) != INTEGER_CST
))
3965 class nb_iter_bound
*elt
= ggc_alloc
<nb_iter_bound
> ();
3967 elt
->bound
= bound_wide_int::from (i_bound
, SIGNED
);
3968 elt
->stmt
= at_stmt
;
3969 elt
->is_exit
= is_exit
;
3970 elt
->next
= loop
->bounds
;
3974 /* If statement is executed on every path to the loop latch, we can directly
3975 infer the upper bound on the # of iterations of the loop. */
3976 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, gimple_bb (at_stmt
)))
3979 /* Update the number of iteration estimates according to the bound.
3980 If at_stmt is an exit then the loop latch is executed at most BOUND times,
3981 otherwise it can be executed BOUND + 1 times. We will lower the estimate
3982 later if such statement must be executed on last iteration */
3987 widest_int new_i_bound
= i_bound
+ delta
;
3989 /* If an overflow occurred, ignore the result. */
3990 if (wi::ltu_p (new_i_bound
, delta
))
3993 if (upper
&& !is_exit
)
3994 do_warn_aggressive_loop_optimizations (loop
, new_i_bound
, at_stmt
);
3995 record_niter_bound (loop
, new_i_bound
, realistic
, upper
);
3998 /* Records the control iv analyzed in NITER for LOOP if the iv is valid
3999 and doesn't overflow. */
4002 record_control_iv (class loop
*loop
, class tree_niter_desc
*niter
)
4004 struct control_iv
*iv
;
4006 if (!niter
->control
.base
|| !niter
->control
.step
)
4009 if (!integer_onep (niter
->assumptions
) || !niter
->control
.no_overflow
)
4012 iv
= ggc_alloc
<control_iv
> ();
4013 iv
->base
= niter
->control
.base
;
4014 iv
->step
= niter
->control
.step
;
4015 iv
->next
= loop
->control_ivs
;
4016 loop
->control_ivs
= iv
;
4021 /* This function returns TRUE if below conditions are satisfied:
4022 1) VAR is SSA variable.
4023 2) VAR is an IV:{base, step} in its defining loop.
4024 3) IV doesn't overflow.
4025 4) Both base and step are integer constants.
4026 5) Base is the MIN/MAX value depends on IS_MIN.
4027 Store value of base to INIT correspondingly. */
4030 get_cst_init_from_scev (tree var
, wide_int
*init
, bool is_min
)
4032 if (TREE_CODE (var
) != SSA_NAME
)
4035 gimple
*def_stmt
= SSA_NAME_DEF_STMT (var
);
4036 class loop
*loop
= loop_containing_stmt (def_stmt
);
4042 if (!simple_iv (loop
, loop
, var
, &iv
, false))
4045 if (!iv
.no_overflow
)
4048 if (TREE_CODE (iv
.base
) != INTEGER_CST
|| TREE_CODE (iv
.step
) != INTEGER_CST
)
4051 if (is_min
== tree_int_cst_sign_bit (iv
.step
))
4054 *init
= wi::to_wide (iv
.base
);
4058 /* Record the estimate on number of iterations of LOOP based on the fact that
4059 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
4060 its values belong to the range <LOW, HIGH>. REALISTIC is true if the
4061 estimated number of iterations is expected to be close to the real one.
4062 UPPER is true if we are sure the induction variable does not wrap. */
4065 record_nonwrapping_iv (class loop
*loop
, tree base
, tree step
, gimple
*stmt
,
4066 tree low
, tree high
, bool realistic
, bool upper
)
4068 tree niter_bound
, extreme
, delta
;
4069 tree type
= TREE_TYPE (base
), unsigned_type
;
4070 tree orig_base
= base
;
4072 if (TREE_CODE (step
) != INTEGER_CST
|| integer_zerop (step
))
4075 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4077 fprintf (dump_file
, "Induction variable (");
4078 print_generic_expr (dump_file
, TREE_TYPE (base
), TDF_SLIM
);
4079 fprintf (dump_file
, ") ");
4080 print_generic_expr (dump_file
, base
, TDF_SLIM
);
4081 fprintf (dump_file
, " + ");
4082 print_generic_expr (dump_file
, step
, TDF_SLIM
);
4083 fprintf (dump_file
, " * iteration does not wrap in statement ");
4084 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
4085 fprintf (dump_file
, " in loop %d.\n", loop
->num
);
4088 unsigned_type
= unsigned_type_for (type
);
4089 base
= fold_convert (unsigned_type
, base
);
4090 step
= fold_convert (unsigned_type
, step
);
4092 if (tree_int_cst_sign_bit (step
))
4095 value_range
base_range (TREE_TYPE (orig_base
));
4096 if (get_range_query (cfun
)->range_of_expr (base_range
, orig_base
)
4097 && !base_range
.undefined_p ())
4098 max
= wi::to_wide (base_range
.ubound ());
4099 extreme
= fold_convert (unsigned_type
, low
);
4100 if (TREE_CODE (orig_base
) == SSA_NAME
4101 && TREE_CODE (high
) == INTEGER_CST
4102 && INTEGRAL_TYPE_P (TREE_TYPE (orig_base
))
4103 && ((!base_range
.varying_p ()
4104 && !base_range
.undefined_p ())
4105 || get_cst_init_from_scev (orig_base
, &max
, false))
4106 && wi::gts_p (wi::to_wide (high
), max
))
4107 base
= wide_int_to_tree (unsigned_type
, max
);
4108 else if (TREE_CODE (base
) != INTEGER_CST
4109 && dominated_by_p (CDI_DOMINATORS
,
4110 loop
->latch
, gimple_bb (stmt
)))
4111 base
= fold_convert (unsigned_type
, high
);
4112 delta
= fold_build2 (MINUS_EXPR
, unsigned_type
, base
, extreme
);
4113 step
= fold_build1 (NEGATE_EXPR
, unsigned_type
, step
);
4118 value_range
base_range (TREE_TYPE (orig_base
));
4119 if (get_range_query (cfun
)->range_of_expr (base_range
, orig_base
)
4120 && !base_range
.undefined_p ())
4121 min
= wi::to_wide (base_range
.lbound ());
4122 extreme
= fold_convert (unsigned_type
, high
);
4123 if (TREE_CODE (orig_base
) == SSA_NAME
4124 && TREE_CODE (low
) == INTEGER_CST
4125 && INTEGRAL_TYPE_P (TREE_TYPE (orig_base
))
4126 && ((!base_range
.varying_p ()
4127 && !base_range
.undefined_p ())
4128 || get_cst_init_from_scev (orig_base
, &min
, true))
4129 && wi::gts_p (min
, wi::to_wide (low
)))
4130 base
= wide_int_to_tree (unsigned_type
, min
);
4131 else if (TREE_CODE (base
) != INTEGER_CST
4132 && dominated_by_p (CDI_DOMINATORS
,
4133 loop
->latch
, gimple_bb (stmt
)))
4134 base
= fold_convert (unsigned_type
, low
);
4135 delta
= fold_build2 (MINUS_EXPR
, unsigned_type
, extreme
, base
);
4138 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
4139 would get out of the range. */
4140 niter_bound
= fold_build2 (FLOOR_DIV_EXPR
, unsigned_type
, delta
, step
);
4141 widest_int max
= derive_constant_upper_bound (niter_bound
);
4142 record_estimate (loop
, niter_bound
, max
, stmt
, false, realistic
, upper
);
4145 /* Determine information about number of iterations a LOOP from the index
4146 IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
4147 guaranteed to be executed in every iteration of LOOP. Callback for
4157 idx_infer_loop_bounds (tree base
, tree
*idx
, void *dta
)
4159 struct ilb_data
*data
= (struct ilb_data
*) dta
;
4160 tree ev
, init
, step
;
4161 tree low
, high
, type
, next
;
4162 bool sign
, upper
= true, has_flexible_size
= false;
4163 class loop
*loop
= data
->loop
;
4165 if (TREE_CODE (base
) != ARRAY_REF
)
4168 /* For arrays that might have flexible sizes, it is not guaranteed that they
4169 do not really extend over their declared size. */
4170 if (array_ref_flexible_size_p (base
))
4172 has_flexible_size
= true;
4176 class loop
*dloop
= loop_containing_stmt (data
->stmt
);
4180 ev
= analyze_scalar_evolution (dloop
, *idx
);
4181 ev
= instantiate_parameters (loop
, ev
);
4182 init
= initial_condition (ev
);
4183 step
= evolution_part_in_loop_num (ev
, loop
->num
);
4187 || TREE_CODE (step
) != INTEGER_CST
4188 || integer_zerop (step
)
4189 || tree_contains_chrecs (init
, NULL
)
4190 || chrec_contains_symbols_defined_in_loop (init
, loop
->num
))
4193 low
= array_ref_low_bound (base
);
4194 high
= array_ref_up_bound (base
);
4196 /* The case of nonconstant bounds could be handled, but it would be
4198 if (TREE_CODE (low
) != INTEGER_CST
4200 || TREE_CODE (high
) != INTEGER_CST
)
4202 sign
= tree_int_cst_sign_bit (step
);
4203 type
= TREE_TYPE (step
);
4205 /* The array that might have flexible size most likely extends
4206 beyond its bounds. */
4207 if (has_flexible_size
4208 && operand_equal_p (low
, high
, 0))
4211 /* In case the relevant bound of the array does not fit in type, or
4212 it does, but bound + step (in type) still belongs into the range of the
4213 array, the index may wrap and still stay within the range of the array
4214 (consider e.g. if the array is indexed by the full range of
4217 To make things simpler, we require both bounds to fit into type, although
4218 there are cases where this would not be strictly necessary. */
4219 if (!int_fits_type_p (high
, type
)
4220 || !int_fits_type_p (low
, type
))
4222 low
= fold_convert (type
, low
);
4223 high
= fold_convert (type
, high
);
4226 next
= fold_binary (PLUS_EXPR
, type
, low
, step
);
4228 next
= fold_binary (PLUS_EXPR
, type
, high
, step
);
4230 if (tree_int_cst_compare (low
, next
) <= 0
4231 && tree_int_cst_compare (next
, high
) <= 0)
4234 /* If access is not executed on every iteration, we must ensure that overlow
4235 may not make the access valid later. */
4236 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, gimple_bb (data
->stmt
)))
4238 if (scev_probably_wraps_p (NULL_TREE
,
4239 initial_condition_in_loop_num (ev
, loop
->num
),
4240 step
, data
->stmt
, loop
, true))
4244 record_nonwrapping_chrec (ev
);
4246 record_nonwrapping_iv (loop
, init
, step
, data
->stmt
, low
, high
, false, upper
);
4250 /* Determine information about number of iterations a LOOP from the bounds
4251 of arrays in the data reference REF accessed in STMT. RELIABLE is true if
4252 STMT is guaranteed to be executed in every iteration of LOOP.*/
4255 infer_loop_bounds_from_ref (class loop
*loop
, gimple
*stmt
, tree ref
)
4257 struct ilb_data data
;
4261 for_each_index (&ref
, idx_infer_loop_bounds
, &data
);
4264 /* Determine information about number of iterations of a LOOP from the way
4265 arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
4266 executed in every iteration of LOOP. */
4269 infer_loop_bounds_from_array (class loop
*loop
, gimple
*stmt
)
4271 if (is_gimple_assign (stmt
))
4273 tree op0
= gimple_assign_lhs (stmt
);
4274 tree op1
= gimple_assign_rhs1 (stmt
);
4276 /* For each memory access, analyze its access function
4277 and record a bound on the loop iteration domain. */
4278 if (REFERENCE_CLASS_P (op0
))
4279 infer_loop_bounds_from_ref (loop
, stmt
, op0
);
4281 if (REFERENCE_CLASS_P (op1
))
4282 infer_loop_bounds_from_ref (loop
, stmt
, op1
);
4284 else if (is_gimple_call (stmt
))
4287 unsigned i
, n
= gimple_call_num_args (stmt
);
4289 lhs
= gimple_call_lhs (stmt
);
4290 if (lhs
&& REFERENCE_CLASS_P (lhs
))
4291 infer_loop_bounds_from_ref (loop
, stmt
, lhs
);
4293 for (i
= 0; i
< n
; i
++)
4295 arg
= gimple_call_arg (stmt
, i
);
4296 if (REFERENCE_CLASS_P (arg
))
4297 infer_loop_bounds_from_ref (loop
, stmt
, arg
);
4302 /* Determine information about number of iterations of a LOOP from the fact
4303 that pointer arithmetics in STMT does not overflow. */
4306 infer_loop_bounds_from_pointer_arith (class loop
*loop
, gimple
*stmt
)
4308 tree def
, base
, step
, scev
, type
, low
, high
;
4311 if (!is_gimple_assign (stmt
)
4312 || gimple_assign_rhs_code (stmt
) != POINTER_PLUS_EXPR
)
4315 def
= gimple_assign_lhs (stmt
);
4316 if (TREE_CODE (def
) != SSA_NAME
)
4319 type
= TREE_TYPE (def
);
4320 if (!nowrap_type_p (type
))
4323 ptr
= gimple_assign_rhs1 (stmt
);
4324 if (!expr_invariant_in_loop_p (loop
, ptr
))
4327 var
= gimple_assign_rhs2 (stmt
);
4328 if (TYPE_PRECISION (type
) != TYPE_PRECISION (TREE_TYPE (var
)))
4331 class loop
*uloop
= loop_containing_stmt (stmt
);
4332 scev
= instantiate_parameters (loop
, analyze_scalar_evolution (uloop
, def
));
4333 if (chrec_contains_undetermined (scev
))
4336 base
= initial_condition_in_loop_num (scev
, loop
->num
);
4337 step
= evolution_part_in_loop_num (scev
, loop
->num
);
4340 || TREE_CODE (step
) != INTEGER_CST
4341 || tree_contains_chrecs (base
, NULL
)
4342 || chrec_contains_symbols_defined_in_loop (base
, loop
->num
))
4345 low
= lower_bound_in_type (type
, type
);
4346 high
= upper_bound_in_type (type
, type
);
4348 /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
4349 produce a NULL pointer. The contrary would mean NULL points to an object,
4350 while NULL is supposed to compare unequal with the address of all objects.
4351 Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
4352 NULL pointer since that would mean wrapping, which we assume here not to
4353 happen. So, we can exclude NULL from the valid range of pointer
4355 if (flag_delete_null_pointer_checks
&& int_cst_value (low
) == 0)
4356 low
= build_int_cstu (TREE_TYPE (low
), TYPE_ALIGN_UNIT (TREE_TYPE (type
)));
4358 record_nonwrapping_chrec (scev
);
4359 record_nonwrapping_iv (loop
, base
, step
, stmt
, low
, high
, false, true);
4362 /* Determine information about number of iterations of a LOOP from the fact
4363 that signed arithmetics in STMT does not overflow. */
4366 infer_loop_bounds_from_signedness (class loop
*loop
, gimple
*stmt
)
4368 tree def
, base
, step
, scev
, type
, low
, high
;
4370 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
4373 def
= gimple_assign_lhs (stmt
);
4375 if (TREE_CODE (def
) != SSA_NAME
)
4378 type
= TREE_TYPE (def
);
4379 if (!INTEGRAL_TYPE_P (type
)
4380 || !TYPE_OVERFLOW_UNDEFINED (type
))
4383 scev
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, def
));
4384 if (chrec_contains_undetermined (scev
))
4387 base
= initial_condition_in_loop_num (scev
, loop
->num
);
4388 step
= evolution_part_in_loop_num (scev
, loop
->num
);
4391 || TREE_CODE (step
) != INTEGER_CST
4392 || tree_contains_chrecs (base
, NULL
)
4393 || chrec_contains_symbols_defined_in_loop (base
, loop
->num
))
4396 low
= lower_bound_in_type (type
, type
);
4397 high
= upper_bound_in_type (type
, type
);
4398 int_range_max
r (TREE_TYPE (def
));
4399 get_range_query (cfun
)->range_of_expr (r
, def
);
4400 if (!r
.varying_p () && !r
.undefined_p ())
4402 low
= wide_int_to_tree (type
, r
.lower_bound ());
4403 high
= wide_int_to_tree (type
, r
.upper_bound ());
4406 record_nonwrapping_chrec (scev
);
4407 record_nonwrapping_iv (loop
, base
, step
, stmt
, low
, high
, false, true);
4410 /* The following analyzers are extracting informations on the bounds
4411 of LOOP from the following undefined behaviors:
4413 - data references should not access elements over the statically
4416 - signed variables should not overflow when flag_wrapv is not set.
4420 infer_loop_bounds_from_undefined (class loop
*loop
, basic_block
*bbs
)
4423 gimple_stmt_iterator bsi
;
4427 for (i
= 0; i
< loop
->num_nodes
; i
++)
4431 /* If BB is not executed in each iteration of the loop, we cannot
4432 use the operations in it to infer reliable upper bound on the
4433 # of iterations of the loop. However, we can use it as a guess.
4434 Reliable guesses come only from array bounds. */
4435 reliable
= dominated_by_p (CDI_DOMINATORS
, loop
->latch
, bb
);
4437 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
4439 gimple
*stmt
= gsi_stmt (bsi
);
4441 infer_loop_bounds_from_array (loop
, stmt
);
4445 infer_loop_bounds_from_signedness (loop
, stmt
);
4446 infer_loop_bounds_from_pointer_arith (loop
, stmt
);
4453 /* Compare wide ints, callback for qsort. */
4456 wide_int_cmp (const void *p1
, const void *p2
)
4458 const bound_wide_int
*d1
= (const bound_wide_int
*) p1
;
4459 const bound_wide_int
*d2
= (const bound_wide_int
*) p2
;
4460 return wi::cmpu (*d1
, *d2
);
4463 /* Return index of BOUND in BOUNDS array sorted in increasing order.
4464 Lookup by binary search. */
4467 bound_index (const vec
<bound_wide_int
> &bounds
, const bound_wide_int
&bound
)
4469 unsigned int end
= bounds
.length ();
4470 unsigned int begin
= 0;
4472 /* Find a matching index by means of a binary search. */
4473 while (begin
!= end
)
4475 unsigned int middle
= (begin
+ end
) / 2;
4476 bound_wide_int index
= bounds
[middle
];
4480 else if (wi::ltu_p (index
, bound
))
4488 /* We recorded loop bounds only for statements dominating loop latch (and thus
4489 executed each loop iteration). If there are any bounds on statements not
4490 dominating the loop latch we can improve the estimate by walking the loop
4491 body and seeing if every path from loop header to loop latch contains
4492 some bounded statement. */
4495 discover_iteration_bound_by_body_walk (class loop
*loop
)
4497 class nb_iter_bound
*elt
;
4498 auto_vec
<bound_wide_int
> bounds
;
4499 vec
<vec
<basic_block
> > queues
= vNULL
;
4500 vec
<basic_block
> queue
= vNULL
;
4501 ptrdiff_t queue_index
;
4502 ptrdiff_t latch_index
= 0;
4504 /* Discover what bounds may interest us. */
4505 for (elt
= loop
->bounds
; elt
; elt
= elt
->next
)
4507 bound_wide_int bound
= elt
->bound
;
4509 /* Exit terminates loop at given iteration, while non-exits produce undefined
4510 effect on the next iteration. */
4514 /* If an overflow occurred, ignore the result. */
4519 if (!loop
->any_upper_bound
4520 || wi::ltu_p (bound
, loop
->nb_iterations_upper_bound
))
4521 bounds
.safe_push (bound
);
4524 /* Exit early if there is nothing to do. */
4525 if (!bounds
.exists ())
4528 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4529 fprintf (dump_file
, " Trying to walk loop body to reduce the bound.\n");
4531 /* Sort the bounds in decreasing order. */
4532 bounds
.qsort (wide_int_cmp
);
4534 /* For every basic block record the lowest bound that is guaranteed to
4535 terminate the loop. */
4537 hash_map
<basic_block
, ptrdiff_t> bb_bounds
;
4538 for (elt
= loop
->bounds
; elt
; elt
= elt
->next
)
4540 bound_wide_int bound
= elt
->bound
;
4544 /* If an overflow occurred, ignore the result. */
4549 if (!loop
->any_upper_bound
4550 || wi::ltu_p (bound
, loop
->nb_iterations_upper_bound
))
4552 ptrdiff_t index
= bound_index (bounds
, bound
);
4553 ptrdiff_t *entry
= bb_bounds
.get (gimple_bb (elt
->stmt
));
4555 bb_bounds
.put (gimple_bb (elt
->stmt
), index
);
4556 else if ((ptrdiff_t)*entry
> index
)
4561 hash_map
<basic_block
, ptrdiff_t> block_priority
;
4563 /* Perform shortest path discovery loop->header ... loop->latch.
4565 The "distance" is given by the smallest loop bound of basic block
4566 present in the path and we look for path with largest smallest bound
4569 To avoid the need for fibonacci heap on double ints we simply compress
4570 double ints into indexes to BOUNDS array and then represent the queue
4571 as arrays of queues for every index.
4572 Index of BOUNDS.length() means that the execution of given BB has
4573 no bounds determined.
4575 VISITED is a pointer map translating basic block into smallest index
4576 it was inserted into the priority queue with. */
4579 /* Start walk in loop header with index set to infinite bound. */
4580 queue_index
= bounds
.length ();
4581 queues
.safe_grow_cleared (queue_index
+ 1, true);
4582 queue
.safe_push (loop
->header
);
4583 queues
[queue_index
] = queue
;
4584 block_priority
.put (loop
->header
, queue_index
);
4586 for (; queue_index
>= 0; queue_index
--)
4588 if (latch_index
< queue_index
)
4590 while (queues
[queue_index
].length ())
4593 ptrdiff_t bound_index
= queue_index
;
4597 queue
= queues
[queue_index
];
4600 /* OK, we later inserted the BB with lower priority, skip it. */
4601 if (*block_priority
.get (bb
) > queue_index
)
4604 /* See if we can improve the bound. */
4605 ptrdiff_t *entry
= bb_bounds
.get (bb
);
4606 if (entry
&& *entry
< bound_index
)
4607 bound_index
= *entry
;
4609 /* Insert succesors into the queue, watch for latch edge
4610 and record greatest index we saw. */
4611 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4613 bool insert
= false;
4615 if (loop_exit_edge_p (loop
, e
))
4618 if (e
== loop_latch_edge (loop
)
4619 && latch_index
< bound_index
)
4620 latch_index
= bound_index
;
4621 else if (!(entry
= block_priority
.get (e
->dest
)))
4624 block_priority
.put (e
->dest
, bound_index
);
4626 else if (*entry
< bound_index
)
4629 *entry
= bound_index
;
4633 queues
[bound_index
].safe_push (e
->dest
);
4637 queues
[queue_index
].release ();
4640 gcc_assert (latch_index
>= 0);
4641 if ((unsigned)latch_index
< bounds
.length ())
4643 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4645 fprintf (dump_file
, "Found better loop bound ");
4646 print_decu (bounds
[latch_index
], dump_file
);
4647 fprintf (dump_file
, "\n");
4649 record_niter_bound (loop
, widest_int::from (bounds
[latch_index
],
4650 SIGNED
), false, true);
4656 /* See if every path cross the loop goes through a statement that is known
4657 to not execute at the last iteration. In that case we can decrese iteration
4661 maybe_lower_iteration_bound (class loop
*loop
)
4663 hash_set
<gimple
*> *not_executed_last_iteration
= NULL
;
4664 class nb_iter_bound
*elt
;
4665 bool found_exit
= false;
4666 auto_vec
<basic_block
> queue
;
4669 /* Collect all statements with interesting (i.e. lower than
4670 nb_iterations_upper_bound) bound on them.
4672 TODO: Due to the way record_estimate choose estimates to store, the bounds
4673 will be always nb_iterations_upper_bound-1. We can change this to record
4674 also statements not dominating the loop latch and update the walk bellow
4675 to the shortest path algorithm. */
4676 for (elt
= loop
->bounds
; elt
; elt
= elt
->next
)
4679 && wi::ltu_p (elt
->bound
, loop
->nb_iterations_upper_bound
))
4681 if (!not_executed_last_iteration
)
4682 not_executed_last_iteration
= new hash_set
<gimple
*>;
4683 not_executed_last_iteration
->add (elt
->stmt
);
4686 if (!not_executed_last_iteration
)
4689 /* Start DFS walk in the loop header and see if we can reach the
4690 loop latch or any of the exits (including statements with side
4691 effects that may terminate the loop otherwise) without visiting
4692 any of the statements known to have undefined effect on the last
4694 queue
.safe_push (loop
->header
);
4695 visited
= BITMAP_ALLOC (NULL
);
4696 bitmap_set_bit (visited
, loop
->header
->index
);
4701 basic_block bb
= queue
.pop ();
4702 gimple_stmt_iterator gsi
;
4703 bool stmt_found
= false;
4705 /* Loop for possible exits and statements bounding the execution. */
4706 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4708 gimple
*stmt
= gsi_stmt (gsi
);
4709 if (not_executed_last_iteration
->contains (stmt
))
4714 if (gimple_has_side_effects (stmt
))
4723 /* If no bounding statement is found, continue the walk. */
4729 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4731 if (loop_exit_edge_p (loop
, e
)
4732 || e
== loop_latch_edge (loop
))
4737 if (bitmap_set_bit (visited
, e
->dest
->index
))
4738 queue
.safe_push (e
->dest
);
4742 while (queue
.length () && !found_exit
);
4744 /* If every path through the loop reach bounding statement before exit,
4745 then we know the last iteration of the loop will have undefined effect
4746 and we can decrease number of iterations. */
4750 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4751 fprintf (dump_file
, "Reducing loop iteration estimate by 1; "
4752 "undefined statement must be executed at the last iteration.\n");
4753 record_niter_bound (loop
, widest_int::from (loop
->nb_iterations_upper_bound
,
4758 BITMAP_FREE (visited
);
4759 delete not_executed_last_iteration
;
4762 /* Get expected upper bound for number of loop iterations for
4763 BUILT_IN_EXPECT_WITH_PROBABILITY for a condition COND. */
4766 get_upper_bound_based_on_builtin_expr_with_prob (gcond
*cond
)
4771 tree lhs
= gimple_cond_lhs (cond
);
4772 if (TREE_CODE (lhs
) != SSA_NAME
)
4775 gimple
*stmt
= SSA_NAME_DEF_STMT (gimple_cond_lhs (cond
));
4776 gcall
*def
= dyn_cast
<gcall
*> (stmt
);
4780 tree decl
= gimple_call_fndecl (def
);
4782 || !fndecl_built_in_p (decl
, BUILT_IN_EXPECT_WITH_PROBABILITY
)
4783 || gimple_call_num_args (stmt
) != 3)
4786 tree c
= gimple_call_arg (def
, 1);
4787 tree condt
= TREE_TYPE (lhs
);
4788 tree res
= fold_build2 (gimple_cond_code (cond
),
4790 gimple_cond_rhs (cond
));
4791 if (TREE_CODE (res
) != INTEGER_CST
)
4795 tree prob
= gimple_call_arg (def
, 2);
4796 tree t
= TREE_TYPE (prob
);
4798 = build_real_from_int_cst (t
,
4800 if (integer_zerop (res
))
4801 prob
= fold_build2 (MINUS_EXPR
, t
, one
, prob
);
4802 tree r
= fold_build2 (RDIV_EXPR
, t
, one
, prob
);
4803 if (TREE_CODE (r
) != REAL_CST
)
4807 = real_to_integer (TREE_REAL_CST_PTR (r
));
4808 return build_int_cst (condt
, probi
);
4811 /* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
4812 is true also use estimates derived from undefined behavior. */
4815 estimate_numbers_of_iterations (class loop
*loop
)
4819 class tree_niter_desc niter_desc
;
4824 /* Give up if we already have tried to compute an estimation. */
4825 if (loop
->estimate_state
!= EST_NOT_COMPUTED
)
4828 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4829 fprintf (dump_file
, "Estimating # of iterations of loop %d\n", loop
->num
);
4831 loop
->estimate_state
= EST_AVAILABLE
;
4836 /* If we have a measured profile, use it to estimate the number of
4837 iterations. Normally this is recorded by branch_prob right after
4838 reading the profile. In case we however found a new loop, record the
4841 Explicitly check for profile status so we do not report
4842 wrong prediction hitrates for guessed loop iterations heuristics.
4843 Do not recompute already recorded bounds - we ought to be better on
4844 updating iteration bounds than updating profile in general and thus
4845 recomputing iteration bounds later in the compilation process will just
4846 introduce random roundoff errors. */
4847 if (!loop
->any_estimate
4848 && expected_loop_iterations_by_profile (loop
, &nit
, &reliable
)
4851 bound
= nit
.to_nearest_int ();
4852 record_niter_bound (loop
, bound
, true, false);
4855 /* Ensure that loop->nb_iterations is computed if possible. If it turns out
4856 to be constant, we avoid undefined behavior implied bounds and instead
4857 diagnose those loops with -Waggressive-loop-optimizations. */
4858 number_of_latch_executions (loop
);
4860 basic_block
*body
= get_loop_body (loop
);
4861 auto_vec
<edge
> exits
= get_loop_exit_edges (loop
, body
);
4862 likely_exit
= single_likely_exit (loop
, exits
);
4863 FOR_EACH_VEC_ELT (exits
, i
, ex
)
4865 if (ex
== likely_exit
)
4867 gimple
*stmt
= *gsi_last_bb (ex
->src
);
4870 gcond
*cond
= dyn_cast
<gcond
*> (stmt
);
4872 = get_upper_bound_based_on_builtin_expr_with_prob (cond
);
4873 if (niter_bound
!= NULL_TREE
)
4875 widest_int max
= derive_constant_upper_bound (niter_bound
);
4876 record_estimate (loop
, niter_bound
, max
, cond
,
4882 if (!number_of_iterations_exit (loop
, ex
, &niter_desc
,
4883 false, false, body
))
4886 niter
= niter_desc
.niter
;
4887 type
= TREE_TYPE (niter
);
4888 if (TREE_CODE (niter_desc
.may_be_zero
) != INTEGER_CST
)
4889 niter
= build3 (COND_EXPR
, type
, niter_desc
.may_be_zero
,
4890 build_int_cst (type
, 0),
4892 record_estimate (loop
, niter
, niter_desc
.max
,
4893 last_nondebug_stmt (ex
->src
),
4894 true, ex
== likely_exit
, true);
4895 record_control_iv (loop
, &niter_desc
);
4898 if (flag_aggressive_loop_optimizations
)
4899 infer_loop_bounds_from_undefined (loop
, body
);
4902 discover_iteration_bound_by_body_walk (loop
);
4904 maybe_lower_iteration_bound (loop
);
4906 /* If we know the exact number of iterations of this loop, try to
4907 not break code with undefined behavior by not recording smaller
4908 maximum number of iterations. */
4909 if (loop
->nb_iterations
4910 && TREE_CODE (loop
->nb_iterations
) == INTEGER_CST
4911 && (wi::min_precision (wi::to_widest (loop
->nb_iterations
), SIGNED
)
4912 <= bound_wide_int ().get_precision ()))
4914 loop
->any_upper_bound
= true;
4915 loop
->nb_iterations_upper_bound
4916 = bound_wide_int::from (wi::to_widest (loop
->nb_iterations
), SIGNED
);
4920 /* Sets NIT to the estimated number of executions of the latch of the
4921 LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
4922 large as the number of iterations. If we have no reliable estimate,
4923 the function returns false, otherwise returns true. */
4926 estimated_loop_iterations (class loop
*loop
, widest_int
*nit
)
4928 /* When SCEV information is available, try to update loop iterations
4929 estimate. Otherwise just return whatever we recorded earlier. */
4930 if (scev_initialized_p ())
4931 estimate_numbers_of_iterations (loop
);
4933 return (get_estimated_loop_iterations (loop
, nit
));
4936 /* Similar to estimated_loop_iterations, but returns the estimate only
4937 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4938 on the number of iterations of LOOP could not be derived, returns -1. */
4941 estimated_loop_iterations_int (class loop
*loop
)
4944 HOST_WIDE_INT hwi_nit
;
4946 if (!estimated_loop_iterations (loop
, &nit
))
4949 if (!wi::fits_shwi_p (nit
))
4951 hwi_nit
= nit
.to_shwi ();
4953 return hwi_nit
< 0 ? -1 : hwi_nit
;
4957 /* Sets NIT to an upper bound for the maximum number of executions of the
4958 latch of the LOOP. If we have no reliable estimate, the function returns
4959 false, otherwise returns true. */
4962 max_loop_iterations (class loop
*loop
, widest_int
*nit
)
4964 /* When SCEV information is available, try to update loop iterations
4965 estimate. Otherwise just return whatever we recorded earlier. */
4966 if (scev_initialized_p ())
4967 estimate_numbers_of_iterations (loop
);
4969 return get_max_loop_iterations (loop
, nit
);
4972 /* Similar to max_loop_iterations, but returns the estimate only
4973 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4974 on the number of iterations of LOOP could not be derived, returns -1. */
4977 max_loop_iterations_int (class loop
*loop
)
4980 HOST_WIDE_INT hwi_nit
;
4982 if (!max_loop_iterations (loop
, &nit
))
4985 if (!wi::fits_shwi_p (nit
))
4987 hwi_nit
= nit
.to_shwi ();
4989 return hwi_nit
< 0 ? -1 : hwi_nit
;
4992 /* Sets NIT to an likely upper bound for the maximum number of executions of the
4993 latch of the LOOP. If we have no reliable estimate, the function returns
4994 false, otherwise returns true. */
4997 likely_max_loop_iterations (class loop
*loop
, widest_int
*nit
)
4999 /* When SCEV information is available, try to update loop iterations
5000 estimate. Otherwise just return whatever we recorded earlier. */
5001 if (scev_initialized_p ())
5002 estimate_numbers_of_iterations (loop
);
5004 return get_likely_max_loop_iterations (loop
, nit
);
5007 /* Similar to max_loop_iterations, but returns the estimate only
5008 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
5009 on the number of iterations of LOOP could not be derived, returns -1. */
5012 likely_max_loop_iterations_int (class loop
*loop
)
5015 HOST_WIDE_INT hwi_nit
;
5017 if (!likely_max_loop_iterations (loop
, &nit
))
5020 if (!wi::fits_shwi_p (nit
))
5022 hwi_nit
= nit
.to_shwi ();
5024 return hwi_nit
< 0 ? -1 : hwi_nit
;
5027 /* Returns an estimate for the number of executions of statements
5028 in the LOOP. For statements before the loop exit, this exceeds
5029 the number of execution of the latch by one. */
5032 estimated_stmt_executions_int (class loop
*loop
)
5034 HOST_WIDE_INT nit
= estimated_loop_iterations_int (loop
);
5040 snit
= (HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) nit
+ 1);
5042 /* If the computation overflows, return -1. */
5043 return snit
< 0 ? -1 : snit
;
5046 /* Sets NIT to the maximum number of executions of the latch of the
5047 LOOP, plus one. If we have no reliable estimate, the function returns
5048 false, otherwise returns true. */
5051 max_stmt_executions (class loop
*loop
, widest_int
*nit
)
5053 widest_int nit_minus_one
;
5055 if (!max_loop_iterations (loop
, nit
))
5058 nit_minus_one
= *nit
;
5062 return wi::gtu_p (*nit
, nit_minus_one
);
5065 /* Sets NIT to the estimated maximum number of executions of the latch of the
5066 LOOP, plus one. If we have no likely estimate, the function returns
5067 false, otherwise returns true. */
5070 likely_max_stmt_executions (class loop
*loop
, widest_int
*nit
)
5072 widest_int nit_minus_one
;
5074 if (!likely_max_loop_iterations (loop
, nit
))
5077 nit_minus_one
= *nit
;
5081 return wi::gtu_p (*nit
, nit_minus_one
);
5084 /* Sets NIT to the estimated number of executions of the latch of the
5085 LOOP, plus one. If we have no reliable estimate, the function returns
5086 false, otherwise returns true. */
5089 estimated_stmt_executions (class loop
*loop
, widest_int
*nit
)
5091 widest_int nit_minus_one
;
5093 if (!estimated_loop_iterations (loop
, nit
))
5096 nit_minus_one
= *nit
;
5100 return wi::gtu_p (*nit
, nit_minus_one
);
5103 /* Records estimates on numbers of iterations of loops. */
5106 estimate_numbers_of_iterations (function
*fn
)
5108 /* We don't want to issue signed overflow warnings while getting
5109 loop iteration estimates. */
5110 fold_defer_overflow_warnings ();
5112 for (auto loop
: loops_list (fn
, 0))
5113 estimate_numbers_of_iterations (loop
);
5115 fold_undefer_and_ignore_overflow_warnings ();
5118 /* Returns true if statement S1 dominates statement S2. */
5121 stmt_dominates_stmt_p (gimple
*s1
, gimple
*s2
)
5123 basic_block bb1
= gimple_bb (s1
), bb2
= gimple_bb (s2
);
5131 gimple_stmt_iterator bsi
;
5133 if (gimple_code (s2
) == GIMPLE_PHI
)
5136 if (gimple_code (s1
) == GIMPLE_PHI
)
5139 for (bsi
= gsi_start_bb (bb1
); gsi_stmt (bsi
) != s2
; gsi_next (&bsi
))
5140 if (gsi_stmt (bsi
) == s1
)
5146 return dominated_by_p (CDI_DOMINATORS
, bb2
, bb1
);
5149 /* Returns true when we can prove that the number of executions of
5150 STMT in the loop is at most NITER, according to the bound on
5151 the number of executions of the statement NITER_BOUND->stmt recorded in
5152 NITER_BOUND and fact that NITER_BOUND->stmt dominate STMT.
5154 ??? This code can become quite a CPU hog - we can have many bounds,
5155 and large basic block forcing stmt_dominates_stmt_p to be queried
5156 many times on a large basic blocks, so the whole thing is O(n^2)
5157 for scev_probably_wraps_p invocation (that can be done n times).
5159 It would make more sense (and give better answers) to remember BB
5160 bounds computed by discover_iteration_bound_by_body_walk. */
5163 n_of_executions_at_most (gimple
*stmt
,
5164 class nb_iter_bound
*niter_bound
,
5167 widest_int bound
= widest_int::from (niter_bound
->bound
, SIGNED
);
5168 tree nit_type
= TREE_TYPE (niter
), e
;
5171 gcc_assert (TYPE_UNSIGNED (nit_type
));
5173 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
5174 the number of iterations is small. */
5175 if (!wi::fits_to_tree_p (bound
, nit_type
))
5178 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
5179 times. This means that:
5181 -- if NITER_BOUND->is_exit is true, then everything after
5182 it at most NITER_BOUND->bound times.
5184 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
5185 is executed, then NITER_BOUND->stmt is executed as well in the same
5186 iteration then STMT is executed at most NITER_BOUND->bound + 1 times.
5188 If we can determine that NITER_BOUND->stmt is always executed
5189 after STMT, then STMT is executed at most NITER_BOUND->bound + 2 times.
5190 We conclude that if both statements belong to the same
5191 basic block and STMT is before NITER_BOUND->stmt and there are no
5192 statements with side effects in between. */
5194 if (niter_bound
->is_exit
)
5196 if (stmt
== niter_bound
->stmt
5197 || !stmt_dominates_stmt_p (niter_bound
->stmt
, stmt
))
5203 if (!stmt_dominates_stmt_p (niter_bound
->stmt
, stmt
))
5205 gimple_stmt_iterator bsi
;
5206 if (gimple_bb (stmt
) != gimple_bb (niter_bound
->stmt
)
5207 || gimple_code (stmt
) == GIMPLE_PHI
5208 || gimple_code (niter_bound
->stmt
) == GIMPLE_PHI
)
5211 /* By stmt_dominates_stmt_p we already know that STMT appears
5212 before NITER_BOUND->STMT. Still need to test that the loop
5213 cannot be terinated by a side effect in between. */
5214 for (bsi
= gsi_for_stmt (stmt
); gsi_stmt (bsi
) != niter_bound
->stmt
;
5216 if (gimple_has_side_effects (gsi_stmt (bsi
)))
5220 || !wi::fits_to_tree_p (bound
, nit_type
))
5226 e
= fold_binary (cmp
, boolean_type_node
,
5227 niter
, wide_int_to_tree (nit_type
, bound
));
5228 return e
&& integer_nonzerop (e
);
5231 /* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
5234 nowrap_type_p (tree type
)
5236 if (ANY_INTEGRAL_TYPE_P (type
)
5237 && TYPE_OVERFLOW_UNDEFINED (type
))
5240 if (POINTER_TYPE_P (type
))
5246 /* Return true if we can prove LOOP is exited before evolution of induction
5247 variable {BASE, STEP} overflows with respect to its type bound. */
5250 loop_exits_before_overflow (tree base
, tree step
,
5251 gimple
*at_stmt
, class loop
*loop
)
5254 struct control_iv
*civ
;
5255 class nb_iter_bound
*bound
;
5256 tree e
, delta
, step_abs
, unsigned_base
;
5257 tree type
= TREE_TYPE (step
);
5258 tree unsigned_type
, valid_niter
;
5260 /* Don't issue signed overflow warnings. */
5261 fold_defer_overflow_warnings ();
5263 /* Compute the number of iterations before we reach the bound of the
5264 type, and verify that the loop is exited before this occurs. */
5265 unsigned_type
= unsigned_type_for (type
);
5266 unsigned_base
= fold_convert (unsigned_type
, base
);
5268 if (tree_int_cst_sign_bit (step
))
5270 tree extreme
= fold_convert (unsigned_type
,
5271 lower_bound_in_type (type
, type
));
5272 delta
= fold_build2 (MINUS_EXPR
, unsigned_type
, unsigned_base
, extreme
);
5273 step_abs
= fold_build1 (NEGATE_EXPR
, unsigned_type
,
5274 fold_convert (unsigned_type
, step
));
5278 tree extreme
= fold_convert (unsigned_type
,
5279 upper_bound_in_type (type
, type
));
5280 delta
= fold_build2 (MINUS_EXPR
, unsigned_type
, extreme
, unsigned_base
);
5281 step_abs
= fold_convert (unsigned_type
, step
);
5284 valid_niter
= fold_build2 (FLOOR_DIV_EXPR
, unsigned_type
, delta
, step_abs
);
5286 estimate_numbers_of_iterations (loop
);
5288 if (max_loop_iterations (loop
, &niter
)
5289 && wi::fits_to_tree_p (niter
, TREE_TYPE (valid_niter
))
5290 && (e
= fold_binary (GT_EXPR
, boolean_type_node
, valid_niter
,
5291 wide_int_to_tree (TREE_TYPE (valid_niter
),
5293 && integer_nonzerop (e
))
5295 fold_undefer_and_ignore_overflow_warnings ();
5299 for (bound
= loop
->bounds
; bound
; bound
= bound
->next
)
5301 if (n_of_executions_at_most (at_stmt
, bound
, valid_niter
))
5303 fold_undefer_and_ignore_overflow_warnings ();
5307 fold_undefer_and_ignore_overflow_warnings ();
5309 /* Try to prove loop is exited before {base, step} overflows with the
5310 help of analyzed loop control IV. This is done only for IVs with
5311 constant step because otherwise we don't have the information. */
5312 if (TREE_CODE (step
) == INTEGER_CST
)
5314 for (civ
= loop
->control_ivs
; civ
; civ
= civ
->next
)
5316 enum tree_code code
;
5317 tree civ_type
= TREE_TYPE (civ
->step
);
5319 /* Have to consider type difference because operand_equal_p ignores
5320 that for constants. */
5321 if (TYPE_UNSIGNED (type
) != TYPE_UNSIGNED (civ_type
)
5322 || element_precision (type
) != element_precision (civ_type
))
5325 /* Only consider control IV with same step. */
5326 if (!operand_equal_p (step
, civ
->step
, 0))
5329 /* Done proving if this is a no-overflow control IV. */
5330 if (operand_equal_p (base
, civ
->base
, 0))
5333 /* Control IV is recorded after expanding simple operations,
5334 Here we expand base and compare it too. */
5335 tree expanded_base
= expand_simple_operations (base
);
5336 if (operand_equal_p (expanded_base
, civ
->base
, 0))
5339 /* If this is a before stepping control IV, in other words, we have
5341 {civ_base, step} = {base + step, step}
5343 Because civ {base + step, step} doesn't overflow during loop
5344 iterations, {base, step} will not overflow if we can prove the
5345 operation "base + step" does not overflow. Specifically, we try
5346 to prove below conditions are satisfied:
5348 base <= UPPER_BOUND (type) - step ;;step > 0
5349 base >= LOWER_BOUND (type) - step ;;step < 0
5351 by proving the reverse conditions are false using loop's initial
5353 if (POINTER_TYPE_P (TREE_TYPE (base
)))
5354 code
= POINTER_PLUS_EXPR
;
5358 tree stepped
= fold_build2 (code
, TREE_TYPE (base
), base
, step
);
5359 tree expanded_stepped
= fold_build2 (code
, TREE_TYPE (base
),
5360 expanded_base
, step
);
5361 if (operand_equal_p (stepped
, civ
->base
, 0)
5362 || operand_equal_p (expanded_stepped
, civ
->base
, 0))
5366 if (tree_int_cst_sign_bit (step
))
5369 extreme
= lower_bound_in_type (type
, type
);
5374 extreme
= upper_bound_in_type (type
, type
);
5376 extreme
= fold_build2 (MINUS_EXPR
, type
, extreme
, step
);
5377 e
= fold_build2 (code
, boolean_type_node
, base
, extreme
);
5378 e
= simplify_using_initial_conditions (loop
, e
);
5379 if (integer_zerop (e
))
5388 /* VAR is scev variable whose evolution part is constant STEP, this function
5389 proves that VAR can't overflow by using value range info. If VAR's value
5390 range is [MIN, MAX], it can be proven by:
5391 MAX + step doesn't overflow ; if step > 0
5393 MIN + step doesn't underflow ; if step < 0.
5395 We can only do this if var is computed in every loop iteration, i.e, var's
5396 definition has to dominate loop latch. Consider below example:
5404 # RANGE [0, 4294967294] NONZERO 65535
5405 # i_21 = PHI <0(3), i_18(9)>
5412 # RANGE [0, 65533] NONZERO 65535
5413 _6 = i_21 + 4294967295;
5414 # RANGE [0, 65533] NONZERO 65535
5415 _7 = (long unsigned int) _6;
5416 # RANGE [0, 524264] NONZERO 524280
5418 # PT = nonlocal escaped
5423 # RANGE [1, 65535] NONZERO 65535
5437 VAR _6 doesn't overflow only with pre-condition (i_21 != 0), here we
5438 can't use _6 to prove no-overlfow for _7. In fact, var _7 takes value
5439 sequence (4294967295, 0, 1, ..., 65533) in loop life time, rather than
5440 (4294967295, 4294967296, ...). */
5443 scev_var_range_cant_overflow (tree var
, tree step
, class loop
*loop
)
5446 wide_int minv
, maxv
, diff
, step_wi
;
5448 if (TREE_CODE (step
) != INTEGER_CST
|| !INTEGRAL_TYPE_P (TREE_TYPE (var
)))
5451 /* Check if VAR evaluates in every loop iteration. It's not the case
5452 if VAR is default definition or does not dominate loop's latch. */
5453 basic_block def_bb
= gimple_bb (SSA_NAME_DEF_STMT (var
));
5454 if (!def_bb
|| !dominated_by_p (CDI_DOMINATORS
, loop
->latch
, def_bb
))
5457 int_range_max
r (TREE_TYPE (var
));
5458 get_range_query (cfun
)->range_of_expr (r
, var
);
5459 if (r
.varying_p () || r
.undefined_p ())
5462 /* VAR is a scev whose evolution part is STEP and value range info
5463 is [MIN, MAX], we can prove its no-overflowness by conditions:
5465 type_MAX - MAX >= step ; if step > 0
5466 MIN - type_MIN >= |step| ; if step < 0.
5468 Or VAR must take value outside of value range, which is not true. */
5469 step_wi
= wi::to_wide (step
);
5470 type
= TREE_TYPE (var
);
5471 if (tree_int_cst_sign_bit (step
))
5473 diff
= r
.lower_bound () - wi::to_wide (lower_bound_in_type (type
, type
));
5474 step_wi
= - step_wi
;
5477 diff
= wi::to_wide (upper_bound_in_type (type
, type
)) - r
.upper_bound ();
5479 return (wi::geu_p (diff
, step_wi
));
5482 /* Return false only when the induction variable BASE + STEP * I is
5483 known to not overflow: i.e. when the number of iterations is small
5484 enough with respect to the step and initial condition in order to
5485 keep the evolution confined in TYPEs bounds. Return true when the
5486 iv is known to overflow or when the property is not computable.
5488 USE_OVERFLOW_SEMANTICS is true if this function should assume that
5489 the rules for overflow of the given language apply (e.g., that signed
5490 arithmetics in C does not overflow).
5492 If VAR is a ssa variable, this function also returns false if VAR can
5493 be proven not overflow with value range info. */
5496 scev_probably_wraps_p (tree var
, tree base
, tree step
,
5497 gimple
*at_stmt
, class loop
*loop
,
5498 bool use_overflow_semantics
)
5500 /* FIXME: We really need something like
5501 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
5503 We used to test for the following situation that frequently appears
5504 during address arithmetics:
5506 D.1621_13 = (long unsigned intD.4) D.1620_12;
5507 D.1622_14 = D.1621_13 * 8;
5508 D.1623_15 = (doubleD.29 *) D.1622_14;
5510 And derived that the sequence corresponding to D_14
5511 can be proved to not wrap because it is used for computing a
5512 memory access; however, this is not really the case -- for example,
5513 if D_12 = (unsigned char) [254,+,1], then D_14 has values
5514 2032, 2040, 0, 8, ..., but the code is still legal. */
5516 if (chrec_contains_undetermined (base
)
5517 || chrec_contains_undetermined (step
))
5520 if (integer_zerop (step
))
5523 /* If we can use the fact that signed and pointer arithmetics does not
5524 wrap, we are done. */
5525 if (use_overflow_semantics
&& nowrap_type_p (TREE_TYPE (base
)))
5528 /* To be able to use estimates on number of iterations of the loop,
5529 we must have an upper bound on the absolute value of the step. */
5530 if (TREE_CODE (step
) != INTEGER_CST
)
5533 /* Check if var can be proven not overflow with value range info. */
5534 if (var
&& TREE_CODE (var
) == SSA_NAME
5535 && scev_var_range_cant_overflow (var
, step
, loop
))
5538 if (loop_exits_before_overflow (base
, step
, at_stmt
, loop
))
5541 /* Check the nonwrapping flag, which may be set by niter analysis (e.g., the
5542 above loop exits before overflow). */
5543 if (var
&& nonwrapping_chrec_p (analyze_scalar_evolution (loop
, var
)))
5546 /* At this point we still don't have a proof that the iv does not
5547 overflow: give up. */
5551 /* Frees the information on upper bounds on numbers of iterations of LOOP. */
5554 free_numbers_of_iterations_estimates (class loop
*loop
)
5556 struct control_iv
*civ
;
5557 class nb_iter_bound
*bound
;
5559 loop
->nb_iterations
= NULL
;
5560 loop
->estimate_state
= EST_NOT_COMPUTED
;
5561 for (bound
= loop
->bounds
; bound
;)
5563 class nb_iter_bound
*next
= bound
->next
;
5567 loop
->bounds
= NULL
;
5569 for (civ
= loop
->control_ivs
; civ
;)
5571 struct control_iv
*next
= civ
->next
;
5575 loop
->control_ivs
= NULL
;
5578 /* Frees the information on upper bounds on numbers of iterations of loops. */
5581 free_numbers_of_iterations_estimates (function
*fn
)
5583 for (auto loop
: loops_list (fn
, 0))
5584 free_numbers_of_iterations_estimates (loop
);
5587 /* Substitute value VAL for ssa name NAME inside expressions held
5591 substitute_in_loop_info (class loop
*loop
, tree name
, tree val
)
5593 loop
->nb_iterations
= simplify_replace_tree (loop
->nb_iterations
, name
, val
);