1 /* Definition of RISC-V target for GNU compiler.
2 Copyright (C) 2011-2025 Free Software Foundation, Inc.
3 Contributed by Andrew Waterman (andrew@sifive.com).
4 Based on MIPS target for GNU compiler.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
26 #include "config/riscv/riscv-opts.h"
28 #define SWITCHABLE_TARGET 1
30 /* Target CPU builtins. */
31 #define TARGET_CPU_CPP_BUILTINS() riscv_cpu_cpp_builtins (pfile)
33 #ifdef TARGET_BIG_ENDIAN_DEFAULT
34 #define DEFAULT_ENDIAN_SPEC "b"
36 #define DEFAULT_ENDIAN_SPEC "l"
39 /* Default target_flags if no switches are specified */
41 #ifndef TARGET_DEFAULT
42 #define TARGET_DEFAULT 0
45 #ifndef RISCV_TUNE_STRING_DEFAULT
46 #define RISCV_TUNE_STRING_DEFAULT "rocket"
49 extern const char *riscv_expand_arch (int argc
, const char **argv
);
50 extern const char *riscv_expand_arch_from_cpu (int argc
, const char **argv
);
51 extern const char *riscv_default_mtune (int argc
, const char **argv
);
52 extern const char *riscv_multi_lib_check (int argc
, const char **argv
);
53 extern const char *riscv_arch_help (int argc
, const char **argv
);
55 # define EXTRA_SPEC_FUNCTIONS \
56 { "riscv_expand_arch", riscv_expand_arch }, \
57 { "riscv_expand_arch_from_cpu", riscv_expand_arch_from_cpu }, \
58 { "riscv_default_mtune", riscv_default_mtune }, \
59 { "riscv_multi_lib_check", riscv_multi_lib_check }, \
60 { "riscv_arch_help", riscv_arch_help },
62 /* Support for a compile-time default CPU, et cetera. The rules are:
63 --with-arch is ignored if -march or -mcpu is specified.
64 --with-abi is ignored if -mabi is specified.
65 --with-tune is ignored if -mtune or -mcpu is specified.
66 --with-isa-spec is ignored if -misa-spec is specified.
67 --with-tls is ignored if -mtls-dialect is specified.
69 But using default -march/-mtune value if -mcpu don't have valid option. */
70 #define OPTION_DEFAULT_SPECS \
71 {"tune", "%{!mtune=*:" \
72 " %{!mcpu=*:-mtune=%(VALUE)}" \
73 " %{mcpu=*:-mtune=%:riscv_default_mtune(%* %(VALUE))}}" }, \
74 {"arch", "%{!march=*:" \
75 " %{!mcpu=*:-march=%(VALUE)}" \
76 " %{mcpu=*:%:riscv_expand_arch_from_cpu(%* %(VALUE))}}" }, \
77 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
78 {"isa_spec", "%{!misa-spec=*:-misa-spec=%(VALUE)}" }, \
79 {"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"}, \
83 /* Make this compile time constant for libgcc2 */
84 #define TARGET_64BIT (__riscv_xlen == 64)
85 #endif /* IN_LIBGCC2 */
87 #ifdef HAVE_AS_MISA_SPEC
88 #define ASM_MISA_SPEC "%{misa-spec=*}"
90 #define ASM_MISA_SPEC ""
94 https://gcc.gnu.org/onlinedocs/cpp/Stringizing.html#Stringizing */
95 #define STRINGIZING(s) __STRINGIZING(s)
96 #define __STRINGIZING(s) #s
98 #define MULTILIB_DEFAULTS \
99 {"march=" STRINGIZING (TARGET_RISCV_DEFAULT_ARCH), \
100 "mabi=" STRINGIZING (TARGET_RISCV_DEFAULT_ABI) }
104 %(subtarget_asm_debugging_spec) \
105 %{" FPIE_OR_FPIC_SPEC ":-fpic} \
111 %(subtarget_asm_spec)" \
114 #undef DRIVER_SELF_SPECS
115 #define DRIVER_SELF_SPECS \
116 "%{march=help:%:riscv_arch_help()} " \
117 "%{print-supported-extensions:%:riscv_arch_help()} " \
118 "%{-print-supported-extensions:%:riscv_arch_help()} " \
119 "%{march=*:%:riscv_expand_arch(%*)} " \
120 "%{!march=*:%{mcpu=*:%:riscv_expand_arch_from_cpu(%*)}} "
122 #define LOCAL_LABEL_PREFIX "."
123 #define USER_LABEL_PREFIX ""
125 /* Offsets recorded in opcodes are a multiple of this alignment factor.
126 The default for this in 64-bit mode is 8, which causes problems with
127 SFmode register saves. */
128 #define DWARF_CIE_DATA_ALIGNMENT -4
130 /* The mapping from gcc register number to DWARF 2 CFA column number. */
131 #define DWARF_FRAME_REGNUM(REGNO) \
132 (FRM_REG_P (REGNO) ? RISCV_DWARF_FRM \
133 : VXRM_REG_P (REGNO) ? RISCV_DWARF_VXRM \
134 : VL_REG_P (REGNO) ? RISCV_DWARF_VL \
135 : VTYPE_REG_P (REGNO) \
136 ? RISCV_DWARF_VTYPE \
137 : (GP_REG_P (REGNO) || FP_REG_P (REGNO) || V_REG_P (REGNO) \
141 /* The DWARF 2 CFA column which tracks the return address. */
142 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
143 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
145 /* Describe how we implement __builtin_eh_return. */
146 #define EH_RETURN_DATA_REGNO(N) \
147 ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
149 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_ARG_FIRST + 4)
151 /* Target machine storage layout */
153 #define BITS_BIG_ENDIAN 0
154 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
155 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN)
157 #define MAX_BITS_PER_WORD 64
159 /* Width of a word, in units (bytes). */
160 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
161 #define BITS_PER_WORD (BITS_PER_UNIT * UNITS_PER_WORD)
163 #define MIN_UNITS_PER_WORD 4
166 /* Allows SImode op in builtin overflow pattern, see internal-fn.cc. */
167 #undef TARGET_MIN_ARITHMETIC_PRECISION
168 #define TARGET_MIN_ARITHMETIC_PRECISION riscv_min_arithmetic_precision
170 /* The `Q' extension is not yet supported. */
171 #define UNITS_PER_FP_REG (TARGET_DOUBLE_FLOAT ? 8 : 4)
172 /* Size per vector register. For VLEN = 32, size = poly (4, 4). Otherwise, size = poly (8, 8). */
173 #define UNITS_PER_V_REG (riscv_vector_chunks * riscv_bytes_per_vector_chunk)
175 /* The largest type that can be passed in floating-point registers. */
176 #define UNITS_PER_FP_ARG \
177 ((riscv_abi == ABI_ILP32 || riscv_abi == ABI_ILP32E \
178 || riscv_abi == ABI_LP64 || riscv_abi == ABI_LP64E) \
180 : ((riscv_abi == ABI_ILP32F || riscv_abi == ABI_LP64F) ? 4 : 8))
182 /* Set the sizes of the core types. */
183 #define SHORT_TYPE_SIZE 16
184 #define INT_TYPE_SIZE 32
185 #define LONG_LONG_TYPE_SIZE 64
186 #define POINTER_SIZE (riscv_abi >= ABI_LP64 ? 64 : 32)
187 #define LONG_TYPE_SIZE POINTER_SIZE
189 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
190 #define PARM_BOUNDARY BITS_PER_WORD
192 /* Allocation boundary (in *bits*) for the code of a function. */
193 #define FUNCTION_BOUNDARY \
194 (((TARGET_RVC || TARGET_ZCA) && !is_zicfilp_p ()) ? 16 : 32)
196 /* The smallest supported stack boundary the calling convention supports. */
197 #define STACK_BOUNDARY \
198 (riscv_abi == ABI_ILP32E || riscv_abi == ABI_LP64E \
202 /* The ABI stack alignment. */
203 #define ABI_STACK_BOUNDARY \
204 (riscv_abi == ABI_ILP32E || riscv_abi == ABI_LP64E \
208 /* There is no point aligning anything to a rounder boundary than this. */
209 #define BIGGEST_ALIGNMENT 128
211 /* The user-level ISA permits unaligned accesses, but they are not required
212 of the privileged architecture. */
213 #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
215 /* Define this if you wish to imitate the way many other C compilers
216 handle alignment of bitfields and the structures that contain
219 The behavior is that the type written for a bit-field (`int',
220 `short', or other integer type) imposes an alignment for the
221 entire structure, as if the structure really did contain an
222 ordinary field of that type. In addition, the bit-field is placed
223 within the structure so that it would fit within such a field,
224 not crossing a boundary for it.
226 Thus, on most machines, a bit-field whose type is written as `int'
227 would not cross a four-byte boundary, and would force four-byte
228 alignment for the whole structure. (The alignment used may not
229 be four bytes; it is controlled by the other alignment
232 If the macro is defined, its definition should be a C expression;
233 a nonzero value for the expression enables this behavior. */
235 #define PCC_BITFIELD_TYPE_MATTERS 1
237 /* An integer expression for the size in bits of the largest integer machine
238 mode that should actually be used. We allow pairs of registers. */
239 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
241 /* DATA_ALIGNMENT and LOCAL_ALIGNMENT common definition. */
242 #define RISCV_EXPAND_ALIGNMENT(COND, TYPE, ALIGN) \
243 (((COND) && ((ALIGN) < BITS_PER_WORD) \
244 && (TREE_CODE (TYPE) == ARRAY_TYPE \
245 || TREE_CODE (TYPE) == UNION_TYPE \
246 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
248 /* If defined, a C expression to compute the alignment for a static
249 variable. TYPE is the data type, and ALIGN is the alignment that
250 the object would ordinarily have. The value of this macro is used
251 instead of that alignment to align the object.
253 If this macro is not defined, then ALIGN is used.
255 One use of this macro is to increase alignment of medium-size
256 data to make it all fit in fewer cache lines. Another is to
257 cause character arrays to be word-aligned so that `strcpy' calls
258 that copy constants to character arrays can be done inline. */
260 #define DATA_ALIGNMENT(TYPE, ALIGN) \
261 RISCV_EXPAND_ALIGNMENT (riscv_align_data_type == riscv_align_data_type_xlen, \
264 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
265 character arrays to be word-aligned so that `strcpy' calls that copy
266 constants to character arrays can be done inline, and 'strcmp' can be
267 optimised to use word loads. */
268 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
269 RISCV_EXPAND_ALIGNMENT (true, TYPE, ALIGN)
271 /* Define if operations between registers always perform the operation
272 on the full register even if a narrower mode is specified. */
273 #define WORD_REGISTER_OPERATIONS 1
275 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
276 moves. All other references are zero extended. */
277 #define LOAD_EXTEND_OP(MODE) \
278 (TARGET_64BIT && (MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
280 /* Define this macro if it is advisable to hold scalars in registers
281 in a wider mode than that declared by the program. In such cases,
282 the value is constrained to be within the bounds of the declared
283 type, but kept valid in the wider mode. The signedness of the
284 extension may differ from that of the type. */
286 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
287 if (GET_MODE_CLASS (MODE) == MODE_INT \
288 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
290 if ((MODE) == SImode) \
292 (MODE) = word_mode; \
295 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
296 Extensions of pointers to word_mode must be signed. */
297 #define POINTERS_EXTEND_UNSIGNED false
299 /* Define if loading short immediate values into registers sign extends. */
300 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
302 /* Standard register usage. */
304 /* Number of hardware registers. We have:
306 - 32 integer registers
307 - 32 floating point registers
310 - FRAME_POINTER_REGNUM
313 - 28 unused registers for future expansion
314 - 32 vector registers */
316 #define FIRST_PSEUDO_REGISTER 128
318 /* x0, ra, sp, gp, and tp are fixed. */
320 #define FIXED_REGISTERS \
321 { /* General registers. */ \
322 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
323 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
324 /* Floating-point registers. */ \
325 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
326 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
328 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
329 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
330 /* Vector registers. */ \
331 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
332 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
335 /* a0-a7, t0-t6, fa0-fa7, and ft0-ft11 are volatile across calls.
336 The call RTLs themselves clobber ra. */
338 #define CALL_USED_REGISTERS \
339 { /* General registers. */ \
340 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
341 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
342 /* Floating-point registers. */ \
343 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
344 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
346 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
347 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
348 /* Vector registers. */ \
349 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
350 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
353 /* Select a register mode required for caller save of hard regno REGNO.
354 Contrary to what is documented, the default is not the smallest suitable
355 mode but the largest suitable mode for the given (REGNO, NREGS) pair and
356 it quickly creates paradoxical subregs that can be problematic. */
357 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
358 ((MODE) == VOIDmode ? choose_hard_reg_mode (REGNO, NREGS, NULL) : (MODE))
360 /* Internal macros to classify an ISA register's type. */
362 #define GP_REG_FIRST 0
363 #define GP_REG_LAST (TARGET_RVE ? 15 : 31)
364 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
366 #define FP_REG_FIRST 32
367 #define FP_REG_LAST 63
368 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
370 #define V_REG_FIRST 96
371 #define V_REG_LAST 127
372 #define V_REG_NUM (V_REG_LAST - V_REG_FIRST + 1)
374 /* The DWARF 2 CFA column which tracks the return address from a
375 signal handler context. This means that to maintain backwards
376 compatibility, no hard register can be assigned this column if it
377 would need to be handled by the DWARF unwinder. */
378 #define DWARF_ALT_FRAME_RETURN_COLUMN 64
380 #define GP_REG_P(REGNO) \
381 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
382 #define FP_REG_P(REGNO) \
383 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
384 #define HARDFP_REG_P(REGNO) \
385 ((REGNO) >= FP_REG_FIRST && (REGNO) <= FP_REG_LAST)
386 #define V_REG_P(REGNO) \
387 ((unsigned int) ((int) (REGNO) - V_REG_FIRST) < V_REG_NUM)
388 #define VL_REG_P(REGNO) ((REGNO) == VL_REGNUM)
389 #define VTYPE_REG_P(REGNO) ((REGNO) == VTYPE_REGNUM)
390 #define VXRM_REG_P(REGNO) ((REGNO) == VXRM_REGNUM)
391 #define FRM_REG_P(REGNO) ((REGNO) == FRM_REGNUM)
393 /* True when REGNO is in SIBCALL_REGS set. */
394 #define SIBCALL_REG_P(REGNO) \
395 TEST_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], REGNO)
397 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
399 /* Use s0 as the frame pointer if it is so requested. */
400 #define HARD_FRAME_POINTER_REGNUM 8
401 #define STACK_POINTER_REGNUM 2
402 #define THREAD_POINTER_REGNUM 4
404 /* These two registers don't really exist: they get eliminated to either
405 the stack or hard frame pointer. */
406 #define ARG_POINTER_REGNUM 64
407 #define FRAME_POINTER_REGNUM 65
409 /* Define Dwarf for RVV. */
410 #define RISCV_DWARF_FRM (4096 + 0x003)
411 #define RISCV_DWARF_VXRM (4096 + 0x00a)
412 #define RISCV_DWARF_VL (4096 + 0xc20)
413 #define RISCV_DWARF_VTYPE (4096 + 0xc21)
414 #define RISCV_DWARF_VLENB (4096 + 0xc22)
416 /* Register in which static-chain is passed to a function. */
417 #define STATIC_CHAIN_REGNUM \
418 ((is_zicfilp_p ()) ? (GP_TEMP_FIRST + 23) : (GP_TEMP_FIRST + 2))
420 /* Registers used as temporaries in prologue/epilogue code.
422 The prologue registers mustn't conflict with any
423 incoming arguments, the static chain pointer, or the frame pointer.
424 The epilogue temporary mustn't conflict with the return registers,
425 the frame pointer, the EH stack adjustment, or the EH data registers. */
427 #define RISCV_PROLOGUE_TEMP_REGNUM (GP_TEMP_FIRST)
428 #define RISCV_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, RISCV_PROLOGUE_TEMP_REGNUM)
429 #define RISCV_PROLOGUE_TEMP2_REGNUM (GP_TEMP_FIRST + 1)
430 #define RISCV_PROLOGUE_TEMP2(MODE) gen_rtx_REG (MODE, RISCV_PROLOGUE_TEMP2_REGNUM)
432 /* Both prologue temp registers are used in the vector probe loop for when
433 stack-clash protection is enabled, so we need to copy SP to a new register
434 and set it as CFA during the loop, we are using T3 for that. */
435 #define RISCV_STACK_CLASH_VECTOR_CFA_REGNUM (GP_TEMP_FIRST + 23)
437 #define RISCV_CALL_ADDRESS_TEMP_REGNUM (GP_TEMP_FIRST + 1)
438 #define RISCV_CALL_ADDRESS_TEMP(MODE) \
439 gen_rtx_REG (MODE, RISCV_CALL_ADDRESS_TEMP_REGNUM)
441 #define RISCV_CALL_ADDRESS_LPAD_REGNUM (GP_TEMP_FIRST + 2)
442 #define RISCV_CALL_ADDRESS_LPAD(MODE) \
443 gen_rtx_REG (MODE, RISCV_CALL_ADDRESS_LPAD_REGNUM)
445 #define RETURN_ADDR_MASK (1 << RETURN_ADDR_REGNUM)
446 #define S0_MASK (1 << S0_REGNUM)
447 #define S1_MASK (1 << S1_REGNUM)
448 #define S2_MASK (1 << S2_REGNUM)
449 #define S3_MASK (1 << S3_REGNUM)
450 #define S4_MASK (1 << S4_REGNUM)
451 #define S5_MASK (1 << S5_REGNUM)
452 #define S6_MASK (1 << S6_REGNUM)
453 #define S7_MASK (1 << S7_REGNUM)
454 #define S8_MASK (1 << S8_REGNUM)
455 #define S9_MASK (1 << S9_REGNUM)
456 #define S10_MASK (1 << S10_REGNUM)
457 #define S11_MASK (1 << S11_REGNUM)
459 #define MULTI_PUSH_GPR_MASK \
460 (RETURN_ADDR_MASK | S0_MASK | S1_MASK | S2_MASK | S3_MASK | S4_MASK \
461 | S5_MASK | S6_MASK | S7_MASK | S8_MASK | S9_MASK | S10_MASK | S11_MASK)
462 #define ZCMP_MAX_SPIMM 3
463 #define ZCMP_SP_INC_STEP 16
464 #define ZCMP_INVALID_S0S10_SREGS_COUNTS 11
465 #define ZCMP_S0S11_SREGS_COUNTS 12
466 #define ZCMP_MAX_GRP_SLOTS 13
468 #define MCOUNT_NAME "_mcount"
470 #define NO_PROFILE_COUNTERS 1
472 /* Emit rtl for profiling. Output assembler code to FILE
473 to call "_mcount" for profiling a function entry. */
474 #define PROFILE_HOOK(LABEL) \
477 ra = get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM); \
478 fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_NAME); \
479 emit_library_call (fun, LCT_NORMAL, VOIDmode, ra, Pmode); \
482 /* All the work done in PROFILE_HOOK, but still required. */
483 #define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0)
485 /* Define this macro if it is as good or better to call a constant
486 function address than to call an address kept in a register. */
487 #define NO_FUNCTION_CSE 1
489 /* Define the classes of registers for register constraints in the
490 machine description. Also define ranges of constants.
492 One of the classes must always be named ALL_REGS and include all hard regs.
493 If there is more than one class, another class must be named NO_REGS
494 and contain no registers.
496 The name GENERAL_REGS must be the name of a class (or an alias for
497 another name such as ALL_REGS). This is the class of registers
498 that is allowed by "g" or "r" in a register constraint.
499 Also, registers outside this class are allocated only when
500 instructions express preferences for them.
502 The classes must be numbered in nondecreasing order; that is,
503 a larger-numbered class must never be contained completely
504 in a smaller-numbered class.
506 For any two classes, it is very desirable that there be another
507 class that represents their union. */
511 NO_REGS
, /* no registers in set */
512 SIBCALL_REGS
, /* registers used by indirect sibcalls */
513 RVC_GR_REGS
, /* RVC general registers */
514 JALR_REGS
, /* registers used by indirect calls */
515 GR_REGS
, /* integer registers */
516 RVC_FP_REGS
, /* RVC floating-point registers */
517 FP_REGS
, /* floating-point registers */
518 FRAME_REGS
, /* arg pointer and frame pointer */
519 VM_REGS
, /* v0.t registers */
520 VD_REGS
, /* vector registers except v0.t */
521 V_REGS
, /* vector registers */
522 ALL_REGS
, /* all registers */
523 LIM_REG_CLASSES
/* max value + 1 */
526 #define N_REG_CLASSES (int) LIM_REG_CLASSES
528 #define GENERAL_REGS GR_REGS
530 /* An initializer containing the names of the register classes as C
531 string constants. These names are used in writing some of the
534 #define REG_CLASS_NAMES \
550 /* An initializer containing the contents of the register classes,
551 as integers which are bit masks. The Nth integer specifies the
552 contents of class N. The way the integer MASK is interpreted is
553 that register R is in the class if `MASK & (1 << R)' is 1.
555 When the machine has more than 32 registers, an integer does not
556 suffice. Then the integers are replaced by sub-initializers,
557 braced groupings containing several integers. Each
558 sub-initializer must be suitable as an initializer for the type
559 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
561 #define REG_CLASS_CONTENTS \
563 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
564 { 0xf003fcc0, 0x00000000, 0x00000000, 0x00000000 }, /* SIBCALL_REGS */ \
565 { 0x0000ff00, 0x00000000, 0x00000000, 0x00000000 }, /* RVC_GR_REGS */ \
566 { 0xffffffc0, 0x00000000, 0x00000000, 0x00000000 }, /* JALR_REGS */ \
567 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
568 { 0x00000000, 0x0000ff00, 0x00000000, 0x00000000 }, /* RVC_FP_REGS */ \
569 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FP_REGS */ \
570 { 0x00000000, 0x00000000, 0x00000003, 0x00000000 }, /* FRAME_REGS */ \
571 { 0x00000000, 0x00000000, 0x00000000, 0x00000001 }, /* V0_REGS */ \
572 { 0x00000000, 0x00000000, 0x00000000, 0xfffffffe }, /* VNoV0_REGS */ \
573 { 0x00000000, 0x00000000, 0x00000000, 0xffffffff }, /* V_REGS */ \
574 { 0xffffffff, 0xffffffff, 0x00000003, 0xffffffff } /* ALL_REGS */ \
577 /* A C expression whose value is a register class containing hard
578 register REGNO. In general there is more that one such class;
579 choose a class which is "minimal", meaning that no smaller class
580 also contains the register. */
582 #define REGNO_REG_CLASS(REGNO) riscv_regno_to_class[ (REGNO) ]
584 /* A macro whose definition is the name of the class to which a
585 valid base register must belong. A base register is one used in
586 an address which is the register value plus a displacement. */
588 #define BASE_REG_CLASS GR_REGS
590 /* A macro whose definition is the name of the class to which a
591 valid index register must belong. An index register is one used
592 in an address where its value is either multiplied by a scale
593 factor or added to another register (as well as added to a
596 #define INDEX_REG_CLASS riscv_index_reg_class()
598 /* We generally want to put call-clobbered registers ahead of
599 call-saved ones. (IRA expects this.) */
601 #define REG_ALLOC_ORDER \
603 /* Call-clobbered GPRs. */ \
604 15, 14, 13, 12, 11, 10, 16, 17, 6, 28, 29, 30, 31, 5, 7, 1, \
605 /* Call-saved GPRs. */ \
606 8, 9, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, \
607 /* GPRs that can never be exposed to the register allocator. */ \
609 /* Call-clobbered FPRs. */ \
610 47, 46, 45, 44, 43, 42, 32, 33, 34, 35, 36, 37, 38, 39, 48, 49, \
612 /* Call-saved FPRs. */ \
613 40, 41, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, \
614 /* v1 ~ v31 vector registers. */ \
615 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, \
616 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, \
617 124, 125, 126, 127, \
618 /* The vector mask register. */ \
620 /* None of the remaining classes have defined call-saved \
625 /* True if VALUE is a signed 12-bit number. */
627 #define SMALL_OPERAND(VALUE) \
628 ((unsigned HOST_WIDE_INT) (VALUE) + IMM_REACH/2 < IMM_REACH)
630 #define POLY_SMALL_OPERAND_P(POLY_VALUE) \
631 (POLY_VALUE.is_constant () ? \
632 SMALL_OPERAND (POLY_VALUE.to_constant ()) : false)
634 /* True if VALUE can be loaded into a register using LUI. */
636 #define LUI_OPERAND(VALUE) \
637 (((VALUE) | ((1UL<<31) - IMM_REACH)) == ((1UL<<31) - IMM_REACH) \
638 || ((VALUE) | ((1UL<<31) - IMM_REACH)) + IMM_REACH == 0)
640 /* True if a VALUE (constant) can be expressed as sum of two S12 constants
641 (in range -2048 to 2047).
643 from: min S12 + 1 (or -1 depending on what side of zero)
644 to: two times the min S12 value (to max out S12 bits). */
646 #define SUM_OF_TWO_S12_N(VALUE) \
647 (((VALUE) >= (-2048 * 2)) && ((VALUE) <= (-2048 - 1)))
649 #define SUM_OF_TWO_S12_P(VALUE) \
650 (((VALUE) >= (2047 + 1)) && ((VALUE) <= (2047 * 2)))
652 #define SUM_OF_TWO_S12(VALUE) \
653 (SUM_OF_TWO_S12_N (VALUE) || SUM_OF_TWO_S12_P (VALUE))
655 /* Variant with first value 8 byte aligned if involving stack regs. */
656 #define SUM_OF_TWO_S12_P_ALGN(VALUE) \
657 (((VALUE) >= (2032 + 1)) && ((VALUE) <= (2032 * 2)))
659 #define SUM_OF_TWO_S12_ALGN(VALUE) \
660 (SUM_OF_TWO_S12_N (VALUE) || SUM_OF_TWO_S12_P_ALGN (VALUE))
662 /* If this is a single bit mask, then we can load it with bseti. Special
663 handling of SImode 0x80000000 on RV64 is done in riscv_build_integer_1. */
664 #define SINGLE_BIT_MASK_OPERAND(VALUE) \
665 (pow2p_hwi (TARGET_64BIT \
667 : ((VALUE) & ((HOST_WIDE_INT_1U << 32)-1))))
669 /* True if VALUE can be represented as an immediate with 1 extra bit
670 set: we check that it is not a SMALL_OPERAND (as this would be true
671 for all small operands) unmodified and turns into a small operand
672 once we clear the top bit. */
673 #define UIMM_EXTRA_BIT_OPERAND(VALUE) \
674 (!SMALL_OPERAND (VALUE) \
675 && SMALL_OPERAND (VALUE & ~(HOST_WIDE_INT_1U << floor_log2 (VALUE))))
677 /* True if bit BIT is set in VALUE. */
678 #define BITSET_P(VALUE, BIT) (((VALUE) & (1ULL << (BIT))) != 0)
680 /* Returns the smaller (common) number of trailing zeros for VAL1 and VAL2. */
681 #define COMMON_TRAILING_ZEROS(VAL1, VAL2) \
682 (ctz_hwi (VAL1) < ctz_hwi (VAL2) \
686 /* Returns true if both VAL1 and VAL2 are SMALL_OPERANDs after shifting by
687 the common number of trailing zeros. */
688 #define SMALL_AFTER_COMMON_TRAILING_SHIFT(VAL1, VAL2) \
689 (SMALL_OPERAND ((VAL1) >> COMMON_TRAILING_ZEROS (VAL1, VAL2)) \
690 && SMALL_OPERAND ((VAL2) >> COMMON_TRAILING_ZEROS (VAL1, VAL2)))
692 /* Stack layout; function entry, exit and calling. */
694 #define STACK_GROWS_DOWNWARD 1
696 #define FRAME_GROWS_DOWNWARD 1
698 #define RETURN_ADDR_RTX riscv_return_addr
700 #define ELIMINABLE_REGS \
701 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
702 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
703 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
704 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
706 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
707 (OFFSET) = riscv_initial_elimination_offset (FROM, TO)
709 /* Allocate stack space for arguments at the beginning of each function. */
710 #define ACCUMULATE_OUTGOING_ARGS 1
712 /* The argument pointer always points to the first argument. */
713 #define FIRST_PARM_OFFSET(FNDECL) 0
715 #define REG_PARM_STACK_SPACE(FNDECL) 0
717 /* Define this if it is the responsibility of the caller to
718 allocate the area reserved for arguments passed in registers.
719 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
720 of this macro is to determine whether the space is included in
721 `crtl->outgoing_args_size'. */
722 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
724 #define PREFERRED_STACK_BOUNDARY riscv_stack_boundary
726 /* Symbolic macros for the registers used to return integer and floating
729 #define GP_RETURN GP_ARG_FIRST
730 #define FP_RETURN (UNITS_PER_FP_ARG == 0 ? GP_RETURN : FP_ARG_FIRST)
731 #define V_RETURN V_REG_FIRST
733 #define GP_RETURN_FIRST GP_ARG_FIRST
734 #define GP_RETURN_LAST GP_ARG_FIRST + 1
735 #define FP_RETURN_FIRST FP_RETURN
736 #define FP_RETURN_LAST FP_RETURN + 1
738 #define MAX_ARGS_IN_REGISTERS \
739 (riscv_abi == ABI_ILP32E || riscv_abi == ABI_LP64E \
743 #define MAX_ARGS_IN_VECTOR_REGISTERS (16)
744 #define MAX_ARGS_IN_MASK_REGISTERS (1)
746 /* Symbolic macros for the first/last argument registers. */
748 #define GP_ARG_FIRST (GP_REG_FIRST + 10)
749 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
750 #define GP_TEMP_FIRST (GP_REG_FIRST + 5)
751 #define FP_ARG_FIRST (FP_REG_FIRST + 10)
752 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
753 #define V_ARG_FIRST (V_REG_FIRST + 8)
754 #define V_ARG_LAST (V_ARG_FIRST + MAX_ARGS_IN_VECTOR_REGISTERS - 1)
756 #define CALLEE_SAVED_REG_NUMBER(REGNO) \
757 ((REGNO) >= 8 && (REGNO) <= 9 ? (REGNO) - 8 : \
758 (REGNO) >= 18 && (REGNO) <= 27 ? (REGNO) - 16 : -1)
760 #define CALLEE_SAVED_FREG_NUMBER(REGNO) CALLEE_SAVED_REG_NUMBER (REGNO - 32)
762 #define LIBCALL_VALUE(MODE) \
763 riscv_function_value (NULL_TREE, NULL_TREE, MODE)
765 #define FUNCTION_VALUE(VALTYPE, FUNC) \
766 riscv_function_value (VALTYPE, FUNC, VOIDmode)
768 /* 1 if N is a possible register number for function argument passing.
769 We have no FP argument registers when soft-float. */
771 /* Accept arguments in a0-a7, and in fa0-fa7 if permitted by the ABI. */
772 #define FUNCTION_ARG_REGNO_P(N) \
773 (IN_RANGE ((N), GP_ARG_FIRST, GP_ARG_LAST) \
774 || (UNITS_PER_FP_ARG && IN_RANGE ((N), FP_ARG_FIRST, FP_ARG_LAST)))
776 /* Define the standard RISC-V calling convention and variants. */
780 RISCV_CC_BASE
= 0, /* Base standard RISC-V ABI. */
781 RISCV_CC_V
, /* For functions that pass or return values in V registers. */
786 /* The calling convention that current function used. */
787 enum riscv_cc variant_cc
;
789 /* Number of integer registers used so far, up to MAX_ARGS_IN_REGISTERS. */
790 unsigned int num_gprs
;
792 /* Number of floating-point registers used so far, likewise. */
793 unsigned int num_fprs
;
795 /* Number of mask registers used so far, up to MAX_ARGS_IN_MASK_REGISTERS. */
796 unsigned int num_mrs
;
798 /* The used state of args in vector registers, true for used by prev arg,
800 bool used_vrs
[MAX_ARGS_IN_VECTOR_REGISTERS
];
803 /* Return riscv calling convention of call_insn. */
804 extern enum riscv_cc
get_riscv_cc (const rtx use
);
806 /* Initialize a variable CUM of type CUMULATIVE_ARGS
807 for a call to a function whose data type is FNTYPE.
808 For a library call, FNTYPE is 0. */
810 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
811 riscv_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (INDIRECT), \
812 (N_NAMED_ARGS) != -1)
814 #define EPILOGUE_USES(REGNO) riscv_epilogue_uses (REGNO)
816 /* Align based on stack boundary, which might have been set by the user. */
817 #define RISCV_STACK_ALIGN(LOC) \
818 (((LOC) + ((PREFERRED_STACK_BOUNDARY/8)-1)) & -(PREFERRED_STACK_BOUNDARY/8))
820 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
821 the stack pointer does not matter. The value is tested only in
822 functions that have frame pointers.
823 No definition is equivalent to always zero. */
825 #define EXIT_IGNORE_STACK 1
828 /* Trampolines are a block of code followed by two pointers. */
830 #define TRAMPOLINE_CODE_SIZE ((is_zicfilp_p ()) ? 24 : 16)
832 #define TRAMPOLINE_SIZE \
834 ? TRAMPOLINE_CODE_SIZE \
835 : (TRAMPOLINE_CODE_SIZE + POINTER_SIZE * 2))
836 #define TRAMPOLINE_ALIGNMENT POINTER_SIZE
838 /* Addressing modes, and classification of registers for them. */
840 #define REGNO_OK_FOR_INDEX_P(REGNO) \
841 riscv_regno_ok_for_index_p (REGNO)
843 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
844 riscv_regno_mode_ok_for_base_p (REGNO, MODE, 1)
846 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
847 and check its validity for a certain class.
848 We have two alternate definitions for each of them.
849 The usual definition accepts all pseudo regs; the other rejects them all.
850 The symbol REG_OK_STRICT causes the latter definition to be used.
852 Most source files want to accept pseudo regs in the hope that
853 they will get allocated to the class that the insn wants them to be in.
854 Some source files that are used after register allocation
855 need to be strict. */
857 #ifndef REG_OK_STRICT
858 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
859 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
861 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
862 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
865 #define REG_OK_FOR_INDEX_P(X) 0
867 /* Maximum number of registers that can appear in a valid memory address. */
869 #define MAX_REGS_PER_ADDRESS 1
871 #define CONSTANT_ADDRESS_P(X) \
872 (CONSTANT_P (X) && memory_address_p (SImode, X))
874 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
875 'the start of the function that this code is output in'. */
877 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
879 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
880 asm_fprintf ((FILE), "%U%s", \
881 XSTR (XEXP (DECL_RTL (current_function_decl), \
884 asm_fprintf ((FILE), "%U%s", (NAME)); \
887 #undef ASM_OUTPUT_OPCODE
888 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
889 (PTR) = riscv_asm_output_opcode(STREAM, PTR)
891 #define JUMP_TABLES_IN_TEXT_SECTION 0
892 #define CASE_VECTOR_MODE SImode
893 #define CASE_VECTOR_PC_RELATIVE (riscv_cmodel != CM_MEDLOW)
895 #define LOCAL_SYM_P(sym) \
896 ((SYMBOL_REF_P (sym) && SYMBOL_REF_LOCAL_P (sym)) \
897 || ((GET_CODE (sym) == CONST) \
898 && SYMBOL_REF_P (XEXP (XEXP (sym, 0),0)) \
899 && SYMBOL_REF_LOCAL_P (XEXP (XEXP (sym, 0),0))))
901 /* The load-address macro is used for PC-relative addressing of symbols
902 that bind locally. Don't use it for symbols that should be addressed
903 via the GOT. Also, avoid it for CM_MEDLOW, where LUI addressing
904 currently results in more opportunities for linker relaxation. */
905 #define USE_LOAD_ADDRESS_MACRO(sym) \
906 (!TARGET_EXPLICIT_RELOCS && \
907 ((flag_pic && LOCAL_SYM_P (sym)) || riscv_cmodel == CM_MEDANY))
909 /* Define this as 1 if `char' should by default be signed; else as 0. */
910 #define DEFAULT_SIGNED_CHAR 0
912 #define MOVE_MAX UNITS_PER_WORD
913 #define MAX_MOVE_MAX 8
915 /* The SPARC port says:
916 Nonzero if access to memory by bytes is slow and undesirable.
917 For RISC chips, it means that access to memory by bytes is no
918 better than access by words when possible, so grab a whole word
919 and maybe make use of that. */
920 #define SLOW_BYTE_ACCESS 1
922 /* Using SHIFT_COUNT_TRUNCATED is discouraged, so we handle this with patterns
923 in the md file instead. */
924 #define SHIFT_COUNT_TRUNCATED 0
926 /* Specify the machine mode that pointers have.
927 After generation of rtl, the compiler makes no further distinction
928 between pointers and any other objects of this machine mode. */
930 #define Pmode word_mode
932 /* Specify the machine mode that registers have. */
934 #define Xmode (TARGET_64BIT ? DImode : SImode)
936 /* Give call MEMs SImode since it is the "most permissive" mode
937 for both 32-bit and 64-bit targets. */
939 #define FUNCTION_MODE SImode
941 /* A C expression for the cost of a branch instruction. A value of 2
942 seems to minimize code size. */
944 #define BRANCH_COST(speed_p, predictable_p) \
945 ((!(speed_p) || (predictable_p)) ? 2 : riscv_branch_cost)
947 /* True if the target optimizes short forward branches around integer
948 arithmetic instructions into predicated operations, e.g., for
949 conditional-move operations. The macro assumes that all branch
950 instructions (BEQ, BNE, BLT, BLTU, BGE, BGEU, C.BEQZ, and C.BNEZ)
951 support this feature. The macro further assumes that any integer
952 arithmetic and logical operation (ADD[I], SUB, SLL[I], SRL[I], SRA[I],
953 SLT[I][U], AND[I], XOR[I], OR[I], LUI, AUIPC, and their compressed
954 counterparts, including C.MV and C.LI) can be in the branch shadow. */
956 #define TARGET_SFB_ALU \
957 ((riscv_microarchitecture == sifive_7) \
958 || (riscv_microarchitecture == sifive_p400) \
959 || (riscv_microarchitecture == sifive_p600))
961 /* True if the target supports misaligned vector loads and stores. */
962 #define TARGET_VECTOR_MISALIGN_SUPPORTED \
963 riscv_vector_unaligned_access_p
965 /* Control the assembler format that we output. */
967 /* Output to assembler file text saying following lines
968 may contain character constants, extra white space, comments, etc. */
971 #define ASM_APP_ON " #APP\n"
974 /* Output to assembler file text saying following lines
975 no longer contain unusual constructs. */
978 #define ASM_APP_OFF " #NO_APP\n"
981 #define REGISTER_NAMES \
982 { "zero","ra", "sp", "gp", "tp", "t0", "t1", "t2", \
983 "s0", "s1", "a0", "a1", "a2", "a3", "a4", "a5", \
984 "a6", "a7", "s2", "s3", "s4", "s5", "s6", "s7", \
985 "s8", "s9", "s10", "s11", "t3", "t4", "t5", "t6", \
986 "ft0", "ft1", "ft2", "ft3", "ft4", "ft5", "ft6", "ft7", \
987 "fs0", "fs1", "fa0", "fa1", "fa2", "fa3", "fa4", "fa5", \
988 "fa6", "fa7", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7", \
989 "fs8", "fs9", "fs10","fs11","ft8", "ft9", "ft10","ft11", \
990 "arg", "frame", "vl", "vtype", "vxrm", "frm", "vxsat", "N/A", \
991 "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", \
992 "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", \
993 "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", \
994 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
995 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
996 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
997 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31",}
999 #define ADDITIONAL_REGISTER_NAMES \
1001 { "x0", 0 + GP_REG_FIRST }, \
1002 { "x1", 1 + GP_REG_FIRST }, \
1003 { "x2", 2 + GP_REG_FIRST }, \
1004 { "x3", 3 + GP_REG_FIRST }, \
1005 { "x4", 4 + GP_REG_FIRST }, \
1006 { "x5", 5 + GP_REG_FIRST }, \
1007 { "x6", 6 + GP_REG_FIRST }, \
1008 { "x7", 7 + GP_REG_FIRST }, \
1009 { "x8", 8 + GP_REG_FIRST }, \
1010 { "x9", 9 + GP_REG_FIRST }, \
1011 { "x10", 10 + GP_REG_FIRST }, \
1012 { "x11", 11 + GP_REG_FIRST }, \
1013 { "x12", 12 + GP_REG_FIRST }, \
1014 { "x13", 13 + GP_REG_FIRST }, \
1015 { "x14", 14 + GP_REG_FIRST }, \
1016 { "x15", 15 + GP_REG_FIRST }, \
1017 { "x16", 16 + GP_REG_FIRST }, \
1018 { "x17", 17 + GP_REG_FIRST }, \
1019 { "x18", 18 + GP_REG_FIRST }, \
1020 { "x19", 19 + GP_REG_FIRST }, \
1021 { "x20", 20 + GP_REG_FIRST }, \
1022 { "x21", 21 + GP_REG_FIRST }, \
1023 { "x22", 22 + GP_REG_FIRST }, \
1024 { "x23", 23 + GP_REG_FIRST }, \
1025 { "x24", 24 + GP_REG_FIRST }, \
1026 { "x25", 25 + GP_REG_FIRST }, \
1027 { "x26", 26 + GP_REG_FIRST }, \
1028 { "x27", 27 + GP_REG_FIRST }, \
1029 { "x28", 28 + GP_REG_FIRST }, \
1030 { "x29", 29 + GP_REG_FIRST }, \
1031 { "x30", 30 + GP_REG_FIRST }, \
1032 { "x31", 31 + GP_REG_FIRST }, \
1033 { "f0", 0 + FP_REG_FIRST }, \
1034 { "f1", 1 + FP_REG_FIRST }, \
1035 { "f2", 2 + FP_REG_FIRST }, \
1036 { "f3", 3 + FP_REG_FIRST }, \
1037 { "f4", 4 + FP_REG_FIRST }, \
1038 { "f5", 5 + FP_REG_FIRST }, \
1039 { "f6", 6 + FP_REG_FIRST }, \
1040 { "f7", 7 + FP_REG_FIRST }, \
1041 { "f8", 8 + FP_REG_FIRST }, \
1042 { "f9", 9 + FP_REG_FIRST }, \
1043 { "f10", 10 + FP_REG_FIRST }, \
1044 { "f11", 11 + FP_REG_FIRST }, \
1045 { "f12", 12 + FP_REG_FIRST }, \
1046 { "f13", 13 + FP_REG_FIRST }, \
1047 { "f14", 14 + FP_REG_FIRST }, \
1048 { "f15", 15 + FP_REG_FIRST }, \
1049 { "f16", 16 + FP_REG_FIRST }, \
1050 { "f17", 17 + FP_REG_FIRST }, \
1051 { "f18", 18 + FP_REG_FIRST }, \
1052 { "f19", 19 + FP_REG_FIRST }, \
1053 { "f20", 20 + FP_REG_FIRST }, \
1054 { "f21", 21 + FP_REG_FIRST }, \
1055 { "f22", 22 + FP_REG_FIRST }, \
1056 { "f23", 23 + FP_REG_FIRST }, \
1057 { "f24", 24 + FP_REG_FIRST }, \
1058 { "f25", 25 + FP_REG_FIRST }, \
1059 { "f26", 26 + FP_REG_FIRST }, \
1060 { "f27", 27 + FP_REG_FIRST }, \
1061 { "f28", 28 + FP_REG_FIRST }, \
1062 { "f29", 29 + FP_REG_FIRST }, \
1063 { "f30", 30 + FP_REG_FIRST }, \
1064 { "f31", 31 + FP_REG_FIRST }, \
1067 /* Globalizing directive for a label. */
1068 #define GLOBAL_ASM_OP "\t.globl\t"
1070 /* This is how to store into the string LABEL
1071 the symbol_ref name of an internal numbered label where
1072 PREFIX is the class of label and NUM is the number within the class.
1073 This is suitable for output with `assemble_name'. */
1075 #undef ASM_GENERATE_INTERNAL_LABEL
1076 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1077 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
1079 /* This is how to output an element of a case-vector that is absolute. */
1081 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
1082 fprintf (STREAM, "\t.word\t%sL%d\n", LOCAL_LABEL_PREFIX, VALUE)
1084 /* This is how to output an element of a PIC case-vector. */
1086 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
1087 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
1088 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL)
1090 /* This is how to output an assembler line
1091 that says to advance the location counter
1092 to a multiple of 2**LOG bytes. */
1094 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
1095 fprintf (STREAM, "\t.align\t%d\n", (LOG))
1097 /* Define the strings to put out for each section in the object file. */
1098 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
1099 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
1100 #define READONLY_DATA_SECTION_ASM_OP "\t.section\t.rodata"
1101 #define BSS_SECTION_ASM_OP "\t.bss"
1102 #define SBSS_SECTION_ASM_OP "\t.section\t.sbss,\"aw\",@nobits"
1103 #define SDATA_SECTION_ASM_OP "\t.section\t.sdata,\"aw\",@progbits"
1105 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
1108 fprintf (STREAM, "\taddi\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
1109 reg_names[STACK_POINTER_REGNUM], \
1110 reg_names[STACK_POINTER_REGNUM], \
1111 TARGET_64BIT ? "sd" : "sw", \
1113 reg_names[STACK_POINTER_REGNUM]); \
1117 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
1120 fprintf (STREAM, "\t%s\t%s,0(%s)\n\taddi\t%s,%s,8\n", \
1121 TARGET_64BIT ? "ld" : "lw", \
1123 reg_names[STACK_POINTER_REGNUM], \
1124 reg_names[STACK_POINTER_REGNUM], \
1125 reg_names[STACK_POINTER_REGNUM]); \
1129 #define ASM_COMMENT_START "#"
1131 /* Add output .variant_cc directive for specific function definition. */
1132 #undef ASM_DECLARE_FUNCTION_NAME
1133 #define ASM_DECLARE_FUNCTION_NAME(STR, NAME, DECL) \
1134 riscv_declare_function_name (STR, NAME, DECL)
1136 #undef ASM_DECLARE_FUNCTION_SIZE
1137 #define ASM_DECLARE_FUNCTION_SIZE(FILE, FNAME, DECL) \
1138 riscv_declare_function_size (FILE, FNAME, DECL)
1140 /* Add output .variant_cc directive for specific alias definition. */
1141 #undef ASM_OUTPUT_DEF_FROM_DECLS
1142 #define ASM_OUTPUT_DEF_FROM_DECLS(STR, DECL, TARGET) \
1143 riscv_asm_output_alias (STR, DECL, TARGET)
1145 /* Add output .variant_cc directive for specific extern function. */
1146 #undef ASM_OUTPUT_EXTERNAL
1147 #define ASM_OUTPUT_EXTERNAL(STR, DECL, NAME) \
1148 riscv_asm_output_external (STR, DECL, NAME)
1151 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
1154 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
1156 /* The maximum number of bytes copied by one iteration of a cpymemsi loop. */
1158 #define RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER (UNITS_PER_WORD * 4)
1160 /* The maximum number of bytes that can be copied by a straight-line
1161 cpymemsi implementation. */
1163 #define RISCV_MAX_MOVE_BYTES_STRAIGHT (RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER * 3)
1165 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1166 move-instruction pairs, we will do a cpymem or libcall instead.
1167 Do not use move_by_pieces at all when strict alignment is not
1168 in effect but the target has slow unaligned accesses; in this
1169 case, cpymem or libcall is more efficient. */
1171 #define MOVE_RATIO(speed) \
1172 (!STRICT_ALIGNMENT && riscv_slow_unaligned_access_p ? 1 : \
1173 (speed) ? RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER / UNITS_PER_WORD : \
1174 CLEAR_RATIO (speed) / 2)
1176 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
1177 of the length of a memset call, but use the default otherwise. */
1179 #define CLEAR_RATIO(speed) ((speed) ? 16 : 6)
1181 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
1182 optimizing for size adjust the ratio to account for the overhead of
1183 loading the constant and replicating it across the word. */
1185 #define SET_RATIO(speed) (CLEAR_RATIO (speed) - ((speed) ? 0 : 2))
1187 #ifndef USED_FOR_TARGET
1188 extern const enum reg_class riscv_regno_to_class
[];
1189 extern bool riscv_slow_unaligned_access_p
;
1190 extern bool riscv_vector_unaligned_access_p
;
1191 extern bool riscv_user_wants_strict_align
;
1192 extern unsigned riscv_stack_boundary
;
1193 extern unsigned riscv_bytes_per_vector_chunk
;
1194 extern poly_uint16 riscv_vector_chunks
;
1195 extern poly_int64
riscv_v_adjust_nunits (enum machine_mode
, int);
1196 extern poly_int64
riscv_v_adjust_nunits (machine_mode
, bool, int, int);
1197 extern poly_int64
riscv_v_adjust_precision (enum machine_mode
, int);
1198 extern poly_int64
riscv_v_adjust_bytesize (enum machine_mode
, int);
1199 extern bool is_zicfiss_p ();
1200 extern bool is_zicfilp_p ();
1201 extern bool need_shadow_stack_push_pop_p ();
1202 /* The number of bits and bytes in a RVV vector. */
1203 #define BITS_PER_RISCV_VECTOR (poly_uint16 (riscv_vector_chunks * riscv_bytes_per_vector_chunk * 8))
1204 #define BYTES_PER_RISCV_VECTOR (poly_uint16 (riscv_vector_chunks * riscv_bytes_per_vector_chunk))
1207 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1208 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4)
1211 "%{march=rv32*:32}" \
1212 "%{march=rv64*:64}" \
1215 "%{mabi=ilp32:ilp32}" \
1216 "%{mabi=ilp32e:ilp32e}" \
1217 "%{mabi=ilp32f:ilp32f}" \
1218 "%{mabi=ilp32d:ilp32d}" \
1219 "%{mabi=lp64:lp64}" \
1220 "%{mabi=lp64e:lp64e}" \
1221 "%{mabi=lp64f:lp64f}" \
1222 "%{mabi=lp64d:lp64d}" \
1224 /* ISA constants needed for code generation. */
1225 #define OPCODE_LW 0x2003
1226 #define OPCODE_LD 0x3003
1227 #define OPCODE_AUIPC 0x17
1228 #define OPCODE_JALR 0x67
1229 #define OPCODE_LUI 0x37
1230 #define OPCODE_ADDI 0x13
1232 #define SHIFT_RS1 15
1233 #define SHIFT_IMM 20
1236 #define C_SxSP_BITS 6
1238 #define IMM_REACH (1LL << IMM_BITS)
1239 #define CONST_HIGH_PART(VALUE) (((VALUE) + (IMM_REACH/2)) & ~(IMM_REACH-1))
1240 #define CONST_LOW_PART(VALUE) ((VALUE) - CONST_HIGH_PART (VALUE))
1242 #define SWSP_REACH (4LL << C_SxSP_BITS)
1243 #define SDSP_REACH (8LL << C_SxSP_BITS)
1245 /* This is the maximum value that can be represented in a compressed load/store
1246 offset (an unsigned 5-bit value scaled by 4). */
1247 #define CSW_MAX_OFFSET (((4LL << C_S_BITS) - 1) & ~3)
1249 /* Called from RISCV_REORG, this is defined in riscv-sr.cc. */
1251 extern void riscv_remove_unneeded_save_restore_calls (void);
1253 #define HARD_REGNO_RENAME_OK(FROM, TO) riscv_hard_regno_rename_ok (FROM, TO)
1255 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1256 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
1257 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1258 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
1260 #define TARGET_SUPPORTS_WIDE_INT 1
1262 #define REGISTER_TARGET_PRAGMAS() riscv_register_pragmas ()
1264 #define REGMODE_NATURAL_SIZE(MODE) riscv_regmode_natural_size (MODE)
1266 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER + 1 /* VLENB */)
1268 #define DWARF_REG_TO_UNWIND_COLUMN(REGNO) \
1269 ((REGNO == RISCV_DWARF_VLENB) ? (FIRST_PSEUDO_REGISTER + 1) : REGNO)
1271 /* Like s390, riscv also defined this macro for the vector comparision. Then
1272 the simplify-rtx relational_result will canonicalize the result to the
1273 CONST1_RTX for the simplification. */
1274 #define VECTOR_STORE_FLAG_VALUE(MODE) CONSTM1_RTX (GET_MODE_INNER (MODE))
1276 /* Mode switching (Lazy code motion) for RVV rounding mode instructions. */
1277 #define OPTIMIZE_MODE_SWITCHING(ENTITY) (TARGET_VECTOR)
1278 #define NUM_MODES_FOR_MODE_SWITCHING {VXRM_MODE_NONE, riscv_vector::FRM_NONE}
1280 /* The size difference between different RVV modes can be up to 64 times.
1281 e.g. RVVMF64BI vs RVVMF1BI on zvl512b, which is [1, 1] vs [64, 64]. */
1282 #define MAX_POLY_VARIANT 64
1284 #define HAVE_POST_MODIFY_DISP TARGET_XTHEADMEMIDX
1285 #define HAVE_PRE_MODIFY_DISP TARGET_XTHEADMEMIDX
1287 /* Check TLS Descriptors mechanism is selected. */
1288 #define TARGET_TLSDESC (riscv_tls_dialect == TLS_DESCRIPTORS)
1290 /* This value is the amount of bytes a caller is allowed to drop the stack
1291 before probing has to be done for stack clash protection. */
1292 #define STACK_CLASH_CALLER_GUARD 1024
1294 /* This value controls how many pages we manually unroll the loop for when
1295 generating stack clash probes. */
1296 #define STACK_CLASH_MAX_UNROLL_PAGES 4
1298 /* This value represents the minimum amount of bytes we expect the function's
1299 outgoing arguments to be when stack-clash is enabled. */
1300 #define STACK_CLASH_MIN_BYTES_OUTGOING_ARGS 8
1302 /* Allocate a minimum of STACK_CLASH_MIN_BYTES_OUTGOING_ARGS bytes for the
1303 outgoing arguments if stack clash protection is enabled. This is essential
1304 as the extra arg space allows us to skip a check in alloca. */
1305 #undef STACK_DYNAMIC_OFFSET
1306 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1307 ((flag_stack_clash_protection \
1308 && cfun->calls_alloca \
1309 && known_lt (crtl->outgoing_args_size, \
1310 STACK_CLASH_MIN_BYTES_OUTGOING_ARGS)) \
1311 ? ROUND_UP (STACK_CLASH_MIN_BYTES_OUTGOING_ARGS, \
1312 STACK_BOUNDARY / BITS_PER_UNIT) \
1313 : (crtl->outgoing_args_size + STACK_POINTER_OFFSET))
1315 /* According to the RISC-V C API, the arch string may contains ','. To avoid
1316 the conflict with the default separator, we choose '#' as the separator for
1317 the target attribute. */
1318 #define TARGET_CLONES_ATTR_SEPARATOR '#'
1320 #define TARGET_HAS_FMV_TARGET_ATTRIBUTE 0
1322 #endif /* ! GCC_RISCV_H */