c++: Implement for namespace statics CWG 2867 - Order of initialization for structure...
[official-gcc.git] / gcc / haifa-sched.cc
blob63eb06b2d820b86f39def44be97df37a7a498290
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2025 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Instruction scheduling pass. This file, along with sched-deps.cc,
23 contains the generic parts. The actual entry point for
24 the normal instruction scheduling pass is found in sched-rgn.cc.
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_dependences ().
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS for the purpose of forward list scheduling.
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
123 beginning of basic blocks and regions that have been scheduled. */
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "backend.h"
129 #include "target.h"
130 #include "rtl.h"
131 #include "cfghooks.h"
132 #include "df.h"
133 #include "memmodel.h"
134 #include "tm_p.h"
135 #include "insn-config.h"
136 #include "regs.h"
137 #include "ira.h"
138 #include "recog.h"
139 #include "insn-attr.h"
140 #include "cfgrtl.h"
141 #include "cfgbuild.h"
142 #include "sched-int.h"
143 #include "common/common-target.h"
144 #include "dbgcnt.h"
145 #include "cfgloop.h"
146 #include "dumpfile.h"
147 #include "print-rtl.h"
148 #include "function-abi.h"
150 #ifdef INSN_SCHEDULING
152 /* True if we do register pressure relief through live-range
153 shrinkage. */
154 static bool live_range_shrinkage_p;
156 /* Switch on live range shrinkage. */
157 void
158 initialize_live_range_shrinkage (void)
160 live_range_shrinkage_p = true;
163 /* Switch off live range shrinkage. */
164 void
165 finish_live_range_shrinkage (void)
167 live_range_shrinkage_p = false;
170 /* issue_rate is the number of insns that can be scheduled in the same
171 machine cycle. It can be defined in the config/mach/mach.h file,
172 otherwise we set it to 1. */
174 int issue_rate;
176 /* This can be set to true by a backend if the scheduler should not
177 enable a DCE pass. */
178 bool sched_no_dce;
180 /* The current initiation interval used when modulo scheduling. */
181 static int modulo_ii;
183 /* The maximum number of stages we are prepared to handle. */
184 static int modulo_max_stages;
186 /* The number of insns that exist in each iteration of the loop. We use this
187 to detect when we've scheduled all insns from the first iteration. */
188 static int modulo_n_insns;
190 /* The current count of insns in the first iteration of the loop that have
191 already been scheduled. */
192 static int modulo_insns_scheduled;
194 /* The maximum uid of insns from the first iteration of the loop. */
195 static int modulo_iter0_max_uid;
197 /* The number of times we should attempt to backtrack when modulo scheduling.
198 Decreased each time we have to backtrack. */
199 static int modulo_backtracks_left;
201 /* The stage in which the last insn from the original loop was
202 scheduled. */
203 static int modulo_last_stage;
205 /* sched-verbose controls the amount of debugging output the
206 scheduler prints. It is controlled by -fsched-verbose=N:
207 N=0: no debugging output.
208 N=1: default value.
209 N=2: bb's probabilities, detailed ready list info, unit/insn info.
210 N=3: rtl at abort point, control-flow, regions info.
211 N=5: dependences info. */
212 int sched_verbose = 0;
214 /* Debugging file. All printouts are sent to dump. */
215 FILE *sched_dump = 0;
217 /* This is a placeholder for the scheduler parameters common
218 to all schedulers. */
219 struct common_sched_info_def *common_sched_info;
221 #define INSN_TICK(INSN) (HID (INSN)->tick)
222 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
223 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
224 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
225 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
226 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
227 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
228 /* Cached cost of the instruction. Use insn_sched_cost to get cost of the
229 insn. -1 here means that the field is not initialized. */
230 #define INSN_COST(INSN) (HID (INSN)->cost)
232 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
233 then it should be recalculated from scratch. */
234 #define INVALID_TICK (-(max_insn_queue_index + 1))
235 /* The minimal value of the INSN_TICK of an instruction. */
236 #define MIN_TICK (-max_insn_queue_index)
238 /* Original order of insns in the ready list.
239 Used to keep order of normal insns while separating DEBUG_INSNs. */
240 #define INSN_RFS_DEBUG_ORIG_ORDER(INSN) (HID (INSN)->rfs_debug_orig_order)
242 /* The deciding reason for INSN's place in the ready list. */
243 #define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
245 /* List of important notes we must keep around. This is a pointer to the
246 last element in the list. */
247 rtx_insn *note_list;
249 static struct spec_info_def spec_info_var;
250 /* Description of the speculative part of the scheduling.
251 If NULL - no speculation. */
252 spec_info_t spec_info = NULL;
254 /* True, if recovery block was added during scheduling of current block.
255 Used to determine, if we need to fix INSN_TICKs. */
256 static bool haifa_recovery_bb_recently_added_p;
258 /* True, if recovery block was added during this scheduling pass.
259 Used to determine if we should have empty memory pools of dependencies
260 after finishing current region. */
261 bool haifa_recovery_bb_ever_added_p;
263 /* Counters of different types of speculative instructions. */
264 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
266 /* Array used in {unlink, restore}_bb_notes. */
267 static rtx_insn **bb_header = 0;
269 /* Basic block after which recovery blocks will be created. */
270 static basic_block before_recovery;
272 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
273 created it. */
274 basic_block after_recovery;
276 /* FALSE if we add bb to another region, so we don't need to initialize it. */
277 bool adding_bb_to_current_region_p = true;
279 /* Queues, etc. */
281 /* An instruction is ready to be scheduled when all insns preceding it
282 have already been scheduled. It is important to ensure that all
283 insns which use its result will not be executed until its result
284 has been computed. An insn is maintained in one of four structures:
286 (P) the "Pending" set of insns which cannot be scheduled until
287 their dependencies have been satisfied.
288 (Q) the "Queued" set of insns that can be scheduled when sufficient
289 time has passed.
290 (R) the "Ready" list of unscheduled, uncommitted insns.
291 (S) the "Scheduled" list of insns.
293 Initially, all insns are either "Pending" or "Ready" depending on
294 whether their dependencies are satisfied.
296 Insns move from the "Ready" list to the "Scheduled" list as they
297 are committed to the schedule. As this occurs, the insns in the
298 "Pending" list have their dependencies satisfied and move to either
299 the "Ready" list or the "Queued" set depending on whether
300 sufficient time has passed to make them ready. As time passes,
301 insns move from the "Queued" set to the "Ready" list.
303 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
304 unscheduled insns, i.e., those that are ready, queued, and pending.
305 The "Queued" set (Q) is implemented by the variable `insn_queue'.
306 The "Ready" list (R) is implemented by the variables `ready' and
307 `n_ready'.
308 The "Scheduled" list (S) is the new insn chain built by this pass.
310 The transition (R->S) is implemented in the scheduling loop in
311 `schedule_block' when the best insn to schedule is chosen.
312 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
313 insns move from the ready list to the scheduled list.
314 The transition (Q->R) is implemented in 'queue_to_insn' as time
315 passes or stalls are introduced. */
317 /* Implement a circular buffer to delay instructions until sufficient
318 time has passed. For the new pipeline description interface,
319 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
320 than maximal time of instruction execution computed by genattr.cc on
321 the base maximal time of functional unit reservations and getting a
322 result. This is the longest time an insn may be queued. */
324 static rtx_insn_list **insn_queue;
325 static int q_ptr = 0;
326 static int q_size = 0;
327 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
328 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
330 #define QUEUE_SCHEDULED (-3)
331 #define QUEUE_NOWHERE (-2)
332 #define QUEUE_READY (-1)
333 /* QUEUE_SCHEDULED - INSN is scheduled.
334 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
335 queue or ready list.
336 QUEUE_READY - INSN is in ready list.
337 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
339 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
341 /* The following variable value refers for all current and future
342 reservations of the processor units. */
343 state_t curr_state;
345 /* The following variable value is size of memory representing all
346 current and future reservations of the processor units. */
347 size_t dfa_state_size;
349 /* The following array is used to find the best insn from ready when
350 the automaton pipeline interface is used. */
351 signed char *ready_try = NULL;
353 /* The ready list. */
354 struct ready_list ready = {NULL, 0, 0, 0, 0};
356 /* The pointer to the ready list (to be removed). */
357 static struct ready_list *readyp = &ready;
359 /* Scheduling clock. */
360 static int clock_var;
362 /* Clock at which the previous instruction was issued. */
363 static int last_clock_var;
365 /* Set to true if, when queuing a shadow insn, we discover that it would be
366 scheduled too late. */
367 static bool must_backtrack;
369 /* The following variable value is number of essential insns issued on
370 the current cycle. An insn is essential one if it changes the
371 processors state. */
372 int cycle_issued_insns;
374 /* This records the actual schedule. It is built up during the main phase
375 of schedule_block, and afterwards used to reorder the insns in the RTL. */
376 static vec<rtx_insn *> scheduled_insns;
378 static int may_trap_exp (const_rtx, int);
380 /* Nonzero iff the address is comprised from at most 1 register. */
381 #define CONST_BASED_ADDRESS_P(x) \
382 (REG_P (x) \
383 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
384 || (GET_CODE (x) == LO_SUM)) \
385 && (CONSTANT_P (XEXP (x, 0)) \
386 || CONSTANT_P (XEXP (x, 1)))))
388 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
389 as found by analyzing insn's expression. */
392 static int haifa_luid_for_non_insn (rtx x);
394 /* Haifa version of sched_info hooks common to all headers. */
395 const struct common_sched_info_def haifa_common_sched_info =
397 NULL, /* fix_recovery_cfg */
398 NULL, /* add_block */
399 NULL, /* estimate_number_of_insns */
400 haifa_luid_for_non_insn, /* luid_for_non_insn */
401 SCHED_PASS_UNKNOWN /* sched_pass_id */
404 /* Mapping from instruction UID to its Logical UID. */
405 vec<int> sched_luids;
407 /* Next LUID to assign to an instruction. */
408 int sched_max_luid = 1;
410 /* Haifa Instruction Data. */
411 vec<haifa_insn_data_def> h_i_d;
413 void (* sched_init_only_bb) (basic_block, basic_block);
415 /* Split block function. Different schedulers might use different functions
416 to handle their internal data consistent. */
417 basic_block (* sched_split_block) (basic_block, rtx);
419 /* Create empty basic block after the specified block. */
420 basic_block (* sched_create_empty_bb) (basic_block);
422 /* Return the number of cycles until INSN is expected to be ready.
423 Return zero if it already is. */
424 static int
425 insn_delay (rtx_insn *insn)
427 return MAX (INSN_TICK (insn) - clock_var, 0);
430 static int
431 may_trap_exp (const_rtx x, int is_store)
433 enum rtx_code code;
435 if (x == 0)
436 return TRAP_FREE;
437 code = GET_CODE (x);
438 if (is_store)
440 if (code == MEM && may_trap_p (x))
441 return TRAP_RISKY;
442 else
443 return TRAP_FREE;
445 if (code == MEM)
447 /* The insn uses memory: a volatile load. */
448 if (MEM_VOLATILE_P (x))
449 return IRISKY;
450 /* An exception-free load. */
451 if (!may_trap_p (x))
452 return IFREE;
453 /* A load with 1 base register, to be further checked. */
454 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
455 return PFREE_CANDIDATE;
456 /* No info on the load, to be further checked. */
457 return PRISKY_CANDIDATE;
459 else
461 const char *fmt;
462 int i, insn_class = TRAP_FREE;
464 /* Neither store nor load, check if it may cause a trap. */
465 if (may_trap_p (x))
466 return TRAP_RISKY;
467 /* Recursive step: walk the insn... */
468 fmt = GET_RTX_FORMAT (code);
469 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
471 if (fmt[i] == 'e')
473 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
474 insn_class = WORST_CLASS (insn_class, tmp_class);
476 else if (fmt[i] == 'E')
478 int j;
479 for (j = 0; j < XVECLEN (x, i); j++)
481 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
482 insn_class = WORST_CLASS (insn_class, tmp_class);
483 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
484 break;
487 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
488 break;
490 return insn_class;
494 /* Classifies rtx X of an insn for the purpose of verifying that X can be
495 executed speculatively (and consequently the insn can be moved
496 speculatively), by examining X, returning:
497 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
498 TRAP_FREE: non-load insn.
499 IFREE: load from a globally safe location.
500 IRISKY: volatile load.
501 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
502 being either PFREE or PRISKY. */
504 static int
505 haifa_classify_rtx (const_rtx x)
507 int tmp_class = TRAP_FREE;
508 int insn_class = TRAP_FREE;
509 enum rtx_code code;
511 if (GET_CODE (x) == PARALLEL)
513 int i, len = XVECLEN (x, 0);
515 for (i = len - 1; i >= 0; i--)
517 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
518 insn_class = WORST_CLASS (insn_class, tmp_class);
519 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
520 break;
523 else
525 code = GET_CODE (x);
526 switch (code)
528 case CLOBBER:
529 /* Test if it is a 'store'. */
530 tmp_class = may_trap_exp (XEXP (x, 0), 1);
531 break;
532 case SET:
533 /* Test if it is a store. */
534 tmp_class = may_trap_exp (SET_DEST (x), 1);
535 if (tmp_class == TRAP_RISKY)
536 break;
537 /* Test if it is a load. */
538 tmp_class =
539 WORST_CLASS (tmp_class,
540 may_trap_exp (SET_SRC (x), 0));
541 break;
542 case COND_EXEC:
543 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
544 if (tmp_class == TRAP_RISKY)
545 break;
546 tmp_class = WORST_CLASS (tmp_class,
547 may_trap_exp (COND_EXEC_TEST (x), 0));
548 break;
549 case TRAP_IF:
550 tmp_class = TRAP_RISKY;
551 break;
552 default:;
554 insn_class = tmp_class;
557 return insn_class;
561 haifa_classify_insn (const_rtx insn)
563 return haifa_classify_rtx (PATTERN (insn));
566 /* After the scheduler initialization function has been called, this function
567 can be called to enable modulo scheduling. II is the initiation interval
568 we should use, it affects the delays for delay_pairs that were recorded as
569 separated by a given number of stages.
571 MAX_STAGES provides us with a limit
572 after which we give up scheduling; the caller must have unrolled at least
573 as many copies of the loop body and recorded delay_pairs for them.
575 INSNS is the number of real (non-debug) insns in one iteration of
576 the loop. MAX_UID can be used to test whether an insn belongs to
577 the first iteration of the loop; all of them have a uid lower than
578 MAX_UID. */
579 void
580 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
582 modulo_ii = ii;
583 modulo_max_stages = max_stages;
584 modulo_n_insns = insns;
585 modulo_iter0_max_uid = max_uid;
586 modulo_backtracks_left = param_max_modulo_backtrack_attempts;
589 /* A structure to record a pair of insns where the first one is a real
590 insn that has delay slots, and the second is its delayed shadow.
591 I1 is scheduled normally and will emit an assembly instruction,
592 while I2 describes the side effect that takes place at the
593 transition between cycles CYCLES and (CYCLES + 1) after I1. */
594 struct delay_pair
596 struct delay_pair *next_same_i1;
597 rtx_insn *i1, *i2;
598 int cycles;
599 /* When doing modulo scheduling, we a delay_pair can also be used to
600 show that I1 and I2 are the same insn in a different stage. If that
601 is the case, STAGES will be nonzero. */
602 int stages;
605 /* Helpers for delay hashing. */
607 struct delay_i1_hasher : nofree_ptr_hash <delay_pair>
609 typedef void *compare_type;
610 static inline hashval_t hash (const delay_pair *);
611 static inline bool equal (const delay_pair *, const void *);
614 /* Returns a hash value for X, based on hashing just I1. */
616 inline hashval_t
617 delay_i1_hasher::hash (const delay_pair *x)
619 return htab_hash_pointer (x->i1);
622 /* Return true if I1 of pair X is the same as that of pair Y. */
624 inline bool
625 delay_i1_hasher::equal (const delay_pair *x, const void *y)
627 return x->i1 == y;
630 struct delay_i2_hasher : free_ptr_hash <delay_pair>
632 typedef void *compare_type;
633 static inline hashval_t hash (const delay_pair *);
634 static inline bool equal (const delay_pair *, const void *);
637 /* Returns a hash value for X, based on hashing just I2. */
639 inline hashval_t
640 delay_i2_hasher::hash (const delay_pair *x)
642 return htab_hash_pointer (x->i2);
645 /* Return true if I2 of pair X is the same as that of pair Y. */
647 inline bool
648 delay_i2_hasher::equal (const delay_pair *x, const void *y)
650 return x->i2 == y;
653 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
654 indexed by I2. */
655 static hash_table<delay_i1_hasher> *delay_htab;
656 static hash_table<delay_i2_hasher> *delay_htab_i2;
658 /* Called through htab_traverse. Walk the hashtable using I2 as
659 index, and delete all elements involving an UID higher than
660 that pointed to by *DATA. */
662 haifa_htab_i2_traverse (delay_pair **slot, int *data)
664 int maxuid = *data;
665 struct delay_pair *p = *slot;
666 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
668 delay_htab_i2->clear_slot (slot);
670 return 1;
673 /* Called through htab_traverse. Walk the hashtable using I2 as
674 index, and delete all elements involving an UID higher than
675 that pointed to by *DATA. */
677 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
679 int maxuid = *data;
680 struct delay_pair *p, *first, **pprev;
682 if (INSN_UID ((*pslot)->i1) >= maxuid)
684 delay_htab->clear_slot (pslot);
685 return 1;
687 pprev = &first;
688 for (p = *pslot; p; p = p->next_same_i1)
690 if (INSN_UID (p->i2) < maxuid)
692 *pprev = p;
693 pprev = &p->next_same_i1;
696 *pprev = NULL;
697 if (first == NULL)
698 delay_htab->clear_slot (pslot);
699 else
700 *pslot = first;
701 return 1;
704 /* Discard all delay pairs which involve an insn with an UID higher
705 than MAX_UID. */
706 void
707 discard_delay_pairs_above (int max_uid)
709 delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
710 delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
713 /* This function can be called by a port just before it starts the final
714 scheduling pass. It records the fact that an instruction with delay
715 slots has been split into two insns, I1 and I2. The first one will be
716 scheduled normally and initiates the operation. The second one is a
717 shadow which must follow a specific number of cycles after I1; its only
718 purpose is to show the side effect that occurs at that cycle in the RTL.
719 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
720 while I2 retains the original insn type.
722 There are two ways in which the number of cycles can be specified,
723 involving the CYCLES and STAGES arguments to this function. If STAGES
724 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
725 which is multiplied by MODULO_II to give the number of cycles. This is
726 only useful if the caller also calls set_modulo_params to enable modulo
727 scheduling. */
729 void
730 record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
732 struct delay_pair *p = XNEW (struct delay_pair);
733 struct delay_pair **slot;
735 p->i1 = i1;
736 p->i2 = i2;
737 p->cycles = cycles;
738 p->stages = stages;
740 if (!delay_htab)
742 delay_htab = new hash_table<delay_i1_hasher> (10);
743 delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
745 slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
746 p->next_same_i1 = *slot;
747 *slot = p;
748 slot = delay_htab_i2->find_slot (p, INSERT);
749 *slot = p;
752 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
753 and return the other insn if so. Return NULL otherwise. */
754 rtx_insn *
755 real_insn_for_shadow (rtx_insn *insn)
757 struct delay_pair *pair;
759 if (!delay_htab)
760 return NULL;
762 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
763 if (!pair || pair->stages > 0)
764 return NULL;
765 return pair->i1;
768 /* For a pair P of insns, return the fixed distance in cycles from the first
769 insn after which the second must be scheduled. */
770 static int
771 pair_delay (struct delay_pair *p)
773 if (p->stages == 0)
774 return p->cycles;
775 else
776 return p->stages * modulo_ii;
779 /* Given an insn INSN, add a dependence on its delayed shadow if it
780 has one. Also try to find situations where shadows depend on each other
781 and add dependencies to the real insns to limit the amount of backtracking
782 needed. */
783 void
784 add_delay_dependencies (rtx_insn *insn)
786 struct delay_pair *pair;
787 sd_iterator_def sd_it;
788 dep_t dep;
790 if (!delay_htab)
791 return;
793 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
794 if (!pair)
795 return;
796 add_dependence (insn, pair->i1, REG_DEP_ANTI);
797 if (pair->stages)
798 return;
800 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
802 rtx_insn *pro = DEP_PRO (dep);
803 struct delay_pair *other_pair
804 = delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
805 if (!other_pair || other_pair->stages)
806 continue;
807 if (pair_delay (other_pair) >= pair_delay (pair))
809 if (sched_verbose >= 4)
811 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
812 INSN_UID (other_pair->i1),
813 INSN_UID (pair->i1));
814 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
815 INSN_UID (pair->i1),
816 INSN_UID (pair->i2),
817 pair_delay (pair));
818 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
819 INSN_UID (other_pair->i1),
820 INSN_UID (other_pair->i2),
821 pair_delay (other_pair));
823 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
828 /* Forward declarations. */
830 static int priority (rtx_insn *, bool force_recompute = false);
831 static int autopref_rank_for_schedule (const rtx_insn *, const rtx_insn *);
832 static int rank_for_schedule (const void *, const void *);
833 static void swap_sort (rtx_insn **, int);
834 static void queue_insn (rtx_insn *, int, const char *);
835 static int schedule_insn (rtx_insn *);
836 static void adjust_priority (rtx_insn *);
837 static void advance_one_cycle (void);
838 static void extend_h_i_d (void);
841 /* Notes handling mechanism:
842 =========================
843 Generally, NOTES are saved before scheduling and restored after scheduling.
844 The scheduler distinguishes between two types of notes:
846 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
847 Before scheduling a region, a pointer to the note is added to the insn
848 that follows or precedes it. (This happens as part of the data dependence
849 computation). After scheduling an insn, the pointer contained in it is
850 used for regenerating the corresponding note (in reemit_notes).
852 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
853 these notes are put in a list (in rm_other_notes() and
854 unlink_other_notes ()). After scheduling the block, these notes are
855 inserted at the beginning of the block (in schedule_block()). */
857 static void ready_add (struct ready_list *, rtx_insn *, bool);
858 static rtx_insn *ready_remove_first (struct ready_list *);
859 static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
861 static void queue_to_ready (struct ready_list *);
862 static int early_queue_to_ready (state_t, struct ready_list *);
864 /* The following functions are used to implement multi-pass scheduling
865 on the first cycle. */
866 static rtx_insn *ready_remove (struct ready_list *, int);
867 static void ready_remove_insn (rtx_insn *);
869 static void fix_inter_tick (rtx_insn *, rtx_insn *);
870 static int fix_tick_ready (rtx_insn *);
871 static void change_queue_index (rtx_insn *, int);
873 /* The following functions are used to implement scheduling of data/control
874 speculative instructions. */
876 static void extend_h_i_d (void);
877 static void init_h_i_d (rtx_insn *);
878 static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
879 static void generate_recovery_code (rtx_insn *);
880 static void process_insn_forw_deps_be_in_spec (rtx_insn *, rtx_insn *, ds_t);
881 static void begin_speculative_block (rtx_insn *);
882 static void add_to_speculative_block (rtx_insn *);
883 static void init_before_recovery (basic_block *);
884 static void create_check_block_twin (rtx_insn *, bool);
885 static void fix_recovery_deps (basic_block);
886 static bool haifa_change_pattern (rtx_insn *, rtx);
887 static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
888 static void restore_bb_notes (basic_block);
889 static void fix_jump_move (rtx_insn *);
890 static void move_block_after_check (rtx_insn *);
891 static void move_succs (vec<edge, va_gc> **, basic_block);
892 static void sched_remove_insn (rtx_insn *);
893 static void clear_priorities (rtx_insn *, rtx_vec_t *);
894 static void calc_priorities (const rtx_vec_t &);
895 static void add_jump_dependencies (rtx_insn *, rtx_insn *);
897 #endif /* INSN_SCHEDULING */
899 /* Point to state used for the current scheduling pass. */
900 struct haifa_sched_info *current_sched_info;
902 #ifndef INSN_SCHEDULING
903 void
904 schedule_insns (void)
907 #else
909 /* Do register pressure sensitive insn scheduling if the flag is set
910 up. */
911 enum sched_pressure_algorithm sched_pressure;
913 /* Map regno -> its pressure class. The map defined only when
914 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
915 enum reg_class *sched_regno_pressure_class;
917 /* The current register pressure. Only elements corresponding pressure
918 classes are defined. */
919 static int curr_reg_pressure[N_REG_CLASSES];
921 /* Saved value of the previous array. */
922 static int saved_reg_pressure[N_REG_CLASSES];
924 /* Register living at given scheduling point. */
925 static bitmap curr_reg_live;
927 /* Saved value of the previous array. */
928 static bitmap saved_reg_live;
930 /* Registers mentioned in the current region. */
931 static bitmap region_ref_regs;
933 /* Temporary bitmap used for SCHED_PRESSURE_MODEL. */
934 static bitmap tmp_bitmap;
936 /* Effective number of available registers of a given class (see comment
937 in sched_pressure_start_bb). */
938 static int sched_class_regs_num[N_REG_CLASSES];
939 /* The number of registers that the function would need to save before it
940 uses them, and the number of fixed_regs. Helpers for calculating of
941 sched_class_regs_num. */
942 static int call_saved_regs_num[N_REG_CLASSES];
943 static int fixed_regs_num[N_REG_CLASSES];
945 /* Initiate register pressure relative info for scheduling the current
946 region. Currently it is only clearing register mentioned in the
947 current region. */
948 void
949 sched_init_region_reg_pressure_info (void)
951 bitmap_clear (region_ref_regs);
954 /* PRESSURE[CL] describes the pressure on register class CL. Update it
955 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
956 LIVE tracks the set of live registers; if it is null, assume that
957 every birth or death is genuine. */
958 static inline void
959 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
961 enum reg_class pressure_class;
963 pressure_class = sched_regno_pressure_class[regno];
964 if (regno >= FIRST_PSEUDO_REGISTER)
966 if (pressure_class != NO_REGS)
968 if (birth_p)
970 if (!live || bitmap_set_bit (live, regno))
971 pressure[pressure_class]
972 += (ira_reg_class_max_nregs
973 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
975 else
977 if (!live || bitmap_clear_bit (live, regno))
978 pressure[pressure_class]
979 -= (ira_reg_class_max_nregs
980 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
984 else if (pressure_class != NO_REGS
985 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
987 if (birth_p)
989 if (!live || bitmap_set_bit (live, regno))
990 pressure[pressure_class]++;
992 else
994 if (!live || bitmap_clear_bit (live, regno))
995 pressure[pressure_class]--;
1000 /* Initiate current register pressure related info from living
1001 registers given by LIVE. */
1002 static void
1003 initiate_reg_pressure_info (bitmap live)
1005 int i;
1006 unsigned int j;
1007 bitmap_iterator bi;
1009 for (i = 0; i < ira_pressure_classes_num; i++)
1010 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1011 bitmap_clear (curr_reg_live);
1012 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
1013 if (sched_pressure == SCHED_PRESSURE_MODEL
1014 || current_nr_blocks == 1
1015 || bitmap_bit_p (region_ref_regs, j))
1016 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
1019 /* Mark registers in X as mentioned in the current region. */
1020 static void
1021 setup_ref_regs (rtx x)
1023 int i, j;
1024 const RTX_CODE code = GET_CODE (x);
1025 const char *fmt;
1027 if (REG_P (x))
1029 bitmap_set_range (region_ref_regs, REGNO (x), REG_NREGS (x));
1030 return;
1032 fmt = GET_RTX_FORMAT (code);
1033 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1034 if (fmt[i] == 'e')
1035 setup_ref_regs (XEXP (x, i));
1036 else if (fmt[i] == 'E')
1038 for (j = 0; j < XVECLEN (x, i); j++)
1039 setup_ref_regs (XVECEXP (x, i, j));
1043 /* Initiate current register pressure related info at the start of
1044 basic block BB. */
1045 static void
1046 initiate_bb_reg_pressure_info (basic_block bb)
1048 unsigned int i ATTRIBUTE_UNUSED;
1049 rtx_insn *insn;
1051 if (current_nr_blocks > 1)
1052 FOR_BB_INSNS (bb, insn)
1053 if (NONDEBUG_INSN_P (insn))
1054 setup_ref_regs (PATTERN (insn));
1055 initiate_reg_pressure_info (df_get_live_in (bb));
1056 if (bb_has_eh_pred (bb))
1057 for (i = 0; ; ++i)
1059 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1061 if (regno == INVALID_REGNUM)
1062 break;
1063 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1064 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1065 regno, true);
1069 /* Save current register pressure related info. */
1070 static void
1071 save_reg_pressure (void)
1073 int i;
1075 for (i = 0; i < ira_pressure_classes_num; i++)
1076 saved_reg_pressure[ira_pressure_classes[i]]
1077 = curr_reg_pressure[ira_pressure_classes[i]];
1078 bitmap_copy (saved_reg_live, curr_reg_live);
1081 /* Restore saved register pressure related info. */
1082 static void
1083 restore_reg_pressure (void)
1085 int i;
1087 for (i = 0; i < ira_pressure_classes_num; i++)
1088 curr_reg_pressure[ira_pressure_classes[i]]
1089 = saved_reg_pressure[ira_pressure_classes[i]];
1090 bitmap_copy (curr_reg_live, saved_reg_live);
1093 /* Return TRUE if the register is dying after its USE. */
1094 static bool
1095 dying_use_p (struct reg_use_data *use)
1097 struct reg_use_data *next;
1099 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1100 if (NONDEBUG_INSN_P (next->insn)
1101 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1102 return false;
1103 return true;
1106 /* Print info about the current register pressure and its excess for
1107 each pressure class. */
1108 static void
1109 print_curr_reg_pressure (void)
1111 int i;
1112 enum reg_class cl;
1114 fprintf (sched_dump, ";;\t");
1115 for (i = 0; i < ira_pressure_classes_num; i++)
1117 cl = ira_pressure_classes[i];
1118 gcc_assert (curr_reg_pressure[cl] >= 0);
1119 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1120 curr_reg_pressure[cl],
1121 curr_reg_pressure[cl] - sched_class_regs_num[cl]);
1123 fprintf (sched_dump, "\n");
1126 /* Determine if INSN has a condition that is clobbered if a register
1127 in SET_REGS is modified. */
1128 static bool
1129 cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
1131 rtx pat = PATTERN (insn);
1132 gcc_assert (GET_CODE (pat) == COND_EXEC);
1133 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1135 sd_iterator_def sd_it;
1136 dep_t dep;
1137 haifa_change_pattern (insn, ORIG_PAT (insn));
1138 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1139 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1140 TODO_SPEC (insn) = HARD_DEP;
1141 if (sched_verbose >= 2)
1142 fprintf (sched_dump,
1143 ";;\t\tdequeue insn %s because of clobbered condition\n",
1144 (*current_sched_info->print_insn) (insn, 0));
1145 return true;
1148 return false;
1151 /* This function should be called after modifying the pattern of INSN,
1152 to update scheduler data structures as needed. */
1153 static void
1154 update_insn_after_change (rtx_insn *insn)
1156 sd_iterator_def sd_it;
1157 dep_t dep;
1159 dfa_clear_single_insn_cache (insn);
1161 sd_it = sd_iterator_start (insn,
1162 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1163 while (sd_iterator_cond (&sd_it, &dep))
1165 DEP_COST (dep) = UNKNOWN_DEP_COST;
1166 sd_iterator_next (&sd_it);
1169 /* Invalidate INSN_COST, so it'll be recalculated. */
1170 INSN_COST (insn) = -1;
1171 /* Invalidate INSN_TICK, so it'll be recalculated. */
1172 INSN_TICK (insn) = INVALID_TICK;
1174 /* Invalidate autoprefetch data entry. */
1175 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
1176 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1177 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
1178 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1182 /* Two VECs, one to hold dependencies for which pattern replacements
1183 need to be applied or restored at the start of the next cycle, and
1184 another to hold an integer that is either one, to apply the
1185 corresponding replacement, or zero to restore it. */
1186 static vec<dep_t> next_cycle_replace_deps;
1187 static vec<int> next_cycle_apply;
1189 static void apply_replacement (dep_t, bool);
1190 static void restore_pattern (dep_t, bool);
1192 /* Look at the remaining dependencies for insn NEXT, and compute and return
1193 the TODO_SPEC value we should use for it. This is called after one of
1194 NEXT's dependencies has been resolved.
1195 We also perform pattern replacements for predication, and for broken
1196 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1197 false. */
1199 static ds_t
1200 recompute_todo_spec (rtx_insn *next, bool for_backtrack)
1202 ds_t new_ds;
1203 sd_iterator_def sd_it;
1204 dep_t dep, modify_dep = NULL;
1205 int n_spec = 0;
1206 int n_control = 0;
1207 int n_replace = 0;
1208 bool first_p = true;
1210 if (sd_lists_empty_p (next, SD_LIST_BACK))
1211 /* NEXT has all its dependencies resolved. */
1212 return 0;
1214 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1215 return HARD_DEP;
1217 /* If NEXT is intended to sit adjacent to this instruction, we don't
1218 want to try to break any dependencies. Treat it as a HARD_DEP. */
1219 if (SCHED_GROUP_P (next))
1220 return HARD_DEP;
1222 /* Now we've got NEXT with speculative deps only.
1223 1. Look at the deps to see what we have to do.
1224 2. Check if we can do 'todo'. */
1225 new_ds = 0;
1227 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1229 rtx_insn *pro = DEP_PRO (dep);
1230 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1232 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1233 continue;
1235 if (ds)
1237 n_spec++;
1238 if (first_p)
1240 first_p = false;
1242 new_ds = ds;
1244 else
1245 new_ds = ds_merge (new_ds, ds);
1247 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1249 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1251 n_control++;
1252 modify_dep = dep;
1254 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1256 else if (DEP_REPLACE (dep) != NULL)
1258 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1260 n_replace++;
1261 modify_dep = dep;
1263 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1267 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1269 if (!dbg_cnt (sched_breakdep))
1270 return HARD_DEP;
1271 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1273 struct dep_replacement *desc = DEP_REPLACE (dep);
1274 if (desc != NULL)
1276 if (desc->insn == next && !for_backtrack)
1278 gcc_assert (n_replace == 1);
1279 apply_replacement (dep, true);
1281 DEP_STATUS (dep) |= DEP_CANCELLED;
1284 return 0;
1287 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1289 rtx_insn *pro, *other;
1290 rtx new_pat;
1291 rtx cond = NULL_RTX;
1292 bool success;
1293 rtx_insn *prev = NULL;
1294 int i;
1295 unsigned regno;
1297 if ((current_sched_info->flags & DO_PREDICATION) == 0
1298 || (ORIG_PAT (next) != NULL_RTX
1299 && PREDICATED_PAT (next) == NULL_RTX))
1300 return HARD_DEP;
1302 pro = DEP_PRO (modify_dep);
1303 other = real_insn_for_shadow (pro);
1304 if (other != NULL_RTX)
1305 pro = other;
1307 cond = sched_get_reverse_condition_uncached (pro);
1308 regno = REGNO (XEXP (cond, 0));
1310 /* Find the last scheduled insn that modifies the condition register.
1311 We can stop looking once we find the insn we depend on through the
1312 REG_DEP_CONTROL; if the condition register isn't modified after it,
1313 we know that it still has the right value. */
1314 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1315 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1317 HARD_REG_SET t;
1319 find_all_hard_reg_sets (prev, &t, true);
1320 if (TEST_HARD_REG_BIT (t, regno))
1321 return HARD_DEP;
1322 if (prev == pro)
1323 break;
1325 if (ORIG_PAT (next) == NULL_RTX)
1327 ORIG_PAT (next) = PATTERN (next);
1329 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1330 success = haifa_change_pattern (next, new_pat);
1331 if (!success)
1332 return HARD_DEP;
1333 PREDICATED_PAT (next) = new_pat;
1335 else if (PATTERN (next) != PREDICATED_PAT (next))
1337 bool success = haifa_change_pattern (next,
1338 PREDICATED_PAT (next));
1339 gcc_assert (success);
1341 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1342 return DEP_CONTROL;
1345 if (PREDICATED_PAT (next) != NULL_RTX)
1347 int tick = INSN_TICK (next);
1348 bool success = haifa_change_pattern (next,
1349 ORIG_PAT (next));
1350 INSN_TICK (next) = tick;
1351 gcc_assert (success);
1354 /* We can't handle the case where there are both speculative and control
1355 dependencies, so we return HARD_DEP in such a case. Also fail if
1356 we have speculative dependencies with not enough points, or more than
1357 one control dependency. */
1358 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1359 || (n_spec > 0
1360 /* Too few points? */
1361 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1362 || n_control > 0
1363 || n_replace > 0)
1364 return HARD_DEP;
1366 return new_ds;
1369 /* Pointer to the last instruction scheduled. */
1370 static rtx_insn *last_scheduled_insn;
1372 /* Pointer to the last nondebug instruction scheduled within the
1373 block, or the prev_head of the scheduling block. Used by
1374 rank_for_schedule, so that insns independent of the last scheduled
1375 insn will be preferred over dependent instructions. */
1376 static rtx_insn *last_nondebug_scheduled_insn;
1378 /* Pointer that iterates through the list of unscheduled insns if we
1379 have a dbg_cnt enabled. It always points at an insn prior to the
1380 first unscheduled one. */
1381 static rtx_insn *nonscheduled_insns_begin;
1383 /* Compute cost of executing INSN.
1384 This is the number of cycles between instruction issue and
1385 instruction results. */
1387 insn_sched_cost (rtx_insn *insn)
1389 int cost;
1391 if (sched_fusion)
1392 return 0;
1394 if (sel_sched_p ())
1396 if (recog_memoized (insn) < 0)
1397 return 0;
1399 cost = insn_default_latency (insn);
1400 if (cost < 0)
1401 cost = 0;
1403 return cost;
1406 cost = INSN_COST (insn);
1408 if (cost < 0)
1410 /* A USE insn, or something else we don't need to
1411 understand. We can't pass these directly to
1412 result_ready_cost or insn_default_latency because it will
1413 trigger a fatal error for unrecognizable insns. */
1414 if (recog_memoized (insn) < 0)
1416 INSN_COST (insn) = 0;
1417 return 0;
1419 else
1421 cost = insn_default_latency (insn);
1422 if (cost < 0)
1423 cost = 0;
1425 INSN_COST (insn) = cost;
1429 return cost;
1432 /* Compute cost of dependence LINK.
1433 This is the number of cycles between instruction issue and
1434 instruction results.
1435 ??? We also use this function to call recog_memoized on all insns. */
1437 dep_cost_1 (dep_t link, dw_t dw)
1439 rtx_insn *insn = DEP_PRO (link);
1440 rtx_insn *used = DEP_CON (link);
1441 int cost;
1443 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1444 return DEP_COST (link);
1446 if (delay_htab)
1448 struct delay_pair *delay_entry;
1449 delay_entry
1450 = delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
1451 if (delay_entry)
1453 if (delay_entry->i1 == insn)
1455 DEP_COST (link) = pair_delay (delay_entry);
1456 return DEP_COST (link);
1461 /* A USE insn should never require the value used to be computed.
1462 This allows the computation of a function's result and parameter
1463 values to overlap the return and call. We don't care about the
1464 dependence cost when only decreasing register pressure. */
1465 if (recog_memoized (used) < 0)
1467 cost = 0;
1468 recog_memoized (insn);
1470 else
1472 enum reg_note dep_type = DEP_TYPE (link);
1474 cost = insn_sched_cost (insn);
1476 if (INSN_CODE (insn) >= 0)
1478 if (dep_type == REG_DEP_ANTI)
1479 cost = 0;
1480 else if (dep_type == REG_DEP_OUTPUT)
1482 cost = (insn_default_latency (insn)
1483 - insn_default_latency (used));
1484 if (cost <= 0)
1485 cost = 1;
1487 else if (bypass_p (insn))
1488 cost = insn_latency (insn, used);
1492 if (targetm.sched.adjust_cost)
1493 cost = targetm.sched.adjust_cost (used, (int) dep_type, insn, cost,
1494 dw);
1496 if (cost < 0)
1497 cost = 0;
1500 DEP_COST (link) = cost;
1501 return cost;
1504 /* Compute cost of dependence LINK.
1505 This is the number of cycles between instruction issue and
1506 instruction results. */
1508 dep_cost (dep_t link)
1510 return dep_cost_1 (link, 0);
1513 /* Use this sel-sched.cc friendly function in reorder2 instead of increasing
1514 INSN_PRIORITY explicitly. */
1515 void
1516 increase_insn_priority (rtx_insn *insn, int amount)
1518 if (!sel_sched_p ())
1520 /* We're dealing with haifa-sched.cc INSN_PRIORITY. */
1521 if (INSN_PRIORITY_KNOWN (insn))
1522 INSN_PRIORITY (insn) += amount;
1524 else
1526 /* In sel-sched.cc INSN_PRIORITY is not kept up to date.
1527 Use EXPR_PRIORITY instead. */
1528 sel_add_to_insn_priority (insn, amount);
1532 /* Return 'true' if DEP should be included in priority calculations. */
1533 static bool
1534 contributes_to_priority_p (dep_t dep)
1536 if (DEBUG_INSN_P (DEP_CON (dep))
1537 || DEBUG_INSN_P (DEP_PRO (dep)))
1538 return false;
1540 /* Critical path is meaningful in block boundaries only. */
1541 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1542 DEP_PRO (dep)))
1543 return false;
1545 if (DEP_REPLACE (dep) != NULL)
1546 return false;
1548 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1549 then speculative instructions will less likely be
1550 scheduled. That is because the priority of
1551 their producers will increase, and, thus, the
1552 producers will more likely be scheduled, thus,
1553 resolving the dependence. */
1554 if (sched_deps_info->generate_spec_deps
1555 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1556 && (DEP_STATUS (dep) & SPECULATIVE))
1557 return false;
1559 return true;
1562 /* Compute the number of nondebug deps in list LIST for INSN. */
1564 dep_list_size (rtx_insn *insn, sd_list_types_def list)
1566 sd_iterator_def sd_it;
1567 dep_t dep;
1568 int dbgcount = 0, nodbgcount = 0;
1570 if (!MAY_HAVE_DEBUG_INSNS)
1571 return sd_lists_size (insn, list);
1573 /* TODO: We should split normal and debug insns into separate SD_LIST_*
1574 sub-lists, and then we'll be able to use something like
1575 sd_lists_size(insn, list & SD_LIST_NON_DEBUG)
1576 instead of walking dependencies below. */
1578 FOR_EACH_DEP (insn, list, sd_it, dep)
1580 if (DEBUG_INSN_P (DEP_CON (dep)))
1581 dbgcount++;
1582 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1583 nodbgcount++;
1586 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1588 return nodbgcount;
1591 bool sched_fusion;
1593 /* Compute the priority number for INSN. */
1594 static int
1595 priority (rtx_insn *insn, bool force_recompute)
1597 if (! INSN_P (insn))
1598 return 0;
1600 /* We should not be interested in priority of an already scheduled insn. */
1601 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1603 if (force_recompute || !INSN_PRIORITY_KNOWN (insn))
1605 int this_priority = -1;
1607 if (sched_fusion)
1609 int this_fusion_priority;
1611 targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY,
1612 &this_fusion_priority, &this_priority);
1613 INSN_FUSION_PRIORITY (insn) = this_fusion_priority;
1615 else if (dep_list_size (insn, SD_LIST_FORW) == 0)
1616 /* ??? We should set INSN_PRIORITY to insn_sched_cost when and insn
1617 has some forward deps but all of them are ignored by
1618 contributes_to_priority hook. At the moment we set priority of
1619 such insn to 0. */
1620 this_priority = insn_sched_cost (insn);
1621 else
1623 rtx_insn *prev_first, *twin;
1624 basic_block rec;
1626 /* For recovery check instructions we calculate priority slightly
1627 different than that of normal instructions. Instead of walking
1628 through INSN_FORW_DEPS (check) list, we walk through
1629 INSN_FORW_DEPS list of each instruction in the corresponding
1630 recovery block. */
1632 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1633 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1634 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
1636 prev_first = PREV_INSN (insn);
1637 twin = insn;
1639 else
1641 prev_first = NEXT_INSN (BB_HEAD (rec));
1642 twin = PREV_INSN (BB_END (rec));
1647 sd_iterator_def sd_it;
1648 dep_t dep;
1650 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1652 rtx_insn *next;
1653 int next_priority;
1655 next = DEP_CON (dep);
1657 if (BLOCK_FOR_INSN (next) != rec)
1659 int cost;
1661 if (!contributes_to_priority_p (dep))
1662 continue;
1664 if (twin == insn)
1665 cost = dep_cost (dep);
1666 else
1668 struct _dep _dep1, *dep1 = &_dep1;
1670 init_dep (dep1, insn, next, REG_DEP_ANTI);
1672 cost = dep_cost (dep1);
1675 next_priority = cost + priority (next);
1677 if (next_priority > this_priority)
1678 this_priority = next_priority;
1682 twin = PREV_INSN (twin);
1684 while (twin != prev_first);
1687 if (this_priority < 0)
1689 gcc_assert (this_priority == -1);
1691 this_priority = insn_sched_cost (insn);
1694 INSN_PRIORITY (insn) = this_priority;
1695 INSN_PRIORITY_STATUS (insn) = 1;
1698 return INSN_PRIORITY (insn);
1701 /* Macros and functions for keeping the priority queue sorted, and
1702 dealing with queuing and dequeuing of instructions. */
1704 /* For each pressure class CL, set DEATH[CL] to the number of registers
1705 in that class that die in INSN. */
1707 static void
1708 calculate_reg_deaths (rtx_insn *insn, int *death)
1710 int i;
1711 struct reg_use_data *use;
1713 for (i = 0; i < ira_pressure_classes_num; i++)
1714 death[ira_pressure_classes[i]] = 0;
1715 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1716 if (dying_use_p (use))
1717 mark_regno_birth_or_death (0, death, use->regno, true);
1720 /* Setup info about the current register pressure impact of scheduling
1721 INSN at the current scheduling point. */
1722 static void
1723 setup_insn_reg_pressure_info (rtx_insn *insn)
1725 int i, change, before, after, hard_regno;
1726 int excess_cost_change;
1727 machine_mode mode;
1728 enum reg_class cl;
1729 struct reg_pressure_data *pressure_info;
1730 int *max_reg_pressure;
1731 static int death[N_REG_CLASSES];
1733 gcc_checking_assert (!DEBUG_INSN_P (insn));
1735 excess_cost_change = 0;
1736 calculate_reg_deaths (insn, death);
1737 pressure_info = INSN_REG_PRESSURE (insn);
1738 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1739 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1740 for (i = 0; i < ira_pressure_classes_num; i++)
1742 cl = ira_pressure_classes[i];
1743 gcc_assert (curr_reg_pressure[cl] >= 0);
1744 change = (int) pressure_info[i].set_increase - death[cl];
1745 before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
1746 after = MAX (0, max_reg_pressure[i] + change
1747 - sched_class_regs_num[cl]);
1748 hard_regno = ira_class_hard_regs[cl][0];
1749 gcc_assert (hard_regno >= 0);
1750 mode = reg_raw_mode[hard_regno];
1751 excess_cost_change += ((after - before)
1752 * (ira_memory_move_cost[mode][cl][0]
1753 + ira_memory_move_cost[mode][cl][1]));
1755 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1758 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1759 It tries to make the scheduler take register pressure into account
1760 without introducing too many unnecessary stalls. It hooks into the
1761 main scheduling algorithm at several points:
1763 - Before scheduling starts, model_start_schedule constructs a
1764 "model schedule" for the current block. This model schedule is
1765 chosen solely to keep register pressure down. It does not take the
1766 target's pipeline or the original instruction order into account,
1767 except as a tie-breaker. It also doesn't work to a particular
1768 pressure limit.
1770 This model schedule gives us an idea of what pressure can be
1771 achieved for the block and gives us an example of a schedule that
1772 keeps to that pressure. It also makes the final schedule less
1773 dependent on the original instruction order. This is important
1774 because the original order can either be "wide" (many values live
1775 at once, such as in user-scheduled code) or "narrow" (few values
1776 live at once, such as after loop unrolling, where several
1777 iterations are executed sequentially).
1779 We do not apply this model schedule to the rtx stream. We simply
1780 record it in model_schedule. We also compute the maximum pressure,
1781 MP, that was seen during this schedule.
1783 - Instructions are added to the ready queue even if they require
1784 a stall. The length of the stall is instead computed as:
1786 MAX (INSN_TICK (INSN) - clock_var, 0)
1788 (= insn_delay). This allows rank_for_schedule to choose between
1789 introducing a deliberate stall or increasing pressure.
1791 - Before sorting the ready queue, model_set_excess_costs assigns
1792 a pressure-based cost to each ready instruction in the queue.
1793 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1794 (ECC for short) and is effectively measured in cycles.
1796 - rank_for_schedule ranks instructions based on:
1798 ECC (insn) + insn_delay (insn)
1800 then as:
1802 insn_delay (insn)
1804 So, for example, an instruction X1 with an ECC of 1 that can issue
1805 now will win over an instruction X0 with an ECC of zero that would
1806 introduce a stall of one cycle. However, an instruction X2 with an
1807 ECC of 2 that can issue now will lose to both X0 and X1.
1809 - When an instruction is scheduled, model_recompute updates the model
1810 schedule with the new pressures (some of which might now exceed the
1811 original maximum pressure MP). model_update_limit_points then searches
1812 for the new point of maximum pressure, if not already known. */
1814 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1815 from surrounding debug information. */
1816 #define MODEL_BAR \
1817 ";;\t\t+------------------------------------------------------\n"
1819 /* Information about the pressure on a particular register class at a
1820 particular point of the model schedule. */
1821 struct model_pressure_data {
1822 /* The pressure at this point of the model schedule, or -1 if the
1823 point is associated with an instruction that has already been
1824 scheduled. */
1825 int ref_pressure;
1827 /* The maximum pressure during or after this point of the model schedule. */
1828 int max_pressure;
1831 /* Per-instruction information that is used while building the model
1832 schedule. Here, "schedule" refers to the model schedule rather
1833 than the main schedule. */
1834 struct model_insn_info {
1835 /* The instruction itself. */
1836 rtx_insn *insn;
1838 /* If this instruction is in model_worklist, these fields link to the
1839 previous (higher-priority) and next (lower-priority) instructions
1840 in the list. */
1841 struct model_insn_info *prev;
1842 struct model_insn_info *next;
1844 /* While constructing the schedule, QUEUE_INDEX describes whether an
1845 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1846 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1847 old_queue records the value that QUEUE_INDEX had before scheduling
1848 started, so that we can restore it once the schedule is complete. */
1849 int old_queue;
1851 /* The relative importance of an unscheduled instruction. Higher
1852 values indicate greater importance. */
1853 unsigned int model_priority;
1855 /* The length of the longest path of satisfied true dependencies
1856 that leads to this instruction. */
1857 unsigned int depth;
1859 /* The length of the longest path of dependencies of any kind
1860 that leads from this instruction. */
1861 unsigned int alap;
1863 /* The number of predecessor nodes that must still be scheduled. */
1864 int unscheduled_preds;
1867 /* Information about the pressure limit for a particular register class.
1868 This structure is used when applying a model schedule to the main
1869 schedule. */
1870 struct model_pressure_limit {
1871 /* The maximum register pressure seen in the original model schedule. */
1872 int orig_pressure;
1874 /* The maximum register pressure seen in the current model schedule
1875 (which excludes instructions that have already been scheduled). */
1876 int pressure;
1878 /* The point of the current model schedule at which PRESSURE is first
1879 reached. It is set to -1 if the value needs to be recomputed. */
1880 int point;
1883 /* Describes a particular way of measuring register pressure. */
1884 struct model_pressure_group {
1885 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1886 struct model_pressure_limit limits[N_REG_CLASSES];
1888 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1889 on register class ira_pressure_classes[PCI] at point POINT of the
1890 current model schedule. A POINT of model_num_insns describes the
1891 pressure at the end of the schedule. */
1892 struct model_pressure_data *model;
1895 /* Index POINT gives the instruction at point POINT of the model schedule.
1896 This array doesn't change during main scheduling. */
1897 static vec<rtx_insn *> model_schedule;
1899 /* The list of instructions in the model worklist, sorted in order of
1900 decreasing priority. */
1901 static struct model_insn_info *model_worklist;
1903 /* Index I describes the instruction with INSN_LUID I. */
1904 static struct model_insn_info *model_insns;
1906 /* The number of instructions in the model schedule. */
1907 static int model_num_insns;
1909 /* The index of the first instruction in model_schedule that hasn't yet been
1910 added to the main schedule, or model_num_insns if all of them have. */
1911 static int model_curr_point;
1913 /* Describes the pressure before each instruction in the model schedule. */
1914 static struct model_pressure_group model_before_pressure;
1916 /* The first unused model_priority value (as used in model_insn_info). */
1917 static unsigned int model_next_priority;
1920 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1921 at point POINT of the model schedule. */
1922 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1923 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1925 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1926 after point POINT of the model schedule. */
1927 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1928 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1930 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1931 of the model schedule. */
1932 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1933 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1935 /* Information about INSN that is used when creating the model schedule. */
1936 #define MODEL_INSN_INFO(INSN) \
1937 (&model_insns[INSN_LUID (INSN)])
1939 /* The instruction at point POINT of the model schedule. */
1940 #define MODEL_INSN(POINT) \
1941 (model_schedule[POINT])
1944 /* Return INSN's index in the model schedule, or model_num_insns if it
1945 doesn't belong to that schedule. */
1947 static int
1948 model_index (rtx_insn *insn)
1950 if (INSN_MODEL_INDEX (insn) == 0)
1951 return model_num_insns;
1952 return INSN_MODEL_INDEX (insn) - 1;
1955 /* Make sure that GROUP->limits is up-to-date for the current point
1956 of the model schedule. */
1958 static void
1959 model_update_limit_points_in_group (struct model_pressure_group *group)
1961 int pci, max_pressure, point;
1963 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1965 /* We may have passed the final point at which the pressure in
1966 group->limits[pci].pressure was reached. Update the limit if so. */
1967 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1968 group->limits[pci].pressure = max_pressure;
1970 /* Find the point at which MAX_PRESSURE is first reached. We need
1971 to search in three cases:
1973 - We've already moved past the previous pressure point.
1974 In this case we search forward from model_curr_point.
1976 - We scheduled the previous point of maximum pressure ahead of
1977 its position in the model schedule, but doing so didn't bring
1978 the pressure point earlier. In this case we search forward
1979 from that previous pressure point.
1981 - Scheduling an instruction early caused the maximum pressure
1982 to decrease. In this case we will have set the pressure
1983 point to -1, and we search forward from model_curr_point. */
1984 point = MAX (group->limits[pci].point, model_curr_point);
1985 while (point < model_num_insns
1986 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
1987 point++;
1988 group->limits[pci].point = point;
1990 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
1991 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
1995 /* Make sure that all register-pressure limits are up-to-date for the
1996 current position in the model schedule. */
1998 static void
1999 model_update_limit_points (void)
2001 model_update_limit_points_in_group (&model_before_pressure);
2004 /* Return the model_index of the last unscheduled use in chain USE
2005 outside of USE's instruction. Return -1 if there are no other uses,
2006 or model_num_insns if the register is live at the end of the block. */
2008 static int
2009 model_last_use_except (struct reg_use_data *use)
2011 struct reg_use_data *next;
2012 int last, index;
2014 last = -1;
2015 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2016 if (NONDEBUG_INSN_P (next->insn)
2017 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2019 index = model_index (next->insn);
2020 if (index == model_num_insns)
2021 return model_num_insns;
2022 if (last < index)
2023 last = index;
2025 return last;
2028 /* An instruction with model_index POINT has just been scheduled, and it
2029 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2030 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2031 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2033 static void
2034 model_start_update_pressure (struct model_pressure_group *group,
2035 int point, int pci, int delta)
2037 int next_max_pressure;
2039 if (point == model_num_insns)
2041 /* The instruction wasn't part of the model schedule; it was moved
2042 from a different block. Update the pressure for the end of
2043 the model schedule. */
2044 MODEL_REF_PRESSURE (group, point, pci) += delta;
2045 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2047 else
2049 /* Record that this instruction has been scheduled. Nothing now
2050 changes between POINT and POINT + 1, so get the maximum pressure
2051 from the latter. If the maximum pressure decreases, the new
2052 pressure point may be before POINT. */
2053 MODEL_REF_PRESSURE (group, point, pci) = -1;
2054 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2055 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2057 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2058 if (group->limits[pci].point == point)
2059 group->limits[pci].point = -1;
2064 /* Record that scheduling a later instruction has changed the pressure
2065 at point POINT of the model schedule by DELTA (which might be 0).
2066 Update GROUP accordingly. Return nonzero if these changes might
2067 trigger changes to previous points as well. */
2069 static int
2070 model_update_pressure (struct model_pressure_group *group,
2071 int point, int pci, int delta)
2073 int ref_pressure, max_pressure, next_max_pressure;
2075 /* If POINT hasn't yet been scheduled, update its pressure. */
2076 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2077 if (ref_pressure >= 0 && delta != 0)
2079 ref_pressure += delta;
2080 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2082 /* Check whether the maximum pressure in the overall schedule
2083 has increased. (This means that the MODEL_MAX_PRESSURE of
2084 every point <= POINT will need to increase too; see below.) */
2085 if (group->limits[pci].pressure < ref_pressure)
2086 group->limits[pci].pressure = ref_pressure;
2088 /* If we are at maximum pressure, and the maximum pressure
2089 point was previously unknown or later than POINT,
2090 bring it forward. */
2091 if (group->limits[pci].pressure == ref_pressure
2092 && !IN_RANGE (group->limits[pci].point, 0, point))
2093 group->limits[pci].point = point;
2095 /* If POINT used to be the point of maximum pressure, but isn't
2096 any longer, we need to recalculate it using a forward walk. */
2097 if (group->limits[pci].pressure > ref_pressure
2098 && group->limits[pci].point == point)
2099 group->limits[pci].point = -1;
2102 /* Update the maximum pressure at POINT. Changes here might also
2103 affect the maximum pressure at POINT - 1. */
2104 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2105 max_pressure = MAX (ref_pressure, next_max_pressure);
2106 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2108 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2109 return 1;
2111 return 0;
2114 /* INSN has just been scheduled. Update the model schedule accordingly. */
2116 static void
2117 model_recompute (rtx_insn *insn)
2119 struct {
2120 int last_use;
2121 int regno;
2122 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2123 struct reg_use_data *use;
2124 struct reg_pressure_data *reg_pressure;
2125 int delta[N_REG_CLASSES];
2126 int pci, point, mix, new_last, cl, ref_pressure, queue;
2127 unsigned int i, num_uses, num_pending_births;
2128 bool print_p;
2130 /* The destinations of INSN were previously live from POINT onwards, but are
2131 now live from model_curr_point onwards. Set up DELTA accordingly. */
2132 point = model_index (insn);
2133 reg_pressure = INSN_REG_PRESSURE (insn);
2134 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2136 cl = ira_pressure_classes[pci];
2137 delta[cl] = reg_pressure[pci].set_increase;
2140 /* Record which registers previously died at POINT, but which now die
2141 before POINT. Adjust DELTA so that it represents the effect of
2142 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2143 registers that will be born in the range [model_curr_point, POINT). */
2144 num_uses = 0;
2145 num_pending_births = 0;
2146 bitmap_clear (tmp_bitmap);
2147 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2149 new_last = model_last_use_except (use);
2150 if (new_last < point && bitmap_set_bit (tmp_bitmap, use->regno))
2152 gcc_assert (num_uses < ARRAY_SIZE (uses));
2153 uses[num_uses].last_use = new_last;
2154 uses[num_uses].regno = use->regno;
2155 /* This register is no longer live after POINT - 1. */
2156 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2157 num_uses++;
2158 if (new_last >= 0)
2159 num_pending_births++;
2163 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2164 Also set each group pressure limit for POINT. */
2165 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2167 cl = ira_pressure_classes[pci];
2168 model_start_update_pressure (&model_before_pressure,
2169 point, pci, delta[cl]);
2172 /* Walk the model schedule backwards, starting immediately before POINT. */
2173 print_p = false;
2174 if (point != model_curr_point)
2177 point--;
2178 insn = MODEL_INSN (point);
2179 queue = QUEUE_INDEX (insn);
2181 if (queue != QUEUE_SCHEDULED)
2183 /* DELTA describes the effect of the move on the register pressure
2184 after POINT. Make it describe the effect on the pressure
2185 before POINT. */
2186 i = 0;
2187 while (i < num_uses)
2189 if (uses[i].last_use == point)
2191 /* This register is now live again. */
2192 mark_regno_birth_or_death (NULL, delta,
2193 uses[i].regno, true);
2195 /* Remove this use from the array. */
2196 uses[i] = uses[num_uses - 1];
2197 num_uses--;
2198 num_pending_births--;
2200 else
2201 i++;
2204 if (sched_verbose >= 5)
2206 if (!print_p)
2208 fprintf (sched_dump, MODEL_BAR);
2209 fprintf (sched_dump, ";;\t\t| New pressure for model"
2210 " schedule\n");
2211 fprintf (sched_dump, MODEL_BAR);
2212 print_p = true;
2215 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2216 point, INSN_UID (insn),
2217 str_pattern_slim (PATTERN (insn)));
2218 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2220 cl = ira_pressure_classes[pci];
2221 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2222 point, pci);
2223 fprintf (sched_dump, " %s:[%d->%d]",
2224 reg_class_names[ira_pressure_classes[pci]],
2225 ref_pressure, ref_pressure + delta[cl]);
2227 fprintf (sched_dump, "\n");
2231 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2232 might have changed as well. */
2233 mix = num_pending_births;
2234 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2236 cl = ira_pressure_classes[pci];
2237 mix |= delta[cl];
2238 mix |= model_update_pressure (&model_before_pressure,
2239 point, pci, delta[cl]);
2242 while (mix && point > model_curr_point);
2244 if (print_p)
2245 fprintf (sched_dump, MODEL_BAR);
2248 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2249 check whether the insn's pattern needs restoring. */
2250 static bool
2251 must_restore_pattern_p (rtx_insn *next, dep_t dep)
2253 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2254 return false;
2256 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2258 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2259 gcc_assert (next == DEP_CON (dep));
2261 else
2263 struct dep_replacement *desc = DEP_REPLACE (dep);
2264 if (desc->insn != next)
2266 gcc_assert (*desc->loc == desc->orig);
2267 return false;
2270 return true;
2273 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2274 pressure on CL from P to P'. We use this to calculate a "base ECC",
2275 baseECC (CL, X), for each pressure class CL and each instruction X.
2276 Supposing X changes the pressure on CL from P to P', and that the
2277 maximum pressure on CL in the current model schedule is MP', then:
2279 * if X occurs before or at the next point of maximum pressure in
2280 the model schedule and P' > MP', then:
2282 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2284 The idea is that the pressure after scheduling a fixed set of
2285 instructions -- in this case, the set up to and including the
2286 next maximum pressure point -- is going to be the same regardless
2287 of the order; we simply want to keep the intermediate pressure
2288 under control. Thus X has a cost of zero unless scheduling it
2289 now would exceed MP'.
2291 If all increases in the set are by the same amount, no zero-cost
2292 instruction will ever cause the pressure to exceed MP'. However,
2293 if X is instead moved past an instruction X' with pressure in the
2294 range (MP' - (P' - P), MP'), the pressure at X' will increase
2295 beyond MP'. Since baseECC is very much a heuristic anyway,
2296 it doesn't seem worth the overhead of tracking cases like these.
2298 The cost of exceeding MP' is always based on the original maximum
2299 pressure MP. This is so that going 2 registers over the original
2300 limit has the same cost regardless of whether it comes from two
2301 separate +1 deltas or from a single +2 delta.
2303 * if X occurs after the next point of maximum pressure in the model
2304 schedule and P' > P, then:
2306 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2308 That is, if we move X forward across a point of maximum pressure,
2309 and if X increases the pressure by P' - P, then we conservatively
2310 assume that scheduling X next would increase the maximum pressure
2311 by P' - P. Again, the cost of doing this is based on the original
2312 maximum pressure MP, for the same reason as above.
2314 * if P' < P, P > MP, and X occurs at or after the next point of
2315 maximum pressure, then:
2317 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2319 That is, if we have already exceeded the original maximum pressure MP,
2320 and if X might reduce the maximum pressure again -- or at least push
2321 it further back, and thus allow more scheduling freedom -- it is given
2322 a negative cost to reflect the improvement.
2324 * otherwise,
2326 baseECC (CL, X) = 0
2328 In this case, X is not expected to affect the maximum pressure MP',
2329 so it has zero cost.
2331 We then create a combined value baseECC (X) that is the sum of
2332 baseECC (CL, X) for each pressure class CL.
2334 baseECC (X) could itself be used as the ECC value described above.
2335 However, this is often too conservative, in the sense that it
2336 tends to make high-priority instructions that increase pressure
2337 wait too long in cases where introducing a spill would be better.
2338 For this reason the final ECC is a priority-adjusted form of
2339 baseECC (X). Specifically, we calculate:
2341 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2342 baseP = MAX { P (X) | baseECC (X) <= 0 }
2344 Then:
2346 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2348 Thus an instruction's effect on pressure is ignored if it has a high
2349 enough priority relative to the ones that don't increase pressure.
2350 Negative values of baseECC (X) do not increase the priority of X
2351 itself, but they do make it harder for other instructions to
2352 increase the pressure further.
2354 This pressure cost is deliberately timid. The intention has been
2355 to choose a heuristic that rarely interferes with the normal list
2356 scheduler in cases where that scheduler would produce good code.
2357 We simply want to curb some of its worst excesses. */
2359 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2361 Here we use the very simplistic cost model that every register above
2362 sched_class_regs_num[CL] has a spill cost of 1. We could use other
2363 measures instead, such as one based on MEMORY_MOVE_COST. However:
2365 (1) In order for an instruction to be scheduled, the higher cost
2366 would need to be justified in a single saving of that many stalls.
2367 This is overly pessimistic, because the benefit of spilling is
2368 often to avoid a sequence of several short stalls rather than
2369 a single long one.
2371 (2) The cost is still arbitrary. Because we are not allocating
2372 registers during scheduling, we have no way of knowing for
2373 sure how many memory accesses will be required by each spill,
2374 where the spills will be placed within the block, or even
2375 which block(s) will contain the spills.
2377 So a higher cost than 1 is often too conservative in practice,
2378 forcing blocks to contain unnecessary stalls instead of spill code.
2379 The simple cost below seems to be the best compromise. It reduces
2380 the interference with the normal list scheduler, which helps make
2381 it more suitable for a default-on option. */
2383 static int
2384 model_spill_cost (int cl, int from, int to)
2386 from = MAX (from, sched_class_regs_num[cl]);
2387 return MAX (to, from) - from;
2390 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2391 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2392 P' = P + DELTA. */
2394 static int
2395 model_excess_group_cost (struct model_pressure_group *group,
2396 int point, int pci, int delta)
2398 int pressure, cl;
2400 cl = ira_pressure_classes[pci];
2401 if (delta < 0)
2403 if (point >= group->limits[pci].point)
2405 pressure = MAX (group->limits[pci].orig_pressure,
2406 curr_reg_pressure[cl] + delta);
2407 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2409 /* if target prefers fewer spills, return the -ve delta indicating
2410 pressure reduction. */
2411 else if (!param_cycle_accurate_model)
2412 return delta;
2415 if (delta > 0)
2417 if (point > group->limits[pci].point)
2418 pressure = group->limits[pci].pressure + delta;
2419 else
2420 pressure = curr_reg_pressure[cl] + delta;
2422 if (pressure > group->limits[pci].pressure)
2423 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2424 pressure);
2427 return 0;
2430 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2431 if PRINT_P. */
2433 static int
2434 model_excess_cost (rtx_insn *insn, bool print_p)
2436 int point, pci, cl, cost, this_cost, delta;
2437 struct reg_pressure_data *insn_reg_pressure;
2438 int insn_death[N_REG_CLASSES];
2440 calculate_reg_deaths (insn, insn_death);
2441 point = model_index (insn);
2442 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2443 cost = 0;
2445 if (print_p)
2446 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2447 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2449 /* Sum up the individual costs for each register class. */
2450 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2452 cl = ira_pressure_classes[pci];
2453 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2454 this_cost = model_excess_group_cost (&model_before_pressure,
2455 point, pci, delta);
2456 cost += this_cost;
2457 if (print_p)
2458 fprintf (sched_dump, " %s:[%d base cost %d]",
2459 reg_class_names[cl], delta, this_cost);
2462 if (print_p)
2463 fprintf (sched_dump, " ECC %d\n", cost);
2465 return cost;
2468 /* Dump the next points of maximum pressure for GROUP. */
2470 static void
2471 model_dump_pressure_points (struct model_pressure_group *group)
2473 int pci, cl;
2475 fprintf (sched_dump, ";;\t\t| pressure points");
2476 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2478 cl = ira_pressure_classes[pci];
2479 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2480 curr_reg_pressure[cl], group->limits[pci].pressure);
2481 if (group->limits[pci].point < model_num_insns)
2482 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2483 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2484 else
2485 fprintf (sched_dump, "end]");
2487 fprintf (sched_dump, "\n");
2490 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2492 static void
2493 model_set_excess_costs (rtx_insn **insns, int count)
2495 int i, cost, priority_base, priority;
2496 bool print_p;
2498 /* Record the baseECC value for each instruction in the model schedule,
2499 except that for targets which prefer wider schedules (more spills)
2500 negative costs are converted to zero ones now rather than later.
2501 Do not assign a cost to debug instructions, since they must
2502 not change code-generation decisions. Experiments suggest we also
2503 get better results by not assigning a cost to instructions from
2504 a different block.
2506 Set PRIORITY_BASE to baseP in the block comment above. This is the
2507 maximum priority of the "cheap" instructions, which should always
2508 include the next model instruction. */
2509 priority_base = 0;
2510 print_p = false;
2511 for (i = 0; i < count; i++)
2512 if (INSN_MODEL_INDEX (insns[i]))
2514 if (sched_verbose >= 6 && !print_p)
2516 fprintf (sched_dump, MODEL_BAR);
2517 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2518 model_dump_pressure_points (&model_before_pressure);
2519 fprintf (sched_dump, MODEL_BAR);
2520 print_p = true;
2522 cost = model_excess_cost (insns[i], print_p);
2523 if (param_cycle_accurate_model && cost <= 0)
2525 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2526 priority_base = MAX (priority_base, priority);
2527 cost = 0;
2529 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2531 if (print_p)
2532 fprintf (sched_dump, MODEL_BAR);
2534 /* Typically in-order cores have a good pipeline scheduling model and the
2535 algorithm would try to use that to minimize bubbles, favoring spills.
2536 MAX (baseECC, 0) below changes negative baseECC (pressure reduction)
2537 to 0 (pressure neutral) thus tending to more spills.
2538 Otherwise return. */
2539 if (!param_cycle_accurate_model)
2540 return;
2542 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2543 instruction. */
2544 for (i = 0; i < count; i++)
2546 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2547 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2548 if (cost > 0 && priority > priority_base)
2550 cost += priority_base - priority;
2551 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2557 /* Enum of rank_for_schedule heuristic decisions. */
2558 enum rfs_decision {
2559 RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
2560 RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2561 RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_AUTOPREF, RFS_SPECULATION,
2562 RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
2563 RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_COST, RFS_N };
2565 /* Corresponding strings for print outs. */
2566 static const char *rfs_str[RFS_N] = {
2567 "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
2568 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2569 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_AUTOPREF", "RFS_SPECULATION",
2570 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
2571 "RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION", "RFS_COST" };
2573 /* Statistical breakdown of rank_for_schedule decisions. */
2574 struct rank_for_schedule_stats_t { unsigned stats[RFS_N]; };
2575 static rank_for_schedule_stats_t rank_for_schedule_stats;
2577 /* Return the result of comparing insns TMP and TMP2 and update
2578 Rank_For_Schedule statistics. */
2579 static int
2580 rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
2582 ++rank_for_schedule_stats.stats[decision];
2583 if (result < 0)
2584 INSN_LAST_RFS_WIN (tmp) = decision;
2585 else if (result > 0)
2586 INSN_LAST_RFS_WIN (tmp2) = decision;
2587 else
2588 gcc_unreachable ();
2589 return result;
2592 /* Sorting predicate to move DEBUG_INSNs to the top of ready list, while
2593 keeping normal insns in original order. */
2595 static int
2596 rank_for_schedule_debug (const void *x, const void *y)
2598 rtx_insn *tmp = *(rtx_insn * const *) y;
2599 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2601 /* Schedule debug insns as early as possible. */
2602 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2603 return -1;
2604 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2605 return 1;
2606 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2607 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2608 else
2609 return INSN_RFS_DEBUG_ORIG_ORDER (tmp2) - INSN_RFS_DEBUG_ORIG_ORDER (tmp);
2612 /* Returns a positive value if x is preferred; returns a negative value if
2613 y is preferred. Should never return 0, since that will make the sort
2614 unstable. */
2616 static int
2617 rank_for_schedule (const void *x, const void *y)
2619 rtx_insn *tmp = *(rtx_insn * const *) y;
2620 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2621 int tmp_class, tmp2_class;
2622 int val, priority_val, info_val, diff;
2624 if (live_range_shrinkage_p)
2626 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2627 code. */
2628 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2629 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2630 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2631 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2632 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2633 return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
2634 /* Sort by INSN_LUID (original insn order), so that we make the
2635 sort stable. This minimizes instruction movement, thus
2636 minimizing sched's effect on debugging and cross-jumping. */
2637 return rfs_result (RFS_LIVE_RANGE_SHRINK2,
2638 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2641 /* The insn in a schedule group should be issued the first. */
2642 if (flag_sched_group_heuristic &&
2643 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2644 return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
2645 tmp, tmp2);
2647 /* Make sure that priority of TMP and TMP2 are initialized. */
2648 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2650 if (sched_fusion)
2652 /* The instruction that has the same fusion priority as the last
2653 instruction is the instruction we picked next. If that is not
2654 the case, we sort ready list firstly by fusion priority, then
2655 by priority, and at last by INSN_LUID. */
2656 int a = INSN_FUSION_PRIORITY (tmp);
2657 int b = INSN_FUSION_PRIORITY (tmp2);
2658 int last = -1;
2660 if (last_nondebug_scheduled_insn
2661 && !NOTE_P (last_nondebug_scheduled_insn)
2662 && BLOCK_FOR_INSN (tmp)
2663 == BLOCK_FOR_INSN (last_nondebug_scheduled_insn))
2664 last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn);
2666 if (a != last && b != last)
2668 if (a == b)
2670 a = INSN_PRIORITY (tmp);
2671 b = INSN_PRIORITY (tmp2);
2673 if (a != b)
2674 return rfs_result (RFS_FUSION, b - a, tmp, tmp2);
2675 else
2676 return rfs_result (RFS_FUSION,
2677 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2679 else if (a == b)
2681 gcc_assert (last_nondebug_scheduled_insn
2682 && !NOTE_P (last_nondebug_scheduled_insn));
2683 last = INSN_PRIORITY (last_nondebug_scheduled_insn);
2685 a = abs (INSN_PRIORITY (tmp) - last);
2686 b = abs (INSN_PRIORITY (tmp2) - last);
2687 if (a != b)
2688 return rfs_result (RFS_FUSION, a - b, tmp, tmp2);
2689 else
2690 return rfs_result (RFS_FUSION,
2691 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2693 else if (a == last)
2694 return rfs_result (RFS_FUSION, -1, tmp, tmp2);
2695 else
2696 return rfs_result (RFS_FUSION, 1, tmp, tmp2);
2699 if (sched_pressure != SCHED_PRESSURE_NONE)
2701 /* Prefer insn whose scheduling results in the smallest register
2702 pressure excess. */
2703 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2704 + insn_delay (tmp)
2705 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2706 - insn_delay (tmp2))))
2707 return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
2710 if (sched_pressure != SCHED_PRESSURE_NONE
2711 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2712 && INSN_TICK (tmp2) != INSN_TICK (tmp))
2714 diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
2715 return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
2718 /* If we are doing backtracking in this schedule, prefer insns that
2719 have forward dependencies with negative cost against an insn that
2720 was already scheduled. */
2721 if (current_sched_info->flags & DO_BACKTRACKING)
2723 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2724 if (priority_val)
2725 return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
2728 /* Prefer insn with higher priority. */
2729 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2731 if (flag_sched_critical_path_heuristic && priority_val)
2732 return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
2734 if (param_sched_autopref_queue_depth >= 0)
2736 int autopref = autopref_rank_for_schedule (tmp, tmp2);
2737 if (autopref != 0)
2738 return rfs_result (RFS_AUTOPREF, autopref, tmp, tmp2);
2741 /* Prefer speculative insn with greater dependencies weakness. */
2742 if (flag_sched_spec_insn_heuristic && spec_info)
2744 ds_t ds1, ds2;
2745 dw_t dw1, dw2;
2746 int dw;
2748 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2749 if (ds1)
2750 dw1 = ds_weak (ds1);
2751 else
2752 dw1 = NO_DEP_WEAK;
2754 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2755 if (ds2)
2756 dw2 = ds_weak (ds2);
2757 else
2758 dw2 = NO_DEP_WEAK;
2760 dw = dw2 - dw1;
2761 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2762 return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
2765 info_val = (*current_sched_info->rank) (tmp, tmp2);
2766 if (flag_sched_rank_heuristic && info_val)
2767 return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
2769 /* Compare insns based on their relation to the last scheduled
2770 non-debug insn. */
2771 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2773 dep_t dep1;
2774 dep_t dep2;
2775 rtx_insn *last = last_nondebug_scheduled_insn;
2777 /* Classify the instructions into three classes:
2778 1) Data dependent on last schedule insn.
2779 2) Anti/Output dependent on last scheduled insn.
2780 3) Independent of last scheduled insn, or has latency of one.
2781 Choose the insn from the highest numbered class if different. */
2782 dep1 = sd_find_dep_between (last, tmp, true);
2784 if (dep1 == NULL || dep_cost (dep1) == 1)
2785 tmp_class = 3;
2786 else if (/* Data dependence. */
2787 DEP_TYPE (dep1) == REG_DEP_TRUE)
2788 tmp_class = 1;
2789 else
2790 tmp_class = 2;
2792 dep2 = sd_find_dep_between (last, tmp2, true);
2794 if (dep2 == NULL || dep_cost (dep2) == 1)
2795 tmp2_class = 3;
2796 else if (/* Data dependence. */
2797 DEP_TYPE (dep2) == REG_DEP_TRUE)
2798 tmp2_class = 1;
2799 else
2800 tmp2_class = 2;
2802 if ((val = tmp2_class - tmp_class))
2803 return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
2806 /* Prefer instructions that occur earlier in the model schedule. */
2807 if (sched_pressure == SCHED_PRESSURE_MODEL)
2809 diff = model_index (tmp) - model_index (tmp2);
2810 if (diff != 0)
2811 return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
2814 /* Prefer the insn which has more later insns that depend on it.
2815 This gives the scheduler more freedom when scheduling later
2816 instructions at the expense of added register pressure. */
2818 val = (dep_list_size (tmp2, SD_LIST_FORW)
2819 - dep_list_size (tmp, SD_LIST_FORW));
2821 if (flag_sched_dep_count_heuristic && val != 0)
2822 return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
2824 /* Sort by INSN_COST rather than INSN_LUID. This means that instructions
2825 which take longer to execute are prioritised and it leads to more
2826 dual-issue opportunities on in-order cores which have this feature. */
2828 if (INSN_COST (tmp) != INSN_COST (tmp2))
2829 return rfs_result (RFS_COST, INSN_COST (tmp2) - INSN_COST (tmp),
2830 tmp, tmp2);
2832 /* If insns are equally good, sort by INSN_LUID (original insn order),
2833 so that we make the sort stable. This minimizes instruction movement,
2834 thus minimizing sched's effect on debugging and cross-jumping. */
2835 return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2838 /* Resort the array A in which only element at index N may be out of order. */
2840 HAIFA_INLINE static void
2841 swap_sort (rtx_insn **a, int n)
2843 rtx_insn *insn = a[n - 1];
2844 int i = n - 2;
2846 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2848 a[i + 1] = a[i];
2849 i -= 1;
2851 a[i + 1] = insn;
2854 /* Add INSN to the insn queue so that it can be executed at least
2855 N_CYCLES after the currently executing insn. Preserve insns
2856 chain for debugging purposes. REASON will be printed in debugging
2857 output. */
2859 HAIFA_INLINE static void
2860 queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
2862 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2863 rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2864 int new_tick;
2866 gcc_assert (n_cycles <= max_insn_queue_index);
2867 gcc_assert (!DEBUG_INSN_P (insn));
2869 insn_queue[next_q] = link;
2870 q_size += 1;
2872 if (sched_verbose >= 2)
2874 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2875 (*current_sched_info->print_insn) (insn, 0));
2877 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2880 QUEUE_INDEX (insn) = next_q;
2882 if (current_sched_info->flags & DO_BACKTRACKING)
2884 new_tick = clock_var + n_cycles;
2885 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2886 INSN_TICK (insn) = new_tick;
2888 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2889 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2891 must_backtrack = true;
2892 if (sched_verbose >= 2)
2893 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2898 /* Remove INSN from queue. */
2899 static void
2900 queue_remove (rtx_insn *insn)
2902 gcc_assert (QUEUE_INDEX (insn) >= 0);
2903 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2904 q_size--;
2905 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2908 /* Return a pointer to the bottom of the ready list, i.e. the insn
2909 with the lowest priority. */
2911 rtx_insn **
2912 ready_lastpos (struct ready_list *ready)
2914 gcc_assert (ready->n_ready >= 1);
2915 return ready->vec + ready->first - ready->n_ready + 1;
2918 /* Add an element INSN to the ready list so that it ends up with the
2919 lowest/highest priority depending on FIRST_P. */
2921 HAIFA_INLINE static void
2922 ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
2924 if (!first_p)
2926 if (ready->first == ready->n_ready)
2928 memmove (ready->vec + ready->veclen - ready->n_ready,
2929 ready_lastpos (ready),
2930 ready->n_ready * sizeof (rtx));
2931 ready->first = ready->veclen - 1;
2933 ready->vec[ready->first - ready->n_ready] = insn;
2935 else
2937 if (ready->first == ready->veclen - 1)
2939 if (ready->n_ready)
2940 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2941 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2942 ready_lastpos (ready),
2943 ready->n_ready * sizeof (rtx));
2944 ready->first = ready->veclen - 2;
2946 ready->vec[++(ready->first)] = insn;
2949 ready->n_ready++;
2950 if (DEBUG_INSN_P (insn))
2951 ready->n_debug++;
2953 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2954 QUEUE_INDEX (insn) = QUEUE_READY;
2956 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2957 && INSN_EXACT_TICK (insn) < clock_var)
2959 must_backtrack = true;
2963 /* Remove the element with the highest priority from the ready list and
2964 return it. */
2966 HAIFA_INLINE static rtx_insn *
2967 ready_remove_first (struct ready_list *ready)
2969 rtx_insn *t;
2971 gcc_assert (ready->n_ready);
2972 t = ready->vec[ready->first--];
2973 ready->n_ready--;
2974 if (DEBUG_INSN_P (t))
2975 ready->n_debug--;
2976 /* If the queue becomes empty, reset it. */
2977 if (ready->n_ready == 0)
2978 ready->first = ready->veclen - 1;
2980 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2981 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2983 return t;
2986 /* The following code implements multi-pass scheduling for the first
2987 cycle. In other words, we will try to choose ready insn which
2988 permits to start maximum number of insns on the same cycle. */
2990 /* Return a pointer to the element INDEX from the ready. INDEX for
2991 insn with the highest priority is 0, and the lowest priority has
2992 N_READY - 1. */
2994 rtx_insn *
2995 ready_element (struct ready_list *ready, int index)
2997 gcc_assert (ready->n_ready && index < ready->n_ready);
2999 return ready->vec[ready->first - index];
3002 /* Remove the element INDEX from the ready list and return it. INDEX
3003 for insn with the highest priority is 0, and the lowest priority
3004 has N_READY - 1. */
3006 HAIFA_INLINE static rtx_insn *
3007 ready_remove (struct ready_list *ready, int index)
3009 rtx_insn *t;
3010 int i;
3012 if (index == 0)
3013 return ready_remove_first (ready);
3014 gcc_assert (ready->n_ready && index < ready->n_ready);
3015 t = ready->vec[ready->first - index];
3016 ready->n_ready--;
3017 if (DEBUG_INSN_P (t))
3018 ready->n_debug--;
3019 for (i = index; i < ready->n_ready; i++)
3020 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
3021 QUEUE_INDEX (t) = QUEUE_NOWHERE;
3022 return t;
3025 /* Remove INSN from the ready list. */
3026 static void
3027 ready_remove_insn (rtx_insn *insn)
3029 int i;
3031 for (i = 0; i < readyp->n_ready; i++)
3032 if (ready_element (readyp, i) == insn)
3034 ready_remove (readyp, i);
3035 return;
3037 gcc_unreachable ();
3040 /* Calculate difference of two statistics set WAS and NOW.
3041 Result returned in WAS. */
3042 static void
3043 rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
3044 const rank_for_schedule_stats_t *now)
3046 for (int i = 0; i < RFS_N; ++i)
3047 was->stats[i] = now->stats[i] - was->stats[i];
3050 /* Print rank_for_schedule statistics. */
3051 static void
3052 print_rank_for_schedule_stats (const char *prefix,
3053 const rank_for_schedule_stats_t *stats,
3054 struct ready_list *ready)
3056 for (int i = 0; i < RFS_N; ++i)
3057 if (stats->stats[i])
3059 fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
3061 if (ready != NULL)
3062 /* Print out insns that won due to RFS_<I>. */
3064 rtx_insn **p = ready_lastpos (ready);
3066 fprintf (sched_dump, ":");
3067 /* Start with 1 since least-priority insn didn't have any wins. */
3068 for (int j = 1; j < ready->n_ready; ++j)
3069 if (INSN_LAST_RFS_WIN (p[j]) == i)
3070 fprintf (sched_dump, " %s",
3071 (*current_sched_info->print_insn) (p[j], 0));
3073 fprintf (sched_dump, "\n");
3077 /* Separate DEBUG_INSNS from normal insns. DEBUG_INSNs go to the end
3078 of array. */
3079 static void
3080 ready_sort_debug (struct ready_list *ready)
3082 int i;
3083 rtx_insn **first = ready_lastpos (ready);
3085 for (i = 0; i < ready->n_ready; ++i)
3086 if (!DEBUG_INSN_P (first[i]))
3087 INSN_RFS_DEBUG_ORIG_ORDER (first[i]) = i;
3089 qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule_debug);
3092 /* Sort non-debug insns in the ready list READY by ascending priority.
3093 Assumes that all debug insns are separated from the real insns. */
3094 static void
3095 ready_sort_real (struct ready_list *ready)
3097 int i;
3098 rtx_insn **first = ready_lastpos (ready);
3099 int n_ready_real = ready->n_ready - ready->n_debug;
3101 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3102 for (i = 0; i < n_ready_real; ++i)
3103 setup_insn_reg_pressure_info (first[i]);
3104 else if (sched_pressure == SCHED_PRESSURE_MODEL
3105 && model_curr_point < model_num_insns)
3106 model_set_excess_costs (first, n_ready_real);
3108 rank_for_schedule_stats_t stats1;
3109 if (sched_verbose >= 4)
3110 stats1 = rank_for_schedule_stats;
3112 if (n_ready_real == 2)
3113 swap_sort (first, n_ready_real);
3114 else if (n_ready_real > 2)
3115 qsort (first, n_ready_real, sizeof (rtx), rank_for_schedule);
3117 if (sched_verbose >= 4)
3119 rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
3120 print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
3124 /* Sort the ready list READY by ascending priority. */
3125 static void
3126 ready_sort (struct ready_list *ready)
3128 if (ready->n_debug > 0)
3129 ready_sort_debug (ready);
3130 else
3131 ready_sort_real (ready);
3134 /* PREV is an insn that is ready to execute. Adjust its priority if that
3135 will help shorten or lengthen register lifetimes as appropriate. Also
3136 provide a hook for the target to tweak itself. */
3138 HAIFA_INLINE static void
3139 adjust_priority (rtx_insn *prev)
3141 /* ??? There used to be code here to try and estimate how an insn
3142 affected register lifetimes, but it did it by looking at REG_DEAD
3143 notes, which we removed in schedule_region. Nor did it try to
3144 take into account register pressure or anything useful like that.
3146 Revisit when we have a machine model to work with and not before. */
3148 if (targetm.sched.adjust_priority)
3149 INSN_PRIORITY (prev) =
3150 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
3153 /* Advance DFA state STATE on one cycle. */
3154 void
3155 advance_state (state_t state)
3157 if (targetm.sched.dfa_pre_advance_cycle)
3158 targetm.sched.dfa_pre_advance_cycle ();
3160 if (targetm.sched.dfa_pre_cycle_insn)
3161 state_transition (state,
3162 targetm.sched.dfa_pre_cycle_insn ());
3164 state_transition (state, NULL);
3166 if (targetm.sched.dfa_post_cycle_insn)
3167 state_transition (state,
3168 targetm.sched.dfa_post_cycle_insn ());
3170 if (targetm.sched.dfa_post_advance_cycle)
3171 targetm.sched.dfa_post_advance_cycle ();
3174 /* Advance time on one cycle. */
3175 HAIFA_INLINE static void
3176 advance_one_cycle (void)
3178 int i;
3180 advance_state (curr_state);
3181 for (i = 4; i <= sched_verbose; ++i)
3182 fprintf (sched_dump, ";;\tAdvance the current state: %d.\n", clock_var);
3185 /* Update register pressure after scheduling INSN. */
3186 static void
3187 update_register_pressure (rtx_insn *insn)
3189 struct reg_use_data *use;
3190 struct reg_set_data *set;
3192 gcc_checking_assert (!DEBUG_INSN_P (insn));
3194 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
3195 if (dying_use_p (use))
3196 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3197 use->regno, false);
3198 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
3199 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3200 set->regno, true);
3203 /* Set up or update (if UPDATE_P) max register pressure (see its
3204 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3205 after insn AFTER. */
3206 static void
3207 setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
3209 int i, p;
3210 bool eq_p;
3211 rtx_insn *insn;
3212 static int max_reg_pressure[N_REG_CLASSES];
3214 save_reg_pressure ();
3215 for (i = 0; i < ira_pressure_classes_num; i++)
3216 max_reg_pressure[ira_pressure_classes[i]]
3217 = curr_reg_pressure[ira_pressure_classes[i]];
3218 for (insn = NEXT_INSN (after);
3219 insn != NULL_RTX && ! BARRIER_P (insn)
3220 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
3221 insn = NEXT_INSN (insn))
3222 if (NONDEBUG_INSN_P (insn))
3224 eq_p = true;
3225 for (i = 0; i < ira_pressure_classes_num; i++)
3227 p = max_reg_pressure[ira_pressure_classes[i]];
3228 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3230 eq_p = false;
3231 INSN_MAX_REG_PRESSURE (insn)[i]
3232 = max_reg_pressure[ira_pressure_classes[i]];
3235 if (update_p && eq_p)
3236 break;
3237 update_register_pressure (insn);
3238 for (i = 0; i < ira_pressure_classes_num; i++)
3239 if (max_reg_pressure[ira_pressure_classes[i]]
3240 < curr_reg_pressure[ira_pressure_classes[i]])
3241 max_reg_pressure[ira_pressure_classes[i]]
3242 = curr_reg_pressure[ira_pressure_classes[i]];
3244 restore_reg_pressure ();
3247 /* Update the current register pressure after scheduling INSN. Update
3248 also max register pressure for unscheduled insns of the current
3249 BB. */
3250 static void
3251 update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
3253 int i;
3254 int before[N_REG_CLASSES];
3256 for (i = 0; i < ira_pressure_classes_num; i++)
3257 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3258 update_register_pressure (insn);
3259 for (i = 0; i < ira_pressure_classes_num; i++)
3260 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3261 break;
3262 if (i < ira_pressure_classes_num)
3263 setup_insn_max_reg_pressure (insn, true);
3266 /* Set up register pressure at the beginning of basic block BB whose
3267 insns starting after insn AFTER. Set up also max register pressure
3268 for all insns of the basic block. */
3269 void
3270 sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
3272 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3273 initiate_bb_reg_pressure_info (bb);
3274 setup_insn_max_reg_pressure (after, false);
3277 /* If doing predication while scheduling, verify whether INSN, which
3278 has just been scheduled, clobbers the conditions of any
3279 instructions that must be predicated in order to break their
3280 dependencies. If so, remove them from the queues so that they will
3281 only be scheduled once their control dependency is resolved. */
3283 static void
3284 check_clobbered_conditions (rtx_insn *insn)
3286 HARD_REG_SET t;
3287 int i;
3289 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3290 return;
3292 find_all_hard_reg_sets (insn, &t, true);
3294 restart:
3295 for (i = 0; i < ready.n_ready; i++)
3297 rtx_insn *x = ready_element (&ready, i);
3298 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3300 ready_remove_insn (x);
3301 goto restart;
3304 for (i = 0; i <= max_insn_queue_index; i++)
3306 rtx_insn_list *link;
3307 int q = NEXT_Q_AFTER (q_ptr, i);
3309 restart_queue:
3310 for (link = insn_queue[q]; link; link = link->next ())
3312 rtx_insn *x = link->insn ();
3313 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3315 queue_remove (x);
3316 goto restart_queue;
3322 /* Return (in order):
3324 - positive if INSN adversely affects the pressure on one
3325 register class
3327 - negative if INSN reduces the pressure on one register class
3329 - 0 if INSN doesn't affect the pressure on any register class. */
3331 static int
3332 model_classify_pressure (struct model_insn_info *insn)
3334 struct reg_pressure_data *reg_pressure;
3335 int death[N_REG_CLASSES];
3336 int pci, cl, sum;
3338 calculate_reg_deaths (insn->insn, death);
3339 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3340 sum = 0;
3341 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3343 cl = ira_pressure_classes[pci];
3344 if (death[cl] < reg_pressure[pci].set_increase)
3345 return 1;
3346 sum += reg_pressure[pci].set_increase - death[cl];
3348 return sum;
3351 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3353 static int
3354 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3356 unsigned int height1, height2;
3357 unsigned int priority1, priority2;
3359 /* Prefer instructions with a higher model priority. */
3360 if (insn1->model_priority != insn2->model_priority)
3361 return insn1->model_priority > insn2->model_priority;
3363 /* Combine the length of the longest path of satisfied true dependencies
3364 that leads to each instruction (depth) with the length of the longest
3365 path of any dependencies that leads from the instruction (alap).
3366 Prefer instructions with the greatest combined length. If the combined
3367 lengths are equal, prefer instructions with the greatest depth.
3369 The idea is that, if we have a set S of "equal" instructions that each
3370 have ALAP value X, and we pick one such instruction I, any true-dependent
3371 successors of I that have ALAP value X - 1 should be preferred over S.
3372 This encourages the schedule to be "narrow" rather than "wide".
3373 However, if I is a low-priority instruction that we decided to
3374 schedule because of its model_classify_pressure, and if there
3375 is a set of higher-priority instructions T, the aforementioned
3376 successors of I should not have the edge over T. */
3377 height1 = insn1->depth + insn1->alap;
3378 height2 = insn2->depth + insn2->alap;
3379 if (height1 != height2)
3380 return height1 > height2;
3381 if (insn1->depth != insn2->depth)
3382 return insn1->depth > insn2->depth;
3384 /* We have no real preference between INSN1 an INSN2 as far as attempts
3385 to reduce pressure go. Prefer instructions with higher priorities. */
3386 priority1 = INSN_PRIORITY (insn1->insn);
3387 priority2 = INSN_PRIORITY (insn2->insn);
3388 if (priority1 != priority2)
3389 return priority1 > priority2;
3391 /* Use the original rtl sequence as a tie-breaker. */
3392 return insn1 < insn2;
3395 /* Add INSN to the model worklist immediately after PREV. Add it to the
3396 beginning of the list if PREV is null. */
3398 static void
3399 model_add_to_worklist_at (struct model_insn_info *insn,
3400 struct model_insn_info *prev)
3402 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3403 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3405 insn->prev = prev;
3406 if (prev)
3408 insn->next = prev->next;
3409 prev->next = insn;
3411 else
3413 insn->next = model_worklist;
3414 model_worklist = insn;
3416 if (insn->next)
3417 insn->next->prev = insn;
3420 /* Remove INSN from the model worklist. */
3422 static void
3423 model_remove_from_worklist (struct model_insn_info *insn)
3425 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3426 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3428 if (insn->prev)
3429 insn->prev->next = insn->next;
3430 else
3431 model_worklist = insn->next;
3432 if (insn->next)
3433 insn->next->prev = insn->prev;
3436 /* Add INSN to the model worklist. Start looking for a suitable position
3437 between neighbors PREV and NEXT, testing at most param_max_sched_ready_insns
3438 insns either side. A null PREV indicates the beginning of the list and
3439 a null NEXT indicates the end. */
3441 static void
3442 model_add_to_worklist (struct model_insn_info *insn,
3443 struct model_insn_info *prev,
3444 struct model_insn_info *next)
3446 int count;
3448 count = param_max_sched_ready_insns;
3449 if (count > 0 && prev && model_order_p (insn, prev))
3452 count--;
3453 prev = prev->prev;
3455 while (count > 0 && prev && model_order_p (insn, prev));
3456 else
3457 while (count > 0 && next && model_order_p (next, insn))
3459 count--;
3460 prev = next;
3461 next = next->next;
3463 model_add_to_worklist_at (insn, prev);
3466 /* INSN may now have a higher priority (in the model_order_p sense)
3467 than before. Move it up the worklist if necessary. */
3469 static void
3470 model_promote_insn (struct model_insn_info *insn)
3472 struct model_insn_info *prev;
3473 int count;
3475 prev = insn->prev;
3476 count = param_max_sched_ready_insns;
3477 while (count > 0 && prev && model_order_p (insn, prev))
3479 count--;
3480 prev = prev->prev;
3482 if (prev != insn->prev)
3484 model_remove_from_worklist (insn);
3485 model_add_to_worklist_at (insn, prev);
3489 /* Add INSN to the end of the model schedule. */
3491 static void
3492 model_add_to_schedule (rtx_insn *insn)
3494 unsigned int point;
3496 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3497 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3499 point = model_schedule.length ();
3500 model_schedule.quick_push (insn);
3501 INSN_MODEL_INDEX (insn) = point + 1;
3504 /* Analyze the instructions that are to be scheduled, setting up
3505 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3506 instructions to model_worklist. */
3508 static void
3509 model_analyze_insns (void)
3511 rtx_insn *start, *end, *iter;
3512 sd_iterator_def sd_it;
3513 dep_t dep;
3514 struct model_insn_info *insn, *con;
3516 model_num_insns = 0;
3517 start = PREV_INSN (current_sched_info->next_tail);
3518 end = current_sched_info->prev_head;
3519 for (iter = start; iter != end; iter = PREV_INSN (iter))
3520 if (NONDEBUG_INSN_P (iter))
3522 insn = MODEL_INSN_INFO (iter);
3523 insn->insn = iter;
3524 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3526 con = MODEL_INSN_INFO (DEP_CON (dep));
3527 if (con->insn && insn->alap < con->alap + 1)
3528 insn->alap = con->alap + 1;
3531 insn->old_queue = QUEUE_INDEX (iter);
3532 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3534 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3535 if (insn->unscheduled_preds == 0)
3536 model_add_to_worklist (insn, NULL, model_worklist);
3538 model_num_insns++;
3542 /* The global state describes the register pressure at the start of the
3543 model schedule. Initialize GROUP accordingly. */
3545 static void
3546 model_init_pressure_group (struct model_pressure_group *group)
3548 int pci, cl;
3550 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3552 cl = ira_pressure_classes[pci];
3553 group->limits[pci].pressure = curr_reg_pressure[cl];
3554 group->limits[pci].point = 0;
3556 /* Use index model_num_insns to record the state after the last
3557 instruction in the model schedule. */
3558 group->model = XNEWVEC (struct model_pressure_data,
3559 (model_num_insns + 1) * ira_pressure_classes_num);
3562 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3563 Update the maximum pressure for the whole schedule. */
3565 static void
3566 model_record_pressure (struct model_pressure_group *group,
3567 int point, int pci, int pressure)
3569 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3570 if (group->limits[pci].pressure < pressure)
3572 group->limits[pci].pressure = pressure;
3573 group->limits[pci].point = point;
3577 /* INSN has just been added to the end of the model schedule. Record its
3578 register-pressure information. */
3580 static void
3581 model_record_pressures (struct model_insn_info *insn)
3583 struct reg_pressure_data *reg_pressure;
3584 int point, pci, cl, delta;
3585 int death[N_REG_CLASSES];
3587 point = model_index (insn->insn);
3588 if (sched_verbose >= 2)
3590 if (point == 0)
3592 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3593 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3595 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3596 point, INSN_UID (insn->insn), insn->model_priority,
3597 insn->depth + insn->alap, insn->depth,
3598 INSN_PRIORITY (insn->insn),
3599 str_pattern_slim (PATTERN (insn->insn)));
3601 calculate_reg_deaths (insn->insn, death);
3602 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3603 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3605 cl = ira_pressure_classes[pci];
3606 delta = reg_pressure[pci].set_increase - death[cl];
3607 if (sched_verbose >= 2)
3608 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3609 curr_reg_pressure[cl], delta);
3610 model_record_pressure (&model_before_pressure, point, pci,
3611 curr_reg_pressure[cl]);
3613 if (sched_verbose >= 2)
3614 fprintf (sched_dump, "\n");
3617 /* All instructions have been added to the model schedule. Record the
3618 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3620 static void
3621 model_record_final_pressures (struct model_pressure_group *group)
3623 int point, pci, max_pressure, ref_pressure, cl;
3625 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3627 /* Record the final pressure for this class. */
3628 cl = ira_pressure_classes[pci];
3629 point = model_num_insns;
3630 ref_pressure = curr_reg_pressure[cl];
3631 model_record_pressure (group, point, pci, ref_pressure);
3633 /* Record the original maximum pressure. */
3634 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3636 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3637 max_pressure = ref_pressure;
3638 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3639 while (point > 0)
3641 point--;
3642 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3643 max_pressure = MAX (max_pressure, ref_pressure);
3644 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3649 /* Update all successors of INSN, given that INSN has just been scheduled. */
3651 static void
3652 model_add_successors_to_worklist (struct model_insn_info *insn)
3654 sd_iterator_def sd_it;
3655 struct model_insn_info *con;
3656 dep_t dep;
3658 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3660 con = MODEL_INSN_INFO (DEP_CON (dep));
3661 /* Ignore debug instructions, and instructions from other blocks. */
3662 if (con->insn)
3664 con->unscheduled_preds--;
3666 /* Update the depth field of each true-dependent successor.
3667 Increasing the depth gives them a higher priority than
3668 before. */
3669 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3671 con->depth = insn->depth + 1;
3672 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3673 model_promote_insn (con);
3676 /* If this is a true dependency, or if there are no remaining
3677 dependencies for CON (meaning that CON only had non-true
3678 dependencies), make sure that CON is on the worklist.
3679 We don't bother otherwise because it would tend to fill the
3680 worklist with a lot of low-priority instructions that are not
3681 yet ready to issue. */
3682 if ((con->depth > 0 || con->unscheduled_preds == 0)
3683 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3684 model_add_to_worklist (con, insn, insn->next);
3689 /* Give INSN a higher priority than any current instruction, then give
3690 unscheduled predecessors of INSN a higher priority still. If any of
3691 those predecessors are not on the model worklist, do the same for its
3692 predecessors, and so on. */
3694 static void
3695 model_promote_predecessors (struct model_insn_info *insn)
3697 struct model_insn_info *pro, *first;
3698 sd_iterator_def sd_it;
3699 dep_t dep;
3701 if (sched_verbose >= 7)
3702 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3703 INSN_UID (insn->insn), model_next_priority);
3704 insn->model_priority = model_next_priority++;
3705 model_remove_from_worklist (insn);
3706 model_add_to_worklist_at (insn, NULL);
3708 first = NULL;
3709 for (;;)
3711 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3713 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3714 /* The first test is to ignore debug instructions, and instructions
3715 from other blocks. */
3716 if (pro->insn
3717 && pro->model_priority != model_next_priority
3718 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3720 pro->model_priority = model_next_priority;
3721 if (sched_verbose >= 7)
3722 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3723 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3725 /* PRO is already in the worklist, but it now has
3726 a higher priority than before. Move it at the
3727 appropriate place. */
3728 model_remove_from_worklist (pro);
3729 model_add_to_worklist (pro, NULL, model_worklist);
3731 else
3733 /* PRO isn't in the worklist. Recursively process
3734 its predecessors until we find one that is. */
3735 pro->next = first;
3736 first = pro;
3740 if (!first)
3741 break;
3742 insn = first;
3743 first = insn->next;
3745 if (sched_verbose >= 7)
3746 fprintf (sched_dump, " = %d\n", model_next_priority);
3747 model_next_priority++;
3750 /* Pick one instruction from model_worklist and process it. */
3752 static void
3753 model_choose_insn (void)
3755 struct model_insn_info *insn, *fallback;
3756 int count;
3758 if (sched_verbose >= 7)
3760 fprintf (sched_dump, ";;\t+--- worklist:\n");
3761 insn = model_worklist;
3762 count = param_max_sched_ready_insns;
3763 while (count > 0 && insn)
3765 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d][%d]\n",
3766 INSN_UID (insn->insn), insn->model_priority,
3767 insn->depth + insn->alap, insn->depth,
3768 INSN_PRIORITY (insn->insn), insn->unscheduled_preds);
3769 count--;
3770 insn = insn->next;
3774 /* Look for a ready instruction whose model_classify_priority is zero
3775 or negative, picking the highest-priority one. Adding such an
3776 instruction to the schedule now should do no harm, and may actually
3777 do some good.
3779 Failing that, see whether there is an instruction with the highest
3780 extant model_priority that is not yet ready, but which would reduce
3781 pressure if it became ready. This is designed to catch cases like:
3783 (set (mem (reg R1)) (reg R2))
3785 where the instruction is the last remaining use of R1 and where the
3786 value of R2 is not yet available (or vice versa). The death of R1
3787 means that this instruction already reduces pressure. It is of
3788 course possible that the computation of R2 involves other registers
3789 that are hard to kill, but such cases are rare enough for this
3790 heuristic to be a win in general.
3792 Failing that, just pick the highest-priority instruction in the
3793 worklist. */
3794 count = param_max_sched_ready_insns;
3795 insn = model_worklist;
3796 fallback = 0;
3797 for (;;)
3799 if (count == 0 || !insn)
3801 insn = fallback ? fallback : model_worklist;
3802 break;
3804 if (insn->unscheduled_preds)
3806 if (model_worklist->model_priority == insn->model_priority
3807 && !fallback
3808 && model_classify_pressure (insn) < 0)
3809 fallback = insn;
3811 else
3813 if (model_classify_pressure (insn) <= 0)
3814 break;
3816 count--;
3817 insn = insn->next;
3820 if (sched_verbose >= 7 && insn != model_worklist)
3822 if (insn->unscheduled_preds)
3823 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3824 INSN_UID (insn->insn));
3825 else
3826 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3827 INSN_UID (insn->insn));
3829 if (insn->unscheduled_preds)
3830 /* INSN isn't yet ready to issue. Give all its predecessors the
3831 highest priority. */
3832 model_promote_predecessors (insn);
3833 else
3835 /* INSN is ready. Add it to the end of model_schedule and
3836 process its successors. */
3837 model_add_successors_to_worklist (insn);
3838 model_remove_from_worklist (insn);
3839 model_add_to_schedule (insn->insn);
3840 model_record_pressures (insn);
3841 update_register_pressure (insn->insn);
3845 /* Restore all QUEUE_INDEXs to the values that they had before
3846 model_start_schedule was called. */
3848 static void
3849 model_reset_queue_indices (void)
3851 unsigned int i;
3852 rtx_insn *insn;
3854 FOR_EACH_VEC_ELT (model_schedule, i, insn)
3855 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3858 /* We have calculated the model schedule and spill costs. Print a summary
3859 to sched_dump. */
3861 static void
3862 model_dump_pressure_summary (basic_block bb)
3864 int pci, cl;
3866 fprintf (sched_dump, ";; Pressure summary (bb %d):", bb->index);
3867 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3869 cl = ira_pressure_classes[pci];
3870 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3871 model_before_pressure.limits[pci].pressure);
3873 fprintf (sched_dump, "\n\n");
3876 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3877 scheduling region. */
3879 static void
3880 model_start_schedule (basic_block bb)
3882 model_next_priority = 1;
3883 model_schedule.create (sched_max_luid);
3884 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3886 gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
3887 initiate_reg_pressure_info (df_get_live_in (bb));
3889 model_analyze_insns ();
3890 model_init_pressure_group (&model_before_pressure);
3891 while (model_worklist)
3892 model_choose_insn ();
3893 gcc_assert (model_num_insns == (int) model_schedule.length ());
3894 if (sched_verbose >= 2)
3895 fprintf (sched_dump, "\n");
3897 model_record_final_pressures (&model_before_pressure);
3898 model_reset_queue_indices ();
3900 XDELETEVEC (model_insns);
3902 model_curr_point = 0;
3903 initiate_reg_pressure_info (df_get_live_in (bb));
3904 if (sched_verbose >= 1)
3905 model_dump_pressure_summary (bb);
3908 /* Free the information associated with GROUP. */
3910 static void
3911 model_finalize_pressure_group (struct model_pressure_group *group)
3913 XDELETEVEC (group->model);
3916 /* Free the information created by model_start_schedule. */
3918 static void
3919 model_end_schedule (void)
3921 model_finalize_pressure_group (&model_before_pressure);
3922 model_schedule.release ();
3925 /* Prepare reg pressure scheduling for basic block BB. */
3926 static void
3927 sched_pressure_start_bb (basic_block bb)
3929 /* Set the number of available registers for each class taking into account
3930 relative probability of current basic block versus function prologue and
3931 epilogue.
3932 * If the basic block executes much more often than the prologue/epilogue
3933 (e.g., inside a hot loop), then cost of spill in the prologue is close to
3934 nil, so the effective number of available registers is
3935 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl] - 0).
3936 * If the basic block executes as often as the prologue/epilogue,
3937 then spill in the block is as costly as in the prologue, so the effective
3938 number of available registers is
3939 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
3940 - call_saved_regs_num[cl]).
3941 Note that all-else-equal, we prefer to spill in the prologue, since that
3942 allows "extra" registers for other basic blocks of the function.
3943 * If the basic block is on the cold path of the function and executes
3944 rarely, then we should always prefer to spill in the block, rather than
3945 in the prologue/epilogue. The effective number of available register is
3946 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
3947 - call_saved_regs_num[cl]). */
3949 int i;
3950 int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.to_frequency (cfun);
3951 int bb_freq = bb->count.to_frequency (cfun);
3953 if (bb_freq == 0)
3955 if (entry_freq == 0)
3956 entry_freq = bb_freq = 1;
3958 if (bb_freq < entry_freq)
3959 bb_freq = entry_freq;
3961 for (i = 0; i < ira_pressure_classes_num; ++i)
3963 enum reg_class cl = ira_pressure_classes[i];
3964 sched_class_regs_num[cl] = ira_class_hard_regs_num[cl]
3965 - fixed_regs_num[cl];
3966 sched_class_regs_num[cl]
3967 -= (call_saved_regs_num[cl] * entry_freq) / bb_freq;
3971 if (sched_pressure == SCHED_PRESSURE_MODEL)
3972 model_start_schedule (bb);
3975 /* A structure that holds local state for the loop in schedule_block. */
3976 struct sched_block_state
3978 /* True if no real insns have been scheduled in the current cycle. */
3979 bool first_cycle_insn_p;
3980 /* True if a shadow insn has been scheduled in the current cycle, which
3981 means that no more normal insns can be issued. */
3982 bool shadows_only_p;
3983 /* True if we're winding down a modulo schedule, which means that we only
3984 issue insns with INSN_EXACT_TICK set. */
3985 bool modulo_epilogue;
3986 /* Initialized with the machine's issue rate every cycle, and updated
3987 by calls to the variable_issue hook. */
3988 int can_issue_more;
3991 /* INSN is the "currently executing insn". Launch each insn which was
3992 waiting on INSN. READY is the ready list which contains the insns
3993 that are ready to fire. CLOCK is the current cycle. The function
3994 returns necessary cycle advance after issuing the insn (it is not
3995 zero for insns in a schedule group). */
3997 static int
3998 schedule_insn (rtx_insn *insn)
4000 sd_iterator_def sd_it;
4001 dep_t dep;
4002 int i;
4003 int advance = 0;
4005 if (sched_verbose >= 1)
4007 struct reg_pressure_data *pressure_info;
4008 fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
4009 clock_var, (*current_sched_info->print_insn) (insn, 1),
4010 str_pattern_slim (PATTERN (insn)));
4012 if (recog_memoized (insn) < 0)
4013 fprintf (sched_dump, "nothing");
4014 else
4015 print_reservation (sched_dump, insn);
4016 pressure_info = INSN_REG_PRESSURE (insn);
4017 if (pressure_info != NULL)
4019 fputc (':', sched_dump);
4020 for (i = 0; i < ira_pressure_classes_num; i++)
4021 fprintf (sched_dump, "%s%s%+d(%d)",
4022 scheduled_insns.length () > 1
4023 && INSN_LUID (insn)
4024 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
4025 reg_class_names[ira_pressure_classes[i]],
4026 pressure_info[i].set_increase, pressure_info[i].change);
4028 if (sched_pressure == SCHED_PRESSURE_MODEL
4029 && model_curr_point < model_num_insns
4030 && model_index (insn) == model_curr_point)
4031 fprintf (sched_dump, ":model %d", model_curr_point);
4032 fputc ('\n', sched_dump);
4035 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
4036 update_reg_and_insn_max_reg_pressure (insn);
4038 /* Scheduling instruction should have all its dependencies resolved and
4039 should have been removed from the ready list. */
4040 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
4042 /* Reset debug insns invalidated by moving this insn. */
4043 if (MAY_HAVE_DEBUG_BIND_INSNS && !DEBUG_INSN_P (insn))
4044 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
4045 sd_iterator_cond (&sd_it, &dep);)
4047 rtx_insn *dbg = DEP_PRO (dep);
4048 struct reg_use_data *use, *next;
4050 if (DEP_STATUS (dep) & DEP_CANCELLED)
4052 sd_iterator_next (&sd_it);
4053 continue;
4056 gcc_assert (DEBUG_BIND_INSN_P (dbg));
4058 if (sched_verbose >= 6)
4059 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
4060 INSN_UID (dbg));
4062 /* ??? Rather than resetting the debug insn, we might be able
4063 to emit a debug temp before the just-scheduled insn, but
4064 this would involve checking that the expression at the
4065 point of the debug insn is equivalent to the expression
4066 before the just-scheduled insn. They might not be: the
4067 expression in the debug insn may depend on other insns not
4068 yet scheduled that set MEMs, REGs or even other debug
4069 insns. It's not clear that attempting to preserve debug
4070 information in these cases is worth the effort, given how
4071 uncommon these resets are and the likelihood that the debug
4072 temps introduced won't survive the schedule change. */
4073 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
4074 df_insn_rescan (dbg);
4076 /* Unknown location doesn't use any registers. */
4077 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
4079 struct reg_use_data *prev = use;
4081 /* Remove use from the cyclic next_regno_use chain first. */
4082 while (prev->next_regno_use != use)
4083 prev = prev->next_regno_use;
4084 prev->next_regno_use = use->next_regno_use;
4085 next = use->next_insn_use;
4086 free (use);
4088 INSN_REG_USE_LIST (dbg) = NULL;
4090 /* We delete rather than resolve these deps, otherwise we
4091 crash in sched_free_deps(), because forward deps are
4092 expected to be released before backward deps. */
4093 sd_delete_dep (sd_it);
4096 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
4097 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
4099 if (sched_pressure == SCHED_PRESSURE_MODEL
4100 && model_curr_point < model_num_insns
4101 && NONDEBUG_INSN_P (insn))
4103 if (model_index (insn) == model_curr_point)
4105 model_curr_point++;
4106 while (model_curr_point < model_num_insns
4107 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
4108 == QUEUE_SCHEDULED));
4109 else
4110 model_recompute (insn);
4111 model_update_limit_points ();
4112 update_register_pressure (insn);
4113 if (sched_verbose >= 2)
4114 print_curr_reg_pressure ();
4117 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
4118 if (INSN_TICK (insn) > clock_var)
4119 /* INSN has been prematurely moved from the queue to the ready list.
4120 This is possible only if following flags are set. */
4121 gcc_assert (flag_sched_stalled_insns || sched_fusion);
4123 /* ??? Probably, if INSN is scheduled prematurely, we should leave
4124 INSN_TICK untouched. This is a machine-dependent issue, actually. */
4125 INSN_TICK (insn) = clock_var;
4127 check_clobbered_conditions (insn);
4129 /* Update dependent instructions. First, see if by scheduling this insn
4130 now we broke a dependence in a way that requires us to change another
4131 insn. */
4132 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4133 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4135 struct dep_replacement *desc = DEP_REPLACE (dep);
4136 rtx_insn *pro = DEP_PRO (dep);
4137 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
4138 && desc != NULL && desc->insn == pro)
4139 apply_replacement (dep, false);
4142 /* Go through and resolve forward dependencies. */
4143 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4144 sd_iterator_cond (&sd_it, &dep);)
4146 rtx_insn *next = DEP_CON (dep);
4147 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
4149 /* Resolve the dependence between INSN and NEXT.
4150 sd_resolve_dep () moves current dep to another list thus
4151 advancing the iterator. */
4152 sd_resolve_dep (sd_it);
4154 if (cancelled)
4156 if (must_restore_pattern_p (next, dep))
4157 restore_pattern (dep, false);
4158 continue;
4161 /* Don't bother trying to mark next as ready if insn is a debug
4162 insn. If insn is the last hard dependency, it will have
4163 already been discounted. */
4164 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
4165 continue;
4167 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4169 int effective_cost;
4171 effective_cost = try_ready (next);
4173 if (effective_cost >= 0
4174 && SCHED_GROUP_P (next)
4175 && advance < effective_cost)
4176 advance = effective_cost;
4178 else
4179 /* Check always has only one forward dependence (to the first insn in
4180 the recovery block), therefore, this will be executed only once. */
4182 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4183 fix_recovery_deps (RECOVERY_BLOCK (insn));
4187 /* Annotate the instruction with issue information -- TImode
4188 indicates that the instruction is expected not to be able
4189 to issue on the same cycle as the previous insn. A machine
4190 may use this information to decide how the instruction should
4191 be aligned. */
4192 if (issue_rate > 1
4193 && GET_CODE (PATTERN (insn)) != USE
4194 && GET_CODE (PATTERN (insn)) != CLOBBER
4195 && !DEBUG_INSN_P (insn))
4197 if (reload_completed)
4198 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
4199 last_clock_var = clock_var;
4202 if (nonscheduled_insns_begin != NULL_RTX)
4203 /* Indicate to debug counters that INSN is scheduled. */
4204 nonscheduled_insns_begin = insn;
4206 return advance;
4209 /* Functions for handling of notes. */
4211 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
4212 void
4213 concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
4215 rtx_insn *from_start;
4217 /* It's easy when have nothing to concat. */
4218 if (from_end == NULL)
4219 return;
4221 /* It's also easy when destination is empty. */
4222 if (*to_endp == NULL)
4224 *to_endp = from_end;
4225 return;
4228 from_start = from_end;
4229 while (PREV_INSN (from_start) != NULL)
4230 from_start = PREV_INSN (from_start);
4232 SET_PREV_INSN (from_start) = *to_endp;
4233 SET_NEXT_INSN (*to_endp) = from_start;
4234 *to_endp = from_end;
4237 /* Delete notes between HEAD and TAIL and put them in the chain
4238 of notes ended by NOTE_LIST. */
4239 void
4240 remove_notes (rtx_insn *head, rtx_insn *tail)
4242 rtx_insn *next_tail, *insn, *next;
4244 note_list = 0;
4245 if (head == tail && !INSN_P (head))
4246 return;
4248 next_tail = NEXT_INSN (tail);
4249 for (insn = head; insn != next_tail; insn = next)
4251 next = NEXT_INSN (insn);
4252 if (!NOTE_P (insn))
4253 continue;
4255 switch (NOTE_KIND (insn))
4257 case NOTE_INSN_BASIC_BLOCK:
4258 continue;
4260 case NOTE_INSN_EPILOGUE_BEG:
4261 if (insn != tail)
4263 remove_insn (insn);
4264 /* If an insn was split just before the EPILOGUE_BEG note and
4265 that split created new basic blocks, we could have a
4266 BASIC_BLOCK note here. Safely advance over it in that case
4267 and assert that we land on a real insn. */
4268 if (NOTE_P (next)
4269 && NOTE_KIND (next) == NOTE_INSN_BASIC_BLOCK
4270 && next != next_tail)
4271 next = NEXT_INSN (next);
4272 gcc_assert (INSN_P (next));
4273 add_reg_note (next, REG_SAVE_NOTE,
4274 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4275 break;
4277 /* FALLTHRU */
4279 default:
4280 remove_insn (insn);
4282 /* Add the note to list that ends at NOTE_LIST. */
4283 SET_PREV_INSN (insn) = note_list;
4284 SET_NEXT_INSN (insn) = NULL_RTX;
4285 if (note_list)
4286 SET_NEXT_INSN (note_list) = insn;
4287 note_list = insn;
4288 break;
4291 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4295 /* A structure to record enough data to allow us to backtrack the scheduler to
4296 a previous state. */
4297 struct haifa_saved_data
4299 /* Next entry on the list. */
4300 struct haifa_saved_data *next;
4302 /* Backtracking is associated with scheduling insns that have delay slots.
4303 DELAY_PAIR points to the structure that contains the insns involved, and
4304 the number of cycles between them. */
4305 struct delay_pair *delay_pair;
4307 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4308 void *fe_saved_data;
4309 /* Data used by the backend. */
4310 void *be_saved_data;
4312 /* Copies of global state. */
4313 int clock_var, last_clock_var;
4314 struct ready_list ready;
4315 state_t curr_state;
4317 rtx_insn *last_scheduled_insn;
4318 rtx_insn *last_nondebug_scheduled_insn;
4319 rtx_insn *nonscheduled_insns_begin;
4320 int cycle_issued_insns;
4322 /* Copies of state used in the inner loop of schedule_block. */
4323 struct sched_block_state sched_block;
4325 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4326 to 0 when restoring. */
4327 int q_size;
4328 rtx_insn_list **insn_queue;
4330 /* Describe pattern replacements that occurred since this backtrack point
4331 was queued. */
4332 vec<dep_t> replacement_deps;
4333 vec<int> replace_apply;
4335 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4336 point. */
4337 vec<dep_t> next_cycle_deps;
4338 vec<int> next_cycle_apply;
4341 /* A record, in reverse order, of all scheduled insns which have delay slots
4342 and may require backtracking. */
4343 static struct haifa_saved_data *backtrack_queue;
4345 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4346 to SET_P. */
4347 static void
4348 mark_backtrack_feeds (rtx_insn *insn, int set_p)
4350 sd_iterator_def sd_it;
4351 dep_t dep;
4352 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4354 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4358 /* Save the current scheduler state so that we can backtrack to it
4359 later if necessary. PAIR gives the insns that make it necessary to
4360 save this point. SCHED_BLOCK is the local state of schedule_block
4361 that need to be saved. */
4362 static void
4363 save_backtrack_point (struct delay_pair *pair,
4364 struct sched_block_state sched_block)
4366 int i;
4367 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4369 save->curr_state = xmalloc (dfa_state_size);
4370 memcpy (save->curr_state, curr_state, dfa_state_size);
4372 save->ready.first = ready.first;
4373 save->ready.n_ready = ready.n_ready;
4374 save->ready.n_debug = ready.n_debug;
4375 save->ready.veclen = ready.veclen;
4376 save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
4377 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4379 save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
4380 save->q_size = q_size;
4381 for (i = 0; i <= max_insn_queue_index; i++)
4383 int q = NEXT_Q_AFTER (q_ptr, i);
4384 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4387 save->clock_var = clock_var;
4388 save->last_clock_var = last_clock_var;
4389 save->cycle_issued_insns = cycle_issued_insns;
4390 save->last_scheduled_insn = last_scheduled_insn;
4391 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4392 save->nonscheduled_insns_begin = nonscheduled_insns_begin;
4394 save->sched_block = sched_block;
4396 save->replacement_deps.create (0);
4397 save->replace_apply.create (0);
4398 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4399 save->next_cycle_apply = next_cycle_apply.copy ();
4401 if (current_sched_info->save_state)
4402 save->fe_saved_data = (*current_sched_info->save_state) ();
4404 if (targetm.sched.alloc_sched_context)
4406 save->be_saved_data = targetm.sched.alloc_sched_context ();
4407 targetm.sched.init_sched_context (save->be_saved_data, false);
4409 else
4410 save->be_saved_data = NULL;
4412 save->delay_pair = pair;
4414 save->next = backtrack_queue;
4415 backtrack_queue = save;
4417 while (pair)
4419 mark_backtrack_feeds (pair->i2, 1);
4420 INSN_TICK (pair->i2) = INVALID_TICK;
4421 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4422 SHADOW_P (pair->i2) = pair->stages == 0;
4423 pair = pair->next_same_i1;
4427 /* Walk the ready list and all queues. If any insns have unresolved backwards
4428 dependencies, these must be cancelled deps, broken by predication. Set or
4429 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4431 static void
4432 toggle_cancelled_flags (bool set)
4434 int i;
4435 sd_iterator_def sd_it;
4436 dep_t dep;
4438 if (ready.n_ready > 0)
4440 rtx_insn **first = ready_lastpos (&ready);
4441 for (i = 0; i < ready.n_ready; i++)
4442 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4443 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4445 if (set)
4446 DEP_STATUS (dep) |= DEP_CANCELLED;
4447 else
4448 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4451 for (i = 0; i <= max_insn_queue_index; i++)
4453 int q = NEXT_Q_AFTER (q_ptr, i);
4454 rtx_insn_list *link;
4455 for (link = insn_queue[q]; link; link = link->next ())
4457 rtx_insn *insn = link->insn ();
4458 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4459 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4461 if (set)
4462 DEP_STATUS (dep) |= DEP_CANCELLED;
4463 else
4464 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4470 /* Undo the replacements that have occurred after backtrack point SAVE
4471 was placed. */
4472 static void
4473 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4475 while (!save->replacement_deps.is_empty ())
4477 dep_t dep = save->replacement_deps.pop ();
4478 int apply_p = save->replace_apply.pop ();
4480 if (apply_p)
4481 restore_pattern (dep, true);
4482 else
4483 apply_replacement (dep, true);
4485 save->replacement_deps.release ();
4486 save->replace_apply.release ();
4489 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4490 Restore their dependencies to an unresolved state, and mark them as
4491 queued nowhere. */
4493 static void
4494 unschedule_insns_until (rtx_insn *insn)
4496 auto_vec<rtx_insn *> recompute_vec;
4498 /* Make two passes over the insns to be unscheduled. First, we clear out
4499 dependencies and other trivial bookkeeping. */
4500 for (;;)
4502 rtx_insn *last;
4503 sd_iterator_def sd_it;
4504 dep_t dep;
4506 last = scheduled_insns.pop ();
4508 /* This will be changed by restore_backtrack_point if the insn is in
4509 any queue. */
4510 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4511 if (last != insn)
4512 INSN_TICK (last) = INVALID_TICK;
4514 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4515 modulo_insns_scheduled--;
4517 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4518 sd_iterator_cond (&sd_it, &dep);)
4520 rtx_insn *con = DEP_CON (dep);
4521 sd_unresolve_dep (sd_it);
4522 if (!MUST_RECOMPUTE_SPEC_P (con))
4524 MUST_RECOMPUTE_SPEC_P (con) = 1;
4525 recompute_vec.safe_push (con);
4529 if (last == insn)
4530 break;
4533 /* A second pass, to update ready and speculation status for insns
4534 depending on the unscheduled ones. The first pass must have
4535 popped the scheduled_insns vector up to the point where we
4536 restart scheduling, as recompute_todo_spec requires it to be
4537 up-to-date. */
4538 while (!recompute_vec.is_empty ())
4540 rtx_insn *con;
4542 con = recompute_vec.pop ();
4543 MUST_RECOMPUTE_SPEC_P (con) = 0;
4544 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4546 TODO_SPEC (con) = HARD_DEP;
4547 INSN_TICK (con) = INVALID_TICK;
4548 if (PREDICATED_PAT (con) != NULL_RTX)
4549 haifa_change_pattern (con, ORIG_PAT (con));
4551 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4552 TODO_SPEC (con) = recompute_todo_spec (con, true);
4556 /* Restore scheduler state from the topmost entry on the backtracking queue.
4557 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4558 overwrite with the saved data.
4559 The caller must already have called unschedule_insns_until. */
4561 static void
4562 restore_last_backtrack_point (struct sched_block_state *psched_block)
4564 int i;
4565 struct haifa_saved_data *save = backtrack_queue;
4567 backtrack_queue = save->next;
4569 if (current_sched_info->restore_state)
4570 (*current_sched_info->restore_state) (save->fe_saved_data);
4572 if (targetm.sched.alloc_sched_context)
4574 targetm.sched.set_sched_context (save->be_saved_data);
4575 targetm.sched.free_sched_context (save->be_saved_data);
4578 /* Do this first since it clobbers INSN_TICK of the involved
4579 instructions. */
4580 undo_replacements_for_backtrack (save);
4582 /* Clear the QUEUE_INDEX of everything in the ready list or one
4583 of the queues. */
4584 if (ready.n_ready > 0)
4586 rtx_insn **first = ready_lastpos (&ready);
4587 for (i = 0; i < ready.n_ready; i++)
4589 rtx_insn *insn = first[i];
4590 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4591 INSN_TICK (insn) = INVALID_TICK;
4594 for (i = 0; i <= max_insn_queue_index; i++)
4596 int q = NEXT_Q_AFTER (q_ptr, i);
4598 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4600 rtx_insn *x = link->insn ();
4601 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4602 INSN_TICK (x) = INVALID_TICK;
4604 free_INSN_LIST_list (&insn_queue[q]);
4607 free (ready.vec);
4608 ready = save->ready;
4610 if (ready.n_ready > 0)
4612 rtx_insn **first = ready_lastpos (&ready);
4613 for (i = 0; i < ready.n_ready; i++)
4615 rtx_insn *insn = first[i];
4616 QUEUE_INDEX (insn) = QUEUE_READY;
4617 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4618 INSN_TICK (insn) = save->clock_var;
4622 q_ptr = 0;
4623 q_size = save->q_size;
4624 for (i = 0; i <= max_insn_queue_index; i++)
4626 int q = NEXT_Q_AFTER (q_ptr, i);
4628 insn_queue[q] = save->insn_queue[q];
4630 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4632 rtx_insn *x = link->insn ();
4633 QUEUE_INDEX (x) = i;
4634 TODO_SPEC (x) = recompute_todo_spec (x, true);
4635 INSN_TICK (x) = save->clock_var + i;
4638 free (save->insn_queue);
4640 toggle_cancelled_flags (true);
4642 clock_var = save->clock_var;
4643 last_clock_var = save->last_clock_var;
4644 cycle_issued_insns = save->cycle_issued_insns;
4645 last_scheduled_insn = save->last_scheduled_insn;
4646 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4647 nonscheduled_insns_begin = save->nonscheduled_insns_begin;
4649 *psched_block = save->sched_block;
4651 memcpy (curr_state, save->curr_state, dfa_state_size);
4652 free (save->curr_state);
4654 mark_backtrack_feeds (save->delay_pair->i2, 0);
4656 gcc_assert (next_cycle_replace_deps.is_empty ());
4657 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4658 next_cycle_apply = save->next_cycle_apply.copy ();
4660 free (save);
4662 for (save = backtrack_queue; save; save = save->next)
4664 mark_backtrack_feeds (save->delay_pair->i2, 1);
4668 /* Discard all data associated with the topmost entry in the backtrack
4669 queue. If RESET_TICK is false, we just want to free the data. If true,
4670 we are doing this because we discovered a reason to backtrack. In the
4671 latter case, also reset the INSN_TICK for the shadow insn. */
4672 static void
4673 free_topmost_backtrack_point (bool reset_tick)
4675 struct haifa_saved_data *save = backtrack_queue;
4676 int i;
4678 backtrack_queue = save->next;
4680 if (reset_tick)
4682 struct delay_pair *pair = save->delay_pair;
4683 while (pair)
4685 INSN_TICK (pair->i2) = INVALID_TICK;
4686 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4687 pair = pair->next_same_i1;
4689 undo_replacements_for_backtrack (save);
4691 else
4693 save->replacement_deps.release ();
4694 save->replace_apply.release ();
4697 if (targetm.sched.free_sched_context)
4698 targetm.sched.free_sched_context (save->be_saved_data);
4699 if (current_sched_info->restore_state)
4700 free (save->fe_saved_data);
4701 for (i = 0; i <= max_insn_queue_index; i++)
4702 free_INSN_LIST_list (&save->insn_queue[i]);
4703 free (save->insn_queue);
4704 free (save->curr_state);
4705 free (save->ready.vec);
4706 free (save);
4709 /* Free the entire backtrack queue. */
4710 static void
4711 free_backtrack_queue (void)
4713 while (backtrack_queue)
4714 free_topmost_backtrack_point (false);
4717 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4718 may have to postpone the replacement until the start of the next cycle,
4719 at which point we will be called again with IMMEDIATELY true. This is
4720 only done for machines which have instruction packets with explicit
4721 parallelism however. */
4722 static void
4723 apply_replacement (dep_t dep, bool immediately)
4725 struct dep_replacement *desc = DEP_REPLACE (dep);
4726 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4728 next_cycle_replace_deps.safe_push (dep);
4729 next_cycle_apply.safe_push (1);
4731 else
4733 bool success;
4735 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4736 return;
4738 if (sched_verbose >= 5)
4739 fprintf (sched_dump, "applying replacement for insn %d\n",
4740 INSN_UID (desc->insn));
4742 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4743 gcc_assert (success);
4745 rtx_insn *insn = DEP_PRO (dep);
4747 /* Recompute priority since dependent priorities may have changed. */
4748 priority (insn, true);
4749 update_insn_after_change (desc->insn);
4751 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4752 fix_tick_ready (desc->insn);
4754 if (backtrack_queue != NULL)
4756 backtrack_queue->replacement_deps.safe_push (dep);
4757 backtrack_queue->replace_apply.safe_push (1);
4762 /* We have determined that a pattern involved in DEP must be restored.
4763 If IMMEDIATELY is false, we may have to postpone the replacement
4764 until the start of the next cycle, at which point we will be called
4765 again with IMMEDIATELY true. */
4766 static void
4767 restore_pattern (dep_t dep, bool immediately)
4769 rtx_insn *next = DEP_CON (dep);
4770 int tick = INSN_TICK (next);
4772 /* If we already scheduled the insn, the modified version is
4773 correct. */
4774 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4775 return;
4777 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4779 next_cycle_replace_deps.safe_push (dep);
4780 next_cycle_apply.safe_push (0);
4781 return;
4785 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4787 if (sched_verbose >= 5)
4788 fprintf (sched_dump, "restoring pattern for insn %d\n",
4789 INSN_UID (next));
4790 haifa_change_pattern (next, ORIG_PAT (next));
4792 else
4794 struct dep_replacement *desc = DEP_REPLACE (dep);
4795 bool success;
4797 if (sched_verbose >= 5)
4798 fprintf (sched_dump, "restoring pattern for insn %d\n",
4799 INSN_UID (desc->insn));
4800 tick = INSN_TICK (desc->insn);
4802 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4803 gcc_assert (success);
4805 rtx_insn *insn = DEP_PRO (dep);
4807 if (QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
4809 /* Recompute priority since dependent priorities may have changed. */
4810 priority (insn, true);
4813 update_insn_after_change (desc->insn);
4815 if (backtrack_queue != NULL)
4817 backtrack_queue->replacement_deps.safe_push (dep);
4818 backtrack_queue->replace_apply.safe_push (0);
4821 INSN_TICK (next) = tick;
4822 if (TODO_SPEC (next) == DEP_POSTPONED)
4823 return;
4825 if (sd_lists_empty_p (next, SD_LIST_BACK))
4826 TODO_SPEC (next) = 0;
4827 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4828 TODO_SPEC (next) = HARD_DEP;
4831 /* Perform pattern replacements that were queued up until the next
4832 cycle. */
4833 static void
4834 perform_replacements_new_cycle (void)
4836 int i;
4837 dep_t dep;
4838 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4840 int apply_p = next_cycle_apply[i];
4841 if (apply_p)
4842 apply_replacement (dep, true);
4843 else
4844 restore_pattern (dep, true);
4846 next_cycle_replace_deps.truncate (0);
4847 next_cycle_apply.truncate (0);
4850 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4851 instructions we've previously encountered, a set bit prevents
4852 recursion. BUDGET is a limit on how far ahead we look, it is
4853 reduced on recursive calls. Return true if we produced a good
4854 estimate, or false if we exceeded the budget. */
4855 static bool
4856 estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
4858 sd_iterator_def sd_it;
4859 dep_t dep;
4860 int earliest = INSN_TICK (insn);
4862 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4864 rtx_insn *pro = DEP_PRO (dep);
4865 int t;
4867 if (DEP_STATUS (dep) & DEP_CANCELLED)
4868 continue;
4870 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4871 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4872 else
4874 int cost = dep_cost (dep);
4875 if (cost >= budget)
4876 return false;
4877 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4879 if (!estimate_insn_tick (processed, pro, budget - cost))
4880 return false;
4882 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4883 t = INSN_TICK_ESTIMATE (pro) + cost;
4884 if (earliest == INVALID_TICK || t > earliest)
4885 earliest = t;
4888 bitmap_set_bit (processed, INSN_LUID (insn));
4889 INSN_TICK_ESTIMATE (insn) = earliest;
4890 return true;
4893 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4894 infinite resources) the cycle in which the delayed shadow can be issued.
4895 Return the number of cycles that must pass before the real insn can be
4896 issued in order to meet this constraint. */
4897 static int
4898 estimate_shadow_tick (struct delay_pair *p)
4900 auto_bitmap processed;
4901 int t;
4902 bool cutoff;
4904 cutoff = !estimate_insn_tick (processed, p->i2,
4905 max_insn_queue_index + pair_delay (p));
4906 if (cutoff)
4907 return max_insn_queue_index;
4908 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4909 if (t > 0)
4910 return t;
4911 return 0;
4914 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4915 recursively resolve all its forward dependencies. */
4916 static void
4917 resolve_dependencies (rtx_insn *insn)
4919 sd_iterator_def sd_it;
4920 dep_t dep;
4922 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4923 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4924 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4925 return;
4927 if (sched_verbose >= 4)
4928 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4930 if (QUEUE_INDEX (insn) >= 0)
4931 queue_remove (insn);
4933 scheduled_insns.safe_push (insn);
4935 /* Update dependent instructions. */
4936 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4937 sd_iterator_cond (&sd_it, &dep);)
4939 rtx_insn *next = DEP_CON (dep);
4941 if (sched_verbose >= 4)
4942 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4943 INSN_UID (next));
4945 /* Resolve the dependence between INSN and NEXT.
4946 sd_resolve_dep () moves current dep to another list thus
4947 advancing the iterator. */
4948 sd_resolve_dep (sd_it);
4950 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4952 resolve_dependencies (next);
4954 else
4955 /* Check always has only one forward dependence (to the first insn in
4956 the recovery block), therefore, this will be executed only once. */
4958 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4964 /* Return the head and tail pointers of ebb starting at BEG and ending
4965 at END. */
4966 void
4967 get_ebb_head_tail (basic_block beg, basic_block end,
4968 rtx_insn **headp, rtx_insn **tailp)
4970 rtx_insn *beg_head = BB_HEAD (beg);
4971 rtx_insn * beg_tail = BB_END (beg);
4972 rtx_insn * end_head = BB_HEAD (end);
4973 rtx_insn * end_tail = BB_END (end);
4975 /* Don't include any notes or labels at the beginning of the BEG
4976 basic block, or notes at the end of the END basic blocks. */
4978 if (LABEL_P (beg_head))
4979 beg_head = NEXT_INSN (beg_head);
4981 while (beg_head != beg_tail)
4982 if (NOTE_P (beg_head))
4983 beg_head = NEXT_INSN (beg_head);
4984 else if (DEBUG_INSN_P (beg_head))
4986 rtx_insn * note, *next;
4988 for (note = NEXT_INSN (beg_head);
4989 note != beg_tail;
4990 note = next)
4992 next = NEXT_INSN (note);
4993 if (NOTE_P (note))
4995 if (sched_verbose >= 9)
4996 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4998 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
5000 if (BLOCK_FOR_INSN (note) != beg)
5001 df_insn_change_bb (note, beg);
5003 else if (!DEBUG_INSN_P (note))
5004 break;
5007 break;
5009 else
5010 break;
5012 *headp = beg_head;
5014 if (beg == end)
5015 end_head = beg_head;
5016 else if (LABEL_P (end_head))
5017 end_head = NEXT_INSN (end_head);
5019 while (end_head != end_tail)
5020 if (NOTE_P (end_tail))
5021 end_tail = PREV_INSN (end_tail);
5022 else if (DEBUG_INSN_P (end_tail))
5024 rtx_insn * note, *prev;
5026 for (note = PREV_INSN (end_tail);
5027 note != end_head;
5028 note = prev)
5030 prev = PREV_INSN (note);
5031 if (NOTE_P (note))
5033 if (sched_verbose >= 9)
5034 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
5036 reorder_insns_nobb (note, note, end_tail);
5038 if (end_tail == BB_END (end))
5039 BB_END (end) = note;
5041 if (BLOCK_FOR_INSN (note) != end)
5042 df_insn_change_bb (note, end);
5044 else if (!DEBUG_INSN_P (note))
5045 break;
5048 break;
5050 else
5051 break;
5053 *tailp = end_tail;
5056 /* Return true if there are no real insns in the range [ HEAD, TAIL ]. */
5058 bool
5059 no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
5061 while (head != NEXT_INSN (tail))
5063 if (!NOTE_P (head) && !LABEL_P (head))
5064 return false;
5065 head = NEXT_INSN (head);
5067 return true;
5070 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
5071 previously found among the insns. Insert them just before HEAD. */
5072 rtx_insn *
5073 restore_other_notes (rtx_insn *head, basic_block head_bb)
5075 if (note_list != 0)
5077 rtx_insn *note_head = note_list;
5079 if (head)
5080 head_bb = BLOCK_FOR_INSN (head);
5081 else
5082 head = NEXT_INSN (bb_note (head_bb));
5084 while (PREV_INSN (note_head))
5086 set_block_for_insn (note_head, head_bb);
5087 note_head = PREV_INSN (note_head);
5089 /* In the above cycle we've missed this note. */
5090 set_block_for_insn (note_head, head_bb);
5092 SET_PREV_INSN (note_head) = PREV_INSN (head);
5093 SET_NEXT_INSN (PREV_INSN (head)) = note_head;
5094 SET_PREV_INSN (head) = note_list;
5095 SET_NEXT_INSN (note_list) = head;
5097 if (BLOCK_FOR_INSN (head) != head_bb)
5098 BB_END (head_bb) = note_list;
5100 head = note_head;
5103 return head;
5106 /* When we know we are going to discard the schedule due to a failed attempt
5107 at modulo scheduling, undo all replacements. */
5108 static void
5109 undo_all_replacements (void)
5111 rtx_insn *insn;
5112 int i;
5114 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
5116 sd_iterator_def sd_it;
5117 dep_t dep;
5119 /* See if we must undo a replacement. */
5120 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
5121 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
5123 struct dep_replacement *desc = DEP_REPLACE (dep);
5124 if (desc != NULL)
5125 validate_change (desc->insn, desc->loc, desc->orig, 0);
5130 /* Return first non-scheduled insn in the current scheduling block.
5131 This is mostly used for debug-counter purposes. */
5132 static rtx_insn *
5133 first_nonscheduled_insn (void)
5135 rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
5136 ? nonscheduled_insns_begin
5137 : current_sched_info->prev_head);
5141 insn = next_nonnote_nondebug_insn (insn);
5143 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5145 return insn;
5148 /* Move insns that became ready to fire from queue to ready list. */
5150 static void
5151 queue_to_ready (struct ready_list *ready)
5153 rtx_insn *insn;
5154 rtx_insn_list *link;
5155 rtx_insn *skip_insn;
5157 q_ptr = NEXT_Q (q_ptr);
5159 if (dbg_cnt (sched_insn) == false)
5160 /* If debug counter is activated do not requeue the first
5161 nonscheduled insn. */
5162 skip_insn = first_nonscheduled_insn ();
5163 else
5164 skip_insn = NULL;
5166 /* Add all pending insns that can be scheduled without stalls to the
5167 ready list. */
5168 for (link = insn_queue[q_ptr]; link; link = link->next ())
5170 insn = link->insn ();
5171 q_size -= 1;
5173 if (sched_verbose >= 2)
5174 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5175 (*current_sched_info->print_insn) (insn, 0));
5177 /* If the ready list is full, delay the insn for 1 cycle.
5178 See the comment in schedule_block for the rationale. */
5179 if (!reload_completed
5180 && (ready->n_ready - ready->n_debug > param_max_sched_ready_insns
5181 || (sched_pressure == SCHED_PRESSURE_MODEL
5182 /* Limit pressure recalculations to
5183 param_max_sched_ready_insns instructions too. */
5184 && model_index (insn) > (model_curr_point
5185 + param_max_sched_ready_insns)))
5186 && !(sched_pressure == SCHED_PRESSURE_MODEL
5187 && model_curr_point < model_num_insns
5188 /* Always allow the next model instruction to issue. */
5189 && model_index (insn) == model_curr_point)
5190 && !SCHED_GROUP_P (insn)
5191 && insn != skip_insn)
5193 if (sched_verbose >= 2)
5194 fprintf (sched_dump, "keeping in queue, ready full\n");
5195 queue_insn (insn, 1, "ready full");
5197 else
5199 ready_add (ready, insn, false);
5200 if (sched_verbose >= 2)
5201 fprintf (sched_dump, "moving to ready without stalls\n");
5204 free_INSN_LIST_list (&insn_queue[q_ptr]);
5206 /* If there are no ready insns, stall until one is ready and add all
5207 of the pending insns at that point to the ready list. */
5208 if (ready->n_ready == 0)
5210 int stalls;
5212 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
5214 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5216 for (; link; link = link->next ())
5218 insn = link->insn ();
5219 q_size -= 1;
5221 if (sched_verbose >= 2)
5222 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5223 (*current_sched_info->print_insn) (insn, 0));
5225 ready_add (ready, insn, false);
5226 if (sched_verbose >= 2)
5227 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5229 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
5231 advance_one_cycle ();
5233 break;
5236 advance_one_cycle ();
5239 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5240 clock_var += stalls;
5241 if (sched_verbose >= 2)
5242 fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5243 stalls, clock_var);
5247 /* Used by early_queue_to_ready. Determines whether it is "ok" to
5248 prematurely move INSN from the queue to the ready list. Currently,
5249 if a target defines the hook 'is_costly_dependence', this function
5250 uses the hook to check whether there exist any dependences which are
5251 considered costly by the target, between INSN and other insns that
5252 have already been scheduled. Dependences are checked up to Y cycles
5253 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
5254 controlling this value.
5255 (Other considerations could be taken into account instead (or in
5256 addition) depending on user flags and target hooks. */
5258 static bool
5259 ok_for_early_queue_removal (rtx_insn *insn)
5261 if (targetm.sched.is_costly_dependence)
5263 int n_cycles;
5264 int i = scheduled_insns.length ();
5265 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5267 while (i-- > 0)
5269 int cost;
5271 rtx_insn *prev_insn = scheduled_insns[i];
5273 if (!NOTE_P (prev_insn))
5275 dep_t dep;
5277 dep = sd_find_dep_between (prev_insn, insn, true);
5279 if (dep != NULL)
5281 cost = dep_cost (dep);
5283 if (targetm.sched.is_costly_dependence (dep, cost,
5284 flag_sched_stalled_insns_dep - n_cycles))
5285 return false;
5289 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5290 break;
5293 if (i == 0)
5294 break;
5298 return true;
5302 /* Remove insns from the queue, before they become "ready" with respect
5303 to FU latency considerations. */
5305 static int
5306 early_queue_to_ready (state_t state, struct ready_list *ready)
5308 rtx_insn *insn;
5309 rtx_insn_list *link;
5310 rtx_insn_list *next_link;
5311 rtx_insn_list *prev_link;
5312 bool move_to_ready;
5313 int cost;
5314 state_t temp_state = alloca (dfa_state_size);
5315 int stalls;
5316 int insns_removed = 0;
5319 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5320 function:
5322 X == 0: There is no limit on how many queued insns can be removed
5323 prematurely. (flag_sched_stalled_insns = -1).
5325 X >= 1: Only X queued insns can be removed prematurely in each
5326 invocation. (flag_sched_stalled_insns = X).
5328 Otherwise: Early queue removal is disabled.
5329 (flag_sched_stalled_insns = 0)
5332 if (! flag_sched_stalled_insns)
5333 return 0;
5335 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5337 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5339 if (sched_verbose > 6)
5340 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5342 prev_link = 0;
5343 while (link)
5345 next_link = link->next ();
5346 insn = link->insn ();
5347 if (insn && sched_verbose > 6)
5348 print_rtl_single (sched_dump, insn);
5350 memcpy (temp_state, state, dfa_state_size);
5351 if (recog_memoized (insn) < 0)
5352 /* non-negative to indicate that it's not ready
5353 to avoid infinite Q->R->Q->R... */
5354 cost = 0;
5355 else
5356 cost = state_transition (temp_state, insn);
5358 if (sched_verbose >= 6)
5359 fprintf (sched_dump, "transition cost = %d\n", cost);
5361 move_to_ready = false;
5362 if (cost < 0)
5364 move_to_ready = ok_for_early_queue_removal (insn);
5365 if (move_to_ready == true)
5367 /* move from Q to R */
5368 q_size -= 1;
5369 ready_add (ready, insn, false);
5371 if (prev_link)
5372 XEXP (prev_link, 1) = next_link;
5373 else
5374 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5376 free_INSN_LIST_node (link);
5378 if (sched_verbose >= 2)
5379 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5380 (*current_sched_info->print_insn) (insn, 0));
5382 insns_removed++;
5383 if (insns_removed == flag_sched_stalled_insns)
5384 /* Remove no more than flag_sched_stalled_insns insns
5385 from Q at a time. */
5386 return insns_removed;
5390 if (move_to_ready == false)
5391 prev_link = link;
5393 link = next_link;
5394 } /* while link */
5395 } /* if link */
5397 } /* for stalls.. */
5399 return insns_removed;
5403 /* Print the ready list for debugging purposes.
5404 If READY_TRY is non-zero then only print insns that max_issue
5405 will consider. */
5406 static void
5407 debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
5409 rtx_insn **p;
5410 int i;
5412 if (ready->n_ready == 0)
5414 fprintf (sched_dump, "\n");
5415 return;
5418 p = ready_lastpos (ready);
5419 for (i = 0; i < ready->n_ready; i++)
5421 if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5422 continue;
5424 fprintf (sched_dump, " %s:%d",
5425 (*current_sched_info->print_insn) (p[i], 0),
5426 INSN_LUID (p[i]));
5427 if (sched_pressure != SCHED_PRESSURE_NONE)
5428 fprintf (sched_dump, "(cost=%d",
5429 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5430 fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
5431 if (INSN_TICK (p[i]) > clock_var)
5432 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5433 if (sched_pressure == SCHED_PRESSURE_MODEL)
5434 fprintf (sched_dump, ":idx=%d",
5435 model_index (p[i]));
5436 if (sched_pressure != SCHED_PRESSURE_NONE)
5437 fprintf (sched_dump, ")");
5439 fprintf (sched_dump, "\n");
5442 /* Print the ready list. Callable from debugger. */
5443 static void
5444 debug_ready_list (struct ready_list *ready)
5446 debug_ready_list_1 (ready, NULL);
5449 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5450 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5451 replaces the epilogue note in the correct basic block. */
5452 void
5453 reemit_notes (rtx_insn *insn)
5455 rtx note;
5456 rtx_insn *last = insn;
5458 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5460 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5462 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5464 last = emit_note_before (note_type, last);
5465 remove_note (insn, note);
5466 df_insn_create_insn_record (last);
5471 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5472 static void
5473 move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
5475 if (PREV_INSN (insn) != last)
5477 basic_block bb;
5478 rtx_insn *note;
5479 int jump_p = 0;
5481 bb = BLOCK_FOR_INSN (insn);
5483 /* BB_HEAD is either LABEL or NOTE. */
5484 gcc_assert (BB_HEAD (bb) != insn);
5486 if (BB_END (bb) == insn)
5487 /* If this is last instruction in BB, move end marker one
5488 instruction up. */
5490 /* Jumps are always placed at the end of basic block. */
5491 jump_p = control_flow_insn_p (insn);
5493 gcc_assert (!jump_p
5494 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5495 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5496 || (common_sched_info->sched_pass_id
5497 == SCHED_EBB_PASS));
5499 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5501 BB_END (bb) = PREV_INSN (insn);
5504 gcc_assert (BB_END (bb) != last);
5506 if (jump_p)
5507 /* We move the block note along with jump. */
5509 gcc_assert (nt);
5511 note = NEXT_INSN (insn);
5512 while (NOTE_NOT_BB_P (note) && note != nt)
5513 note = NEXT_INSN (note);
5515 if (note != nt
5516 && (LABEL_P (note)
5517 || BARRIER_P (note)))
5518 note = NEXT_INSN (note);
5520 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5522 else
5523 note = insn;
5525 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5526 SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5528 SET_NEXT_INSN (note) = NEXT_INSN (last);
5529 SET_PREV_INSN (NEXT_INSN (last)) = note;
5531 SET_NEXT_INSN (last) = insn;
5532 SET_PREV_INSN (insn) = last;
5534 bb = BLOCK_FOR_INSN (last);
5536 if (jump_p)
5538 fix_jump_move (insn);
5540 if (BLOCK_FOR_INSN (insn) != bb)
5541 move_block_after_check (insn);
5543 gcc_assert (BB_END (bb) == last);
5546 df_insn_change_bb (insn, bb);
5548 /* Update BB_END, if needed. */
5549 if (BB_END (bb) == last)
5550 BB_END (bb) = insn;
5553 SCHED_GROUP_P (insn) = 0;
5556 /* Return true if scheduling INSN will finish current clock cycle. */
5557 static bool
5558 insn_finishes_cycle_p (rtx_insn *insn)
5560 if (SCHED_GROUP_P (insn))
5561 /* After issuing INSN, rest of the sched_group will be forced to issue
5562 in order. Don't make any plans for the rest of cycle. */
5563 return true;
5565 /* Finishing the block will, apparently, finish the cycle. */
5566 if (current_sched_info->insn_finishes_block_p
5567 && current_sched_info->insn_finishes_block_p (insn))
5568 return true;
5570 return false;
5573 /* Helper for autopref_multipass_init. Given a SET in PAT and whether
5574 we're expecting a memory WRITE or not, check that the insn is relevant to
5575 the autoprefetcher modelling code. Return true iff that is the case.
5576 If it is relevant, record the base register of the memory op in BASE and
5577 the offset in OFFSET. */
5579 static bool
5580 analyze_set_insn_for_autopref (rtx pat, bool write, rtx *base, int *offset)
5582 if (GET_CODE (pat) != SET)
5583 return false;
5585 rtx mem = write ? SET_DEST (pat) : SET_SRC (pat);
5586 if (!MEM_P (mem))
5587 return false;
5589 struct address_info info;
5590 decompose_mem_address (&info, mem);
5592 /* TODO: Currently only (base+const) addressing is supported. */
5593 if (info.base == NULL || !REG_P (*info.base)
5594 || (info.disp != NULL && !CONST_INT_P (*info.disp)))
5595 return false;
5597 *base = *info.base;
5598 *offset = info.disp ? INTVAL (*info.disp) : 0;
5599 return true;
5602 /* Functions to model cache auto-prefetcher.
5604 Some of the CPUs have cache auto-prefetcher, which /seems/ to initiate
5605 memory prefetches if it sees instructions with consequitive memory accesses
5606 in the instruction stream. Details of such hardware units are not published,
5607 so we can only guess what exactly is going on there.
5608 In the scheduler, we model abstract auto-prefetcher. If there are memory
5609 insns in the ready list (or the queue) that have same memory base, but
5610 different offsets, then we delay the insns with larger offsets until insns
5611 with smaller offsets get scheduled. If PARAM_SCHED_AUTOPREF_QUEUE_DEPTH
5612 is "1", then we look at the ready list; if it is N>1, then we also look
5613 through N-1 queue entries.
5614 If the param is N>=0, then rank_for_schedule will consider auto-prefetching
5615 among its heuristics.
5616 Param value of "-1" disables modelling of the auto-prefetcher. */
5618 /* Initialize autoprefetcher model data for INSN. */
5619 static void
5620 autopref_multipass_init (const rtx_insn *insn, int write)
5622 autopref_multipass_data_t data = &INSN_AUTOPREF_MULTIPASS_DATA (insn)[write];
5624 gcc_assert (data->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED);
5625 data->base = NULL_RTX;
5626 data->offset = 0;
5627 /* Set insn entry initialized, but not relevant for auto-prefetcher. */
5628 data->status = AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5630 rtx pat = PATTERN (insn);
5632 /* We have a multi-set insn like a load-multiple or store-multiple.
5633 We care about these as long as all the memory ops inside the PARALLEL
5634 have the same base register. We care about the minimum and maximum
5635 offsets from that base but don't check for the order of those offsets
5636 within the PARALLEL insn itself. */
5637 if (GET_CODE (pat) == PARALLEL)
5639 int n_elems = XVECLEN (pat, 0);
5641 int i, offset;
5642 rtx base, prev_base = NULL_RTX;
5643 int min_offset = INT_MAX;
5645 for (i = 0; i < n_elems; i++)
5647 rtx set = XVECEXP (pat, 0, i);
5648 if (GET_CODE (set) != SET)
5649 return;
5651 if (!analyze_set_insn_for_autopref (set, write, &base, &offset))
5652 return;
5654 /* Ensure that all memory operations in the PARALLEL use the same
5655 base register. */
5656 if (i > 0 && REGNO (base) != REGNO (prev_base))
5657 return;
5658 prev_base = base;
5659 min_offset = MIN (min_offset, offset);
5662 /* If we reached here then we have a valid PARALLEL of multiple memory ops
5663 with prev_base as the base and min_offset containing the offset. */
5664 gcc_assert (prev_base);
5665 data->base = prev_base;
5666 data->offset = min_offset;
5667 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5668 return;
5671 /* Otherwise this is a single set memory operation. */
5672 rtx set = single_set (insn);
5673 if (set == NULL_RTX)
5674 return;
5676 if (!analyze_set_insn_for_autopref (set, write, &data->base,
5677 &data->offset))
5678 return;
5680 /* This insn is relevant for the auto-prefetcher.
5681 The base and offset fields will have been filled in the
5682 analyze_set_insn_for_autopref call above. */
5683 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5686 /* Helper function for rank_for_schedule sorting. */
5687 static int
5688 autopref_rank_for_schedule (const rtx_insn *insn1, const rtx_insn *insn2)
5690 int r = 0;
5691 for (int write = 0; write < 2 && !r; ++write)
5693 autopref_multipass_data_t data1
5694 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5695 autopref_multipass_data_t data2
5696 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5698 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5699 autopref_multipass_init (insn1, write);
5701 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5702 autopref_multipass_init (insn2, write);
5704 int irrel1 = data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5705 int irrel2 = data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5707 if (!irrel1 && !irrel2)
5708 /* Sort memory references from lowest offset to the largest. */
5709 r = (data1->offset > data2->offset) - (data1->offset < data2->offset);
5710 else if (write)
5711 /* Schedule "irrelevant" insns before memory stores to resolve
5712 as many producer dependencies of stores as possible. */
5713 r = irrel2 - irrel1;
5714 else
5715 /* Schedule "irrelevant" insns after memory reads to avoid breaking
5716 memory read sequences. */
5717 r = irrel1 - irrel2;
5720 return r;
5723 /* True if header of debug dump was printed. */
5724 static bool autopref_multipass_dfa_lookahead_guard_started_dump_p;
5726 /* Helper for autopref_multipass_dfa_lookahead_guard.
5727 Return "1" if INSN1 should be delayed in favor of INSN2. */
5728 static int
5729 autopref_multipass_dfa_lookahead_guard_1 (const rtx_insn *insn1,
5730 const rtx_insn *insn2, int write)
5732 autopref_multipass_data_t data1
5733 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5734 autopref_multipass_data_t data2
5735 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5737 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5738 autopref_multipass_init (insn2, write);
5739 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5740 return 0;
5742 if (rtx_equal_p (data1->base, data2->base)
5743 && data1->offset > data2->offset)
5745 if (sched_verbose >= 2)
5747 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5749 fprintf (sched_dump,
5750 ";;\t\tnot trying in max_issue due to autoprefetch "
5751 "model: ");
5752 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5755 fprintf (sched_dump, " %d(%d)", INSN_UID (insn1), INSN_UID (insn2));
5758 return 1;
5761 return 0;
5764 /* General note:
5766 We could have also hooked autoprefetcher model into
5767 first_cycle_multipass_backtrack / first_cycle_multipass_issue hooks
5768 to enable intelligent selection of "[r1+0]=r2; [r1+4]=r3" on the same cycle
5769 (e.g., once "[r1+0]=r2" is issued in max_issue(), "[r1+4]=r3" gets
5770 unblocked). We don't bother about this yet because target of interest
5771 (ARM Cortex-A15) can issue only 1 memory operation per cycle. */
5773 /* Implementation of first_cycle_multipass_dfa_lookahead_guard hook.
5774 Return "1" if INSN1 should not be considered in max_issue due to
5775 auto-prefetcher considerations. */
5777 autopref_multipass_dfa_lookahead_guard (rtx_insn *insn1, int ready_index)
5779 int r = 0;
5781 /* Exit early if the param forbids this or if we're not entering here through
5782 normal haifa scheduling. This can happen if selective scheduling is
5783 explicitly enabled. */
5784 if (!insn_queue || param_sched_autopref_queue_depth <= 0)
5785 return 0;
5787 if (sched_verbose >= 2 && ready_index == 0)
5788 autopref_multipass_dfa_lookahead_guard_started_dump_p = false;
5790 for (int write = 0; write < 2; ++write)
5792 autopref_multipass_data_t data1
5793 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5795 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5796 autopref_multipass_init (insn1, write);
5797 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5798 continue;
5800 if (ready_index == 0
5801 && data1->status == AUTOPREF_MULTIPASS_DATA_DONT_DELAY)
5802 /* We allow only a single delay on priviledged instructions.
5803 Doing otherwise would cause infinite loop. */
5805 if (sched_verbose >= 2)
5807 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5809 fprintf (sched_dump,
5810 ";;\t\tnot trying in max_issue due to autoprefetch "
5811 "model: ");
5812 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5815 fprintf (sched_dump, " *%d*", INSN_UID (insn1));
5817 continue;
5820 for (int i2 = 0; i2 < ready.n_ready; ++i2)
5822 rtx_insn *insn2 = get_ready_element (i2);
5823 if (insn1 == insn2)
5824 continue;
5825 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2, write);
5826 if (r)
5828 if (ready_index == 0)
5830 r = -1;
5831 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5833 goto finish;
5837 if (param_sched_autopref_queue_depth == 1)
5838 continue;
5840 /* Everything from the current queue slot should have been moved to
5841 the ready list. */
5842 gcc_assert (insn_queue[NEXT_Q_AFTER (q_ptr, 0)] == NULL_RTX);
5844 int n_stalls = param_sched_autopref_queue_depth - 1;
5845 if (n_stalls > max_insn_queue_index)
5846 n_stalls = max_insn_queue_index;
5848 for (int stalls = 1; stalls <= n_stalls; ++stalls)
5850 for (rtx_insn_list *link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)];
5851 link != NULL_RTX;
5852 link = link->next ())
5854 rtx_insn *insn2 = link->insn ();
5855 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2,
5856 write);
5857 if (r)
5859 /* Queue INSN1 until INSN2 can issue. */
5860 r = -stalls;
5861 if (ready_index == 0)
5862 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5863 goto finish;
5869 finish:
5870 if (sched_verbose >= 2
5871 && autopref_multipass_dfa_lookahead_guard_started_dump_p
5872 && (ready_index == ready.n_ready - 1 || r < 0))
5873 /* This does not /always/ trigger. We don't output EOL if the last
5874 insn is not recognized (INSN_CODE < 0) and lookahead_guard is not
5875 called. We can live with this. */
5876 fprintf (sched_dump, "\n");
5878 return r;
5881 /* Define type for target data used in multipass scheduling. */
5882 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5883 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5884 #endif
5885 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5887 /* The following structure describe an entry of the stack of choices. */
5888 struct choice_entry
5890 /* Ordinal number of the issued insn in the ready queue. */
5891 int index;
5892 /* The number of the rest insns whose issues we should try. */
5893 int rest;
5894 /* The number of issued essential insns. */
5895 int n;
5896 /* State after issuing the insn. */
5897 state_t state;
5898 /* Target-specific data. */
5899 first_cycle_multipass_data_t target_data;
5902 /* The following array is used to implement a stack of choices used in
5903 function max_issue. */
5904 static struct choice_entry *choice_stack;
5906 /* This holds the value of the target dfa_lookahead hook. */
5907 int dfa_lookahead;
5909 /* The following variable value is maximal number of tries of issuing
5910 insns for the first cycle multipass insn scheduling. We define
5911 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5912 need this constraint if all real insns (with non-negative codes)
5913 had reservations because in this case the algorithm complexity is
5914 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5915 might be incomplete and such insn might occur. For such
5916 descriptions, the complexity of algorithm (without the constraint)
5917 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5918 static int max_lookahead_tries;
5920 /* The following function returns maximal (or close to maximal) number
5921 of insns which can be issued on the same cycle and one of which
5922 insns is insns with the best rank (the first insn in READY). To
5923 make this function tries different samples of ready insns. READY
5924 is current queue `ready'. Global array READY_TRY reflects what
5925 insns are already issued in this try. The function stops immediately,
5926 if it reached the such a solution, that all instruction can be issued.
5927 INDEX will contain index of the best insn in READY. The following
5928 function is used only for first cycle multipass scheduling.
5930 PRIVILEGED_N >= 0
5932 This function expects recognized insns only. All USEs,
5933 CLOBBERs, etc must be filtered elsewhere. */
5935 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5936 bool first_cycle_insn_p, int *index)
5938 int n, i, all, n_ready, best, delay, tries_num;
5939 int more_issue;
5940 struct choice_entry *top;
5941 rtx_insn *insn;
5943 if (sched_fusion)
5944 return 0;
5946 n_ready = ready->n_ready;
5947 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5948 && privileged_n <= n_ready);
5950 /* Init MAX_LOOKAHEAD_TRIES. */
5951 if (max_lookahead_tries == 0)
5953 max_lookahead_tries = 100;
5954 for (i = 0; i < issue_rate; i++)
5955 max_lookahead_tries *= dfa_lookahead;
5958 /* Init max_points. */
5959 more_issue = issue_rate - cycle_issued_insns;
5960 gcc_assert (more_issue >= 0);
5962 /* The number of the issued insns in the best solution. */
5963 best = 0;
5965 top = choice_stack;
5967 /* Set initial state of the search. */
5968 memcpy (top->state, state, dfa_state_size);
5969 top->rest = dfa_lookahead;
5970 top->n = 0;
5971 if (targetm.sched.first_cycle_multipass_begin)
5972 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5973 ready_try, n_ready,
5974 first_cycle_insn_p);
5976 /* Count the number of the insns to search among. */
5977 for (all = i = 0; i < n_ready; i++)
5978 if (!ready_try [i])
5979 all++;
5981 if (sched_verbose >= 2)
5983 fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
5984 debug_ready_list_1 (ready, ready_try);
5987 /* I is the index of the insn to try next. */
5988 i = 0;
5989 tries_num = 0;
5990 for (;;)
5992 if (/* If we've reached a dead end or searched enough of what we have
5993 been asked... */
5994 top->rest == 0
5995 /* or have nothing else to try... */
5996 || i >= n_ready
5997 /* or should not issue more. */
5998 || top->n >= more_issue)
6000 /* ??? (... || i == n_ready). */
6001 gcc_assert (i <= n_ready);
6003 /* We should not issue more than issue_rate instructions. */
6004 gcc_assert (top->n <= more_issue);
6006 if (top == choice_stack)
6007 break;
6009 if (best < top - choice_stack)
6011 if (privileged_n)
6013 n = privileged_n;
6014 /* Try to find issued privileged insn. */
6015 while (n && !ready_try[--n])
6019 if (/* If all insns are equally good... */
6020 privileged_n == 0
6021 /* Or a privileged insn will be issued. */
6022 || ready_try[n])
6023 /* Then we have a solution. */
6025 best = top - choice_stack;
6026 /* This is the index of the insn issued first in this
6027 solution. */
6028 *index = choice_stack [1].index;
6029 if (top->n == more_issue || best == all)
6030 break;
6034 /* Set ready-list index to point to the last insn
6035 ('i++' below will advance it to the next insn). */
6036 i = top->index;
6038 /* Backtrack. */
6039 ready_try [i] = 0;
6041 if (targetm.sched.first_cycle_multipass_backtrack)
6042 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
6043 ready_try, n_ready);
6045 top--;
6046 memcpy (state, top->state, dfa_state_size);
6048 else if (!ready_try [i])
6050 tries_num++;
6051 if (tries_num > max_lookahead_tries)
6052 break;
6053 insn = ready_element (ready, i);
6054 delay = state_transition (state, insn);
6055 if (delay < 0)
6057 if (state_dead_lock_p (state)
6058 || insn_finishes_cycle_p (insn))
6059 /* We won't issue any more instructions in the next
6060 choice_state. */
6061 top->rest = 0;
6062 else
6063 top->rest--;
6065 n = top->n;
6066 if (memcmp (top->state, state, dfa_state_size) != 0)
6067 n++;
6069 /* Advance to the next choice_entry. */
6070 top++;
6071 /* Initialize it. */
6072 top->rest = dfa_lookahead;
6073 top->index = i;
6074 top->n = n;
6075 memcpy (top->state, state, dfa_state_size);
6076 ready_try [i] = 1;
6078 if (targetm.sched.first_cycle_multipass_issue)
6079 targetm.sched.first_cycle_multipass_issue (&top->target_data,
6080 ready_try, n_ready,
6081 insn,
6082 &((top - 1)
6083 ->target_data));
6085 i = -1;
6089 /* Increase ready-list index. */
6090 i++;
6093 if (targetm.sched.first_cycle_multipass_end)
6094 targetm.sched.first_cycle_multipass_end (best != 0
6095 ? &choice_stack[1].target_data
6096 : NULL);
6098 /* Restore the original state of the DFA. */
6099 memcpy (state, choice_stack->state, dfa_state_size);
6101 return best;
6104 /* The following function chooses insn from READY and modifies
6105 READY. The following function is used only for first
6106 cycle multipass scheduling.
6107 Return:
6108 -1 if cycle should be advanced,
6109 0 if INSN_PTR is set to point to the desirable insn,
6110 1 if choose_ready () should be restarted without advancing the cycle. */
6111 static int
6112 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
6113 rtx_insn **insn_ptr)
6115 if (dbg_cnt (sched_insn) == false)
6117 if (nonscheduled_insns_begin == NULL_RTX)
6118 nonscheduled_insns_begin = current_sched_info->prev_head;
6120 rtx_insn *insn = first_nonscheduled_insn ();
6122 if (QUEUE_INDEX (insn) == QUEUE_READY)
6123 /* INSN is in the ready_list. */
6125 ready_remove_insn (insn);
6126 *insn_ptr = insn;
6127 return 0;
6130 /* INSN is in the queue. Advance cycle to move it to the ready list. */
6131 gcc_assert (QUEUE_INDEX (insn) >= 0);
6132 return -1;
6135 if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
6136 || DEBUG_INSN_P (ready_element (ready, 0)))
6138 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6139 *insn_ptr = ready_remove_first_dispatch (ready);
6140 else
6141 *insn_ptr = ready_remove_first (ready);
6143 return 0;
6145 else
6147 /* Try to choose the best insn. */
6148 int index = 0, i;
6149 rtx_insn *insn;
6151 insn = ready_element (ready, 0);
6152 if (INSN_CODE (insn) < 0)
6154 *insn_ptr = ready_remove_first (ready);
6155 return 0;
6158 /* Filter the search space. */
6159 for (i = 0; i < ready->n_ready; i++)
6161 ready_try[i] = 0;
6163 insn = ready_element (ready, i);
6165 /* If this insn is recognizable we should have already
6166 recognized it earlier.
6167 ??? Not very clear where this is supposed to be done.
6168 See dep_cost_1. */
6169 gcc_checking_assert (INSN_CODE (insn) >= 0
6170 || recog_memoized (insn) < 0);
6171 if (INSN_CODE (insn) < 0)
6173 /* Non-recognized insns at position 0 are handled above. */
6174 gcc_assert (i > 0);
6175 ready_try[i] = 1;
6176 continue;
6179 if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
6181 ready_try[i]
6182 = (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
6183 (insn, i));
6185 if (ready_try[i] < 0)
6186 /* Queue instruction for several cycles.
6187 We need to restart choose_ready as we have changed
6188 the ready list. */
6190 change_queue_index (insn, -ready_try[i]);
6191 return 1;
6194 /* Make sure that we didn't end up with 0'th insn filtered out.
6195 Don't be tempted to make life easier for backends and just
6196 requeue 0'th insn if (ready_try[0] == 0) and restart
6197 choose_ready. Backends should be very considerate about
6198 requeueing instructions -- especially the highest priority
6199 one at position 0. */
6200 gcc_assert (ready_try[i] == 0 || i > 0);
6201 if (ready_try[i])
6202 continue;
6205 gcc_assert (ready_try[i] == 0);
6206 /* INSN made it through the scrutiny of filters! */
6209 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
6211 *insn_ptr = ready_remove_first (ready);
6212 if (sched_verbose >= 4)
6213 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
6214 (*current_sched_info->print_insn) (*insn_ptr, 0));
6215 return 0;
6217 else
6219 if (sched_verbose >= 4)
6220 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
6221 (*current_sched_info->print_insn)
6222 (ready_element (ready, index), 0));
6224 *insn_ptr = ready_remove (ready, index);
6225 return 0;
6230 /* This function is called when we have successfully scheduled a
6231 block. It uses the schedule stored in the scheduled_insns vector
6232 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
6233 append the scheduled insns; TAIL is the insn after the scheduled
6234 block. TARGET_BB is the argument passed to schedule_block. */
6236 static void
6237 commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
6239 unsigned int i;
6240 rtx_insn *insn;
6242 last_scheduled_insn = prev_head;
6243 for (i = 0;
6244 scheduled_insns.iterate (i, &insn);
6245 i++)
6247 if (control_flow_insn_p (last_scheduled_insn)
6248 || current_sched_info->advance_target_bb (*target_bb, insn))
6250 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
6252 if (sched_verbose)
6254 rtx_insn *x;
6256 x = next_real_insn (last_scheduled_insn);
6257 gcc_assert (x);
6258 dump_new_block_header (1, *target_bb, x, tail);
6261 last_scheduled_insn = bb_note (*target_bb);
6264 if (current_sched_info->begin_move_insn)
6265 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
6266 move_insn (insn, last_scheduled_insn,
6267 current_sched_info->next_tail);
6268 if (!DEBUG_INSN_P (insn))
6269 reemit_notes (insn);
6270 last_scheduled_insn = insn;
6273 scheduled_insns.truncate (0);
6276 /* Examine all insns on the ready list and queue those which can't be
6277 issued in this cycle. TEMP_STATE is temporary scheduler state we
6278 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
6279 have been issued for the current cycle, which means it is valid to
6280 issue an asm statement.
6282 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
6283 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
6284 we only leave insns which have an INSN_EXACT_TICK. */
6286 static void
6287 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
6288 bool shadows_only_p, bool modulo_epilogue_p)
6290 int i, pass;
6291 bool sched_group_found = false;
6292 int min_cost_group = 0;
6294 if (sched_fusion)
6295 return;
6297 for (i = 0; i < ready.n_ready; i++)
6299 rtx_insn *insn = ready_element (&ready, i);
6300 if (SCHED_GROUP_P (insn))
6302 sched_group_found = true;
6303 break;
6307 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
6308 such an insn first and note its cost. If at least one SCHED_GROUP_P insn
6309 gets queued, then all other insns get queued for one cycle later. */
6310 for (pass = sched_group_found ? 0 : 1; pass < 2; )
6312 int n = ready.n_ready;
6313 for (i = 0; i < n; i++)
6315 rtx_insn *insn = ready_element (&ready, i);
6316 int cost = 0;
6317 const char *reason = "resource conflict";
6319 if (DEBUG_INSN_P (insn))
6320 continue;
6322 if (sched_group_found && !SCHED_GROUP_P (insn)
6323 && ((pass == 0) || (min_cost_group >= 1)))
6325 if (pass == 0)
6326 continue;
6327 cost = min_cost_group;
6328 reason = "not in sched group";
6330 else if (modulo_epilogue_p
6331 && INSN_EXACT_TICK (insn) == INVALID_TICK)
6333 cost = max_insn_queue_index;
6334 reason = "not an epilogue insn";
6336 else if (shadows_only_p && !SHADOW_P (insn))
6338 cost = 1;
6339 reason = "not a shadow";
6341 else if (recog_memoized (insn) < 0)
6343 if (!first_cycle_insn_p
6344 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
6345 || asm_noperands (PATTERN (insn)) >= 0))
6346 cost = 1;
6347 reason = "asm";
6349 else if (sched_pressure != SCHED_PRESSURE_NONE)
6351 if (sched_pressure == SCHED_PRESSURE_MODEL
6352 && INSN_TICK (insn) <= clock_var)
6354 memcpy (temp_state, curr_state, dfa_state_size);
6355 if (state_transition (temp_state, insn) >= 0)
6356 INSN_TICK (insn) = clock_var + 1;
6358 cost = 0;
6360 else
6362 int delay_cost = 0;
6364 if (delay_htab)
6366 struct delay_pair *delay_entry;
6367 delay_entry
6368 = delay_htab->find_with_hash (insn,
6369 htab_hash_pointer (insn));
6370 while (delay_entry && delay_cost == 0)
6372 delay_cost = estimate_shadow_tick (delay_entry);
6373 if (delay_cost > max_insn_queue_index)
6374 delay_cost = max_insn_queue_index;
6375 delay_entry = delay_entry->next_same_i1;
6379 memcpy (temp_state, curr_state, dfa_state_size);
6380 cost = state_transition (temp_state, insn);
6381 if (cost < 0)
6382 cost = 0;
6383 else if (cost == 0)
6384 cost = 1;
6385 if (cost < delay_cost)
6387 cost = delay_cost;
6388 reason = "shadow tick";
6391 if (cost >= 1)
6393 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
6394 min_cost_group = cost;
6395 ready_remove (&ready, i);
6396 /* Normally we'd want to queue INSN for COST cycles. However,
6397 if SCHED_GROUP_P is set, then we must ensure that nothing
6398 else comes between INSN and its predecessor. If there is
6399 some other insn ready to fire on the next cycle, then that
6400 invariant would be broken.
6402 So when SCHED_GROUP_P is set, just queue this insn for a
6403 single cycle. */
6404 queue_insn (insn, SCHED_GROUP_P (insn) ? 1 : cost, reason);
6405 if (i + 1 < n)
6406 break;
6409 if (i == n)
6410 pass++;
6414 /* Called when we detect that the schedule is impossible. We examine the
6415 backtrack queue to find the earliest insn that caused this condition. */
6417 static struct haifa_saved_data *
6418 verify_shadows (void)
6420 struct haifa_saved_data *save, *earliest_fail = NULL;
6421 for (save = backtrack_queue; save; save = save->next)
6423 int t;
6424 struct delay_pair *pair = save->delay_pair;
6425 rtx_insn *i1 = pair->i1;
6427 for (; pair; pair = pair->next_same_i1)
6429 rtx_insn *i2 = pair->i2;
6431 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
6432 continue;
6434 t = INSN_TICK (i1) + pair_delay (pair);
6435 if (t < clock_var)
6437 if (sched_verbose >= 2)
6438 fprintf (sched_dump,
6439 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
6440 ", not ready\n",
6441 INSN_UID (pair->i1), INSN_UID (pair->i2),
6442 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6443 earliest_fail = save;
6444 break;
6446 if (QUEUE_INDEX (i2) >= 0)
6448 int queued_for = INSN_TICK (i2);
6450 if (t < queued_for)
6452 if (sched_verbose >= 2)
6453 fprintf (sched_dump,
6454 ";;\t\tfailed delay requirements for %d/%d"
6455 " (%d->%d), queued too late\n",
6456 INSN_UID (pair->i1), INSN_UID (pair->i2),
6457 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6458 earliest_fail = save;
6459 break;
6465 return earliest_fail;
6468 /* Print instructions together with useful scheduling information between
6469 HEAD and TAIL (inclusive). */
6470 static void
6471 dump_insn_stream (rtx_insn *head, rtx_insn *tail)
6473 fprintf (sched_dump, ";;\t| insn | prio |\n");
6475 rtx_insn *next_tail = NEXT_INSN (tail);
6476 for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6478 int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
6479 const char *pattern = (NOTE_P (insn)
6480 ? "note"
6481 : str_pattern_slim (PATTERN (insn)));
6483 fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
6484 INSN_UID (insn), priority, pattern);
6486 if (sched_verbose >= 4)
6488 if (NOTE_P (insn) || LABEL_P (insn) || recog_memoized (insn) < 0)
6489 fprintf (sched_dump, "nothing");
6490 else
6491 print_reservation (sched_dump, insn);
6493 fprintf (sched_dump, "\n");
6497 /* Use forward list scheduling to rearrange insns of block pointed to by
6498 TARGET_BB, possibly bringing insns from subsequent blocks in the same
6499 region. */
6501 bool
6502 schedule_block (basic_block *target_bb, state_t init_state)
6504 int i;
6505 bool success = modulo_ii == 0;
6506 struct sched_block_state ls;
6507 state_t temp_state = NULL; /* It is used for multipass scheduling. */
6508 int sort_p, advance, start_clock_var;
6510 /* Head/tail info for this block. */
6511 rtx_insn *prev_head = current_sched_info->prev_head;
6512 rtx_insn *next_tail = current_sched_info->next_tail;
6513 rtx_insn *head = NEXT_INSN (prev_head);
6514 rtx_insn *tail = PREV_INSN (next_tail);
6516 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
6517 && sched_pressure != SCHED_PRESSURE_MODEL && !sched_fusion)
6518 find_modifiable_mems (head, tail);
6520 /* We used to have code to avoid getting parameters moved from hard
6521 argument registers into pseudos.
6523 However, it was removed when it proved to be of marginal benefit
6524 and caused problems because schedule_block and compute_forward_dependences
6525 had different notions of what the "head" insn was. */
6527 gcc_assert (head != tail || INSN_P (head));
6529 haifa_recovery_bb_recently_added_p = false;
6531 backtrack_queue = NULL;
6533 /* Debug info. */
6534 if (sched_verbose)
6536 dump_new_block_header (0, *target_bb, head, tail);
6538 if (sched_verbose >= 2)
6540 dump_insn_stream (head, tail);
6541 memset (&rank_for_schedule_stats, 0,
6542 sizeof (rank_for_schedule_stats));
6546 if (init_state == NULL)
6547 state_reset (curr_state);
6548 else
6549 memcpy (curr_state, init_state, dfa_state_size);
6551 /* Clear the ready list. */
6552 ready.first = ready.veclen - 1;
6553 ready.n_ready = 0;
6554 ready.n_debug = 0;
6556 /* It is used for first cycle multipass scheduling. */
6557 temp_state = alloca (dfa_state_size);
6559 if (targetm.sched.init)
6560 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
6562 /* We start inserting insns after PREV_HEAD. */
6563 last_scheduled_insn = prev_head;
6564 last_nondebug_scheduled_insn = NULL;
6565 nonscheduled_insns_begin = NULL;
6567 gcc_assert ((NOTE_P (last_scheduled_insn)
6568 || DEBUG_INSN_P (last_scheduled_insn))
6569 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6571 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
6572 queue. */
6573 q_ptr = 0;
6574 q_size = 0;
6576 insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
6577 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
6579 /* Start just before the beginning of time. */
6580 clock_var = -1;
6582 /* We need queue and ready lists and clock_var be initialized
6583 in try_ready () (which is called through init_ready_list ()). */
6584 (*current_sched_info->init_ready_list) ();
6586 if (sched_pressure)
6587 sched_pressure_start_bb (*target_bb);
6589 /* The algorithm is O(n^2) in the number of ready insns at any given
6590 time in the worst case. Before reload we are more likely to have
6591 big lists so truncate them to a reasonable size. */
6592 if (!reload_completed
6593 && ready.n_ready - ready.n_debug > param_max_sched_ready_insns)
6595 ready_sort_debug (&ready);
6596 ready_sort_real (&ready);
6598 /* Find first free-standing insn past param_max_sched_ready_insns.
6599 If there are debug insns, we know they're first. */
6600 for (i = param_max_sched_ready_insns + ready.n_debug; i < ready.n_ready;
6601 i++)
6602 if (!SCHED_GROUP_P (ready_element (&ready, i)))
6603 break;
6605 if (sched_verbose >= 2)
6607 fprintf (sched_dump,
6608 ";;\t\tReady list on entry: %d insns: ", ready.n_ready);
6609 debug_ready_list (&ready);
6610 fprintf (sched_dump,
6611 ";;\t\t before reload => truncated to %d insns\n", i);
6614 /* Delay all insns past it for 1 cycle. If debug counter is
6615 activated make an exception for the insn right after
6616 nonscheduled_insns_begin. */
6618 rtx_insn *skip_insn;
6620 if (dbg_cnt (sched_insn) == false)
6621 skip_insn = first_nonscheduled_insn ();
6622 else
6623 skip_insn = NULL;
6625 while (i < ready.n_ready)
6627 rtx_insn *insn;
6629 insn = ready_remove (&ready, i);
6631 if (insn != skip_insn)
6632 queue_insn (insn, 1, "list truncated");
6634 if (skip_insn)
6635 ready_add (&ready, skip_insn, true);
6639 /* Now we can restore basic block notes and maintain precise cfg. */
6640 restore_bb_notes (*target_bb);
6642 last_clock_var = -1;
6644 advance = 0;
6646 gcc_assert (scheduled_insns.length () == 0);
6647 sort_p = true;
6648 must_backtrack = false;
6649 modulo_insns_scheduled = 0;
6651 ls.modulo_epilogue = false;
6652 ls.first_cycle_insn_p = true;
6654 /* Loop until all the insns in BB are scheduled. */
6655 while ((*current_sched_info->schedule_more_p) ())
6657 perform_replacements_new_cycle ();
6660 start_clock_var = clock_var;
6662 clock_var++;
6664 advance_one_cycle ();
6666 /* Add to the ready list all pending insns that can be issued now.
6667 If there are no ready insns, increment clock until one
6668 is ready and add all pending insns at that point to the ready
6669 list. */
6670 queue_to_ready (&ready);
6672 gcc_assert (ready.n_ready);
6674 if (sched_verbose >= 2)
6676 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
6677 debug_ready_list (&ready);
6679 advance -= clock_var - start_clock_var;
6681 while (advance > 0);
6683 if (ls.modulo_epilogue)
6685 int stage = clock_var / modulo_ii;
6686 if (stage > modulo_last_stage * 2 + 2)
6688 if (sched_verbose >= 2)
6689 fprintf (sched_dump,
6690 ";;\t\tmodulo scheduled succeeded at II %d\n",
6691 modulo_ii);
6692 success = true;
6693 goto end_schedule;
6696 else if (modulo_ii > 0)
6698 int stage = clock_var / modulo_ii;
6699 if (stage > modulo_max_stages)
6701 if (sched_verbose >= 2)
6702 fprintf (sched_dump,
6703 ";;\t\tfailing schedule due to excessive stages\n");
6704 goto end_schedule;
6706 if (modulo_n_insns == modulo_insns_scheduled
6707 && stage > modulo_last_stage)
6709 if (sched_verbose >= 2)
6710 fprintf (sched_dump,
6711 ";;\t\tfound kernel after %d stages, II %d\n",
6712 stage, modulo_ii);
6713 ls.modulo_epilogue = true;
6717 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6718 if (ready.n_ready == 0)
6719 continue;
6720 if (must_backtrack)
6721 goto do_backtrack;
6723 ls.shadows_only_p = false;
6724 cycle_issued_insns = 0;
6725 ls.can_issue_more = issue_rate;
6726 for (;;)
6728 rtx_insn *insn;
6729 int cost;
6730 bool asm_p;
6732 if (sort_p && ready.n_ready > 0)
6734 /* Sort the ready list based on priority. This must be
6735 done every iteration through the loop, as schedule_insn
6736 may have readied additional insns that will not be
6737 sorted correctly. */
6738 ready_sort (&ready);
6740 if (sched_verbose >= 2)
6742 fprintf (sched_dump,
6743 ";;\t\tReady list after ready_sort: ");
6744 debug_ready_list (&ready);
6748 /* We don't want md sched reorder to even see debug isns, so put
6749 them out right away. */
6750 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6751 && (*current_sched_info->schedule_more_p) ())
6753 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6755 rtx_insn *insn = ready_remove_first (&ready);
6756 gcc_assert (DEBUG_INSN_P (insn));
6757 (*current_sched_info->begin_schedule_ready) (insn);
6758 scheduled_insns.safe_push (insn);
6759 last_scheduled_insn = insn;
6760 advance = schedule_insn (insn);
6761 gcc_assert (advance == 0);
6762 if (ready.n_ready > 0)
6763 ready_sort (&ready);
6767 if (ls.first_cycle_insn_p && !ready.n_ready)
6768 break;
6770 resume_after_backtrack:
6771 /* Allow the target to reorder the list, typically for
6772 better instruction bundling. */
6773 if (sort_p
6774 && (ready.n_ready == 0
6775 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6777 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6778 ls.can_issue_more
6779 = targetm.sched.reorder (sched_dump, sched_verbose,
6780 ready_lastpos (&ready),
6781 &ready.n_ready, clock_var);
6782 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6783 ls.can_issue_more
6784 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6785 ready.n_ready
6786 ? ready_lastpos (&ready) : NULL,
6787 &ready.n_ready, clock_var);
6790 restart_choose_ready:
6791 if (sched_verbose >= 2)
6793 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
6794 clock_var);
6795 debug_ready_list (&ready);
6796 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6797 print_curr_reg_pressure ();
6800 if (ready.n_ready == 0
6801 && ls.can_issue_more
6802 && reload_completed)
6804 /* Allow scheduling insns directly from the queue in case
6805 there's nothing better to do (ready list is empty) but
6806 there are still vacant dispatch slots in the current cycle. */
6807 if (sched_verbose >= 6)
6808 fprintf (sched_dump,";;\t\tSecond chance\n");
6809 memcpy (temp_state, curr_state, dfa_state_size);
6810 if (early_queue_to_ready (temp_state, &ready))
6811 ready_sort (&ready);
6814 if (ready.n_ready == 0
6815 || !ls.can_issue_more
6816 || state_dead_lock_p (curr_state)
6817 || !(*current_sched_info->schedule_more_p) ())
6818 break;
6820 /* Select and remove the insn from the ready list. */
6821 if (sort_p)
6823 int res;
6825 insn = NULL;
6826 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6828 if (res < 0)
6829 /* Finish cycle. */
6830 break;
6831 if (res > 0)
6832 goto restart_choose_ready;
6834 gcc_assert (insn != NULL_RTX);
6836 else
6837 insn = ready_remove_first (&ready);
6839 if (sched_pressure != SCHED_PRESSURE_NONE
6840 && INSN_TICK (insn) > clock_var)
6842 ready_add (&ready, insn, true);
6843 advance = 1;
6844 break;
6847 if (targetm.sched.dfa_new_cycle
6848 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6849 insn, last_clock_var,
6850 clock_var, &sort_p))
6851 /* SORT_P is used by the target to override sorting
6852 of the ready list. This is needed when the target
6853 has modified its internal structures expecting that
6854 the insn will be issued next. As we need the insn
6855 to have the highest priority (so it will be returned by
6856 the ready_remove_first call above), we invoke
6857 ready_add (&ready, insn, true).
6858 But, still, there is one issue: INSN can be later
6859 discarded by scheduler's front end through
6860 current_sched_info->can_schedule_ready_p, hence, won't
6861 be issued next. */
6863 ready_add (&ready, insn, true);
6864 break;
6867 sort_p = true;
6869 if (current_sched_info->can_schedule_ready_p
6870 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6871 /* We normally get here only if we don't want to move
6872 insn from the split block. */
6874 TODO_SPEC (insn) = DEP_POSTPONED;
6875 goto restart_choose_ready;
6878 if (delay_htab)
6880 /* If this insn is the first part of a delay-slot pair, record a
6881 backtrack point. */
6882 struct delay_pair *delay_entry;
6883 delay_entry
6884 = delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
6885 if (delay_entry)
6887 save_backtrack_point (delay_entry, ls);
6888 if (sched_verbose >= 2)
6889 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6893 /* DECISION is made. */
6895 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6897 modulo_insns_scheduled++;
6898 modulo_last_stage = clock_var / modulo_ii;
6900 if (TODO_SPEC (insn) & SPECULATIVE)
6901 generate_recovery_code (insn);
6903 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6904 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6906 /* Update counters, etc in the scheduler's front end. */
6907 (*current_sched_info->begin_schedule_ready) (insn);
6908 scheduled_insns.safe_push (insn);
6909 gcc_assert (NONDEBUG_INSN_P (insn));
6910 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6912 if (recog_memoized (insn) >= 0)
6914 memcpy (temp_state, curr_state, dfa_state_size);
6915 cost = state_transition (curr_state, insn);
6916 if (sched_pressure != SCHED_PRESSURE_WEIGHTED && !sched_fusion)
6917 gcc_assert (cost < 0);
6918 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6919 cycle_issued_insns++;
6920 asm_p = false;
6922 else
6923 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6924 || asm_noperands (PATTERN (insn)) >= 0);
6926 if (targetm.sched.variable_issue)
6927 ls.can_issue_more =
6928 targetm.sched.variable_issue (sched_dump, sched_verbose,
6929 insn, ls.can_issue_more);
6930 /* A naked CLOBBER or USE generates no instruction, so do
6931 not count them against the issue rate. */
6932 else if (GET_CODE (PATTERN (insn)) != USE
6933 && GET_CODE (PATTERN (insn)) != CLOBBER)
6934 ls.can_issue_more--;
6935 advance = schedule_insn (insn);
6937 if (SHADOW_P (insn))
6938 ls.shadows_only_p = true;
6940 /* After issuing an asm insn we should start a new cycle. */
6941 if (advance == 0 && asm_p)
6942 advance = 1;
6944 if (must_backtrack)
6945 break;
6947 if (advance != 0)
6948 break;
6950 ls.first_cycle_insn_p = false;
6951 if (ready.n_ready > 0)
6952 prune_ready_list (temp_state, false, ls.shadows_only_p,
6953 ls.modulo_epilogue);
6956 do_backtrack:
6957 if (!must_backtrack)
6958 for (i = 0; i < ready.n_ready; i++)
6960 rtx_insn *insn = ready_element (&ready, i);
6961 if (INSN_EXACT_TICK (insn) == clock_var)
6963 must_backtrack = true;
6964 clock_var++;
6965 break;
6968 if (must_backtrack && modulo_ii > 0)
6970 if (modulo_backtracks_left == 0)
6971 goto end_schedule;
6972 modulo_backtracks_left--;
6974 while (must_backtrack)
6976 struct haifa_saved_data *failed;
6977 rtx_insn *failed_insn;
6979 must_backtrack = false;
6980 failed = verify_shadows ();
6981 gcc_assert (failed);
6983 failed_insn = failed->delay_pair->i1;
6984 /* Clear these queues. */
6985 perform_replacements_new_cycle ();
6986 toggle_cancelled_flags (false);
6987 unschedule_insns_until (failed_insn);
6988 while (failed != backtrack_queue)
6989 free_topmost_backtrack_point (true);
6990 restore_last_backtrack_point (&ls);
6991 if (sched_verbose >= 2)
6992 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6993 /* Delay by at least a cycle. This could cause additional
6994 backtracking. */
6995 queue_insn (failed_insn, 1, "backtracked");
6996 advance = 0;
6997 if (must_backtrack)
6998 continue;
6999 if (ready.n_ready > 0)
7000 goto resume_after_backtrack;
7001 else
7003 if (clock_var == 0 && ls.first_cycle_insn_p)
7004 goto end_schedule;
7005 advance = 1;
7006 break;
7009 ls.first_cycle_insn_p = true;
7011 if (ls.modulo_epilogue)
7012 success = true;
7013 end_schedule:
7014 if (!ls.first_cycle_insn_p || advance)
7015 advance_one_cycle ();
7016 perform_replacements_new_cycle ();
7017 if (modulo_ii > 0)
7019 /* Once again, debug insn suckiness: they can be on the ready list
7020 even if they have unresolved dependencies. To make our view
7021 of the world consistent, remove such "ready" insns. */
7022 restart_debug_insn_loop:
7023 for (i = ready.n_ready - 1; i >= 0; i--)
7025 rtx_insn *x;
7027 x = ready_element (&ready, i);
7028 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
7029 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
7031 ready_remove (&ready, i);
7032 goto restart_debug_insn_loop;
7035 for (i = ready.n_ready - 1; i >= 0; i--)
7037 rtx_insn *x;
7039 x = ready_element (&ready, i);
7040 resolve_dependencies (x);
7042 for (i = 0; i <= max_insn_queue_index; i++)
7044 rtx_insn_list *link;
7045 while ((link = insn_queue[i]) != NULL)
7047 rtx_insn *x = link->insn ();
7048 insn_queue[i] = link->next ();
7049 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7050 free_INSN_LIST_node (link);
7051 resolve_dependencies (x);
7056 if (!success)
7057 undo_all_replacements ();
7059 /* Debug info. */
7060 if (sched_verbose)
7062 fprintf (sched_dump, ";;\tReady list (final): ");
7063 debug_ready_list (&ready);
7066 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
7067 /* Sanity check -- queue must be empty now. Meaningless if region has
7068 multiple bbs. */
7069 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
7070 else if (modulo_ii == 0)
7072 /* We must maintain QUEUE_INDEX between blocks in region. */
7073 for (i = ready.n_ready - 1; i >= 0; i--)
7075 rtx_insn *x;
7077 x = ready_element (&ready, i);
7078 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7079 TODO_SPEC (x) = HARD_DEP;
7082 if (q_size)
7083 for (i = 0; i <= max_insn_queue_index; i++)
7085 rtx_insn_list *link;
7086 for (link = insn_queue[i]; link; link = link->next ())
7088 rtx_insn *x;
7090 x = link->insn ();
7091 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7092 TODO_SPEC (x) = HARD_DEP;
7094 free_INSN_LIST_list (&insn_queue[i]);
7098 if (sched_pressure == SCHED_PRESSURE_MODEL)
7099 model_end_schedule ();
7101 if (success)
7103 commit_schedule (prev_head, tail, target_bb);
7104 if (sched_verbose)
7105 fprintf (sched_dump, ";; total time = %d\n", clock_var);
7107 else
7108 last_scheduled_insn = tail;
7110 scheduled_insns.truncate (0);
7112 if (!current_sched_info->queue_must_finish_empty
7113 || haifa_recovery_bb_recently_added_p)
7115 /* INSN_TICK (minimum clock tick at which the insn becomes
7116 ready) may be not correct for the insn in the subsequent
7117 blocks of the region. We should use a correct value of
7118 `clock_var' or modify INSN_TICK. It is better to keep
7119 clock_var value equal to 0 at the start of a basic block.
7120 Therefore we modify INSN_TICK here. */
7121 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
7124 if (targetm.sched.finish)
7126 targetm.sched.finish (sched_dump, sched_verbose);
7127 /* Target might have added some instructions to the scheduled block
7128 in its md_finish () hook. These new insns don't have any data
7129 initialized and to identify them we extend h_i_d so that they'll
7130 get zero luids. */
7131 sched_extend_luids ();
7134 /* Update head/tail boundaries. */
7135 head = NEXT_INSN (prev_head);
7136 tail = last_scheduled_insn;
7138 if (sched_verbose)
7140 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n",
7141 INSN_UID (head), INSN_UID (tail));
7143 if (sched_verbose >= 2)
7145 dump_insn_stream (head, tail);
7146 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
7147 NULL);
7150 fprintf (sched_dump, "\n");
7153 head = restore_other_notes (head, NULL);
7155 current_sched_info->head = head;
7156 current_sched_info->tail = tail;
7158 free_backtrack_queue ();
7160 return success;
7163 /* Set_priorities: compute priority of each insn in the block. */
7166 set_priorities (rtx_insn *head, rtx_insn *tail)
7168 rtx_insn *insn;
7169 int n_insn;
7170 int sched_max_insns_priority =
7171 current_sched_info->sched_max_insns_priority;
7172 rtx_insn *prev_head;
7174 if (head == tail && ! INSN_P (head))
7175 gcc_unreachable ();
7177 n_insn = 0;
7179 prev_head = PREV_INSN (head);
7180 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7182 if (!INSN_P (insn))
7183 continue;
7185 n_insn++;
7186 (void) priority (insn);
7188 gcc_assert (INSN_PRIORITY_KNOWN (insn));
7190 sched_max_insns_priority = MAX (sched_max_insns_priority,
7191 INSN_PRIORITY (insn));
7194 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
7196 return n_insn;
7199 /* Set sched_dump and sched_verbose for the desired debugging output. */
7200 void
7201 setup_sched_dump (void)
7203 sched_verbose = sched_verbose_param;
7204 sched_dump = dump_file;
7205 if (!dump_file)
7206 sched_verbose = 0;
7209 /* Allocate data for register pressure sensitive scheduling. */
7210 static void
7211 alloc_global_sched_pressure_data (void)
7213 if (sched_pressure != SCHED_PRESSURE_NONE)
7215 int i, max_regno = max_reg_num ();
7217 if (sched_dump != NULL)
7218 /* We need info about pseudos for rtl dumps about pseudo
7219 classes and costs. */
7220 regstat_init_n_sets_and_refs ();
7221 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
7222 sched_regno_pressure_class
7223 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
7224 for (i = 0; i < max_regno; i++)
7225 sched_regno_pressure_class[i]
7226 = (i < FIRST_PSEUDO_REGISTER
7227 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
7228 : ira_pressure_class_translate[reg_allocno_class (i)]);
7229 curr_reg_live = BITMAP_ALLOC (NULL);
7230 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7232 saved_reg_live = BITMAP_ALLOC (NULL);
7233 region_ref_regs = BITMAP_ALLOC (NULL);
7235 if (sched_pressure == SCHED_PRESSURE_MODEL)
7236 tmp_bitmap = BITMAP_ALLOC (NULL);
7238 /* Calculate number of CALL_SAVED_REGS and FIXED_REGS in register classes
7239 that we calculate register pressure for. */
7240 for (int c = 0; c < ira_pressure_classes_num; ++c)
7242 enum reg_class cl = ira_pressure_classes[c];
7244 call_saved_regs_num[cl] = 0;
7245 fixed_regs_num[cl] = 0;
7247 for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
7249 unsigned int regno = ira_class_hard_regs[cl][i];
7250 if (fixed_regs[regno])
7251 ++fixed_regs_num[cl];
7252 else if (!crtl->abi->clobbers_full_reg_p (regno))
7253 ++call_saved_regs_num[cl];
7259 /* Free data for register pressure sensitive scheduling. Also called
7260 from schedule_region when stopping sched-pressure early. */
7261 void
7262 free_global_sched_pressure_data (void)
7264 if (sched_pressure != SCHED_PRESSURE_NONE)
7266 if (regstat_n_sets_and_refs != NULL)
7267 regstat_free_n_sets_and_refs ();
7268 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7270 BITMAP_FREE (region_ref_regs);
7271 BITMAP_FREE (saved_reg_live);
7273 if (sched_pressure == SCHED_PRESSURE_MODEL)
7274 BITMAP_FREE (tmp_bitmap);
7275 BITMAP_FREE (curr_reg_live);
7276 free (sched_regno_pressure_class);
7280 /* Initialize some global state for the scheduler. This function works
7281 with the common data shared between all the schedulers. It is called
7282 from the scheduler specific initialization routine. */
7284 void
7285 sched_init (void)
7287 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7288 targetm.sched.dispatch_do (NULL, DISPATCH_INIT);
7290 if (live_range_shrinkage_p)
7291 sched_pressure = SCHED_PRESSURE_WEIGHTED;
7292 else if (flag_sched_pressure
7293 && !reload_completed
7294 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
7295 sched_pressure = ((enum sched_pressure_algorithm)
7296 param_sched_pressure_algorithm);
7297 else
7298 sched_pressure = SCHED_PRESSURE_NONE;
7300 if (sched_pressure != SCHED_PRESSURE_NONE)
7301 ira_setup_eliminable_regset ();
7303 /* Initialize SPEC_INFO. */
7304 if (targetm.sched.set_sched_flags)
7306 spec_info = &spec_info_var;
7307 targetm.sched.set_sched_flags (spec_info);
7309 if (spec_info->mask != 0)
7311 spec_info->data_weakness_cutoff
7312 = (param_sched_spec_prob_cutoff * MAX_DEP_WEAK) / 100;
7313 spec_info->control_weakness_cutoff
7314 = (param_sched_spec_prob_cutoff * REG_BR_PROB_BASE) / 100;
7316 else
7317 /* So we won't read anything accidentally. */
7318 spec_info = NULL;
7321 else
7322 /* So we won't read anything accidentally. */
7323 spec_info = 0;
7325 /* Initialize issue_rate. */
7326 if (targetm.sched.issue_rate)
7327 issue_rate = targetm.sched.issue_rate ();
7328 else
7329 issue_rate = 1;
7331 if (targetm.sched.first_cycle_multipass_dfa_lookahead
7332 /* Don't use max_issue with reg_pressure scheduling. Multipass
7333 scheduling and reg_pressure scheduling undo each other's decisions. */
7334 && sched_pressure == SCHED_PRESSURE_NONE)
7335 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
7336 else
7337 dfa_lookahead = 0;
7339 /* Set to "0" so that we recalculate. */
7340 max_lookahead_tries = 0;
7342 if (targetm.sched.init_dfa_pre_cycle_insn)
7343 targetm.sched.init_dfa_pre_cycle_insn ();
7345 if (targetm.sched.init_dfa_post_cycle_insn)
7346 targetm.sched.init_dfa_post_cycle_insn ();
7348 dfa_start ();
7349 dfa_state_size = state_size ();
7351 init_alias_analysis ();
7353 if (!sched_no_dce)
7354 df_set_flags (DF_LR_RUN_DCE);
7355 df_note_add_problem ();
7357 /* More problems needed for interloop dep calculation in SMS. */
7358 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
7360 df_rd_add_problem ();
7361 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
7364 df_analyze ();
7366 /* Do not run DCE after reload, as this can kill nops inserted
7367 by bundling. */
7368 if (reload_completed)
7369 df_clear_flags (DF_LR_RUN_DCE);
7371 regstat_compute_calls_crossed ();
7373 if (targetm.sched.init_global)
7374 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
7376 alloc_global_sched_pressure_data ();
7378 curr_state = xmalloc (dfa_state_size);
7381 static void haifa_init_only_bb (basic_block, basic_block);
7383 /* Initialize data structures specific to the Haifa scheduler. */
7384 void
7385 haifa_sched_init (void)
7387 setup_sched_dump ();
7388 sched_init ();
7390 scheduled_insns.create (0);
7392 if (spec_info != NULL)
7394 sched_deps_info->use_deps_list = 1;
7395 sched_deps_info->generate_spec_deps = 1;
7398 /* Initialize luids, dependency caches, target and h_i_d for the
7399 whole function. */
7401 sched_init_bbs ();
7403 auto_vec<basic_block> bbs (n_basic_blocks_for_fn (cfun));
7404 basic_block bb;
7405 FOR_EACH_BB_FN (bb, cfun)
7406 bbs.quick_push (bb);
7407 sched_init_luids (bbs);
7408 sched_deps_init (true);
7409 sched_extend_target ();
7410 haifa_init_h_i_d (bbs);
7413 sched_init_only_bb = haifa_init_only_bb;
7414 sched_split_block = sched_split_block_1;
7415 sched_create_empty_bb = sched_create_empty_bb_1;
7416 haifa_recovery_bb_ever_added_p = false;
7418 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
7419 before_recovery = 0;
7420 after_recovery = 0;
7422 modulo_ii = 0;
7425 /* Finish work with the data specific to the Haifa scheduler. */
7426 void
7427 haifa_sched_finish (void)
7429 sched_create_empty_bb = NULL;
7430 sched_split_block = NULL;
7431 sched_init_only_bb = NULL;
7433 if (spec_info && spec_info->dump)
7435 char c = reload_completed ? 'a' : 'b';
7437 fprintf (spec_info->dump,
7438 ";; %s:\n", current_function_name ());
7440 fprintf (spec_info->dump,
7441 ";; Procedure %cr-begin-data-spec motions == %d\n",
7442 c, nr_begin_data);
7443 fprintf (spec_info->dump,
7444 ";; Procedure %cr-be-in-data-spec motions == %d\n",
7445 c, nr_be_in_data);
7446 fprintf (spec_info->dump,
7447 ";; Procedure %cr-begin-control-spec motions == %d\n",
7448 c, nr_begin_control);
7449 fprintf (spec_info->dump,
7450 ";; Procedure %cr-be-in-control-spec motions == %d\n",
7451 c, nr_be_in_control);
7454 scheduled_insns.release ();
7456 /* Finalize h_i_d, dependency caches, and luids for the whole
7457 function. Target will be finalized in md_global_finish (). */
7458 sched_deps_finish ();
7459 sched_finish_luids ();
7460 current_sched_info = NULL;
7461 insn_queue = NULL;
7462 sched_finish ();
7465 /* Free global data used during insn scheduling. This function works with
7466 the common data shared between the schedulers. */
7468 void
7469 sched_finish (void)
7471 haifa_finish_h_i_d ();
7472 free_global_sched_pressure_data ();
7473 free (curr_state);
7475 if (targetm.sched.finish_global)
7476 targetm.sched.finish_global (sched_dump, sched_verbose);
7478 end_alias_analysis ();
7480 regstat_free_calls_crossed ();
7482 dfa_finish ();
7485 /* Free all delay_pair structures that were recorded. */
7486 void
7487 free_delay_pairs (void)
7489 if (delay_htab)
7491 delay_htab->empty ();
7492 delay_htab_i2->empty ();
7496 /* Fix INSN_TICKs of the instructions in the current block as well as
7497 INSN_TICKs of their dependents.
7498 HEAD and TAIL are the begin and the end of the current scheduled block. */
7499 static void
7500 fix_inter_tick (rtx_insn *head, rtx_insn *tail)
7502 /* Set of instructions with corrected INSN_TICK. */
7503 auto_bitmap processed;
7504 /* ??? It is doubtful if we should assume that cycle advance happens on
7505 basic block boundaries. Basically insns that are unconditionally ready
7506 on the start of the block are more preferable then those which have
7507 a one cycle dependency over insn from the previous block. */
7508 int next_clock = clock_var + 1;
7510 /* Iterates over scheduled instructions and fix their INSN_TICKs and
7511 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
7512 across different blocks. */
7513 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
7515 if (INSN_P (head))
7517 int tick;
7518 sd_iterator_def sd_it;
7519 dep_t dep;
7521 tick = INSN_TICK (head);
7522 gcc_assert (tick >= MIN_TICK);
7524 /* Fix INSN_TICK of instruction from just scheduled block. */
7525 if (bitmap_set_bit (processed, INSN_LUID (head)))
7527 tick -= next_clock;
7529 if (tick < MIN_TICK)
7530 tick = MIN_TICK;
7532 INSN_TICK (head) = tick;
7535 if (DEBUG_INSN_P (head))
7536 continue;
7538 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
7540 rtx_insn *next;
7542 next = DEP_CON (dep);
7543 tick = INSN_TICK (next);
7545 if (tick != INVALID_TICK
7546 /* If NEXT has its INSN_TICK calculated, fix it.
7547 If not - it will be properly calculated from
7548 scratch later in fix_tick_ready. */
7549 && bitmap_set_bit (processed, INSN_LUID (next)))
7551 tick -= next_clock;
7553 if (tick < MIN_TICK)
7554 tick = MIN_TICK;
7556 if (tick > INTER_TICK (next))
7557 INTER_TICK (next) = tick;
7558 else
7559 tick = INTER_TICK (next);
7561 INSN_TICK (next) = tick;
7568 /* Check if NEXT is ready to be added to the ready or queue list.
7569 If "yes", add it to the proper list.
7570 Returns:
7571 -1 - is not ready yet,
7572 0 - added to the ready list,
7573 0 < N - queued for N cycles. */
7575 try_ready (rtx_insn *next)
7577 ds_t old_ts, new_ts;
7579 old_ts = TODO_SPEC (next);
7581 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7582 && (old_ts == HARD_DEP
7583 || old_ts == DEP_POSTPONED
7584 || (old_ts & SPECULATIVE)
7585 || old_ts == DEP_CONTROL));
7587 new_ts = recompute_todo_spec (next, false);
7589 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7590 gcc_assert (new_ts == old_ts
7591 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
7592 else if (current_sched_info->new_ready)
7593 new_ts = current_sched_info->new_ready (next, new_ts);
7595 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
7596 have its original pattern or changed (speculative) one. This is due
7597 to changing ebb in region scheduling.
7598 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7599 has speculative pattern.
7601 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
7602 control-speculative NEXT could have been discarded by sched-rgn.cc
7603 (the same case as when discarded by can_schedule_ready_p ()). */
7605 if ((new_ts & SPECULATIVE)
7606 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
7607 need to change anything. */
7608 && new_ts != old_ts)
7610 int res;
7611 rtx new_pat;
7613 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
7615 res = haifa_speculate_insn (next, new_ts, &new_pat);
7617 switch (res)
7619 case -1:
7620 /* It would be nice to change DEP_STATUS of all dependences,
7621 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
7622 so we won't reanalyze anything. */
7623 new_ts = HARD_DEP;
7624 break;
7626 case 0:
7627 /* We follow the rule, that every speculative insn
7628 has non-null ORIG_PAT. */
7629 if (!ORIG_PAT (next))
7630 ORIG_PAT (next) = PATTERN (next);
7631 break;
7633 case 1:
7634 if (!ORIG_PAT (next))
7635 /* If we gonna to overwrite the original pattern of insn,
7636 save it. */
7637 ORIG_PAT (next) = PATTERN (next);
7639 res = haifa_change_pattern (next, new_pat);
7640 gcc_assert (res);
7641 break;
7643 default:
7644 gcc_unreachable ();
7648 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7649 either correct (new_ts & SPECULATIVE),
7650 or we simply don't care (new_ts & HARD_DEP). */
7652 gcc_assert (!ORIG_PAT (next)
7653 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
7655 TODO_SPEC (next) = new_ts;
7657 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7659 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7660 control-speculative NEXT could have been discarded by sched-rgn.cc
7661 (the same case as when discarded by can_schedule_ready_p ()). */
7662 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7664 change_queue_index (next, QUEUE_NOWHERE);
7666 return -1;
7668 else if (!(new_ts & BEGIN_SPEC)
7669 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7670 && !IS_SPECULATION_CHECK_P (next))
7671 /* We should change pattern of every previously speculative
7672 instruction - and we determine if NEXT was speculative by using
7673 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7674 pat too, so skip them. */
7676 bool success = haifa_change_pattern (next, ORIG_PAT (next));
7677 gcc_assert (success);
7678 ORIG_PAT (next) = 0;
7681 if (sched_verbose >= 2)
7683 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7684 (*current_sched_info->print_insn) (next, 0));
7686 if (spec_info && spec_info->dump)
7688 if (new_ts & BEGIN_DATA)
7689 fprintf (spec_info->dump, "; data-spec;");
7690 if (new_ts & BEGIN_CONTROL)
7691 fprintf (spec_info->dump, "; control-spec;");
7692 if (new_ts & BE_IN_CONTROL)
7693 fprintf (spec_info->dump, "; in-control-spec;");
7695 if (TODO_SPEC (next) & DEP_CONTROL)
7696 fprintf (sched_dump, " predicated");
7697 fprintf (sched_dump, "\n");
7700 adjust_priority (next);
7702 return fix_tick_ready (next);
7705 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7706 static int
7707 fix_tick_ready (rtx_insn *next)
7709 int tick, delay;
7711 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
7713 int full_p;
7714 sd_iterator_def sd_it;
7715 dep_t dep;
7717 tick = INSN_TICK (next);
7718 /* if tick is not equal to INVALID_TICK, then update
7719 INSN_TICK of NEXT with the most recent resolved dependence
7720 cost. Otherwise, recalculate from scratch. */
7721 full_p = (tick == INVALID_TICK);
7723 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7725 rtx_insn *pro = DEP_PRO (dep);
7726 int tick1;
7728 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7730 tick1 = INSN_TICK (pro) + dep_cost (dep);
7731 if (tick1 > tick)
7732 tick = tick1;
7734 if (!full_p)
7735 break;
7738 else
7739 tick = -1;
7741 INSN_TICK (next) = tick;
7743 delay = tick - clock_var;
7744 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE || sched_fusion)
7745 delay = QUEUE_READY;
7747 change_queue_index (next, delay);
7749 return delay;
7752 /* Move NEXT to the proper queue list with (DELAY >= 1),
7753 or add it to the ready list (DELAY == QUEUE_READY),
7754 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7755 static void
7756 change_queue_index (rtx_insn *next, int delay)
7758 int i = QUEUE_INDEX (next);
7760 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7761 && delay != 0);
7762 gcc_assert (i != QUEUE_SCHEDULED);
7764 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7765 || (delay < 0 && delay == i))
7766 /* We have nothing to do. */
7767 return;
7769 /* Remove NEXT from wherever it is now. */
7770 if (i == QUEUE_READY)
7771 ready_remove_insn (next);
7772 else if (i >= 0)
7773 queue_remove (next);
7775 /* Add it to the proper place. */
7776 if (delay == QUEUE_READY)
7777 ready_add (readyp, next, false);
7778 else if (delay >= 1)
7779 queue_insn (next, delay, "change queue index");
7781 if (sched_verbose >= 2)
7783 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7784 (*current_sched_info->print_insn) (next, 0));
7786 if (delay == QUEUE_READY)
7787 fprintf (sched_dump, " into ready\n");
7788 else if (delay >= 1)
7789 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7790 else
7791 fprintf (sched_dump, " removed from ready or queue lists\n");
7795 static int sched_ready_n_insns = -1;
7797 /* Initialize per region data structures. */
7798 void
7799 sched_extend_ready_list (int new_sched_ready_n_insns)
7801 int i;
7803 if (sched_ready_n_insns == -1)
7804 /* At the first call we need to initialize one more choice_stack
7805 entry. */
7807 i = 0;
7808 sched_ready_n_insns = 0;
7809 scheduled_insns.reserve (new_sched_ready_n_insns);
7811 else
7812 i = sched_ready_n_insns + 1;
7814 ready.veclen = new_sched_ready_n_insns + issue_rate;
7815 ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);
7817 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7819 ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7820 sched_ready_n_insns,
7821 sizeof (*ready_try));
7823 /* We allocate +1 element to save initial state in the choice_stack[0]
7824 entry. */
7825 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7826 new_sched_ready_n_insns + 1);
7828 for (; i <= new_sched_ready_n_insns; i++)
7830 choice_stack[i].state = xmalloc (dfa_state_size);
7832 if (targetm.sched.first_cycle_multipass_init)
7833 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7834 .target_data));
7837 sched_ready_n_insns = new_sched_ready_n_insns;
7840 /* Free per region data structures. */
7841 void
7842 sched_finish_ready_list (void)
7844 int i;
7846 free (ready.vec);
7847 ready.vec = NULL;
7848 ready.veclen = 0;
7850 free (ready_try);
7851 ready_try = NULL;
7853 for (i = 0; i <= sched_ready_n_insns; i++)
7855 if (targetm.sched.first_cycle_multipass_fini)
7856 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7857 .target_data));
7859 free (choice_stack [i].state);
7861 free (choice_stack);
7862 choice_stack = NULL;
7864 sched_ready_n_insns = -1;
7867 static int
7868 haifa_luid_for_non_insn (rtx x)
7870 gcc_assert (NOTE_P (x) || LABEL_P (x));
7872 return 0;
7875 /* Generates recovery code for INSN. */
7876 static void
7877 generate_recovery_code (rtx_insn *insn)
7879 if (TODO_SPEC (insn) & BEGIN_SPEC)
7880 begin_speculative_block (insn);
7882 /* Here we have insn with no dependencies to
7883 instructions other then CHECK_SPEC ones. */
7885 if (TODO_SPEC (insn) & BE_IN_SPEC)
7886 add_to_speculative_block (insn);
7889 /* Helper function.
7890 Tries to add speculative dependencies of type FS between instructions
7891 in deps_list L and TWIN. */
7892 static void
7893 process_insn_forw_deps_be_in_spec (rtx_insn *insn, rtx_insn *twin, ds_t fs)
7895 sd_iterator_def sd_it;
7896 dep_t dep;
7898 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7900 ds_t ds;
7901 rtx_insn *consumer;
7903 consumer = DEP_CON (dep);
7905 ds = DEP_STATUS (dep);
7907 if (/* If we want to create speculative dep. */
7909 /* And we can do that because this is a true dep. */
7910 && (ds & DEP_TYPES) == DEP_TRUE)
7912 gcc_assert (!(ds & BE_IN_SPEC));
7914 if (/* If this dep can be overcome with 'begin speculation'. */
7915 ds & BEGIN_SPEC)
7916 /* Then we have a choice: keep the dep 'begin speculative'
7917 or transform it into 'be in speculative'. */
7919 if (/* In try_ready we assert that if insn once became ready
7920 it can be removed from the ready (or queue) list only
7921 due to backend decision. Hence we can't let the
7922 probability of the speculative dep to decrease. */
7923 ds_weak (ds) <= ds_weak (fs))
7925 ds_t new_ds;
7927 new_ds = (ds & ~BEGIN_SPEC) | fs;
7929 if (/* consumer can 'be in speculative'. */
7930 sched_insn_is_legitimate_for_speculation_p (consumer,
7931 new_ds))
7932 /* Transform it to be in speculative. */
7933 ds = new_ds;
7936 else
7937 /* Mark the dep as 'be in speculative'. */
7938 ds |= fs;
7942 dep_def _new_dep, *new_dep = &_new_dep;
7944 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7945 sd_add_dep (new_dep, false);
7950 /* Generates recovery code for BEGIN speculative INSN. */
7951 static void
7952 begin_speculative_block (rtx_insn *insn)
7954 if (TODO_SPEC (insn) & BEGIN_DATA)
7955 nr_begin_data++;
7956 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7957 nr_begin_control++;
7959 create_check_block_twin (insn, false);
7961 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7964 static void haifa_init_insn (rtx_insn *);
7966 /* Generates recovery code for BE_IN speculative INSN. */
7967 static void
7968 add_to_speculative_block (rtx_insn *insn)
7970 ds_t ts;
7971 sd_iterator_def sd_it;
7972 dep_t dep;
7973 auto_vec<rtx_insn *, 10> twins;
7975 ts = TODO_SPEC (insn);
7976 gcc_assert (!(ts & ~BE_IN_SPEC));
7978 if (ts & BE_IN_DATA)
7979 nr_be_in_data++;
7980 if (ts & BE_IN_CONTROL)
7981 nr_be_in_control++;
7983 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7984 gcc_assert (!TODO_SPEC (insn));
7986 DONE_SPEC (insn) |= ts;
7988 /* First we convert all simple checks to branchy. */
7989 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7990 sd_iterator_cond (&sd_it, &dep);)
7992 rtx_insn *check = DEP_PRO (dep);
7994 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
7996 create_check_block_twin (check, true);
7998 /* Restart search. */
7999 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8001 else
8002 /* Continue search. */
8003 sd_iterator_next (&sd_it);
8006 auto_vec<rtx_insn *> priorities_roots;
8007 clear_priorities (insn, &priorities_roots);
8009 while (1)
8011 rtx_insn *check, *twin;
8012 basic_block rec;
8014 /* Get the first backward dependency of INSN. */
8015 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8016 if (!sd_iterator_cond (&sd_it, &dep))
8017 /* INSN has no backward dependencies left. */
8018 break;
8020 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
8021 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
8022 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8024 check = DEP_PRO (dep);
8026 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
8027 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
8029 rec = BLOCK_FOR_INSN (check);
8031 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
8032 haifa_init_insn (twin);
8034 sd_copy_back_deps (twin, insn, true);
8036 if (sched_verbose && spec_info->dump)
8037 /* INSN_BB (insn) isn't determined for twin insns yet.
8038 So we can't use current_sched_info->print_insn. */
8039 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8040 INSN_UID (twin), rec->index);
8042 twins.safe_push (twin);
8044 /* Add dependences between TWIN and all appropriate
8045 instructions from REC. */
8046 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
8048 rtx_insn *pro = DEP_PRO (dep);
8050 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
8052 /* INSN might have dependencies from the instructions from
8053 several recovery blocks. At this iteration we process those
8054 producers that reside in REC. */
8055 if (BLOCK_FOR_INSN (pro) == rec)
8057 dep_def _new_dep, *new_dep = &_new_dep;
8059 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
8060 sd_add_dep (new_dep, false);
8064 process_insn_forw_deps_be_in_spec (insn, twin, ts);
8066 /* Remove all dependencies between INSN and insns in REC. */
8067 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8068 sd_iterator_cond (&sd_it, &dep);)
8070 rtx_insn *pro = DEP_PRO (dep);
8072 if (BLOCK_FOR_INSN (pro) == rec)
8073 sd_delete_dep (sd_it);
8074 else
8075 sd_iterator_next (&sd_it);
8079 /* We couldn't have added the dependencies between INSN and TWINS earlier
8080 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
8081 unsigned int i;
8082 rtx_insn *twin;
8083 FOR_EACH_VEC_ELT_REVERSE (twins, i, twin)
8085 dep_def _new_dep, *new_dep = &_new_dep;
8087 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8088 sd_add_dep (new_dep, false);
8091 calc_priorities (priorities_roots);
8094 /* Extends and fills with zeros (only the new part) array pointed to by P. */
8095 void *
8096 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
8098 gcc_assert (new_nmemb >= old_nmemb);
8099 p = XRESIZEVAR (void, p, new_nmemb * size);
8100 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
8101 return p;
8104 /* Helper function.
8105 Find fallthru edge from PRED. */
8106 edge
8107 find_fallthru_edge_from (basic_block pred)
8109 edge e;
8110 basic_block succ;
8112 succ = pred->next_bb;
8113 gcc_assert (succ->prev_bb == pred);
8115 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
8117 e = find_fallthru_edge (pred->succs);
8119 if (e)
8121 gcc_assert (e->dest == succ || e->dest->index == EXIT_BLOCK);
8122 return e;
8125 else
8127 e = find_fallthru_edge (succ->preds);
8129 if (e)
8131 gcc_assert (e->src == pred);
8132 return e;
8136 return NULL;
8139 /* Extend per basic block data structures. */
8140 static void
8141 sched_extend_bb (void)
8143 /* The following is done to keep current_sched_info->next_tail non null. */
8144 rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
8145 rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
8146 if (NEXT_INSN (end) == 0
8147 || (!NOTE_P (insn)
8148 && !LABEL_P (insn)
8149 /* Don't emit a NOTE if it would end up before a BARRIER. */
8150 && !BARRIER_P (next_nondebug_insn (end))))
8152 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
8153 /* Make note appear outside BB. */
8154 set_block_for_insn (note, NULL);
8155 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
8159 /* Init per basic block data structures. */
8160 void
8161 sched_init_bbs (void)
8163 sched_extend_bb ();
8166 /* Initialize BEFORE_RECOVERY variable. */
8167 static void
8168 init_before_recovery (basic_block *before_recovery_ptr)
8170 basic_block last;
8171 edge e;
8173 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8174 e = find_fallthru_edge_from (last);
8176 if (e)
8178 /* We create two basic blocks:
8179 1. Single instruction block is inserted right after E->SRC
8180 and has jump to
8181 2. Empty block right before EXIT_BLOCK.
8182 Between these two blocks recovery blocks will be emitted. */
8184 basic_block single, empty;
8186 /* If the fallthrough edge to exit we've found is from the block we've
8187 created before, don't do anything more. */
8188 if (last == after_recovery)
8189 return;
8191 adding_bb_to_current_region_p = false;
8193 single = sched_create_empty_bb (last);
8194 empty = sched_create_empty_bb (single);
8196 /* Add new blocks to the root loop. */
8197 if (current_loops != NULL)
8199 add_bb_to_loop (single, (*current_loops->larray)[0]);
8200 add_bb_to_loop (empty, (*current_loops->larray)[0]);
8203 single->count = last->count;
8204 empty->count = last->count;
8205 BB_COPY_PARTITION (single, last);
8206 BB_COPY_PARTITION (empty, last);
8208 redirect_edge_succ (e, single);
8209 make_single_succ_edge (single, empty, 0);
8210 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
8211 EDGE_FALLTHRU);
8213 rtx_code_label *label = block_label (empty);
8214 rtx_jump_insn *x = emit_jump_insn_after (targetm.gen_jump (label),
8215 BB_END (single));
8216 JUMP_LABEL (x) = label;
8217 LABEL_NUSES (label)++;
8218 haifa_init_insn (x);
8220 emit_barrier_after (x);
8222 sched_init_only_bb (empty, NULL);
8223 sched_init_only_bb (single, NULL);
8224 sched_extend_bb ();
8226 adding_bb_to_current_region_p = true;
8227 before_recovery = single;
8228 after_recovery = empty;
8230 if (before_recovery_ptr)
8231 *before_recovery_ptr = before_recovery;
8233 if (sched_verbose >= 2 && spec_info->dump)
8234 fprintf (spec_info->dump,
8235 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
8236 last->index, single->index, empty->index);
8238 else
8239 before_recovery = last;
8242 /* Returns new recovery block. */
8243 basic_block
8244 sched_create_recovery_block (basic_block *before_recovery_ptr)
8246 rtx_insn *barrier;
8247 basic_block rec;
8249 haifa_recovery_bb_recently_added_p = true;
8250 haifa_recovery_bb_ever_added_p = true;
8252 init_before_recovery (before_recovery_ptr);
8254 barrier = get_last_bb_insn (before_recovery);
8255 gcc_assert (BARRIER_P (barrier));
8257 rtx_insn *label = emit_label_after (gen_label_rtx (), barrier);
8259 rec = create_basic_block (label, label, before_recovery);
8261 /* A recovery block always ends with an unconditional jump. */
8262 emit_barrier_after (BB_END (rec));
8264 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
8265 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
8267 if (sched_verbose && spec_info->dump)
8268 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
8269 rec->index);
8271 return rec;
8274 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
8275 and emit necessary jumps. */
8276 void
8277 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
8278 basic_block second_bb)
8280 int edge_flags;
8282 /* This is fixing of incoming edge. */
8283 /* ??? Which other flags should be specified? */
8284 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
8285 /* Partition type is the same, if it is "unpartitioned". */
8286 edge_flags = EDGE_CROSSING;
8287 else
8288 edge_flags = 0;
8290 edge e2 = single_succ_edge (first_bb);
8291 edge e = make_edge (first_bb, rec, edge_flags);
8293 /* TODO: The actual probability can be determined and is computed as
8294 'todo_spec' variable in create_check_block_twin and
8295 in sel-sched.cc `check_ds' in create_speculation_check. */
8296 e->probability = profile_probability::very_unlikely ();
8297 rec->count = e->count ();
8298 e2->probability = e->probability.invert ();
8300 rtx_code_label *label = block_label (second_bb);
8301 rtx_jump_insn *jump = emit_jump_insn_after (targetm.gen_jump (label),
8302 BB_END (rec));
8303 JUMP_LABEL (jump) = label;
8304 LABEL_NUSES (label)++;
8306 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
8307 /* Partition type is the same, if it is "unpartitioned". */
8309 /* Rewritten from cfgrtl.cc. */
8310 if (crtl->has_bb_partition && targetm_common.have_named_sections)
8312 /* We don't need the same note for the check because
8313 any_condjump_p (check) == true. */
8314 CROSSING_JUMP_P (jump) = 1;
8316 edge_flags = EDGE_CROSSING;
8318 else
8319 edge_flags = 0;
8321 make_single_succ_edge (rec, second_bb, edge_flags);
8322 if (dom_info_available_p (CDI_DOMINATORS))
8323 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
8326 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
8327 INSN is a simple check, that should be converted to branchy one. */
8328 static void
8329 create_check_block_twin (rtx_insn *insn, bool mutate_p)
8331 basic_block rec;
8332 rtx_insn *label, *check, *twin;
8333 rtx check_pat;
8334 ds_t fs;
8335 sd_iterator_def sd_it;
8336 dep_t dep;
8337 dep_def _new_dep, *new_dep = &_new_dep;
8338 ds_t todo_spec;
8340 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
8342 if (!mutate_p)
8343 todo_spec = TODO_SPEC (insn);
8344 else
8346 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
8347 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
8349 todo_spec = CHECK_SPEC (insn);
8352 todo_spec &= SPECULATIVE;
8354 /* Create recovery block. */
8355 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
8357 rec = sched_create_recovery_block (NULL);
8358 label = BB_HEAD (rec);
8360 else
8362 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
8363 label = NULL;
8366 /* Emit CHECK. */
8367 check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);
8369 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8371 /* To have mem_reg alive at the beginning of second_bb,
8372 we emit check BEFORE insn, so insn after splitting
8373 insn will be at the beginning of second_bb, which will
8374 provide us with the correct life information. */
8375 check = emit_jump_insn_before (check_pat, insn);
8376 JUMP_LABEL (check) = label;
8377 LABEL_NUSES (label)++;
8379 else
8380 check = emit_insn_before (check_pat, insn);
8382 /* Extend data structures. */
8383 haifa_init_insn (check);
8385 /* CHECK is being added to current region. Extend ready list. */
8386 gcc_assert (sched_ready_n_insns != -1);
8387 sched_extend_ready_list (sched_ready_n_insns + 1);
8389 if (current_sched_info->add_remove_insn)
8390 current_sched_info->add_remove_insn (insn, 0);
8392 RECOVERY_BLOCK (check) = rec;
8394 if (sched_verbose && spec_info->dump)
8395 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
8396 (*current_sched_info->print_insn) (check, 0));
8398 gcc_assert (ORIG_PAT (insn));
8400 /* Initialize TWIN (twin is a duplicate of original instruction
8401 in the recovery block). */
8402 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8404 sd_iterator_def sd_it;
8405 dep_t dep;
8407 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
8408 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
8410 struct _dep _dep2, *dep2 = &_dep2;
8412 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
8414 sd_add_dep (dep2, true);
8417 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
8418 haifa_init_insn (twin);
8420 if (sched_verbose && spec_info->dump)
8421 /* INSN_BB (insn) isn't determined for twin insns yet.
8422 So we can't use current_sched_info->print_insn. */
8423 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8424 INSN_UID (twin), rec->index);
8426 else
8428 ORIG_PAT (check) = ORIG_PAT (insn);
8429 HAS_INTERNAL_DEP (check) = 1;
8430 twin = check;
8431 /* ??? We probably should change all OUTPUT dependencies to
8432 (TRUE | OUTPUT). */
8435 /* Copy all resolved back dependencies of INSN to TWIN. This will
8436 provide correct value for INSN_TICK (TWIN). */
8437 sd_copy_back_deps (twin, insn, true);
8439 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8440 /* In case of branchy check, fix CFG. */
8442 basic_block first_bb, second_bb;
8443 rtx_insn *jump;
8445 first_bb = BLOCK_FOR_INSN (check);
8446 second_bb = sched_split_block (first_bb, check);
8448 sched_create_recovery_edges (first_bb, rec, second_bb);
8450 sched_init_only_bb (second_bb, first_bb);
8451 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
8453 jump = BB_END (rec);
8454 haifa_init_insn (jump);
8457 /* Move backward dependences from INSN to CHECK and
8458 move forward dependences from INSN to TWIN. */
8460 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
8461 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8463 rtx_insn *pro = DEP_PRO (dep);
8464 ds_t ds;
8466 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
8467 check --TRUE--> producer ??? or ANTI ???
8468 twin --TRUE--> producer
8469 twin --ANTI--> check
8471 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
8472 check --ANTI--> producer
8473 twin --ANTI--> producer
8474 twin --ANTI--> check
8476 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
8477 check ~~TRUE~~> producer
8478 twin ~~TRUE~~> producer
8479 twin --ANTI--> check */
8481 ds = DEP_STATUS (dep);
8483 if (ds & BEGIN_SPEC)
8485 gcc_assert (!mutate_p);
8486 ds &= ~BEGIN_SPEC;
8489 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
8490 sd_add_dep (new_dep, false);
8492 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8494 DEP_CON (new_dep) = twin;
8495 sd_add_dep (new_dep, false);
8499 /* Second, remove backward dependencies of INSN. */
8500 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8501 sd_iterator_cond (&sd_it, &dep);)
8503 if ((DEP_STATUS (dep) & BEGIN_SPEC)
8504 || mutate_p)
8505 /* We can delete this dep because we overcome it with
8506 BEGIN_SPECULATION. */
8507 sd_delete_dep (sd_it);
8508 else
8509 sd_iterator_next (&sd_it);
8512 /* Future Speculations. Determine what BE_IN speculations will be like. */
8513 fs = 0;
8515 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
8516 here. */
8518 gcc_assert (!DONE_SPEC (insn));
8520 if (!mutate_p)
8522 ds_t ts = TODO_SPEC (insn);
8524 DONE_SPEC (insn) = ts & BEGIN_SPEC;
8525 CHECK_SPEC (check) = ts & BEGIN_SPEC;
8527 /* Luckiness of future speculations solely depends upon initial
8528 BEGIN speculation. */
8529 if (ts & BEGIN_DATA)
8530 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
8531 if (ts & BEGIN_CONTROL)
8532 fs = set_dep_weak (fs, BE_IN_CONTROL,
8533 get_dep_weak (ts, BEGIN_CONTROL));
8535 else
8536 CHECK_SPEC (check) = CHECK_SPEC (insn);
8538 /* Future speculations: call the helper. */
8539 process_insn_forw_deps_be_in_spec (insn, twin, fs);
8541 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8543 /* Which types of dependencies should we use here is,
8544 generally, machine-dependent question... But, for now,
8545 it is not. */
8547 if (!mutate_p)
8549 init_dep (new_dep, insn, check, REG_DEP_TRUE);
8550 sd_add_dep (new_dep, false);
8552 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8553 sd_add_dep (new_dep, false);
8555 else
8557 if (spec_info->dump)
8558 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8559 (*current_sched_info->print_insn) (insn, 0));
8561 /* Remove all dependencies of the INSN. */
8563 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8564 | SD_LIST_BACK
8565 | SD_LIST_RES_BACK));
8566 while (sd_iterator_cond (&sd_it, &dep))
8567 sd_delete_dep (sd_it);
8570 /* If former check (INSN) already was moved to the ready (or queue)
8571 list, add new check (CHECK) there too. */
8572 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8573 try_ready (check);
8575 /* Remove old check from instruction stream and free its
8576 data. */
8577 sched_remove_insn (insn);
8580 init_dep (new_dep, check, twin, REG_DEP_ANTI);
8581 sd_add_dep (new_dep, false);
8583 else
8585 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8586 sd_add_dep (new_dep, false);
8589 if (!mutate_p)
8590 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
8591 because it'll be done later in add_to_speculative_block. */
8593 auto_vec<rtx_insn *> priorities_roots;
8595 clear_priorities (twin, &priorities_roots);
8596 calc_priorities (priorities_roots);
8600 /* Removes dependency between instructions in the recovery block REC
8601 and usual region instructions. It keeps inner dependences so it
8602 won't be necessary to recompute them. */
8603 static void
8604 fix_recovery_deps (basic_block rec)
8606 rtx_insn *note, *insn, *jump;
8607 auto_vec<rtx_insn *, 10> ready_list;
8608 auto_bitmap in_ready;
8610 /* NOTE - a basic block note. */
8611 note = NEXT_INSN (BB_HEAD (rec));
8612 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8613 insn = BB_END (rec);
8614 gcc_assert (JUMP_P (insn));
8615 insn = PREV_INSN (insn);
8619 sd_iterator_def sd_it;
8620 dep_t dep;
8622 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8623 sd_iterator_cond (&sd_it, &dep);)
8625 rtx_insn *consumer = DEP_CON (dep);
8627 if (BLOCK_FOR_INSN (consumer) != rec)
8629 sd_delete_dep (sd_it);
8631 if (bitmap_set_bit (in_ready, INSN_LUID (consumer)))
8632 ready_list.safe_push (consumer);
8634 else
8636 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8638 sd_iterator_next (&sd_it);
8642 insn = PREV_INSN (insn);
8644 while (insn != note);
8646 /* Try to add instructions to the ready or queue list. */
8647 unsigned int i;
8648 rtx_insn *temp;
8649 FOR_EACH_VEC_ELT_REVERSE (ready_list, i, temp)
8650 try_ready (temp);
8652 /* Fixing jump's dependences. */
8653 insn = BB_HEAD (rec);
8654 jump = BB_END (rec);
8656 gcc_assert (LABEL_P (insn));
8657 insn = NEXT_INSN (insn);
8659 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8660 add_jump_dependencies (insn, jump);
8663 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8664 instruction data. */
8665 static bool
8666 haifa_change_pattern (rtx_insn *insn, rtx new_pat)
8668 int t;
8670 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
8671 if (!t)
8672 return false;
8674 update_insn_after_change (insn);
8675 return true;
8678 /* -1 - can't speculate,
8679 0 - for speculation with REQUEST mode it is OK to use
8680 current instruction pattern,
8681 1 - need to change pattern for *NEW_PAT to be speculative. */
8683 sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8685 gcc_assert (current_sched_info->flags & DO_SPECULATION
8686 && (request & SPECULATIVE)
8687 && sched_insn_is_legitimate_for_speculation_p (insn, request));
8689 if ((request & spec_info->mask) != request)
8690 return -1;
8692 if (request & BE_IN_SPEC
8693 && !(request & BEGIN_SPEC))
8694 return 0;
8696 return targetm.sched.speculate_insn (insn, request, new_pat);
8699 static int
8700 haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8702 gcc_assert (sched_deps_info->generate_spec_deps
8703 && !IS_SPECULATION_CHECK_P (insn));
8705 if (HAS_INTERNAL_DEP (insn)
8706 || SCHED_GROUP_P (insn))
8707 return -1;
8709 return sched_speculate_insn (insn, request, new_pat);
8712 /* Print some information about block BB, which starts with HEAD and
8713 ends with TAIL, before scheduling it.
8714 I is zero, if scheduler is about to start with the fresh ebb. */
8715 static void
8716 dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
8718 if (!i)
8719 fprintf (sched_dump,
8720 ";; ======================================================\n");
8721 else
8722 fprintf (sched_dump,
8723 ";; =====================ADVANCING TO=====================\n");
8724 fprintf (sched_dump,
8725 ";; -- basic block %d from %d to %d -- %s reload\n",
8726 bb->index, INSN_UID (head), INSN_UID (tail),
8727 (reload_completed ? "after" : "before"));
8728 fprintf (sched_dump,
8729 ";; ======================================================\n");
8730 fprintf (sched_dump, "\n");
8733 /* Unlink basic block notes and labels and saves them, so they
8734 can be easily restored. We unlink basic block notes in EBB to
8735 provide back-compatibility with the previous code, as target backends
8736 assume, that there'll be only instructions between
8737 current_sched_info->{head and tail}. We restore these notes as soon
8738 as we can.
8739 FIRST (LAST) is the first (last) basic block in the ebb.
8740 NB: In usual case (FIRST == LAST) nothing is really done. */
8741 void
8742 unlink_bb_notes (basic_block first, basic_block last)
8744 /* We DON'T unlink basic block notes of the first block in the ebb. */
8745 if (first == last)
8746 return;
8748 bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
8750 /* Make a sentinel. */
8751 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
8752 bb_header[last->next_bb->index] = 0;
8754 first = first->next_bb;
8757 rtx_insn *prev, *label, *note, *next;
8759 label = BB_HEAD (last);
8760 if (LABEL_P (label))
8761 note = NEXT_INSN (label);
8762 else
8763 note = label;
8764 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8766 prev = PREV_INSN (label);
8767 next = NEXT_INSN (note);
8768 gcc_assert (prev && next);
8770 SET_NEXT_INSN (prev) = next;
8771 SET_PREV_INSN (next) = prev;
8773 bb_header[last->index] = label;
8775 if (last == first)
8776 break;
8778 last = last->prev_bb;
8780 while (1);
8783 /* Restore basic block notes.
8784 FIRST is the first basic block in the ebb. */
8785 static void
8786 restore_bb_notes (basic_block first)
8788 if (!bb_header)
8789 return;
8791 /* We DON'T unlink basic block notes of the first block in the ebb. */
8792 first = first->next_bb;
8793 /* Remember: FIRST is actually a second basic block in the ebb. */
8795 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
8796 && bb_header[first->index])
8798 rtx_insn *prev, *label, *note, *next;
8800 label = bb_header[first->index];
8801 prev = PREV_INSN (label);
8802 next = NEXT_INSN (prev);
8804 if (LABEL_P (label))
8805 note = NEXT_INSN (label);
8806 else
8807 note = label;
8808 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8810 bb_header[first->index] = 0;
8812 SET_NEXT_INSN (prev) = label;
8813 SET_NEXT_INSN (note) = next;
8814 SET_PREV_INSN (next) = note;
8816 first = first->next_bb;
8819 free (bb_header);
8820 bb_header = 0;
8823 /* Helper function.
8824 Fix CFG after both in- and inter-block movement of
8825 control_flow_insn_p JUMP. */
8826 static void
8827 fix_jump_move (rtx_insn *jump)
8829 basic_block bb, jump_bb, jump_bb_next;
8831 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8832 jump_bb = BLOCK_FOR_INSN (jump);
8833 jump_bb_next = jump_bb->next_bb;
8835 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8836 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8838 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8839 /* if jump_bb_next is not empty. */
8840 BB_END (jump_bb) = BB_END (jump_bb_next);
8842 if (BB_END (bb) != PREV_INSN (jump))
8843 /* Then there are instruction after jump that should be placed
8844 to jump_bb_next. */
8845 BB_END (jump_bb_next) = BB_END (bb);
8846 else
8847 /* Otherwise jump_bb_next is empty. */
8848 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8850 /* To make assertion in move_insn happy. */
8851 BB_END (bb) = PREV_INSN (jump);
8853 update_bb_for_insn (jump_bb_next);
8856 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8857 static void
8858 move_block_after_check (rtx_insn *jump)
8860 basic_block bb, jump_bb, jump_bb_next;
8861 vec<edge, va_gc> *t;
8863 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8864 jump_bb = BLOCK_FOR_INSN (jump);
8865 jump_bb_next = jump_bb->next_bb;
8867 update_bb_for_insn (jump_bb);
8869 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8870 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8872 unlink_block (jump_bb_next);
8873 link_block (jump_bb_next, bb);
8875 t = bb->succs;
8876 bb->succs = 0;
8877 move_succs (&(jump_bb->succs), bb);
8878 move_succs (&(jump_bb_next->succs), jump_bb);
8879 move_succs (&t, jump_bb_next);
8881 df_mark_solutions_dirty ();
8883 common_sched_info->fix_recovery_cfg
8884 (bb->index, jump_bb->index, jump_bb_next->index);
8887 /* Helper function for move_block_after_check.
8888 This functions attaches edge vector pointed to by SUCCSP to
8889 block TO. */
8890 static void
8891 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8893 edge e;
8894 edge_iterator ei;
8896 gcc_assert (to->succs == 0);
8898 to->succs = *succsp;
8900 FOR_EACH_EDGE (e, ei, to->succs)
8901 e->src = to;
8903 *succsp = 0;
8906 /* Remove INSN from the instruction stream.
8907 INSN should have any dependencies. */
8908 static void
8909 sched_remove_insn (rtx_insn *insn)
8911 sd_finish_insn (insn);
8913 change_queue_index (insn, QUEUE_NOWHERE);
8914 current_sched_info->add_remove_insn (insn, 1);
8915 delete_insn (insn);
8918 /* Clear priorities of all instructions, that are forward dependent on INSN.
8919 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8920 be invoked to initialize all cleared priorities. */
8921 static void
8922 clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
8924 sd_iterator_def sd_it;
8925 dep_t dep;
8926 bool insn_is_root_p = true;
8928 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8930 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8932 rtx_insn *pro = DEP_PRO (dep);
8934 if (INSN_PRIORITY_STATUS (pro) >= 0
8935 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8937 /* If DEP doesn't contribute to priority then INSN itself should
8938 be added to priority roots. */
8939 if (contributes_to_priority_p (dep))
8940 insn_is_root_p = false;
8942 INSN_PRIORITY_STATUS (pro) = -1;
8943 clear_priorities (pro, roots_ptr);
8947 if (insn_is_root_p)
8948 roots_ptr->safe_push (insn);
8951 /* Recompute priorities of instructions, whose priorities might have been
8952 changed. ROOTS is a vector of instructions whose priority computation will
8953 trigger initialization of all cleared priorities. */
8954 static void
8955 calc_priorities (const rtx_vec_t &roots)
8957 int i;
8958 rtx_insn *insn;
8960 FOR_EACH_VEC_ELT (roots, i, insn)
8961 priority (insn);
8965 /* Add dependences between JUMP and other instructions in the recovery
8966 block. INSN is the first insn the recovery block. */
8967 static void
8968 add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
8972 insn = NEXT_INSN (insn);
8973 if (insn == jump)
8974 break;
8976 if (dep_list_size (insn, SD_LIST_FORW) == 0)
8978 dep_def _new_dep, *new_dep = &_new_dep;
8980 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8981 sd_add_dep (new_dep, false);
8984 while (1);
8986 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
8989 /* Extend data structures for logical insn UID. */
8990 void
8991 sched_extend_luids (void)
8993 int new_luids_max_uid = get_max_uid () + 1;
8995 sched_luids.safe_grow_cleared (new_luids_max_uid, true);
8998 /* Initialize LUID for INSN. */
8999 void
9000 sched_init_insn_luid (rtx_insn *insn)
9002 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
9003 int luid;
9005 if (i >= 0)
9007 luid = sched_max_luid;
9008 sched_max_luid += i;
9010 else
9011 luid = -1;
9013 SET_INSN_LUID (insn, luid);
9016 /* Initialize luids for BBS.
9017 The hook common_sched_info->luid_for_non_insn () is used to determine
9018 if notes, labels, etc. need luids. */
9019 void
9020 sched_init_luids (const bb_vec_t &bbs)
9022 int i;
9023 basic_block bb;
9025 sched_extend_luids ();
9026 FOR_EACH_VEC_ELT (bbs, i, bb)
9028 rtx_insn *insn;
9030 FOR_BB_INSNS (bb, insn)
9031 sched_init_insn_luid (insn);
9035 /* Free LUIDs. */
9036 void
9037 sched_finish_luids (void)
9039 sched_luids.release ();
9040 sched_max_luid = 1;
9043 /* Return logical uid of INSN. Helpful while debugging. */
9045 insn_luid (rtx_insn *insn)
9047 return INSN_LUID (insn);
9050 /* Extend per insn data in the target. */
9051 void
9052 sched_extend_target (void)
9054 if (targetm.sched.h_i_d_extended)
9055 targetm.sched.h_i_d_extended ();
9058 /* Extend global scheduler structures (those, that live across calls to
9059 schedule_block) to include information about just emitted INSN. */
9060 static void
9061 extend_h_i_d (void)
9063 int reserve = (get_max_uid () + 1 - h_i_d.length ());
9064 if (reserve > 0
9065 && ! h_i_d.space (reserve))
9067 h_i_d.safe_grow_cleared (3U * get_max_uid () / 2, true);
9068 sched_extend_target ();
9072 /* Initialize h_i_d entry of the INSN with default values.
9073 Values, that are not explicitly initialized here, hold zero. */
9074 static void
9075 init_h_i_d (rtx_insn *insn)
9077 if (INSN_LUID (insn) > 0)
9079 INSN_COST (insn) = -1;
9080 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
9081 INSN_TICK (insn) = INVALID_TICK;
9082 INSN_EXACT_TICK (insn) = INVALID_TICK;
9083 INTER_TICK (insn) = INVALID_TICK;
9084 TODO_SPEC (insn) = HARD_DEP;
9085 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
9086 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9087 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
9088 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9092 /* Initialize haifa_insn_data for BBS. */
9093 void
9094 haifa_init_h_i_d (const bb_vec_t &bbs)
9096 int i;
9097 basic_block bb;
9099 extend_h_i_d ();
9100 FOR_EACH_VEC_ELT (bbs, i, bb)
9102 rtx_insn *insn;
9104 FOR_BB_INSNS (bb, insn)
9105 init_h_i_d (insn);
9109 /* Finalize haifa_insn_data. */
9110 void
9111 haifa_finish_h_i_d (void)
9113 int i;
9114 haifa_insn_data_t data;
9115 reg_use_data *use, *next_use;
9116 reg_set_data *set, *next_set;
9118 FOR_EACH_VEC_ELT (h_i_d, i, data)
9120 free (data->max_reg_pressure);
9121 free (data->reg_pressure);
9122 for (use = data->reg_use_list; use != NULL; use = next_use)
9124 next_use = use->next_insn_use;
9125 free (use);
9127 for (set = data->reg_set_list; set != NULL; set = next_set)
9129 next_set = set->next_insn_set;
9130 free (set);
9134 h_i_d.release ();
9137 /* Init data for the new insn INSN. */
9138 static void
9139 haifa_init_insn (rtx_insn *insn)
9141 gcc_assert (insn != NULL);
9143 sched_extend_luids ();
9144 sched_init_insn_luid (insn);
9145 sched_extend_target ();
9146 sched_deps_init (false);
9147 extend_h_i_d ();
9148 init_h_i_d (insn);
9150 if (adding_bb_to_current_region_p)
9152 sd_init_insn (insn);
9154 /* Extend dependency caches by one element. */
9155 extend_dependency_caches (1, false);
9157 if (sched_pressure != SCHED_PRESSURE_NONE)
9158 init_insn_reg_pressure_info (insn);
9161 /* Init data for the new basic block BB which comes after AFTER. */
9162 static void
9163 haifa_init_only_bb (basic_block bb, basic_block after)
9165 gcc_assert (bb != NULL);
9167 sched_init_bbs ();
9169 if (common_sched_info->add_block)
9170 /* This changes only data structures of the front-end. */
9171 common_sched_info->add_block (bb, after);
9174 /* A generic version of sched_split_block (). */
9175 basic_block
9176 sched_split_block_1 (basic_block first_bb, rtx after)
9178 edge e;
9180 e = split_block (first_bb, after);
9181 gcc_assert (e->src == first_bb);
9183 /* sched_split_block emits note if *check == BB_END. Probably it
9184 is better to rip that note off. */
9186 return e->dest;
9189 /* A generic version of sched_create_empty_bb (). */
9190 basic_block
9191 sched_create_empty_bb_1 (basic_block after)
9193 return create_empty_bb (after);
9196 /* Insert PAT as an INSN into the schedule and update the necessary data
9197 structures to account for it. */
9198 rtx_insn *
9199 sched_emit_insn (rtx pat)
9201 rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
9202 haifa_init_insn (insn);
9204 if (current_sched_info->add_remove_insn)
9205 current_sched_info->add_remove_insn (insn, 0);
9207 (*current_sched_info->begin_schedule_ready) (insn);
9208 scheduled_insns.safe_push (insn);
9210 last_scheduled_insn = insn;
9211 return insn;
9214 /* This function returns a candidate satisfying dispatch constraints from
9215 the ready list. */
9217 static rtx_insn *
9218 ready_remove_first_dispatch (struct ready_list *ready)
9220 int i;
9221 rtx_insn *insn = ready_element (ready, 0);
9223 if (ready->n_ready == 1
9224 || !INSN_P (insn)
9225 || INSN_CODE (insn) < 0
9226 || !active_insn_p (insn)
9227 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9228 return ready_remove_first (ready);
9230 for (i = 1; i < ready->n_ready; i++)
9232 insn = ready_element (ready, i);
9234 if (!INSN_P (insn)
9235 || INSN_CODE (insn) < 0
9236 || !active_insn_p (insn))
9237 continue;
9239 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9241 /* Return ith element of ready. */
9242 insn = ready_remove (ready, i);
9243 return insn;
9247 if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
9248 return ready_remove_first (ready);
9250 for (i = 1; i < ready->n_ready; i++)
9252 insn = ready_element (ready, i);
9254 if (!INSN_P (insn)
9255 || INSN_CODE (insn) < 0
9256 || !active_insn_p (insn))
9257 continue;
9259 /* Return i-th element of ready. */
9260 if (targetm.sched.dispatch (insn, IS_CMP))
9261 return ready_remove (ready, i);
9264 return ready_remove_first (ready);
9267 /* Get number of ready insn in the ready list. */
9270 number_in_ready (void)
9272 return ready.n_ready;
9275 /* Get number of ready's in the ready list. */
9277 rtx_insn *
9278 get_ready_element (int i)
9280 return ready_element (&ready, i);
9283 #endif /* INSN_SCHEDULING */