libstdc++: Simplify std::any to fix -Wdeprecated-declarations warning
[official-gcc.git] / gcc / tree-ssa-threadedge.cc
blob0aa2aa851430b147e78fb98355af8b1ac0a3d66f
1 /* SSA Jump Threading
2 Copyright (C) 2005-2024 Free Software Foundation, Inc.
3 Contributed by Jeff Law <law@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "predict.h"
28 #include "ssa.h"
29 #include "fold-const.h"
30 #include "cfgloop.h"
31 #include "gimple-iterator.h"
32 #include "tree-cfg.h"
33 #include "tree-ssa-threadupdate.h"
34 #include "tree-ssa-scopedtables.h"
35 #include "tree-ssa-threadedge.h"
36 #include "gimple-fold.h"
37 #include "cfganal.h"
38 #include "alloc-pool.h"
39 #include "vr-values.h"
40 #include "gimple-range.h"
41 #include "gimple-range-path.h"
43 /* To avoid code explosion due to jump threading, we limit the
44 number of statements we are going to copy. This variable
45 holds the number of statements currently seen that we'll have
46 to copy as part of the jump threading process. */
47 static int stmt_count;
49 /* Array to record value-handles per SSA_NAME. */
50 vec<tree> ssa_name_values;
52 /* Set the value for the SSA name NAME to VALUE. */
54 void
55 set_ssa_name_value (tree name, tree value)
57 if (SSA_NAME_VERSION (name) >= ssa_name_values.length ())
58 ssa_name_values.safe_grow_cleared (SSA_NAME_VERSION (name) + 1, true);
59 if (value && TREE_OVERFLOW_P (value))
60 value = drop_tree_overflow (value);
61 ssa_name_values[SSA_NAME_VERSION (name)] = value;
64 jump_threader::jump_threader (jt_simplifier *simplifier, jt_state *state)
66 /* Initialize the per SSA_NAME value-handles array. */
67 gcc_assert (!ssa_name_values.exists ());
68 ssa_name_values.create (num_ssa_names);
70 dummy_cond = gimple_build_cond (NE_EXPR, integer_zero_node,
71 integer_zero_node, NULL, NULL);
73 m_registry = new fwd_jt_path_registry ();
74 m_simplifier = simplifier;
75 m_state = state;
78 jump_threader::~jump_threader (void)
80 ssa_name_values.release ();
81 ggc_free (dummy_cond);
82 delete m_registry;
85 void
86 jump_threader::remove_jump_threads_including (edge_def *e)
88 m_registry->remove_jump_threads_including (e);
91 bool
92 jump_threader::thread_through_all_blocks (bool may_peel_loop_headers)
94 return m_registry->thread_through_all_blocks (may_peel_loop_headers);
97 static inline bool
98 has_phis_p (basic_block bb)
100 return !gsi_end_p (gsi_start_phis (bb));
103 /* Return TRUE for a block with PHIs but no statements. */
105 static bool
106 empty_block_with_phis_p (basic_block bb)
108 return gsi_end_p (gsi_start_nondebug_bb (bb)) && has_phis_p (bb);
111 /* Return TRUE if we may be able to thread an incoming edge into
112 BB to an outgoing edge from BB. Return FALSE otherwise. */
114 static bool
115 potentially_threadable_block (basic_block bb)
117 gimple_stmt_iterator gsi;
119 /* Special case. We can get blocks that are forwarders, but are
120 not optimized away because they forward from outside a loop
121 to the loop header. We want to thread through them as we can
122 sometimes thread to the loop exit, which is obviously profitable.
123 The interesting case here is when the block has PHIs. */
124 if (empty_block_with_phis_p (bb))
125 return true;
127 /* If BB has a single successor or a single predecessor, then
128 there is no threading opportunity. */
129 if (single_succ_p (bb) || single_pred_p (bb))
130 return false;
132 /* If BB does not end with a conditional, switch or computed goto,
133 then there is no threading opportunity. */
134 gsi = gsi_last_bb (bb);
135 if (gsi_end_p (gsi)
136 || ! gsi_stmt (gsi)
137 || (gimple_code (gsi_stmt (gsi)) != GIMPLE_COND
138 && gimple_code (gsi_stmt (gsi)) != GIMPLE_GOTO
139 && gimple_code (gsi_stmt (gsi)) != GIMPLE_SWITCH))
140 return false;
142 return true;
145 /* Record temporary equivalences created by PHIs at the target of the
146 edge E.
148 If a PHI which prevents threading is encountered, then return FALSE
149 indicating we should not thread this edge, else return TRUE. */
151 bool
152 jump_threader::record_temporary_equivalences_from_phis (edge e)
154 gphi_iterator gsi;
156 /* Each PHI creates a temporary equivalence, record them.
157 These are context sensitive equivalences and will be removed
158 later. */
159 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
161 gphi *phi = gsi.phi ();
162 tree src = PHI_ARG_DEF_FROM_EDGE (phi, e);
163 tree dst = gimple_phi_result (phi);
165 /* If the desired argument is not the same as this PHI's result
166 and it is set by a PHI in E->dest, then we cannot thread
167 through E->dest. */
168 if (src != dst
169 && TREE_CODE (src) == SSA_NAME
170 && gimple_code (SSA_NAME_DEF_STMT (src)) == GIMPLE_PHI
171 && gimple_bb (SSA_NAME_DEF_STMT (src)) == e->dest)
172 return false;
174 /* We consider any non-virtual PHI as a statement since it
175 count result in a constant assignment or copy operation. */
176 if (!virtual_operand_p (dst))
177 stmt_count++;
179 m_state->register_equiv (dst, src, /*update_range=*/true);
181 return true;
184 /* Valueize hook for gimple_fold_stmt_to_constant_1. */
186 static tree
187 threadedge_valueize (tree t)
189 if (TREE_CODE (t) == SSA_NAME)
191 tree tem = SSA_NAME_VALUE (t);
192 if (tem)
193 return tem;
195 return t;
198 /* Try to simplify each statement in E->dest, ultimately leading to
199 a simplification of the COND_EXPR at the end of E->dest.
201 Record unwind information for temporary equivalences onto STACK.
203 Uses M_SIMPLIFIER to further simplify statements using pass specific
204 information.
206 We might consider marking just those statements which ultimately
207 feed the COND_EXPR. It's not clear if the overhead of bookkeeping
208 would be recovered by trying to simplify fewer statements.
210 If we are able to simplify a statement into the form
211 SSA_NAME = (SSA_NAME | gimple invariant), then we can record
212 a context sensitive equivalence which may help us simplify
213 later statements in E->dest. */
215 gimple *
216 jump_threader::record_temporary_equivalences_from_stmts_at_dest (edge e)
218 gimple *stmt = NULL;
219 gimple_stmt_iterator gsi;
220 int max_stmt_count;
222 max_stmt_count = param_max_jump_thread_duplication_stmts;
224 /* Walk through each statement in the block recording equivalences
225 we discover. Note any equivalences we discover are context
226 sensitive (ie, are dependent on traversing E) and must be unwound
227 when we're finished processing E. */
228 for (gsi = gsi_start_bb (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
230 stmt = gsi_stmt (gsi);
232 /* Ignore empty statements and labels. */
233 if (gimple_code (stmt) == GIMPLE_NOP
234 || gimple_code (stmt) == GIMPLE_LABEL
235 || is_gimple_debug (stmt))
236 continue;
238 /* If the statement has volatile operands, then we assume we
239 cannot thread through this block. This is overly
240 conservative in some ways. */
241 if (gimple_code (stmt) == GIMPLE_ASM
242 && gimple_asm_volatile_p (as_a <gasm *> (stmt)))
243 return NULL;
245 /* If the statement is a unique builtin, we cannot thread
246 through here. */
247 if (gimple_code (stmt) == GIMPLE_CALL
248 && gimple_call_internal_p (stmt)
249 && gimple_call_internal_unique_p (stmt))
250 return NULL;
252 /* We cannot thread through __builtin_constant_p, because an
253 expression that is constant on two threading paths may become
254 non-constant (i.e.: phi) when they merge. */
255 if (gimple_call_builtin_p (stmt, BUILT_IN_CONSTANT_P))
256 return NULL;
258 /* If duplicating this block is going to cause too much code
259 expansion, then do not thread through this block. */
260 stmt_count++;
261 if (stmt_count > max_stmt_count)
263 /* If any of the stmts in the PATH's dests are going to be
264 killed due to threading, grow the max count
265 accordingly. */
266 if (max_stmt_count
267 == param_max_jump_thread_duplication_stmts)
269 max_stmt_count += estimate_threading_killed_stmts (e->dest);
270 if (dump_file)
271 fprintf (dump_file, "threading bb %i up to %i stmts\n",
272 e->dest->index, max_stmt_count);
274 /* If we're still past the limit, we're done. */
275 if (stmt_count > max_stmt_count)
276 return NULL;
279 m_state->record_ranges_from_stmt (stmt, true);
281 /* If this is not a statement that sets an SSA_NAME to a new
282 value, then do not try to simplify this statement as it will
283 not simplify in any way that is helpful for jump threading. */
284 if ((gimple_code (stmt) != GIMPLE_ASSIGN
285 || TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
286 && (gimple_code (stmt) != GIMPLE_CALL
287 || gimple_call_lhs (stmt) == NULL_TREE
288 || TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME))
289 continue;
291 /* The result of __builtin_object_size depends on all the arguments
292 of a phi node. Temporarily using only one edge produces invalid
293 results. For example
295 if (x < 6)
296 goto l;
297 else
298 goto l;
301 r = PHI <&w[2].a[1](2), &a.a[6](3)>
302 __builtin_object_size (r, 0)
304 The result of __builtin_object_size is defined to be the maximum of
305 remaining bytes. If we use only one edge on the phi, the result will
306 change to be the remaining bytes for the corresponding phi argument.
308 Similarly for __builtin_constant_p:
310 r = PHI <1(2), 2(3)>
311 __builtin_constant_p (r)
313 Both PHI arguments are constant, but x ? 1 : 2 is still not
314 constant. */
316 if (is_gimple_call (stmt))
318 tree fndecl = gimple_call_fndecl (stmt);
319 if (fndecl
320 && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
321 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_OBJECT_SIZE
322 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P))
323 continue;
326 m_state->register_equivs_stmt (stmt, e->src, m_simplifier);
328 return stmt;
331 /* Simplify the control statement at the end of the block E->dest.
333 Use SIMPLIFY (a pointer to a callback function) to further simplify
334 a condition using pass specific information.
336 Return the simplified condition or NULL if simplification could
337 not be performed. When simplifying a GIMPLE_SWITCH, we may return
338 the CASE_LABEL_EXPR that will be taken. */
340 tree
341 jump_threader::simplify_control_stmt_condition (edge e, gimple *stmt)
343 tree cond, cached_lhs;
344 enum gimple_code code = gimple_code (stmt);
346 /* For comparisons, we have to update both operands, then try
347 to simplify the comparison. */
348 if (code == GIMPLE_COND)
350 tree op0, op1;
351 enum tree_code cond_code;
353 op0 = gimple_cond_lhs (stmt);
354 op1 = gimple_cond_rhs (stmt);
355 cond_code = gimple_cond_code (stmt);
357 /* Get the current value of both operands. */
358 if (TREE_CODE (op0) == SSA_NAME)
360 for (int i = 0; i < 2; i++)
362 if (TREE_CODE (op0) == SSA_NAME
363 && SSA_NAME_VALUE (op0))
364 op0 = SSA_NAME_VALUE (op0);
365 else
366 break;
370 if (TREE_CODE (op1) == SSA_NAME)
372 for (int i = 0; i < 2; i++)
374 if (TREE_CODE (op1) == SSA_NAME
375 && SSA_NAME_VALUE (op1))
376 op1 = SSA_NAME_VALUE (op1);
377 else
378 break;
382 const unsigned recursion_limit = 4;
384 cached_lhs
385 = simplify_control_stmt_condition_1 (e, stmt, op0, cond_code, op1,
386 recursion_limit);
388 /* If we were testing an integer/pointer against a constant,
389 then we can trace the value of the SSA_NAME. If a value is
390 found, then the condition will collapse to a constant.
392 Return the SSA_NAME we want to trace back rather than the full
393 expression and give the threader a chance to find its value. */
394 if (cached_lhs == NULL)
396 /* Recover the original operands. They may have been simplified
397 using context sensitive equivalences. Those context sensitive
398 equivalences may not be valid on paths. */
399 tree op0 = gimple_cond_lhs (stmt);
400 tree op1 = gimple_cond_rhs (stmt);
402 if ((INTEGRAL_TYPE_P (TREE_TYPE (op0))
403 || POINTER_TYPE_P (TREE_TYPE (op0)))
404 && TREE_CODE (op0) == SSA_NAME
405 && TREE_CODE (op1) == INTEGER_CST)
406 return op0;
409 return cached_lhs;
412 if (code == GIMPLE_SWITCH)
413 cond = gimple_switch_index (as_a <gswitch *> (stmt));
414 else if (code == GIMPLE_GOTO)
415 cond = gimple_goto_dest (stmt);
416 else
417 gcc_unreachable ();
419 /* We can have conditionals which just test the state of a variable
420 rather than use a relational operator. These are simpler to handle. */
421 if (TREE_CODE (cond) == SSA_NAME)
423 tree original_lhs = cond;
424 cached_lhs = cond;
426 /* Get the variable's current value from the equivalence chains.
428 It is possible to get loops in the SSA_NAME_VALUE chains
429 (consider threading the backedge of a loop where we have
430 a loop invariant SSA_NAME used in the condition). */
431 if (cached_lhs)
433 for (int i = 0; i < 2; i++)
435 if (TREE_CODE (cached_lhs) == SSA_NAME
436 && SSA_NAME_VALUE (cached_lhs))
437 cached_lhs = SSA_NAME_VALUE (cached_lhs);
438 else
439 break;
443 /* If we haven't simplified to an invariant yet, then use the
444 pass specific callback to try and simplify it further. */
445 if (cached_lhs && ! is_gimple_min_invariant (cached_lhs))
447 if (code == GIMPLE_SWITCH)
449 /* Replace the index operand of the GIMPLE_SWITCH with any LHS
450 we found before handing off to VRP. If simplification is
451 possible, the simplified value will be a CASE_LABEL_EXPR of
452 the label that is proven to be taken. */
453 gswitch *dummy_switch = as_a<gswitch *> (gimple_copy (stmt));
454 gimple_switch_set_index (dummy_switch, cached_lhs);
455 cached_lhs = m_simplifier->simplify (dummy_switch, stmt, e->src,
456 m_state);
457 ggc_free (dummy_switch);
459 else
460 cached_lhs = m_simplifier->simplify (stmt, stmt, e->src, m_state);
463 /* We couldn't find an invariant. But, callers of this
464 function may be able to do something useful with the
465 unmodified destination. */
466 if (!cached_lhs)
467 cached_lhs = original_lhs;
469 else
470 cached_lhs = NULL;
472 return cached_lhs;
475 /* Recursive helper for simplify_control_stmt_condition. */
477 tree
478 jump_threader::simplify_control_stmt_condition_1
479 (edge e,
480 gimple *stmt,
481 tree op0,
482 enum tree_code cond_code,
483 tree op1,
484 unsigned limit)
486 if (limit == 0)
487 return NULL_TREE;
489 /* We may need to canonicalize the comparison. For
490 example, op0 might be a constant while op1 is an
491 SSA_NAME. Failure to canonicalize will cause us to
492 miss threading opportunities. */
493 if (tree_swap_operands_p (op0, op1))
495 cond_code = swap_tree_comparison (cond_code);
496 std::swap (op0, op1);
499 /* If the condition has the form (A & B) CMP 0 or (A | B) CMP 0 then
500 recurse into the LHS to see if there is a simplification that
501 makes this condition always true or always false along the edge
502 E. */
503 if ((cond_code == EQ_EXPR || cond_code == NE_EXPR)
504 && TREE_CODE (op0) == SSA_NAME
505 && integer_zerop (op1))
507 gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
508 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
510 else if (gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR
511 || gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR)
513 enum tree_code rhs_code = gimple_assign_rhs_code (def_stmt);
514 const tree rhs1 = gimple_assign_rhs1 (def_stmt);
515 const tree rhs2 = gimple_assign_rhs2 (def_stmt);
517 /* Is A != 0 ? */
518 const tree res1
519 = simplify_control_stmt_condition_1 (e, def_stmt,
520 rhs1, NE_EXPR, op1,
521 limit - 1);
522 if (res1 == NULL_TREE)
524 else if (rhs_code == BIT_AND_EXPR && integer_zerop (res1))
526 /* If A == 0 then (A & B) != 0 is always false. */
527 if (cond_code == NE_EXPR)
528 return boolean_false_node;
529 /* If A == 0 then (A & B) == 0 is always true. */
530 if (cond_code == EQ_EXPR)
531 return boolean_true_node;
533 else if (rhs_code == BIT_IOR_EXPR && integer_nonzerop (res1))
535 /* If A != 0 then (A | B) != 0 is always true. */
536 if (cond_code == NE_EXPR)
537 return boolean_true_node;
538 /* If A != 0 then (A | B) == 0 is always false. */
539 if (cond_code == EQ_EXPR)
540 return boolean_false_node;
543 /* Is B != 0 ? */
544 const tree res2
545 = simplify_control_stmt_condition_1 (e, def_stmt,
546 rhs2, NE_EXPR, op1,
547 limit - 1);
548 if (res2 == NULL_TREE)
550 else if (rhs_code == BIT_AND_EXPR && integer_zerop (res2))
552 /* If B == 0 then (A & B) != 0 is always false. */
553 if (cond_code == NE_EXPR)
554 return boolean_false_node;
555 /* If B == 0 then (A & B) == 0 is always true. */
556 if (cond_code == EQ_EXPR)
557 return boolean_true_node;
559 else if (rhs_code == BIT_IOR_EXPR && integer_nonzerop (res2))
561 /* If B != 0 then (A | B) != 0 is always true. */
562 if (cond_code == NE_EXPR)
563 return boolean_true_node;
564 /* If B != 0 then (A | B) == 0 is always false. */
565 if (cond_code == EQ_EXPR)
566 return boolean_false_node;
569 if (res1 != NULL_TREE && res2 != NULL_TREE)
571 if (rhs_code == BIT_AND_EXPR
572 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
573 && integer_nonzerop (res1)
574 && integer_nonzerop (res2))
576 /* If A != 0 and B != 0 then (bool)(A & B) != 0 is true. */
577 if (cond_code == NE_EXPR)
578 return boolean_true_node;
579 /* If A != 0 and B != 0 then (bool)(A & B) == 0 is false. */
580 if (cond_code == EQ_EXPR)
581 return boolean_false_node;
584 if (rhs_code == BIT_IOR_EXPR
585 && integer_zerop (res1)
586 && integer_zerop (res2))
588 /* If A == 0 and B == 0 then (A | B) != 0 is false. */
589 if (cond_code == NE_EXPR)
590 return boolean_false_node;
591 /* If A == 0 and B == 0 then (A | B) == 0 is true. */
592 if (cond_code == EQ_EXPR)
593 return boolean_true_node;
597 /* Handle (A CMP B) CMP 0. */
598 else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt))
599 == tcc_comparison)
601 tree rhs1 = gimple_assign_rhs1 (def_stmt);
602 tree rhs2 = gimple_assign_rhs2 (def_stmt);
604 tree_code new_cond = gimple_assign_rhs_code (def_stmt);
605 if (cond_code == EQ_EXPR)
606 new_cond = invert_tree_comparison (new_cond, false);
608 tree res
609 = simplify_control_stmt_condition_1 (e, def_stmt,
610 rhs1, new_cond, rhs2,
611 limit - 1);
612 if (res != NULL_TREE && is_gimple_min_invariant (res))
613 return res;
617 gimple_cond_set_code (dummy_cond, cond_code);
618 gimple_cond_set_lhs (dummy_cond, op0);
619 gimple_cond_set_rhs (dummy_cond, op1);
621 /* We absolutely do not care about any type conversions
622 we only care about a zero/nonzero value. */
623 fold_defer_overflow_warnings ();
625 tree res = fold_binary (cond_code, boolean_type_node, op0, op1);
626 if (res)
627 while (CONVERT_EXPR_P (res))
628 res = TREE_OPERAND (res, 0);
630 fold_undefer_overflow_warnings ((res && is_gimple_min_invariant (res)),
631 stmt, WARN_STRICT_OVERFLOW_CONDITIONAL);
633 /* If we have not simplified the condition down to an invariant,
634 then use the pass specific callback to simplify the condition. */
635 if (!res
636 || !is_gimple_min_invariant (res))
637 res = m_simplifier->simplify (dummy_cond, stmt, e->src, m_state);
639 return res;
642 /* Copy debug stmts from DEST's chain of single predecessors up to
643 SRC, so that we don't lose the bindings as PHI nodes are introduced
644 when DEST gains new predecessors. */
645 void
646 propagate_threaded_block_debug_into (basic_block dest, basic_block src)
648 if (!MAY_HAVE_DEBUG_BIND_STMTS)
649 return;
651 if (!single_pred_p (dest))
652 return;
654 gcc_checking_assert (dest != src);
656 gimple_stmt_iterator gsi = gsi_after_labels (dest);
657 int i = 0;
658 const int alloc_count = 16; // ?? Should this be a PARAM?
660 /* Estimate the number of debug vars overridden in the beginning of
661 DEST, to tell how many we're going to need to begin with. */
662 for (gimple_stmt_iterator si = gsi;
663 i * 4 <= alloc_count * 3 && !gsi_end_p (si); gsi_next (&si))
665 gimple *stmt = gsi_stmt (si);
666 if (!is_gimple_debug (stmt))
667 break;
668 if (gimple_debug_nonbind_marker_p (stmt))
669 continue;
670 i++;
673 auto_vec<tree, alloc_count> fewvars;
674 hash_set<tree> *vars = NULL;
676 /* If we're already starting with 3/4 of alloc_count, go for a
677 hash_set, otherwise start with an unordered stack-allocated
678 VEC. */
679 if (i * 4 > alloc_count * 3)
680 vars = new hash_set<tree>;
682 /* Now go through the initial debug stmts in DEST again, this time
683 actually inserting in VARS or FEWVARS. Don't bother checking for
684 duplicates in FEWVARS. */
685 for (gimple_stmt_iterator si = gsi; !gsi_end_p (si); gsi_next (&si))
687 gimple *stmt = gsi_stmt (si);
688 if (!is_gimple_debug (stmt))
689 break;
691 tree var;
693 if (gimple_debug_bind_p (stmt))
694 var = gimple_debug_bind_get_var (stmt);
695 else if (gimple_debug_source_bind_p (stmt))
696 var = gimple_debug_source_bind_get_var (stmt);
697 else if (gimple_debug_nonbind_marker_p (stmt))
698 continue;
699 else
700 gcc_unreachable ();
702 if (vars)
703 vars->add (var);
704 else
705 fewvars.quick_push (var);
708 basic_block bb = dest;
712 bb = single_pred (bb);
713 for (gimple_stmt_iterator si = gsi_last_bb (bb);
714 !gsi_end_p (si); gsi_prev (&si))
716 gimple *stmt = gsi_stmt (si);
717 if (!is_gimple_debug (stmt))
718 continue;
720 tree var;
722 if (gimple_debug_bind_p (stmt))
723 var = gimple_debug_bind_get_var (stmt);
724 else if (gimple_debug_source_bind_p (stmt))
725 var = gimple_debug_source_bind_get_var (stmt);
726 else if (gimple_debug_nonbind_marker_p (stmt))
727 continue;
728 else
729 gcc_unreachable ();
731 /* Discard debug bind overlaps. Unlike stmts from src,
732 copied into a new block that will precede BB, debug bind
733 stmts in bypassed BBs may actually be discarded if
734 they're overwritten by subsequent debug bind stmts. We
735 want to copy binds for all modified variables, so that we
736 retain a bind to the shared def if there is one, or to a
737 newly introduced PHI node if there is one. Our bind will
738 end up reset if the value is dead, but that implies the
739 variable couldn't have survived, so it's fine. We are
740 not actually running the code that performed the binds at
741 this point, we're just adding binds so that they survive
742 the new confluence, so markers should not be copied. */
743 if (vars && vars->add (var))
744 continue;
745 else if (!vars)
747 int i = fewvars.length ();
748 while (i--)
749 if (fewvars[i] == var)
750 break;
751 if (i >= 0)
752 continue;
753 else if (fewvars.length () < (unsigned) alloc_count)
754 fewvars.quick_push (var);
755 else
757 vars = new hash_set<tree>;
758 for (i = 0; i < alloc_count; i++)
759 vars->add (fewvars[i]);
760 fewvars.release ();
761 vars->add (var);
765 stmt = gimple_copy (stmt);
766 /* ??? Should we drop the location of the copy to denote
767 they're artificial bindings? */
768 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
771 while (bb != src && single_pred_p (bb));
773 if (vars)
774 delete vars;
775 else if (fewvars.exists ())
776 fewvars.release ();
779 /* See if TAKEN_EDGE->dest is a threadable block with no side effecs (ie, it
780 need not be duplicated as part of the CFG/SSA updating process).
782 If it is threadable, add it to PATH and VISITED and recurse, ultimately
783 returning TRUE from the toplevel call. Otherwise do nothing and
784 return false. */
786 bool
787 jump_threader::thread_around_empty_blocks (vec<jump_thread_edge *> *path,
788 edge taken_edge,
789 bitmap visited, unsigned &limit)
791 basic_block bb = taken_edge->dest;
792 gimple_stmt_iterator gsi;
793 gimple *stmt;
794 tree cond;
796 if (limit == 0)
797 return false;
798 --limit;
800 /* The key property of these blocks is that they need not be duplicated
801 when threading. Thus they cannot have visible side effects such
802 as PHI nodes. */
803 if (has_phis_p (bb))
804 return false;
806 /* Skip over DEBUG statements at the start of the block. */
807 gsi = gsi_start_nondebug_bb (bb);
809 /* If the block has no statements, but does have a single successor, then
810 it's just a forwarding block and we can thread through it trivially.
812 However, note that just threading through empty blocks with single
813 successors is not inherently profitable. For the jump thread to
814 be profitable, we must avoid a runtime conditional.
816 By taking the return value from the recursive call, we get the
817 desired effect of returning TRUE when we found a profitable jump
818 threading opportunity and FALSE otherwise.
820 This is particularly important when this routine is called after
821 processing a joiner block. Returning TRUE too aggressively in
822 that case results in pointless duplication of the joiner block. */
823 if (gsi_end_p (gsi))
825 if (single_succ_p (bb))
827 taken_edge = single_succ_edge (bb);
829 if ((taken_edge->flags & EDGE_DFS_BACK) != 0)
830 return false;
832 if (!bitmap_bit_p (visited, taken_edge->dest->index))
834 m_registry->push_edge (path, taken_edge, EDGE_NO_COPY_SRC_BLOCK);
835 m_state->append_path (taken_edge->dest);
836 bitmap_set_bit (visited, taken_edge->dest->index);
837 return thread_around_empty_blocks (path, taken_edge, visited,
838 limit);
842 /* We have a block with no statements, but multiple successors? */
843 return false;
846 /* The only real statements this block can have are a control
847 flow altering statement. Anything else stops the thread. */
848 stmt = gsi_stmt (gsi);
849 if (gimple_code (stmt) != GIMPLE_COND
850 && gimple_code (stmt) != GIMPLE_GOTO
851 && gimple_code (stmt) != GIMPLE_SWITCH)
852 return false;
854 /* Extract and simplify the condition. */
855 cond = simplify_control_stmt_condition (taken_edge, stmt);
857 /* If the condition can be statically computed and we have not already
858 visited the destination edge, then add the taken edge to our thread
859 path. */
860 if (cond != NULL_TREE
861 && (is_gimple_min_invariant (cond)
862 || TREE_CODE (cond) == CASE_LABEL_EXPR))
864 if (TREE_CODE (cond) == CASE_LABEL_EXPR)
865 taken_edge = find_edge (bb, label_to_block (cfun, CASE_LABEL (cond)));
866 else
867 taken_edge = find_taken_edge (bb, cond);
869 if (!taken_edge
870 || (taken_edge->flags & EDGE_DFS_BACK) != 0)
871 return false;
873 if (bitmap_bit_p (visited, taken_edge->dest->index))
874 return false;
875 bitmap_set_bit (visited, taken_edge->dest->index);
877 m_registry->push_edge (path, taken_edge, EDGE_NO_COPY_SRC_BLOCK);
878 m_state->append_path (taken_edge->dest);
880 thread_around_empty_blocks (path, taken_edge, visited, limit);
881 return true;
884 return false;
887 /* We are exiting E->src, see if E->dest ends with a conditional
888 jump which has a known value when reached via E.
890 E->dest can have arbitrary side effects which, if threading is
891 successful, will be maintained.
893 Special care is necessary if E is a back edge in the CFG as we
894 may have already recorded equivalences for E->dest into our
895 various tables, including the result of the conditional at
896 the end of E->dest. Threading opportunities are severely
897 limited in that case to avoid short-circuiting the loop
898 incorrectly.
900 Positive return value is success. Zero return value is failure, but
901 the block can still be duplicated as a joiner in a jump thread path,
902 negative indicates the block should not be duplicated and thus is not
903 suitable for a joiner in a jump threading path. */
906 jump_threader::thread_through_normal_block (vec<jump_thread_edge *> *path,
907 edge e, bitmap visited,
908 unsigned &limit)
910 if (limit == 0)
911 return 0;
912 limit--;
914 m_state->register_equivs_edge (e);
916 /* PHIs create temporary equivalences.
917 Note that if we found a PHI that made the block non-threadable, then
918 we need to bubble that up to our caller in the same manner we do
919 when we prematurely stop processing statements below. */
920 if (!record_temporary_equivalences_from_phis (e))
921 return -1;
923 /* Now walk each statement recording any context sensitive
924 temporary equivalences we can detect. */
925 gimple *stmt = record_temporary_equivalences_from_stmts_at_dest (e);
927 /* There's two reasons STMT might be null, and distinguishing
928 between them is important.
930 First the block may not have had any statements. For example, it
931 might have some PHIs and unconditionally transfer control elsewhere.
932 Such blocks are suitable for jump threading, particularly as a
933 joiner block.
935 The second reason would be if we did not process all the statements
936 in the block (because there were too many to make duplicating the
937 block profitable. If we did not look at all the statements, then
938 we may not have invalidated everything needing invalidation. Thus
939 we must signal to our caller that this block is not suitable for
940 use as a joiner in a threading path. */
941 if (!stmt)
943 /* First case. The statement simply doesn't have any instructions, but
944 does have PHIs. */
945 if (empty_block_with_phis_p (e->dest))
946 return 0;
948 /* Second case. */
949 return -1;
952 /* If we stopped at a COND_EXPR or SWITCH_EXPR, see if we know which arm
953 will be taken. */
954 if (gimple_code (stmt) == GIMPLE_COND
955 || gimple_code (stmt) == GIMPLE_GOTO
956 || gimple_code (stmt) == GIMPLE_SWITCH)
958 tree cond;
960 /* Extract and simplify the condition. */
961 cond = simplify_control_stmt_condition (e, stmt);
963 if (!cond)
964 return 0;
966 if (is_gimple_min_invariant (cond)
967 || TREE_CODE (cond) == CASE_LABEL_EXPR)
969 edge taken_edge;
970 if (TREE_CODE (cond) == CASE_LABEL_EXPR)
971 taken_edge = find_edge (e->dest,
972 label_to_block (cfun, CASE_LABEL (cond)));
973 else
974 taken_edge = find_taken_edge (e->dest, cond);
976 basic_block dest = (taken_edge ? taken_edge->dest : NULL);
978 /* DEST could be NULL for a computed jump to an absolute
979 address. */
980 if (dest == NULL
981 || dest == e->dest
982 || (taken_edge->flags & EDGE_DFS_BACK) != 0
983 || bitmap_bit_p (visited, dest->index))
984 return 0;
986 /* Only push the EDGE_START_JUMP_THREAD marker if this is
987 first edge on the path. */
988 if (path->length () == 0)
989 m_registry->push_edge (path, e, EDGE_START_JUMP_THREAD);
991 m_registry->push_edge (path, taken_edge, EDGE_COPY_SRC_BLOCK);
992 m_state->append_path (taken_edge->dest);
994 /* See if we can thread through DEST as well, this helps capture
995 secondary effects of threading without having to re-run DOM or
996 VRP.
998 We don't want to thread back to a block we have already
999 visited. This may be overly conservative. */
1000 bitmap_set_bit (visited, dest->index);
1001 bitmap_set_bit (visited, e->dest->index);
1002 thread_around_empty_blocks (path, taken_edge, visited, limit);
1003 return 1;
1006 return 0;
1009 /* There are basic blocks look like:
1010 <P0>
1011 p0 = a CMP b ; or p0 = (INT) (a CMP b)
1012 goto <X>;
1014 <P1>
1015 p1 = c CMP d
1016 goto <X>;
1019 # phi = PHI <p0 (P0), p1 (P1)>
1020 if (phi != 0) goto <Y>; else goto <Z>;
1022 Then, edge (P0,X) or (P1,X) could be marked as EDGE_START_JUMP_THREAD
1023 And edge (X,Y), (X,Z) is EDGE_COPY_SRC_JOINER_BLOCK
1025 Return true if E is (P0,X) or (P1,X) */
1027 bool
1028 edge_forwards_cmp_to_conditional_jump_through_empty_bb_p (edge e)
1030 /* See if there is only one stmt which is gcond. */
1031 gcond *gs;
1032 if (!(gs = safe_dyn_cast<gcond *> (last_and_only_stmt (e->dest))))
1033 return false;
1035 /* See if gcond's cond is "(phi !=/== 0/1)" in the basic block. */
1036 tree cond = gimple_cond_lhs (gs);
1037 enum tree_code code = gimple_cond_code (gs);
1038 tree rhs = gimple_cond_rhs (gs);
1039 if (TREE_CODE (cond) != SSA_NAME
1040 || (code != NE_EXPR && code != EQ_EXPR)
1041 || (!integer_onep (rhs) && !integer_zerop (rhs)))
1042 return false;
1043 gphi *phi = dyn_cast <gphi *> (SSA_NAME_DEF_STMT (cond));
1044 if (phi == NULL || gimple_bb (phi) != e->dest)
1045 return false;
1047 /* Check if phi's incoming value is CMP. */
1048 gassign *def;
1049 tree value = PHI_ARG_DEF_FROM_EDGE (phi, e);
1050 if (TREE_CODE (value) != SSA_NAME
1051 || !has_single_use (value)
1052 || !(def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (value))))
1053 return false;
1055 /* Or if it is (INT) (a CMP b). */
1056 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def)))
1058 value = gimple_assign_rhs1 (def);
1059 if (TREE_CODE (value) != SSA_NAME
1060 || !has_single_use (value)
1061 || !(def = dyn_cast<gassign *> (SSA_NAME_DEF_STMT (value))))
1062 return false;
1065 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def)) != tcc_comparison)
1066 return false;
1068 return true;
1071 /* We are exiting E->src, see if E->dest ends with a conditional jump
1072 which has a known value when reached via E. If so, thread the
1073 edge. */
1075 void
1076 jump_threader::thread_across_edge (edge e)
1078 auto_bitmap visited;
1080 m_state->push (e);
1082 stmt_count = 0;
1084 vec<jump_thread_edge *> *path = m_registry->allocate_thread_path ();
1085 bitmap_set_bit (visited, e->src->index);
1086 bitmap_set_bit (visited, e->dest->index);
1088 /* Limit search space. */
1089 unsigned limit = param_max_jump_thread_paths;
1091 int threaded = 0;
1092 if ((e->flags & EDGE_DFS_BACK) == 0)
1093 threaded = thread_through_normal_block (path, e, visited, limit);
1095 if (threaded > 0)
1097 propagate_threaded_block_debug_into (path->last ()->e->dest,
1098 e->dest);
1099 m_registry->register_jump_thread (path);
1100 m_state->pop ();
1101 return;
1104 gcc_checking_assert (path->length () == 0);
1105 path->release ();
1107 if (threaded < 0)
1109 /* The target block was deemed too big to duplicate. Just quit
1110 now rather than trying to use the block as a joiner in a jump
1111 threading path.
1113 This prevents unnecessary code growth, but more importantly if we
1114 do not look at all the statements in the block, then we may have
1115 missed some invalidations if we had traversed a backedge! */
1116 m_state->pop ();
1117 return;
1120 /* We were unable to determine what out edge from E->dest is taken. However,
1121 we might still be able to thread through successors of E->dest. This
1122 often occurs when E->dest is a joiner block which then fans back out
1123 based on redundant tests.
1125 If so, we'll copy E->dest and redirect the appropriate predecessor to
1126 the copy. Within the copy of E->dest, we'll thread one or more edges
1127 to points deeper in the CFG.
1129 This is a stopgap until we have a more structured approach to path
1130 isolation. */
1132 edge taken_edge;
1133 edge_iterator ei;
1134 bool found;
1136 /* If E->dest has abnormal outgoing edges, then there's no guarantee
1137 we can safely redirect any of the edges. Just punt those cases. */
1138 FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
1139 if (taken_edge->flags & EDGE_COMPLEX)
1141 m_state->pop ();
1142 return;
1145 /* Look at each successor of E->dest to see if we can thread through it. */
1146 FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
1148 if ((e->flags & EDGE_DFS_BACK) != 0
1149 || (taken_edge->flags & EDGE_DFS_BACK) != 0)
1150 continue;
1152 m_state->push (taken_edge);
1154 /* Avoid threading to any block we have already visited. */
1155 bitmap_clear (visited);
1156 bitmap_set_bit (visited, e->src->index);
1157 bitmap_set_bit (visited, e->dest->index);
1158 bitmap_set_bit (visited, taken_edge->dest->index);
1160 vec<jump_thread_edge *> *path = m_registry->allocate_thread_path ();
1161 m_registry->push_edge (path, e, EDGE_START_JUMP_THREAD);
1162 m_registry->push_edge (path, taken_edge, EDGE_COPY_SRC_JOINER_BLOCK);
1164 found = thread_around_empty_blocks (path, taken_edge, visited, limit);
1166 if (!found)
1167 found = thread_through_normal_block (path,
1168 path->last ()->e, visited,
1169 limit) > 0;
1171 /* If we were able to thread through a successor of E->dest, then
1172 record the jump threading opportunity. */
1173 if (found
1174 || edge_forwards_cmp_to_conditional_jump_through_empty_bb_p (e))
1176 if (taken_edge->dest != path->last ()->e->dest)
1177 propagate_threaded_block_debug_into (path->last ()->e->dest,
1178 taken_edge->dest);
1179 m_registry->register_jump_thread (path);
1181 else
1182 path->release ();
1184 m_state->pop ();
1188 m_state->pop ();
1191 /* Return TRUE if BB has a single successor to a block with multiple
1192 incoming and outgoing edges. */
1194 bool
1195 single_succ_to_potentially_threadable_block (basic_block bb)
1197 int flags = (EDGE_IGNORE | EDGE_COMPLEX | EDGE_ABNORMAL);
1198 return (single_succ_p (bb)
1199 && (single_succ_edge (bb)->flags & flags) == 0
1200 && potentially_threadable_block (single_succ (bb)));
1203 /* Examine the outgoing edges from BB and conditionally
1204 try to thread them. */
1206 void
1207 jump_threader::thread_outgoing_edges (basic_block bb)
1209 int flags = (EDGE_IGNORE | EDGE_COMPLEX | EDGE_ABNORMAL);
1211 if (!flag_thread_jumps)
1212 return;
1214 /* If we have an outgoing edge to a block with multiple incoming and
1215 outgoing edges, then we may be able to thread the edge, i.e., we
1216 may be able to statically determine which of the outgoing edges
1217 will be traversed when the incoming edge from BB is traversed. */
1218 if (single_succ_to_potentially_threadable_block (bb))
1219 thread_across_edge (single_succ_edge (bb));
1220 else if (safe_is_a <gcond *> (*gsi_last_bb (bb))
1221 && EDGE_COUNT (bb->succs) == 2
1222 && (EDGE_SUCC (bb, 0)->flags & flags) == 0
1223 && (EDGE_SUCC (bb, 1)->flags & flags) == 0)
1225 edge true_edge, false_edge;
1227 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1229 /* Only try to thread the edge if it reaches a target block with
1230 more than one predecessor and more than one successor. */
1231 if (potentially_threadable_block (true_edge->dest))
1232 thread_across_edge (true_edge);
1234 /* Similarly for the ELSE arm. */
1235 if (potentially_threadable_block (false_edge->dest))
1236 thread_across_edge (false_edge);
1240 // Marker to keep track of the start of the current path.
1241 const basic_block jt_state::BB_MARKER = (basic_block) -1;
1243 // Record that E is being crossed.
1245 void
1246 jt_state::push (edge e)
1248 m_blocks.safe_push (BB_MARKER);
1249 if (m_blocks.length () == 1)
1250 m_blocks.safe_push (e->src);
1251 m_blocks.safe_push (e->dest);
1254 // Pop to the last pushed state.
1256 void
1257 jt_state::pop ()
1259 if (!m_blocks.is_empty ())
1261 while (m_blocks.last () != BB_MARKER)
1262 m_blocks.pop ();
1263 // Pop marker.
1264 m_blocks.pop ();
1268 // Add BB to the list of blocks seen.
1270 void
1271 jt_state::append_path (basic_block bb)
1273 gcc_checking_assert (!m_blocks.is_empty ());
1274 m_blocks.safe_push (bb);
1277 void
1278 jt_state::dump (FILE *out)
1280 if (!m_blocks.is_empty ())
1282 auto_vec<basic_block> path;
1283 get_path (path);
1284 dump_ranger (out, path);
1288 void
1289 jt_state::debug ()
1291 push_dump_file save (stderr, TDF_DETAILS);
1292 dump (stderr);
1295 // Convert the current path in jt_state into a path suitable for the
1296 // path solver. Return the resulting path in PATH.
1298 void
1299 jt_state::get_path (vec<basic_block> &path)
1301 path.truncate (0);
1303 for (int i = (int) m_blocks.length () - 1; i >= 0; --i)
1305 basic_block bb = m_blocks[i];
1307 if (bb != BB_MARKER)
1308 path.safe_push (bb);
1312 // Record an equivalence from DST to SRC. If UPDATE_RANGE is TRUE,
1313 // update the value range associated with DST.
1315 void
1316 jt_state::register_equiv (tree dest ATTRIBUTE_UNUSED,
1317 tree src ATTRIBUTE_UNUSED,
1318 bool update_range ATTRIBUTE_UNUSED)
1322 // Record any ranges calculated in STMT. If TEMPORARY is TRUE, then
1323 // this is a temporary equivalence and should be recorded into the
1324 // unwind table, instead of the global table.
1326 void
1327 jt_state::record_ranges_from_stmt (gimple *,
1328 bool temporary ATTRIBUTE_UNUSED)
1332 // Record any equivalences created by traversing E.
1334 void
1335 jt_state::register_equivs_edge (edge)
1339 void
1340 jt_state::register_equivs_stmt (gimple *stmt, basic_block bb,
1341 jt_simplifier *simplifier)
1343 /* At this point we have a statement which assigns an RHS to an
1344 SSA_VAR on the LHS. We want to try and simplify this statement
1345 to expose more context sensitive equivalences which in turn may
1346 allow us to simplify the condition at the end of the loop.
1348 Handle simple copy operations. */
1349 tree cached_lhs = NULL;
1350 if (gimple_assign_single_p (stmt)
1351 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
1352 cached_lhs = gimple_assign_rhs1 (stmt);
1353 else
1355 /* A statement that is not a trivial copy.
1356 Try to fold the new expression. Inserting the
1357 expression into the hash table is unlikely to help. */
1358 /* ??? The DOM callback below can be changed to setting
1359 the mprts_hook around the call to thread_across_edge,
1360 avoiding the use substitution. */
1361 cached_lhs = gimple_fold_stmt_to_constant_1 (stmt,
1362 threadedge_valueize);
1363 if (NUM_SSA_OPERANDS (stmt, SSA_OP_ALL_USES) != 0
1364 && (!cached_lhs
1365 || (TREE_CODE (cached_lhs) != SSA_NAME
1366 && !is_gimple_min_invariant (cached_lhs))))
1368 /* We're going to temporarily copy propagate the operands
1369 and see if that allows us to simplify this statement. */
1370 tree *copy;
1371 ssa_op_iter iter;
1372 use_operand_p use_p;
1373 unsigned int num, i = 0;
1375 num = NUM_SSA_OPERANDS (stmt, SSA_OP_ALL_USES);
1376 copy = XALLOCAVEC (tree, num);
1378 /* Make a copy of the uses & vuses into USES_COPY, then cprop into
1379 the operands. */
1380 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1382 tree tmp = NULL;
1383 tree use = USE_FROM_PTR (use_p);
1385 copy[i++] = use;
1386 if (TREE_CODE (use) == SSA_NAME)
1387 tmp = SSA_NAME_VALUE (use);
1388 if (tmp)
1389 SET_USE (use_p, tmp);
1392 /* Do not pass state to avoid calling the ranger with the
1393 temporarily altered IL. */
1394 cached_lhs = simplifier->simplify (stmt, stmt, bb, /*state=*/NULL);
1396 /* Restore the statement's original uses/defs. */
1397 i = 0;
1398 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1399 SET_USE (use_p, copy[i++]);
1403 /* Record the context sensitive equivalence if we were able
1404 to simplify this statement. */
1405 if (cached_lhs
1406 && (TREE_CODE (cached_lhs) == SSA_NAME
1407 || is_gimple_min_invariant (cached_lhs)))
1408 register_equiv (gimple_get_lhs (stmt), cached_lhs,
1409 /*update_range=*/false);
1412 // Hybrid threader implementation.
1414 hybrid_jt_simplifier::hybrid_jt_simplifier (gimple_ranger *r,
1415 path_range_query *q)
1417 m_ranger = r;
1418 m_query = q;
1421 tree
1422 hybrid_jt_simplifier::simplify (gimple *stmt, gimple *, basic_block,
1423 jt_state *state)
1425 auto_bitmap dependencies;
1426 auto_vec<basic_block> path;
1428 state->get_path (path);
1429 compute_exit_dependencies (dependencies, path, stmt);
1430 m_query->reset_path (path, dependencies);
1432 if (gimple_code (stmt) == GIMPLE_COND
1433 || gimple_code (stmt) == GIMPLE_ASSIGN)
1435 value_range r (gimple_range_type (stmt));
1436 tree ret;
1437 if (m_query->range_of_stmt (r, stmt) && r.singleton_p (&ret))
1438 return ret;
1440 else if (gimple_code (stmt) == GIMPLE_SWITCH)
1442 int_range_max r;
1443 gswitch *switch_stmt = dyn_cast <gswitch *> (stmt);
1444 tree index = gimple_switch_index (switch_stmt);
1445 if (m_query->range_of_expr (r, index, stmt))
1446 return find_case_label_range (switch_stmt, &r);
1448 return NULL;
1451 // Calculate the set of exit dependencies for a path and statement to
1452 // be simplified. This is different than the
1453 // compute_exit_dependencies in the path solver because the forward
1454 // threader asks questions about statements not necessarily in the
1455 // path. Using the default compute_exit_dependencies in the path
1456 // solver gets noticeably less threads.
1458 void
1459 hybrid_jt_simplifier::compute_exit_dependencies (bitmap dependencies,
1460 const vec<basic_block> &path,
1461 gimple *stmt)
1463 // Start with the imports to the final conditional.
1464 bitmap_copy (dependencies, m_ranger->gori_ssa ()->imports (path[0]));
1466 // Add any other interesting operands we may have missed.
1467 if (gimple_bb (stmt) != path[0])
1469 for (unsigned i = 0; i < gimple_num_ops (stmt); ++i)
1471 tree op = gimple_op (stmt, i);
1472 if (op
1473 && TREE_CODE (op) == SSA_NAME
1474 && value_range::supports_type_p (TREE_TYPE (op)))
1475 bitmap_set_bit (dependencies, SSA_NAME_VERSION (op));