x86: Add a test for PR rtl-optimization/111673
[official-gcc.git] / gcc / tree-vectorizer.cc
blobf38c8d20a0256f17099c059ec37894b043e199b1
1 /* Vectorizer
2 Copyright (C) 2003-2025 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Loop and basic block vectorizer.
23 This file contains drivers for the three vectorizers:
24 (1) loop vectorizer (inter-iteration parallelism),
25 (2) loop-aware SLP (intra-iteration parallelism) (invoked by the loop
26 vectorizer)
27 (3) BB vectorizer (out-of-loops), aka SLP
29 The rest of the vectorizer's code is organized as follows:
30 - tree-vect-loop.cc - loop specific parts such as reductions, etc. These are
31 used by drivers (1) and (2).
32 - tree-vect-loop-manip.cc - vectorizer's loop control-flow utilities, used by
33 drivers (1) and (2).
34 - tree-vect-slp.cc - BB vectorization specific analysis and transformation,
35 used by drivers (2) and (3).
36 - tree-vect-stmts.cc - statements analysis and transformation (used by all).
37 - tree-vect-data-refs.cc - vectorizer specific data-refs analysis and
38 manipulations (used by all).
39 - tree-vect-patterns.cc - vectorizable code patterns detector (used by all)
41 Here's a poor attempt at illustrating that:
43 tree-vectorizer.cc:
44 loop_vect() loop_aware_slp() slp_vect()
45 | / \ /
46 | / \ /
47 tree-vect-loop.cc tree-vect-slp.cc
48 | \ \ / / |
49 | \ \/ / |
50 | \ /\ / |
51 | \ / \ / |
52 tree-vect-stmts.cc tree-vect-data-refs.cc
53 \ /
54 tree-vect-patterns.cc
57 #include "config.h"
58 #include "system.h"
59 #include "coretypes.h"
60 #include "backend.h"
61 #include "tree.h"
62 #include "gimple.h"
63 #include "predict.h"
64 #include "tree-pass.h"
65 #include "ssa.h"
66 #include "cgraph.h"
67 #include "fold-const.h"
68 #include "stor-layout.h"
69 #include "gimple-iterator.h"
70 #include "gimple-walk.h"
71 #include "tree-ssa-loop-manip.h"
72 #include "tree-ssa-loop-niter.h"
73 #include "tree-cfg.h"
74 #include "cfgloop.h"
75 #include "tree-vectorizer.h"
76 #include "tree-ssa-propagate.h"
77 #include "dbgcnt.h"
78 #include "tree-scalar-evolution.h"
79 #include "stringpool.h"
80 #include "attribs.h"
81 #include "gimple-pretty-print.h"
82 #include "opt-problem.h"
83 #include "internal-fn.h"
84 #include "tree-ssa-sccvn.h"
85 #include "tree-into-ssa.h"
87 /* Loop or bb location, with hotness information. */
88 dump_user_location_t vect_location;
90 /* auto_purge_vect_location's dtor: reset the vect_location
91 global, to avoid stale location_t values that could reference
92 GC-ed blocks. */
94 auto_purge_vect_location::~auto_purge_vect_location ()
96 vect_location = dump_user_location_t ();
99 /* Dump a cost entry according to args to F. */
101 void
102 dump_stmt_cost (FILE *f, int count, enum vect_cost_for_stmt kind,
103 stmt_vec_info stmt_info, slp_tree node, tree,
104 int misalign, unsigned cost,
105 enum vect_cost_model_location where)
107 if (stmt_info)
109 print_gimple_expr (f, STMT_VINFO_STMT (stmt_info), 0, TDF_SLIM);
110 fprintf (f, " ");
112 else if (node)
113 fprintf (f, "node %p ", (void *)node);
114 else
115 fprintf (f, "<unknown> ");
116 fprintf (f, "%d times ", count);
117 const char *ks = "unknown";
118 switch (kind)
120 case scalar_stmt:
121 ks = "scalar_stmt";
122 break;
123 case scalar_load:
124 ks = "scalar_load";
125 break;
126 case scalar_store:
127 ks = "scalar_store";
128 break;
129 case vector_stmt:
130 ks = "vector_stmt";
131 break;
132 case vector_load:
133 ks = "vector_load";
134 break;
135 case vector_gather_load:
136 ks = "vector_gather_load";
137 break;
138 case unaligned_load:
139 ks = "unaligned_load";
140 break;
141 case unaligned_store:
142 ks = "unaligned_store";
143 break;
144 case vector_store:
145 ks = "vector_store";
146 break;
147 case vector_scatter_store:
148 ks = "vector_scatter_store";
149 break;
150 case vec_to_scalar:
151 ks = "vec_to_scalar";
152 break;
153 case scalar_to_vec:
154 ks = "scalar_to_vec";
155 break;
156 case cond_branch_not_taken:
157 ks = "cond_branch_not_taken";
158 break;
159 case cond_branch_taken:
160 ks = "cond_branch_taken";
161 break;
162 case vec_perm:
163 ks = "vec_perm";
164 break;
165 case vec_promote_demote:
166 ks = "vec_promote_demote";
167 break;
168 case vec_construct:
169 ks = "vec_construct";
170 break;
172 fprintf (f, "%s ", ks);
173 if (kind == unaligned_load || kind == unaligned_store)
174 fprintf (f, "(misalign %d) ", misalign);
175 fprintf (f, "costs %u ", cost);
176 const char *ws = "unknown";
177 switch (where)
179 case vect_prologue:
180 ws = "prologue";
181 break;
182 case vect_body:
183 ws = "body";
184 break;
185 case vect_epilogue:
186 ws = "epilogue";
187 break;
189 fprintf (f, "in %s\n", ws);
192 /* For mapping simduid to vectorization factor. */
194 class simduid_to_vf : public free_ptr_hash<simduid_to_vf>
196 public:
197 unsigned int simduid;
198 poly_uint64 vf;
200 /* hash_table support. */
201 static inline hashval_t hash (const simduid_to_vf *);
202 static inline int equal (const simduid_to_vf *, const simduid_to_vf *);
205 inline hashval_t
206 simduid_to_vf::hash (const simduid_to_vf *p)
208 return p->simduid;
211 inline int
212 simduid_to_vf::equal (const simduid_to_vf *p1, const simduid_to_vf *p2)
214 return p1->simduid == p2->simduid;
217 /* This hash maps the OMP simd array to the corresponding simduid used
218 to index into it. Like thus,
220 _7 = GOMP_SIMD_LANE (simduid.0)
223 D.1737[_7] = stuff;
226 This hash maps from the OMP simd array (D.1737[]) to DECL_UID of
227 simduid.0. */
229 struct simd_array_to_simduid : free_ptr_hash<simd_array_to_simduid>
231 tree decl;
232 unsigned int simduid;
234 /* hash_table support. */
235 static inline hashval_t hash (const simd_array_to_simduid *);
236 static inline int equal (const simd_array_to_simduid *,
237 const simd_array_to_simduid *);
240 inline hashval_t
241 simd_array_to_simduid::hash (const simd_array_to_simduid *p)
243 return DECL_UID (p->decl);
246 inline int
247 simd_array_to_simduid::equal (const simd_array_to_simduid *p1,
248 const simd_array_to_simduid *p2)
250 return p1->decl == p2->decl;
253 /* Fold IFN_GOMP_SIMD_LANE, IFN_GOMP_SIMD_VF, IFN_GOMP_SIMD_LAST_LANE,
254 into their corresponding constants and remove
255 IFN_GOMP_SIMD_ORDERED_{START,END}. */
257 static void
258 adjust_simduid_builtins (hash_table<simduid_to_vf> *htab, function *fun)
260 basic_block bb;
262 FOR_EACH_BB_FN (bb, fun)
264 gimple_stmt_iterator i;
266 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
268 poly_uint64 vf = 1;
269 enum internal_fn ifn;
270 gimple *stmt = gsi_stmt (i);
271 tree t;
272 if (!is_gimple_call (stmt)
273 || !gimple_call_internal_p (stmt))
275 gsi_next (&i);
276 continue;
278 ifn = gimple_call_internal_fn (stmt);
279 switch (ifn)
281 case IFN_GOMP_SIMD_LANE:
282 case IFN_GOMP_SIMD_VF:
283 case IFN_GOMP_SIMD_LAST_LANE:
284 break;
285 case IFN_GOMP_SIMD_ORDERED_START:
286 case IFN_GOMP_SIMD_ORDERED_END:
287 if (integer_onep (gimple_call_arg (stmt, 0)))
289 enum built_in_function bcode
290 = (ifn == IFN_GOMP_SIMD_ORDERED_START
291 ? BUILT_IN_GOMP_ORDERED_START
292 : BUILT_IN_GOMP_ORDERED_END);
293 gimple *g
294 = gimple_build_call (builtin_decl_explicit (bcode), 0);
295 gimple_move_vops (g, stmt);
296 gsi_replace (&i, g, true);
297 continue;
299 gsi_remove (&i, true);
300 unlink_stmt_vdef (stmt);
301 continue;
302 default:
303 gsi_next (&i);
304 continue;
306 tree arg = gimple_call_arg (stmt, 0);
307 gcc_assert (arg != NULL_TREE);
308 gcc_assert (TREE_CODE (arg) == SSA_NAME);
309 simduid_to_vf *p = NULL, data;
310 data.simduid = DECL_UID (SSA_NAME_VAR (arg));
311 /* Need to nullify loop safelen field since it's value is not
312 valid after transformation. */
313 if (bb->loop_father && bb->loop_father->safelen > 0)
314 bb->loop_father->safelen = 0;
315 if (htab)
317 p = htab->find (&data);
318 if (p)
319 vf = p->vf;
321 switch (ifn)
323 case IFN_GOMP_SIMD_VF:
324 t = build_int_cst (unsigned_type_node, vf);
325 break;
326 case IFN_GOMP_SIMD_LANE:
327 t = build_int_cst (unsigned_type_node, 0);
328 break;
329 case IFN_GOMP_SIMD_LAST_LANE:
330 t = gimple_call_arg (stmt, 1);
331 break;
332 default:
333 gcc_unreachable ();
335 tree lhs = gimple_call_lhs (stmt);
336 if (lhs)
337 replace_uses_by (lhs, t);
338 release_defs (stmt);
339 gsi_remove (&i, true);
344 /* Helper structure for note_simd_array_uses. */
346 struct note_simd_array_uses_struct
348 hash_table<simd_array_to_simduid> **htab;
349 unsigned int simduid;
352 /* Callback for note_simd_array_uses, called through walk_gimple_op. */
354 static tree
355 note_simd_array_uses_cb (tree *tp, int *walk_subtrees, void *data)
357 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
358 struct note_simd_array_uses_struct *ns
359 = (struct note_simd_array_uses_struct *) wi->info;
361 if (TYPE_P (*tp))
362 *walk_subtrees = 0;
363 else if (VAR_P (*tp)
364 && lookup_attribute ("omp simd array", DECL_ATTRIBUTES (*tp))
365 && DECL_CONTEXT (*tp) == current_function_decl)
367 simd_array_to_simduid data;
368 if (!*ns->htab)
369 *ns->htab = new hash_table<simd_array_to_simduid> (15);
370 data.decl = *tp;
371 data.simduid = ns->simduid;
372 simd_array_to_simduid **slot = (*ns->htab)->find_slot (&data, INSERT);
373 if (*slot == NULL)
375 simd_array_to_simduid *p = XNEW (simd_array_to_simduid);
376 *p = data;
377 *slot = p;
379 else if ((*slot)->simduid != ns->simduid)
380 (*slot)->simduid = -1U;
381 *walk_subtrees = 0;
383 return NULL_TREE;
386 /* Find "omp simd array" temporaries and map them to corresponding
387 simduid. */
389 static void
390 note_simd_array_uses (hash_table<simd_array_to_simduid> **htab, function *fun)
392 basic_block bb;
393 gimple_stmt_iterator gsi;
394 struct walk_stmt_info wi;
395 struct note_simd_array_uses_struct ns;
397 memset (&wi, 0, sizeof (wi));
398 wi.info = &ns;
399 ns.htab = htab;
401 FOR_EACH_BB_FN (bb, fun)
402 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
404 gimple *stmt = gsi_stmt (gsi);
405 if (!is_gimple_call (stmt) || !gimple_call_internal_p (stmt))
406 continue;
407 switch (gimple_call_internal_fn (stmt))
409 case IFN_GOMP_SIMD_LANE:
410 case IFN_GOMP_SIMD_VF:
411 case IFN_GOMP_SIMD_LAST_LANE:
412 break;
413 default:
414 continue;
416 tree lhs = gimple_call_lhs (stmt);
417 if (lhs == NULL_TREE)
418 continue;
419 imm_use_iterator use_iter;
420 gimple *use_stmt;
421 ns.simduid = DECL_UID (SSA_NAME_VAR (gimple_call_arg (stmt, 0)));
422 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, lhs)
423 if (!is_gimple_debug (use_stmt))
424 walk_gimple_op (use_stmt, note_simd_array_uses_cb, &wi);
428 /* Shrink arrays with "omp simd array" attribute to the corresponding
429 vectorization factor. */
431 static void
432 shrink_simd_arrays
433 (hash_table<simd_array_to_simduid> *simd_array_to_simduid_htab,
434 hash_table<simduid_to_vf> *simduid_to_vf_htab)
436 for (hash_table<simd_array_to_simduid>::iterator iter
437 = simd_array_to_simduid_htab->begin ();
438 iter != simd_array_to_simduid_htab->end (); ++iter)
439 if ((*iter)->simduid != -1U)
441 tree decl = (*iter)->decl;
442 poly_uint64 vf = 1;
443 if (simduid_to_vf_htab)
445 simduid_to_vf *p = NULL, data;
446 data.simduid = (*iter)->simduid;
447 p = simduid_to_vf_htab->find (&data);
448 if (p)
449 vf = p->vf;
451 tree atype
452 = build_array_type_nelts (TREE_TYPE (TREE_TYPE (decl)), vf);
453 TREE_TYPE (decl) = atype;
454 relayout_decl (decl);
457 delete simd_array_to_simduid_htab;
460 /* Initialize the vec_info with kind KIND_IN and target cost data
461 TARGET_COST_DATA_IN. */
463 vec_info::vec_info (vec_info::vec_kind kind_in, vec_info_shared *shared_)
464 : kind (kind_in),
465 shared (shared_),
466 stmt_vec_info_ro (false),
467 bbs (NULL),
468 nbbs (0),
469 inv_pattern_def_seq (NULL)
471 stmt_vec_infos.create (50);
474 vec_info::~vec_info ()
476 for (slp_instance &instance : slp_instances)
477 vect_free_slp_instance (instance);
479 free_stmt_vec_infos ();
482 vec_info_shared::vec_info_shared ()
483 : datarefs (vNULL),
484 datarefs_copy (vNULL),
485 ddrs (vNULL)
489 vec_info_shared::~vec_info_shared ()
491 free_data_refs (datarefs);
492 free_dependence_relations (ddrs);
493 datarefs_copy.release ();
496 void
497 vec_info_shared::save_datarefs ()
499 if (!flag_checking)
500 return;
501 datarefs_copy.reserve_exact (datarefs.length ());
502 for (unsigned i = 0; i < datarefs.length (); ++i)
503 datarefs_copy.quick_push (*datarefs[i]);
506 void
507 vec_info_shared::check_datarefs ()
509 if (!flag_checking)
510 return;
511 gcc_assert (datarefs.length () == datarefs_copy.length ());
512 for (unsigned i = 0; i < datarefs.length (); ++i)
513 if (memcmp (&datarefs_copy[i], datarefs[i],
514 offsetof (data_reference, alt_indices)) != 0)
515 gcc_unreachable ();
518 /* Record that STMT belongs to the vectorizable region. Create and return
519 an associated stmt_vec_info. */
521 stmt_vec_info
522 vec_info::add_stmt (gimple *stmt)
524 stmt_vec_info res = new_stmt_vec_info (stmt);
525 set_vinfo_for_stmt (stmt, res);
526 return res;
529 /* Record that STMT belongs to the vectorizable region. Create a new
530 stmt_vec_info and mark VECINFO as being related and return the new
531 stmt_vec_info. */
533 stmt_vec_info
534 vec_info::add_pattern_stmt (gimple *stmt, stmt_vec_info stmt_info)
536 stmt_vec_info res = new_stmt_vec_info (stmt);
537 res->pattern_stmt_p = true;
538 set_vinfo_for_stmt (stmt, res, false);
539 STMT_VINFO_RELATED_STMT (res) = stmt_info;
540 return res;
543 /* If STMT was previously associated with a stmt_vec_info and STMT now resides
544 at a different address than before (e.g., because STMT is a phi node that has
545 been resized), update the stored address to match the new one. It is not
546 possible to use lookup_stmt () to perform this task, because that function
547 returns NULL if the stored stmt pointer does not match the one being looked
548 up. */
550 stmt_vec_info
551 vec_info::resync_stmt_addr (gimple *stmt)
553 unsigned int uid = gimple_uid (stmt);
554 if (uid > 0 && uid - 1 < stmt_vec_infos.length ())
556 stmt_vec_info res = stmt_vec_infos[uid - 1];
557 if (res && res->stmt)
559 res->stmt = stmt;
560 return res;
563 return nullptr;
566 /* If STMT has an associated stmt_vec_info, return that vec_info, otherwise
567 return null. It is safe to call this function on any statement, even if
568 it might not be part of the vectorizable region. */
570 stmt_vec_info
571 vec_info::lookup_stmt (gimple *stmt)
573 unsigned int uid = gimple_uid (stmt);
574 if (uid > 0 && uid - 1 < stmt_vec_infos.length ())
576 stmt_vec_info res = stmt_vec_infos[uid - 1];
577 if (res && res->stmt == stmt)
578 return res;
580 return NULL;
583 /* If NAME is an SSA_NAME and its definition has an associated stmt_vec_info,
584 return that stmt_vec_info, otherwise return null. It is safe to call
585 this on arbitrary operands. */
587 stmt_vec_info
588 vec_info::lookup_def (tree name)
590 if (TREE_CODE (name) == SSA_NAME
591 && !SSA_NAME_IS_DEFAULT_DEF (name))
592 return lookup_stmt (SSA_NAME_DEF_STMT (name));
593 return NULL;
596 /* See whether there is a single non-debug statement that uses LHS and
597 whether that statement has an associated stmt_vec_info. Return the
598 stmt_vec_info if so, otherwise return null. */
600 stmt_vec_info
601 vec_info::lookup_single_use (tree lhs)
603 use_operand_p dummy;
604 gimple *use_stmt;
605 if (single_imm_use (lhs, &dummy, &use_stmt))
606 return lookup_stmt (use_stmt);
607 return NULL;
610 /* Return vectorization information about DR. */
612 dr_vec_info *
613 vec_info::lookup_dr (data_reference *dr)
615 stmt_vec_info stmt_info = lookup_stmt (DR_STMT (dr));
616 /* DR_STMT should never refer to a stmt in a pattern replacement. */
617 gcc_checking_assert (!is_pattern_stmt_p (stmt_info));
618 return STMT_VINFO_DR_INFO (stmt_info->dr_aux.stmt);
621 /* Record that NEW_STMT_INFO now implements the same data reference
622 as OLD_STMT_INFO. */
624 void
625 vec_info::move_dr (stmt_vec_info new_stmt_info, stmt_vec_info old_stmt_info)
627 gcc_assert (!is_pattern_stmt_p (old_stmt_info));
628 STMT_VINFO_DR_INFO (old_stmt_info)->stmt = new_stmt_info;
629 new_stmt_info->dr_aux = old_stmt_info->dr_aux;
630 STMT_VINFO_DR_WRT_VEC_LOOP (new_stmt_info)
631 = STMT_VINFO_DR_WRT_VEC_LOOP (old_stmt_info);
632 STMT_VINFO_GATHER_SCATTER_P (new_stmt_info)
633 = STMT_VINFO_GATHER_SCATTER_P (old_stmt_info);
634 STMT_VINFO_STRIDED_P (new_stmt_info)
635 = STMT_VINFO_STRIDED_P (old_stmt_info);
636 STMT_VINFO_SIMD_LANE_ACCESS_P (new_stmt_info)
637 = STMT_VINFO_SIMD_LANE_ACCESS_P (old_stmt_info);
640 /* Permanently remove the statement described by STMT_INFO from the
641 function. */
643 void
644 vec_info::remove_stmt (stmt_vec_info stmt_info)
646 gcc_assert (!stmt_info->pattern_stmt_p);
647 set_vinfo_for_stmt (stmt_info->stmt, NULL);
648 unlink_stmt_vdef (stmt_info->stmt);
649 gimple_stmt_iterator si = gsi_for_stmt (stmt_info->stmt);
650 gsi_remove (&si, true);
651 release_defs (stmt_info->stmt);
652 free_stmt_vec_info (stmt_info);
655 /* Replace the statement at GSI by NEW_STMT, both the vectorization
656 information and the function itself. STMT_INFO describes the statement
657 at GSI. */
659 void
660 vec_info::replace_stmt (gimple_stmt_iterator *gsi, stmt_vec_info stmt_info,
661 gimple *new_stmt)
663 gimple *old_stmt = stmt_info->stmt;
664 gcc_assert (!stmt_info->pattern_stmt_p && old_stmt == gsi_stmt (*gsi));
665 gimple_set_uid (new_stmt, gimple_uid (old_stmt));
666 stmt_info->stmt = new_stmt;
667 gsi_replace (gsi, new_stmt, true);
670 /* Insert stmts in SEQ on the VEC_INFO region entry. If CONTEXT is
671 not NULL it specifies whether to use the sub-region entry
672 determined by it, currently used for loop vectorization to insert
673 on the inner loop entry vs. the outer loop entry. */
675 void
676 vec_info::insert_seq_on_entry (stmt_vec_info context, gimple_seq seq)
678 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (this))
680 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
681 basic_block new_bb;
682 edge pe;
684 if (context && nested_in_vect_loop_p (loop, context))
685 loop = loop->inner;
687 pe = loop_preheader_edge (loop);
688 new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
689 gcc_assert (!new_bb);
691 else
693 gimple_stmt_iterator gsi_region_begin
694 = gsi_after_labels (bbs[0]);
695 gsi_insert_seq_before (&gsi_region_begin, seq, GSI_SAME_STMT);
699 /* Like insert_seq_on_entry but just inserts the single stmt NEW_STMT. */
701 void
702 vec_info::insert_on_entry (stmt_vec_info context, gimple *new_stmt)
704 gimple_seq seq = NULL;
705 gimple_stmt_iterator gsi = gsi_start (seq);
706 gsi_insert_before_without_update (&gsi, new_stmt, GSI_SAME_STMT);
707 insert_seq_on_entry (context, seq);
710 /* Create and initialize a new stmt_vec_info struct for STMT. */
712 stmt_vec_info
713 vec_info::new_stmt_vec_info (gimple *stmt)
715 stmt_vec_info res = XCNEW (class _stmt_vec_info);
716 res->stmt = stmt;
718 STMT_VINFO_TYPE (res) = undef_vec_info_type;
719 STMT_VINFO_RELEVANT (res) = vect_unused_in_scope;
720 STMT_VINFO_VECTORIZABLE (res) = true;
721 STMT_VINFO_REDUC_TYPE (res) = TREE_CODE_REDUCTION;
722 STMT_VINFO_REDUC_CODE (res) = ERROR_MARK;
723 STMT_VINFO_REDUC_FN (res) = IFN_LAST;
724 STMT_VINFO_REDUC_IDX (res) = -1;
725 STMT_VINFO_SLP_VECT_ONLY (res) = false;
726 STMT_VINFO_SLP_VECT_ONLY_PATTERN (res) = false;
727 STMT_VINFO_VEC_STMTS (res) = vNULL;
728 res->reduc_initial_values = vNULL;
729 res->reduc_scalar_results = vNULL;
731 if (is_a <loop_vec_info> (this)
732 && gimple_code (stmt) == GIMPLE_PHI
733 && is_loop_header_bb_p (gimple_bb (stmt)))
734 STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type;
735 else
736 STMT_VINFO_DEF_TYPE (res) = vect_internal_def;
738 STMT_SLP_TYPE (res) = loop_vect;
740 /* This is really "uninitialized" until vect_compute_data_ref_alignment. */
741 res->dr_aux.misalignment = DR_MISALIGNMENT_UNINITIALIZED;
743 return res;
746 /* Associate STMT with INFO. */
748 void
749 vec_info::set_vinfo_for_stmt (gimple *stmt, stmt_vec_info info, bool check_ro)
751 unsigned int uid = gimple_uid (stmt);
752 if (uid == 0)
754 gcc_assert (!check_ro || !stmt_vec_info_ro);
755 gcc_checking_assert (info);
756 uid = stmt_vec_infos.length () + 1;
757 gimple_set_uid (stmt, uid);
758 stmt_vec_infos.safe_push (info);
760 else
762 gcc_checking_assert (info == NULL);
763 stmt_vec_infos[uid - 1] = info;
767 /* Free the contents of stmt_vec_infos. */
769 void
770 vec_info::free_stmt_vec_infos (void)
772 for (stmt_vec_info &info : stmt_vec_infos)
773 if (info != NULL)
774 free_stmt_vec_info (info);
775 stmt_vec_infos.release ();
778 /* Free STMT_INFO. */
780 void
781 vec_info::free_stmt_vec_info (stmt_vec_info stmt_info)
783 if (stmt_info->pattern_stmt_p)
785 gimple_set_bb (stmt_info->stmt, NULL);
786 tree lhs = gimple_get_lhs (stmt_info->stmt);
787 if (lhs && TREE_CODE (lhs) == SSA_NAME)
788 release_ssa_name (lhs);
791 stmt_info->reduc_initial_values.release ();
792 stmt_info->reduc_scalar_results.release ();
793 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).release ();
794 STMT_VINFO_VEC_STMTS (stmt_info).release ();
795 free (stmt_info);
798 /* Returns true if S1 dominates S2. */
800 bool
801 vect_stmt_dominates_stmt_p (gimple *s1, gimple *s2)
803 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
805 /* If bb1 is NULL, it should be a GIMPLE_NOP def stmt of an (D)
806 SSA_NAME. Assume it lives at the beginning of function and
807 thus dominates everything. */
808 if (!bb1 || s1 == s2)
809 return true;
811 /* If bb2 is NULL, it doesn't dominate any stmt with a bb. */
812 if (!bb2)
813 return false;
815 if (bb1 != bb2)
816 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
818 /* PHIs in the same basic block are assumed to be
819 executed all in parallel, if only one stmt is a PHI,
820 it dominates the other stmt in the same basic block. */
821 if (gimple_code (s1) == GIMPLE_PHI)
822 return true;
824 if (gimple_code (s2) == GIMPLE_PHI)
825 return false;
827 /* Inserted vectorized stmts all have UID 0 while the original stmts
828 in the IL have UID increasing within a BB. Walk from both sides
829 until we find the other stmt or a stmt with UID != 0. */
830 gimple_stmt_iterator gsi1 = gsi_for_stmt (s1);
831 while (gimple_uid (gsi_stmt (gsi1)) == 0)
833 gsi_next (&gsi1);
834 if (gsi_end_p (gsi1))
835 return false;
836 if (gsi_stmt (gsi1) == s2)
837 return true;
839 if (gimple_uid (gsi_stmt (gsi1)) == -1u)
840 return false;
842 gimple_stmt_iterator gsi2 = gsi_for_stmt (s2);
843 while (gimple_uid (gsi_stmt (gsi2)) == 0)
845 gsi_prev (&gsi2);
846 if (gsi_end_p (gsi2))
847 return false;
848 if (gsi_stmt (gsi2) == s1)
849 return true;
851 if (gimple_uid (gsi_stmt (gsi2)) == -1u)
852 return false;
854 if (gimple_uid (gsi_stmt (gsi1)) <= gimple_uid (gsi_stmt (gsi2)))
855 return true;
856 return false;
859 /* A helper function to free scev and LOOP niter information, as well as
860 clear loop constraint LOOP_C_FINITE. */
862 void
863 vect_free_loop_info_assumptions (class loop *loop)
865 scev_reset_htab ();
866 /* We need to explicitly reset upper bound information since they are
867 used even after free_numbers_of_iterations_estimates. */
868 loop->any_upper_bound = false;
869 loop->any_likely_upper_bound = false;
870 free_numbers_of_iterations_estimates (loop);
871 loop_constraint_clear (loop, LOOP_C_FINITE);
874 /* If LOOP has been versioned during ifcvt, return the internal call
875 guarding it. */
877 gimple *
878 vect_loop_vectorized_call (class loop *loop, gcond **cond)
880 basic_block bb = loop_preheader_edge (loop)->src;
881 gimple *g;
884 g = *gsi_last_bb (bb);
885 if ((g && gimple_code (g) == GIMPLE_COND)
886 || !single_succ_p (bb))
887 break;
888 if (!single_pred_p (bb))
889 break;
890 bb = single_pred (bb);
892 while (1);
893 if (g && gimple_code (g) == GIMPLE_COND)
895 if (cond)
896 *cond = as_a <gcond *> (g);
897 gimple_stmt_iterator gsi = gsi_for_stmt (g);
898 gsi_prev (&gsi);
899 if (!gsi_end_p (gsi))
901 g = gsi_stmt (gsi);
902 if (gimple_call_internal_p (g, IFN_LOOP_VECTORIZED)
903 && (tree_to_shwi (gimple_call_arg (g, 0)) == loop->num
904 || tree_to_shwi (gimple_call_arg (g, 1)) == loop->num))
905 return g;
908 return NULL;
911 /* If LOOP has been versioned during loop distribution, return the gurading
912 internal call. */
914 static gimple *
915 vect_loop_dist_alias_call (class loop *loop, function *fun)
917 basic_block bb;
918 basic_block entry;
919 class loop *outer, *orig;
921 if (loop->orig_loop_num == 0)
922 return NULL;
924 orig = get_loop (fun, loop->orig_loop_num);
925 if (orig == NULL)
927 /* The original loop is somehow destroyed. Clear the information. */
928 loop->orig_loop_num = 0;
929 return NULL;
932 if (loop != orig)
933 bb = nearest_common_dominator (CDI_DOMINATORS, loop->header, orig->header);
934 else
935 bb = loop_preheader_edge (loop)->src;
937 outer = bb->loop_father;
938 entry = ENTRY_BLOCK_PTR_FOR_FN (fun);
940 /* Look upward in dominance tree. */
941 for (; bb != entry && flow_bb_inside_loop_p (outer, bb);
942 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
944 gimple_stmt_iterator gsi = gsi_last_bb (bb);
945 if (!safe_is_a <gcond *> (*gsi))
946 continue;
948 gsi_prev (&gsi);
949 if (gsi_end_p (gsi))
950 continue;
952 gimple *g = gsi_stmt (gsi);
953 /* The guarding internal function call must have the same distribution
954 alias id. */
955 if (gimple_call_internal_p (g, IFN_LOOP_DIST_ALIAS)
956 && (tree_to_shwi (gimple_call_arg (g, 0)) == loop->orig_loop_num))
957 return g;
959 return NULL;
962 /* Set the uids of all the statements in basic blocks inside loop
963 represented by LOOP_VINFO. LOOP_VECTORIZED_CALL is the internal
964 call guarding the loop which has been if converted. */
965 static void
966 set_uid_loop_bbs (loop_vec_info loop_vinfo, gimple *loop_vectorized_call,
967 function *fun)
969 tree arg = gimple_call_arg (loop_vectorized_call, 1);
970 basic_block *bbs;
971 unsigned int i;
972 class loop *scalar_loop = get_loop (fun, tree_to_shwi (arg));
974 LOOP_VINFO_SCALAR_LOOP (loop_vinfo) = scalar_loop;
975 LOOP_VINFO_SCALAR_IV_EXIT (loop_vinfo)
976 = vec_init_loop_exit_info (scalar_loop);
977 gcc_checking_assert (vect_loop_vectorized_call (scalar_loop)
978 == loop_vectorized_call);
979 /* If we are going to vectorize outer loop, prevent vectorization
980 of the inner loop in the scalar loop - either the scalar loop is
981 thrown away, so it is a wasted work, or is used only for
982 a few iterations. */
983 if (scalar_loop->inner)
985 gimple *g = vect_loop_vectorized_call (scalar_loop->inner);
986 if (g)
988 arg = gimple_call_arg (g, 0);
989 get_loop (fun, tree_to_shwi (arg))->dont_vectorize = true;
990 fold_loop_internal_call (g, boolean_false_node);
993 bbs = get_loop_body (scalar_loop);
994 for (i = 0; i < scalar_loop->num_nodes; i++)
996 basic_block bb = bbs[i];
997 gimple_stmt_iterator gsi;
998 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1000 gimple *phi = gsi_stmt (gsi);
1001 gimple_set_uid (phi, 0);
1003 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1005 gimple *stmt = gsi_stmt (gsi);
1006 gimple_set_uid (stmt, 0);
1009 free (bbs);
1012 /* Generate vectorized code for LOOP and its epilogues. */
1014 static unsigned
1015 vect_transform_loops (hash_table<simduid_to_vf> *&simduid_to_vf_htab,
1016 loop_p loop, gimple *loop_vectorized_call,
1017 function *fun)
1019 loop_vec_info loop_vinfo = loop_vec_info_for_loop (loop);
1021 if (loop_vectorized_call)
1022 set_uid_loop_bbs (loop_vinfo, loop_vectorized_call, fun);
1024 unsigned HOST_WIDE_INT bytes;
1025 if (dump_enabled_p ())
1027 if (GET_MODE_SIZE (loop_vinfo->vector_mode).is_constant (&bytes))
1028 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
1029 "loop vectorized using %wu byte vectors\n", bytes);
1030 else
1031 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
1032 "loop vectorized using variable length vectors\n");
1035 loop_p new_loop = vect_transform_loop (loop_vinfo,
1036 loop_vectorized_call);
1037 /* Now that the loop has been vectorized, allow it to be unrolled
1038 etc. */
1039 loop->force_vectorize = false;
1041 if (loop->simduid)
1043 simduid_to_vf *simduid_to_vf_data = XNEW (simduid_to_vf);
1044 if (!simduid_to_vf_htab)
1045 simduid_to_vf_htab = new hash_table<simduid_to_vf> (15);
1046 simduid_to_vf_data->simduid = DECL_UID (loop->simduid);
1047 simduid_to_vf_data->vf = loop_vinfo->vectorization_factor;
1048 *simduid_to_vf_htab->find_slot (simduid_to_vf_data, INSERT)
1049 = simduid_to_vf_data;
1052 /* We should not have to update virtual SSA form here but some
1053 transforms involve creating new virtual definitions which makes
1054 updating difficult.
1055 We delay the actual update to the end of the pass but avoid
1056 confusing ourselves by forcing need_ssa_update_p () to false. */
1057 unsigned todo = 0;
1058 if (need_ssa_update_p (cfun))
1060 gcc_assert (loop_vinfo->any_known_not_updated_vssa);
1061 fun->gimple_df->ssa_renaming_needed = false;
1062 todo |= TODO_update_ssa_only_virtuals;
1064 gcc_assert (!need_ssa_update_p (cfun));
1066 /* Epilogue of vectorized loop must be vectorized too. */
1067 if (new_loop)
1068 todo |= vect_transform_loops (simduid_to_vf_htab, new_loop, NULL, fun);
1070 return todo;
1073 /* Try to vectorize LOOP. */
1075 static unsigned
1076 try_vectorize_loop_1 (hash_table<simduid_to_vf> *&simduid_to_vf_htab,
1077 unsigned *num_vectorized_loops, loop_p loop,
1078 gimple *loop_vectorized_call,
1079 gimple *loop_dist_alias_call,
1080 function *fun)
1082 unsigned ret = 0;
1083 vec_info_shared shared;
1084 auto_purge_vect_location sentinel;
1085 vect_location = find_loop_location (loop);
1087 if (LOCATION_LOCUS (vect_location.get_location_t ()) != UNKNOWN_LOCATION
1088 && dump_enabled_p ())
1089 dump_printf (MSG_NOTE | MSG_PRIORITY_INTERNALS,
1090 "\nAnalyzing loop at %s:%d\n",
1091 LOCATION_FILE (vect_location.get_location_t ()),
1092 LOCATION_LINE (vect_location.get_location_t ()));
1094 /* Try to analyze the loop, retaining an opt_problem if dump_enabled_p. */
1095 opt_loop_vec_info loop_vinfo = vect_analyze_loop (loop, loop_vectorized_call,
1096 &shared);
1097 loop->aux = loop_vinfo;
1099 if (!loop_vinfo)
1100 if (dump_enabled_p ())
1101 if (opt_problem *problem = loop_vinfo.get_problem ())
1103 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1104 "couldn't vectorize loop\n");
1105 problem->emit_and_clear ();
1108 if (!loop_vinfo || !LOOP_VINFO_VECTORIZABLE_P (loop_vinfo))
1110 /* Free existing information if loop is analyzed with some
1111 assumptions. */
1112 if (loop_constraint_set_p (loop, LOOP_C_FINITE))
1113 vect_free_loop_info_assumptions (loop);
1115 /* If we applied if-conversion then try to vectorize the
1116 BB of innermost loops.
1117 ??? Ideally BB vectorization would learn to vectorize
1118 control flow by applying if-conversion on-the-fly, the
1119 following retains the if-converted loop body even when
1120 only non-if-converted parts took part in BB vectorization. */
1121 if (flag_tree_slp_vectorize != 0
1122 && loop_vectorized_call
1123 && ! loop->inner)
1125 basic_block bb = loop->header;
1126 bool require_loop_vectorize = false;
1127 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
1128 !gsi_end_p (gsi); gsi_next (&gsi))
1130 gimple *stmt = gsi_stmt (gsi);
1131 gcall *call = dyn_cast <gcall *> (stmt);
1132 if (call && gimple_call_internal_p (call))
1134 internal_fn ifn = gimple_call_internal_fn (call);
1135 if (ifn == IFN_MASK_LOAD || ifn == IFN_MASK_STORE
1136 /* Don't keep the if-converted parts when the ifn with
1137 specifc type is not supported by the backend. */
1138 || (direct_internal_fn_p (ifn)
1139 && !direct_internal_fn_supported_p
1140 (call, OPTIMIZE_FOR_SPEED)))
1142 require_loop_vectorize = true;
1143 break;
1146 gimple_set_uid (stmt, -1);
1147 gimple_set_visited (stmt, false);
1149 if (!require_loop_vectorize)
1151 tree arg = gimple_call_arg (loop_vectorized_call, 1);
1152 class loop *scalar_loop = get_loop (fun, tree_to_shwi (arg));
1153 if (vect_slp_if_converted_bb (bb, scalar_loop))
1155 fold_loop_internal_call (loop_vectorized_call,
1156 boolean_true_node);
1157 loop_vectorized_call = NULL;
1158 ret |= TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
1162 /* If outer loop vectorization fails for LOOP_VECTORIZED guarded
1163 loop, don't vectorize its inner loop; we'll attempt to
1164 vectorize LOOP_VECTORIZED guarded inner loop of the scalar
1165 loop version. */
1166 if (loop_vectorized_call && loop->inner)
1167 loop->inner->dont_vectorize = true;
1168 return ret;
1171 if (!dbg_cnt (vect_loop))
1173 /* Free existing information if loop is analyzed with some
1174 assumptions. */
1175 if (loop_constraint_set_p (loop, LOOP_C_FINITE))
1176 vect_free_loop_info_assumptions (loop);
1177 return ret;
1180 (*num_vectorized_loops)++;
1181 /* Transform LOOP and its epilogues. */
1182 ret |= vect_transform_loops (simduid_to_vf_htab, loop,
1183 loop_vectorized_call, fun);
1185 if (loop_vectorized_call)
1187 fold_loop_internal_call (loop_vectorized_call, boolean_true_node);
1188 ret |= TODO_cleanup_cfg;
1190 if (loop_dist_alias_call)
1192 tree value = gimple_call_arg (loop_dist_alias_call, 1);
1193 fold_loop_internal_call (loop_dist_alias_call, value);
1194 ret |= TODO_cleanup_cfg;
1197 return ret;
1200 /* Try to vectorize LOOP. */
1202 static unsigned
1203 try_vectorize_loop (hash_table<simduid_to_vf> *&simduid_to_vf_htab,
1204 unsigned *num_vectorized_loops, loop_p loop,
1205 function *fun)
1207 if (!((flag_tree_loop_vectorize
1208 && optimize_loop_nest_for_speed_p (loop))
1209 || loop->force_vectorize))
1210 return 0;
1212 return try_vectorize_loop_1 (simduid_to_vf_htab, num_vectorized_loops, loop,
1213 vect_loop_vectorized_call (loop),
1214 vect_loop_dist_alias_call (loop, fun), fun);
1218 /* Loop autovectorization. */
1220 namespace {
1222 const pass_data pass_data_vectorize =
1224 GIMPLE_PASS, /* type */
1225 "vect", /* name */
1226 OPTGROUP_LOOP | OPTGROUP_VEC, /* optinfo_flags */
1227 TV_TREE_VECTORIZATION, /* tv_id */
1228 ( PROP_cfg | PROP_ssa ), /* properties_required */
1229 0, /* properties_provided */
1230 0, /* properties_destroyed */
1231 0, /* todo_flags_start */
1232 0, /* todo_flags_finish */
1235 class pass_vectorize : public gimple_opt_pass
1237 public:
1238 pass_vectorize (gcc::context *ctxt)
1239 : gimple_opt_pass (pass_data_vectorize, ctxt)
1242 /* opt_pass methods: */
1243 bool gate (function *fun) final override
1245 return flag_tree_loop_vectorize || fun->has_force_vectorize_loops;
1248 unsigned int execute (function *) final override;
1250 }; // class pass_vectorize
1252 /* Function vectorize_loops.
1254 Entry point to loop vectorization phase. */
1256 unsigned
1257 pass_vectorize::execute (function *fun)
1259 unsigned int i;
1260 unsigned int num_vectorized_loops = 0;
1261 unsigned int vect_loops_num;
1262 hash_table<simduid_to_vf> *simduid_to_vf_htab = NULL;
1263 hash_table<simd_array_to_simduid> *simd_array_to_simduid_htab = NULL;
1264 bool any_ifcvt_loops = false;
1265 unsigned ret = 0;
1267 vect_loops_num = number_of_loops (fun);
1269 /* Bail out if there are no loops. */
1270 if (vect_loops_num <= 1)
1271 return 0;
1273 vect_slp_init ();
1275 if (fun->has_simduid_loops)
1276 note_simd_array_uses (&simd_array_to_simduid_htab, fun);
1278 /* ----------- Analyze loops. ----------- */
1280 /* If some loop was duplicated, it gets bigger number
1281 than all previously defined loops. This fact allows us to run
1282 only over initial loops skipping newly generated ones. */
1283 for (auto loop : loops_list (fun, 0))
1284 if (loop->dont_vectorize)
1286 any_ifcvt_loops = true;
1287 /* If-conversion sometimes versions both the outer loop
1288 (for the case when outer loop vectorization might be
1289 desirable) as well as the inner loop in the scalar version
1290 of the loop. So we have:
1291 if (LOOP_VECTORIZED (1, 3))
1293 loop1
1294 loop2
1296 else
1297 loop3 (copy of loop1)
1298 if (LOOP_VECTORIZED (4, 5))
1299 loop4 (copy of loop2)
1300 else
1301 loop5 (copy of loop4)
1302 If loops' iteration gives us loop3 first (which has
1303 dont_vectorize set), make sure to process loop1 before loop4;
1304 so that we can prevent vectorization of loop4 if loop1
1305 is successfully vectorized. */
1306 if (loop->inner)
1308 gimple *loop_vectorized_call
1309 = vect_loop_vectorized_call (loop);
1310 if (loop_vectorized_call
1311 && vect_loop_vectorized_call (loop->inner))
1313 tree arg = gimple_call_arg (loop_vectorized_call, 0);
1314 class loop *vector_loop
1315 = get_loop (fun, tree_to_shwi (arg));
1316 if (vector_loop && vector_loop != loop)
1318 /* Make sure we don't vectorize it twice. */
1319 vector_loop->dont_vectorize = true;
1320 ret |= try_vectorize_loop (simduid_to_vf_htab,
1321 &num_vectorized_loops,
1322 vector_loop, fun);
1327 else
1328 ret |= try_vectorize_loop (simduid_to_vf_htab, &num_vectorized_loops,
1329 loop, fun);
1331 vect_location = dump_user_location_t ();
1333 statistics_counter_event (fun, "Vectorized loops", num_vectorized_loops);
1334 if (dump_enabled_p ()
1335 || (num_vectorized_loops > 0 && dump_enabled_p ()))
1336 dump_printf_loc (MSG_NOTE, vect_location,
1337 "vectorized %u loops in function.\n",
1338 num_vectorized_loops);
1340 /* ----------- Finalize. ----------- */
1342 if (any_ifcvt_loops)
1343 for (i = 1; i < number_of_loops (fun); i++)
1345 class loop *loop = get_loop (fun, i);
1346 if (loop && loop->dont_vectorize)
1348 gimple *g = vect_loop_vectorized_call (loop);
1349 if (g)
1351 fold_loop_internal_call (g, boolean_false_node);
1352 loop->dont_vectorize = false;
1353 ret |= TODO_cleanup_cfg;
1354 g = NULL;
1356 else
1357 g = vect_loop_dist_alias_call (loop, fun);
1359 if (g)
1361 fold_loop_internal_call (g, boolean_false_node);
1362 loop->dont_vectorize = false;
1363 ret |= TODO_cleanup_cfg;
1368 /* Fold IFN_GOMP_SIMD_{VF,LANE,LAST_LANE,ORDERED_{START,END}} builtins. */
1369 if (fun->has_simduid_loops)
1371 adjust_simduid_builtins (simduid_to_vf_htab, fun);
1372 /* Avoid stale SCEV cache entries for the SIMD_LANE defs. */
1373 scev_reset ();
1375 /* Shrink any "omp array simd" temporary arrays to the
1376 actual vectorization factors. */
1377 if (simd_array_to_simduid_htab)
1378 shrink_simd_arrays (simd_array_to_simduid_htab, simduid_to_vf_htab);
1379 delete simduid_to_vf_htab;
1380 fun->has_simduid_loops = false;
1382 if (num_vectorized_loops > 0)
1384 /* We are collecting some corner cases where we need to update
1385 virtual SSA form via the TODO but delete the queued update-SSA
1386 state. Force renaming if we think that might be necessary. */
1387 if (ret & TODO_update_ssa_only_virtuals)
1388 mark_virtual_operands_for_renaming (cfun);
1389 /* If we vectorized any loop only virtual SSA form needs to be updated.
1390 ??? Also while we try hard to update loop-closed SSA form we fail
1391 to properly do this in some corner-cases (see PR56286). */
1392 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa_only_virtuals);
1393 ret |= TODO_cleanup_cfg;
1396 for (i = 1; i < number_of_loops (fun); i++)
1398 loop_vec_info loop_vinfo;
1399 bool has_mask_store;
1401 class loop *loop = get_loop (fun, i);
1402 if (!loop || !loop->aux)
1403 continue;
1404 loop_vinfo = (loop_vec_info) loop->aux;
1405 has_mask_store = LOOP_VINFO_HAS_MASK_STORE (loop_vinfo);
1406 delete loop_vinfo;
1407 if (has_mask_store
1408 && targetm.vectorize.empty_mask_is_expensive (IFN_MASK_STORE))
1409 optimize_mask_stores (loop);
1411 auto_bitmap exit_bbs;
1412 /* Perform local CSE, this esp. helps because we emit code for
1413 predicates that need to be shared for optimal predicate usage.
1414 However reassoc will re-order them and prevent CSE from working
1415 as it should. CSE only the loop body, not the entry. */
1416 auto_vec<edge> exits = get_loop_exit_edges (loop);
1417 for (edge exit : exits)
1418 bitmap_set_bit (exit_bbs, exit->dest->index);
1420 edge entry = EDGE_PRED (loop_preheader_edge (loop)->src, 0);
1421 do_rpo_vn (fun, entry, exit_bbs);
1423 loop->aux = NULL;
1426 vect_slp_fini ();
1428 return ret;
1431 } // anon namespace
1433 gimple_opt_pass *
1434 make_pass_vectorize (gcc::context *ctxt)
1436 return new pass_vectorize (ctxt);
1439 /* Entry point to the simduid cleanup pass. */
1441 namespace {
1443 const pass_data pass_data_simduid_cleanup =
1445 GIMPLE_PASS, /* type */
1446 "simduid", /* name */
1447 OPTGROUP_NONE, /* optinfo_flags */
1448 TV_NONE, /* tv_id */
1449 ( PROP_ssa | PROP_cfg ), /* properties_required */
1450 0, /* properties_provided */
1451 0, /* properties_destroyed */
1452 0, /* todo_flags_start */
1453 0, /* todo_flags_finish */
1456 class pass_simduid_cleanup : public gimple_opt_pass
1458 public:
1459 pass_simduid_cleanup (gcc::context *ctxt)
1460 : gimple_opt_pass (pass_data_simduid_cleanup, ctxt)
1463 /* opt_pass methods: */
1464 opt_pass * clone () final override
1466 return new pass_simduid_cleanup (m_ctxt);
1468 bool gate (function *fun) final override { return fun->has_simduid_loops; }
1469 unsigned int execute (function *) final override;
1471 }; // class pass_simduid_cleanup
1473 unsigned int
1474 pass_simduid_cleanup::execute (function *fun)
1476 hash_table<simd_array_to_simduid> *simd_array_to_simduid_htab = NULL;
1478 note_simd_array_uses (&simd_array_to_simduid_htab, fun);
1480 /* Fold IFN_GOMP_SIMD_{VF,LANE,LAST_LANE,ORDERED_{START,END}} builtins. */
1481 adjust_simduid_builtins (NULL, fun);
1483 /* Shrink any "omp array simd" temporary arrays to the
1484 actual vectorization factors. */
1485 if (simd_array_to_simduid_htab)
1486 shrink_simd_arrays (simd_array_to_simduid_htab, NULL);
1487 fun->has_simduid_loops = false;
1488 return 0;
1491 } // anon namespace
1493 gimple_opt_pass *
1494 make_pass_simduid_cleanup (gcc::context *ctxt)
1496 return new pass_simduid_cleanup (ctxt);
1500 /* Entry point to basic block SLP phase. */
1502 namespace {
1504 const pass_data pass_data_slp_vectorize =
1506 GIMPLE_PASS, /* type */
1507 "slp", /* name */
1508 OPTGROUP_LOOP | OPTGROUP_VEC, /* optinfo_flags */
1509 TV_TREE_SLP_VECTORIZATION, /* tv_id */
1510 ( PROP_ssa | PROP_cfg ), /* properties_required */
1511 0, /* properties_provided */
1512 0, /* properties_destroyed */
1513 0, /* todo_flags_start */
1514 TODO_update_ssa, /* todo_flags_finish */
1517 class pass_slp_vectorize : public gimple_opt_pass
1519 public:
1520 pass_slp_vectorize (gcc::context *ctxt)
1521 : gimple_opt_pass (pass_data_slp_vectorize, ctxt)
1524 /* opt_pass methods: */
1525 opt_pass * clone () final override { return new pass_slp_vectorize (m_ctxt); }
1526 bool gate (function *) final override { return flag_tree_slp_vectorize != 0; }
1527 unsigned int execute (function *) final override;
1529 }; // class pass_slp_vectorize
1531 unsigned int
1532 pass_slp_vectorize::execute (function *fun)
1534 auto_purge_vect_location sentinel;
1535 basic_block bb;
1537 bool in_loop_pipeline = scev_initialized_p ();
1538 if (!in_loop_pipeline)
1540 loop_optimizer_init (LOOPS_NORMAL);
1541 scev_initialize ();
1544 /* Mark all stmts as not belonging to the current region and unvisited. */
1545 FOR_EACH_BB_FN (bb, fun)
1547 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1548 gsi_next (&gsi))
1550 gphi *stmt = gsi.phi ();
1551 gimple_set_uid (stmt, -1);
1552 gimple_set_visited (stmt, false);
1554 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
1555 gsi_next (&gsi))
1557 gimple *stmt = gsi_stmt (gsi);
1558 gimple_set_uid (stmt, -1);
1559 gimple_set_visited (stmt, false);
1563 vect_slp_init ();
1565 vect_slp_function (fun);
1567 vect_slp_fini ();
1569 if (!in_loop_pipeline)
1571 scev_finalize ();
1572 loop_optimizer_finalize ();
1575 return 0;
1578 } // anon namespace
1580 gimple_opt_pass *
1581 make_pass_slp_vectorize (gcc::context *ctxt)
1583 return new pass_slp_vectorize (ctxt);
1587 /* Increase alignment of global arrays to improve vectorization potential.
1588 TODO:
1589 - Consider also structs that have an array field.
1590 - Use ipa analysis to prune arrays that can't be vectorized?
1591 This should involve global alignment analysis and in the future also
1592 array padding. */
1594 static unsigned get_vec_alignment_for_type (tree);
1595 static hash_map<tree, unsigned> *type_align_map;
1597 /* Return alignment of array's vector type corresponding to scalar type.
1598 0 if no vector type exists. */
1599 static unsigned
1600 get_vec_alignment_for_array_type (tree type)
1602 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1603 poly_uint64 array_size, vector_size;
1605 tree scalar_type = strip_array_types (type);
1606 tree vectype = get_related_vectype_for_scalar_type (VOIDmode, scalar_type);
1607 if (!vectype
1608 || !poly_int_tree_p (TYPE_SIZE (type), &array_size)
1609 || !poly_int_tree_p (TYPE_SIZE (vectype), &vector_size)
1610 || maybe_lt (array_size, vector_size))
1611 return 0;
1613 return TYPE_ALIGN (vectype);
1616 /* Return alignment of field having maximum alignment of vector type
1617 corresponding to it's scalar type. For now, we only consider fields whose
1618 offset is a multiple of it's vector alignment.
1619 0 if no suitable field is found. */
1620 static unsigned
1621 get_vec_alignment_for_record_type (tree type)
1623 gcc_assert (TREE_CODE (type) == RECORD_TYPE);
1625 unsigned max_align = 0, alignment;
1626 HOST_WIDE_INT offset;
1627 tree offset_tree;
1629 if (TYPE_PACKED (type))
1630 return 0;
1632 unsigned *slot = type_align_map->get (type);
1633 if (slot)
1634 return *slot;
1636 for (tree field = first_field (type);
1637 field != NULL_TREE;
1638 field = DECL_CHAIN (field))
1640 /* Skip if not FIELD_DECL or if alignment is set by user. */
1641 if (TREE_CODE (field) != FIELD_DECL
1642 || DECL_USER_ALIGN (field)
1643 || DECL_ARTIFICIAL (field))
1644 continue;
1646 /* We don't need to process the type further if offset is variable,
1647 since the offsets of remaining members will also be variable. */
1648 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST
1649 || TREE_CODE (DECL_FIELD_BIT_OFFSET (field)) != INTEGER_CST)
1650 break;
1652 /* Similarly stop processing the type if offset_tree
1653 does not fit in unsigned HOST_WIDE_INT. */
1654 offset_tree = bit_position (field);
1655 if (!tree_fits_uhwi_p (offset_tree))
1656 break;
1658 offset = tree_to_uhwi (offset_tree);
1659 alignment = get_vec_alignment_for_type (TREE_TYPE (field));
1661 /* Get maximum alignment of vectorized field/array among those members
1662 whose offset is multiple of the vector alignment. */
1663 if (alignment
1664 && (offset % alignment == 0)
1665 && (alignment > max_align))
1666 max_align = alignment;
1669 type_align_map->put (type, max_align);
1670 return max_align;
1673 /* Return alignment of vector type corresponding to decl's scalar type
1674 or 0 if it doesn't exist or the vector alignment is lesser than
1675 decl's alignment. */
1676 static unsigned
1677 get_vec_alignment_for_type (tree type)
1679 if (type == NULL_TREE)
1680 return 0;
1682 gcc_assert (TYPE_P (type));
1684 static unsigned alignment = 0;
1685 switch (TREE_CODE (type))
1687 case ARRAY_TYPE:
1688 alignment = get_vec_alignment_for_array_type (type);
1689 break;
1690 case RECORD_TYPE:
1691 alignment = get_vec_alignment_for_record_type (type);
1692 break;
1693 default:
1694 alignment = 0;
1695 break;
1698 return (alignment > TYPE_ALIGN (type)) ? alignment : 0;
1701 /* Entry point to increase_alignment pass. */
1702 static unsigned int
1703 increase_alignment (void)
1705 varpool_node *vnode;
1707 vect_location = dump_user_location_t ();
1708 type_align_map = new hash_map<tree, unsigned>;
1710 /* Increase the alignment of all global arrays for vectorization. */
1711 FOR_EACH_DEFINED_VARIABLE (vnode)
1713 tree decl = vnode->decl;
1714 unsigned int alignment;
1716 if ((decl_in_symtab_p (decl)
1717 && !symtab_node::get (decl)->can_increase_alignment_p ())
1718 || DECL_USER_ALIGN (decl) || DECL_ARTIFICIAL (decl))
1719 continue;
1721 alignment = get_vec_alignment_for_type (TREE_TYPE (decl));
1722 if (alignment && vect_can_force_dr_alignment_p (decl, alignment))
1724 vnode->increase_alignment (alignment);
1725 if (dump_enabled_p ())
1726 dump_printf (MSG_NOTE, "Increasing alignment of decl: %T\n", decl);
1730 delete type_align_map;
1731 return 0;
1735 namespace {
1737 const pass_data pass_data_ipa_increase_alignment =
1739 SIMPLE_IPA_PASS, /* type */
1740 "increase_alignment", /* name */
1741 OPTGROUP_LOOP | OPTGROUP_VEC, /* optinfo_flags */
1742 TV_IPA_OPT, /* tv_id */
1743 0, /* properties_required */
1744 0, /* properties_provided */
1745 0, /* properties_destroyed */
1746 0, /* todo_flags_start */
1747 0, /* todo_flags_finish */
1750 class pass_ipa_increase_alignment : public simple_ipa_opt_pass
1752 public:
1753 pass_ipa_increase_alignment (gcc::context *ctxt)
1754 : simple_ipa_opt_pass (pass_data_ipa_increase_alignment, ctxt)
1757 /* opt_pass methods: */
1758 bool gate (function *) final override
1760 return flag_section_anchors && flag_tree_loop_vectorize;
1763 unsigned int execute (function *) final override
1765 return increase_alignment ();
1768 }; // class pass_ipa_increase_alignment
1770 } // anon namespace
1772 simple_ipa_opt_pass *
1773 make_pass_ipa_increase_alignment (gcc::context *ctxt)
1775 return new pass_ipa_increase_alignment (ctxt);
1778 /* If the condition represented by T is a comparison or the SSA name
1779 result of a comparison, extract the comparison's operands. Represent
1780 T as NE_EXPR <T, 0> otherwise. */
1782 void
1783 scalar_cond_masked_key::get_cond_ops_from_tree (tree t)
1785 if (TREE_CODE_CLASS (TREE_CODE (t)) == tcc_comparison)
1787 this->code = TREE_CODE (t);
1788 this->op0 = TREE_OPERAND (t, 0);
1789 this->op1 = TREE_OPERAND (t, 1);
1790 this->inverted_p = false;
1791 return;
1794 if (TREE_CODE (t) == SSA_NAME)
1795 if (gassign *stmt = dyn_cast<gassign *> (SSA_NAME_DEF_STMT (t)))
1797 tree_code code = gimple_assign_rhs_code (stmt);
1798 if (TREE_CODE_CLASS (code) == tcc_comparison)
1800 this->code = code;
1801 this->op0 = gimple_assign_rhs1 (stmt);
1802 this->op1 = gimple_assign_rhs2 (stmt);
1803 this->inverted_p = false;
1804 return;
1806 else if (code == BIT_NOT_EXPR)
1808 tree n_op = gimple_assign_rhs1 (stmt);
1809 if ((stmt = dyn_cast<gassign *> (SSA_NAME_DEF_STMT (n_op))))
1811 code = gimple_assign_rhs_code (stmt);
1812 if (TREE_CODE_CLASS (code) == tcc_comparison)
1814 this->code = code;
1815 this->op0 = gimple_assign_rhs1 (stmt);
1816 this->op1 = gimple_assign_rhs2 (stmt);
1817 this->inverted_p = true;
1818 return;
1824 this->code = NE_EXPR;
1825 this->op0 = t;
1826 this->op1 = build_zero_cst (TREE_TYPE (t));
1827 this->inverted_p = false;
1830 /* See the comment above the declaration for details. */
1832 unsigned int
1833 vector_costs::add_stmt_cost (int count, vect_cost_for_stmt kind,
1834 stmt_vec_info stmt_info, slp_tree,
1835 tree vectype, int misalign,
1836 vect_cost_model_location where)
1838 unsigned int cost
1839 = builtin_vectorization_cost (kind, vectype, misalign) * count;
1840 return record_stmt_cost (stmt_info, where, cost);
1843 /* See the comment above the declaration for details. */
1845 void
1846 vector_costs::finish_cost (const vector_costs *)
1848 gcc_assert (!m_finished);
1849 m_finished = true;
1852 /* Record a base cost of COST units against WHERE. If STMT_INFO is
1853 nonnull, use it to adjust the cost based on execution frequency
1854 (where appropriate). */
1856 unsigned int
1857 vector_costs::record_stmt_cost (stmt_vec_info stmt_info,
1858 vect_cost_model_location where,
1859 unsigned int cost)
1861 cost = adjust_cost_for_freq (stmt_info, where, cost);
1862 m_costs[where] += cost;
1863 return cost;
1866 /* COST is the base cost we have calculated for an operation in location WHERE.
1867 If STMT_INFO is nonnull, use it to adjust the cost based on execution
1868 frequency (where appropriate). Return the adjusted cost. */
1870 unsigned int
1871 vector_costs::adjust_cost_for_freq (stmt_vec_info stmt_info,
1872 vect_cost_model_location where,
1873 unsigned int cost)
1875 /* Statements in an inner loop relative to the loop being
1876 vectorized are weighted more heavily. The value here is
1877 arbitrary and could potentially be improved with analysis. */
1878 if (where == vect_body
1879 && stmt_info
1880 && stmt_in_inner_loop_p (m_vinfo, stmt_info))
1882 loop_vec_info loop_vinfo = as_a<loop_vec_info> (m_vinfo);
1883 cost *= LOOP_VINFO_INNER_LOOP_COST_FACTOR (loop_vinfo);
1885 return cost;
1888 /* See the comment above the declaration for details. */
1890 bool
1891 vector_costs::better_main_loop_than_p (const vector_costs *other) const
1893 int diff = compare_inside_loop_cost (other);
1894 if (diff != 0)
1895 return diff < 0;
1897 /* If there's nothing to choose between the loop bodies, see whether
1898 there's a difference in the prologue and epilogue costs. */
1899 diff = compare_outside_loop_cost (other);
1900 if (diff != 0)
1901 return diff < 0;
1903 return false;
1907 /* See the comment above the declaration for details. */
1909 bool
1910 vector_costs::better_epilogue_loop_than_p (const vector_costs *other,
1911 loop_vec_info main_loop) const
1913 loop_vec_info this_loop_vinfo = as_a<loop_vec_info> (this->m_vinfo);
1914 loop_vec_info other_loop_vinfo = as_a<loop_vec_info> (other->m_vinfo);
1916 poly_int64 this_vf = LOOP_VINFO_VECT_FACTOR (this_loop_vinfo);
1917 poly_int64 other_vf = LOOP_VINFO_VECT_FACTOR (other_loop_vinfo);
1919 poly_uint64 main_poly_vf = LOOP_VINFO_VECT_FACTOR (main_loop);
1920 unsigned HOST_WIDE_INT main_vf;
1921 unsigned HOST_WIDE_INT other_factor, this_factor, other_cost, this_cost;
1922 /* If we can determine how many iterations are left for the epilogue
1923 loop, that is if both the main loop's vectorization factor and number
1924 of iterations are constant, then we use them to calculate the cost of
1925 the epilogue loop together with a 'likely value' for the epilogues
1926 vectorization factor. Otherwise we use the main loop's vectorization
1927 factor and the maximum poly value for the epilogue's. If the target
1928 has not provided with a sensible upper bound poly vectorization
1929 factors are likely to be favored over constant ones. */
1930 if (main_poly_vf.is_constant (&main_vf)
1931 && LOOP_VINFO_NITERS_KNOWN_P (main_loop))
1933 unsigned HOST_WIDE_INT niters
1934 = LOOP_VINFO_INT_NITERS (main_loop) % main_vf;
1935 HOST_WIDE_INT other_likely_vf
1936 = estimated_poly_value (other_vf, POLY_VALUE_LIKELY);
1937 HOST_WIDE_INT this_likely_vf
1938 = estimated_poly_value (this_vf, POLY_VALUE_LIKELY);
1940 /* If the epilogue is using partial vectors we account for the
1941 partial iteration here too. */
1942 other_factor = niters / other_likely_vf;
1943 if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (other_loop_vinfo)
1944 && niters % other_likely_vf != 0)
1945 other_factor++;
1947 this_factor = niters / this_likely_vf;
1948 if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (this_loop_vinfo)
1949 && niters % this_likely_vf != 0)
1950 this_factor++;
1952 else
1954 unsigned HOST_WIDE_INT main_vf_max
1955 = estimated_poly_value (main_poly_vf, POLY_VALUE_MAX);
1956 unsigned HOST_WIDE_INT other_vf_max
1957 = estimated_poly_value (other_vf, POLY_VALUE_MAX);
1958 unsigned HOST_WIDE_INT this_vf_max
1959 = estimated_poly_value (this_vf, POLY_VALUE_MAX);
1961 other_factor = CEIL (main_vf_max, other_vf_max);
1962 this_factor = CEIL (main_vf_max, this_vf_max);
1964 /* If the loop is not using partial vectors then it will iterate one
1965 time less than one that does. It is safe to subtract one here,
1966 because the main loop's vf is always at least 2x bigger than that
1967 of an epilogue. */
1968 if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (other_loop_vinfo))
1969 other_factor -= 1;
1970 if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (this_loop_vinfo))
1971 this_factor -= 1;
1974 /* Compute the costs by multiplying the inside costs with the factor and
1975 add the outside costs for a more complete picture. The factor is the
1976 amount of times we are expecting to iterate this epilogue. */
1977 other_cost = other->body_cost () * other_factor;
1978 this_cost = this->body_cost () * this_factor;
1979 other_cost += other->outside_cost ();
1980 this_cost += this->outside_cost ();
1981 return this_cost < other_cost;
1984 /* A <=>-style subroutine of better_main_loop_than_p. Check whether we can
1985 determine the return value of better_main_loop_than_p by comparing the
1986 inside (loop body) costs of THIS and OTHER. Return:
1988 * -1 if better_main_loop_than_p should return true.
1989 * 1 if better_main_loop_than_p should return false.
1990 * 0 if we can't decide. */
1993 vector_costs::compare_inside_loop_cost (const vector_costs *other) const
1995 loop_vec_info this_loop_vinfo = as_a<loop_vec_info> (this->m_vinfo);
1996 loop_vec_info other_loop_vinfo = as_a<loop_vec_info> (other->m_vinfo);
1998 struct loop *loop = LOOP_VINFO_LOOP (this_loop_vinfo);
1999 gcc_assert (LOOP_VINFO_LOOP (other_loop_vinfo) == loop);
2001 poly_int64 this_vf = LOOP_VINFO_VECT_FACTOR (this_loop_vinfo);
2002 poly_int64 other_vf = LOOP_VINFO_VECT_FACTOR (other_loop_vinfo);
2004 /* Limit the VFs to what is likely to be the maximum number of iterations,
2005 to handle cases in which at least one loop_vinfo is fully-masked. */
2006 HOST_WIDE_INT estimated_max_niter = likely_max_stmt_executions_int (loop);
2007 if (estimated_max_niter != -1)
2009 if (estimated_poly_value (this_vf, POLY_VALUE_MIN)
2010 >= estimated_max_niter)
2011 this_vf = estimated_max_niter;
2012 if (estimated_poly_value (other_vf, POLY_VALUE_MIN)
2013 >= estimated_max_niter)
2014 other_vf = estimated_max_niter;
2017 /* Check whether the (fractional) cost per scalar iteration is lower or
2018 higher: this_inside_cost / this_vf vs. other_inside_cost / other_vf. */
2019 poly_int64 rel_this = this_loop_vinfo->vector_costs->body_cost () * other_vf;
2020 poly_int64 rel_other
2021 = other_loop_vinfo->vector_costs->body_cost () * this_vf;
2023 HOST_WIDE_INT est_rel_this_min
2024 = estimated_poly_value (rel_this, POLY_VALUE_MIN);
2025 HOST_WIDE_INT est_rel_this_max
2026 = estimated_poly_value (rel_this, POLY_VALUE_MAX);
2028 HOST_WIDE_INT est_rel_other_min
2029 = estimated_poly_value (rel_other, POLY_VALUE_MIN);
2030 HOST_WIDE_INT est_rel_other_max
2031 = estimated_poly_value (rel_other, POLY_VALUE_MAX);
2033 /* Check first if we can make out an unambigous total order from the minimum
2034 and maximum estimates. */
2035 if (est_rel_this_min < est_rel_other_min
2036 && est_rel_this_max < est_rel_other_max)
2037 return -1;
2039 if (est_rel_other_min < est_rel_this_min
2040 && est_rel_other_max < est_rel_this_max)
2041 return 1;
2043 /* When other_loop_vinfo uses a variable vectorization factor,
2044 we know that it has a lower cost for at least one runtime VF.
2045 However, we don't know how likely that VF is.
2047 One option would be to compare the costs for the estimated VFs.
2048 The problem is that that can put too much pressure on the cost
2049 model. E.g. if the estimated VF is also the lowest possible VF,
2050 and if other_loop_vinfo is 1 unit worse than this_loop_vinfo
2051 for the estimated VF, we'd then choose this_loop_vinfo even
2052 though (a) this_loop_vinfo might not actually be better than
2053 other_loop_vinfo for that VF and (b) it would be significantly
2054 worse at larger VFs.
2056 Here we go for a hacky compromise: pick this_loop_vinfo if it is
2057 no more expensive than other_loop_vinfo even after doubling the
2058 estimated other_loop_vinfo VF. For all but trivial loops, this
2059 ensures that we only pick this_loop_vinfo if it is significantly
2060 better than other_loop_vinfo at the estimated VF. */
2061 if (est_rel_other_min != est_rel_this_min
2062 || est_rel_other_max != est_rel_this_max)
2064 HOST_WIDE_INT est_rel_this_likely
2065 = estimated_poly_value (rel_this, POLY_VALUE_LIKELY);
2066 HOST_WIDE_INT est_rel_other_likely
2067 = estimated_poly_value (rel_other, POLY_VALUE_LIKELY);
2069 return est_rel_this_likely * 2 <= est_rel_other_likely ? -1 : 1;
2072 return 0;
2075 /* A <=>-style subroutine of better_main_loop_than_p, used when there is
2076 nothing to choose between the inside (loop body) costs of THIS and OTHER.
2077 Check whether we can determine the return value of better_main_loop_than_p
2078 by comparing the outside (prologue and epilogue) costs of THIS and OTHER.
2079 Return:
2081 * -1 if better_main_loop_than_p should return true.
2082 * 1 if better_main_loop_than_p should return false.
2083 * 0 if we can't decide. */
2086 vector_costs::compare_outside_loop_cost (const vector_costs *other) const
2088 auto this_outside_cost = this->outside_cost ();
2089 auto other_outside_cost = other->outside_cost ();
2090 if (this_outside_cost != other_outside_cost)
2091 return this_outside_cost < other_outside_cost ? -1 : 1;
2093 return 0;