rust/cargo-c: update to 0.10.9+cargo-0.85.0
[oi-userland.git] / components / library / openssl / openssl-0.9.8 / engines / pkcs11 / hw_pk11.c
blobd9dfcb33d618a6f1f807029d42863f2cf8245fd3
1 /*
2 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
3 */
5 #pragma ident "@(#)hw_pk11.c 1.6 10/09/23 SMI"
7 /* crypto/engine/hw_pk11.c */
8 /*
9 * This product includes software developed by the OpenSSL Project for
10 * use in the OpenSSL Toolkit (http://www.openssl.org/).
12 * This project also referenced hw_pkcs11-0.9.7b.patch written by
13 * Afchine Madjlessi.
16 * ====================================================================
17 * Copyright (c) 2000-2001 The OpenSSL Project. All rights reserved.
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
23 * 1. Redistributions of source code must retain the above copyright
24 * notice, this list of conditions and the following disclaimer.
26 * 2. Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
31 * 3. All advertising materials mentioning features or use of this
32 * software must display the following acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
36 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
37 * endorse or promote products derived from this software without
38 * prior written permission. For written permission, please contact
39 * licensing@OpenSSL.org.
41 * 5. Products derived from this software may not be called "OpenSSL"
42 * nor may "OpenSSL" appear in their names without prior written
43 * permission of the OpenSSL Project.
45 * 6. Redistributions of any form whatsoever must retain the following
46 * acknowledgment:
47 * "This product includes software developed by the OpenSSL Project
48 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
50 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
51 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
54 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
56 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
57 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
61 * OF THE POSSIBILITY OF SUCH DAMAGE.
62 * ====================================================================
64 * This product includes cryptographic software written by Eric Young
65 * (eay@cryptsoft.com). This product includes software written by Tim
66 * Hudson (tjh@cryptsoft.com).
70 #include <stdio.h>
71 #include <stdlib.h>
72 #include <string.h>
73 #include <sys/types.h>
74 #include <unistd.h>
75 #include <strings.h>
77 #include <openssl/e_os2.h>
78 #include <openssl/crypto.h>
79 #include <openssl/engine.h>
80 #include <openssl/dso.h>
81 #include <openssl/err.h>
82 #include <openssl/bn.h>
83 #include <openssl/md5.h>
84 #include <openssl/pem.h>
85 #ifndef OPENSSL_NO_RSA
86 #include <openssl/rsa.h>
87 #endif
88 #ifndef OPENSSL_NO_DSA
89 #include <openssl/dsa.h>
90 #endif
91 #ifndef OPENSSL_NO_DH
92 #include <openssl/dh.h>
93 #endif
94 #include <openssl/rand.h>
95 #include <openssl/objects.h>
96 #include <openssl/x509.h>
97 #include <openssl/aes.h>
98 #include <cryptlib.h>
99 #include <dlfcn.h>
100 #include <pthread.h>
102 #ifndef OPENSSL_NO_HW
103 #ifndef OPENSSL_NO_HW_PK11
105 /* label for debug messages printed on stderr */
106 #define PK11_DBG "PKCS#11 ENGINE DEBUG"
107 /* prints a lot of debug messages on stderr about slot selection process */
108 #undef DEBUG_SLOT_SELECTION
110 * Solaris specific code. See comment at check_hw_mechanisms() for more
111 * information.
113 #if defined(__SVR4) && defined(__sun)
114 #define SOLARIS_HW_SLOT_SELECTION
115 #endif
118 * AES counter mode is not supported in the OpenSSL EVP API yet and neither
119 * there are official OIDs for mechanisms based on this mode. With our changes,
120 * an application can define its own EVP calls for AES counter mode and then
121 * it can make use of hardware acceleration through this engine. However, it's
122 * better if we keep AES CTR support code under ifdef's.
124 #define SOLARIS_AES_CTR
126 #include <security/cryptoki.h>
127 #include <security/pkcs11.h>
128 #include "hw_pk11.h"
129 #include "hw_pk11_uri.h"
131 #define PK11_ENGINE_LIB_NAME "PKCS#11 engine"
132 #include "hw_pk11_err.c"
134 #ifdef SOLARIS_AES_CTR
136 * NIDs for AES counter mode that will be defined during the engine
137 * initialization.
139 int NID_aes_128_ctr = NID_undef;
140 int NID_aes_192_ctr = NID_undef;
141 int NID_aes_256_ctr = NID_undef;
142 #endif /* SOLARIS_AES_CTR */
145 * We use this lock to prevent multiple C_Login()s, guard getpassphrase(),
146 * uri_struct manipulation, and static token info. All of that is used by the
147 * RSA keys by reference feature.
149 pthread_mutex_t *uri_lock;
151 #ifdef SOLARIS_HW_SLOT_SELECTION
153 * Tables for symmetric ciphers and digest mechs found in the pkcs11_kernel
154 * library. See comment at check_hw_mechanisms() for more information.
156 int *hw_cnids;
157 int *hw_dnids;
158 #endif /* SOLARIS_HW_SLOT_SELECTION */
160 /* PKCS#11 session caches and their locks for all operation types */
161 static PK11_CACHE session_cache[OP_MAX];
164 * We cache the flags so that we do not have to run C_GetTokenInfo() again when
165 * logging into the token.
167 CK_FLAGS pubkey_token_flags;
170 * As stated in v2.20, 11.7 Object Management Function, in section for
171 * C_FindObjectsInit(), at most one search operation may be active at a given
172 * time in a given session. Therefore, C_Find{,Init,Final}Objects() should be
173 * grouped together to form one atomic search operation. This is already
174 * ensured by the property of unique PKCS#11 session handle used for each
175 * PK11_SESSION object.
177 * This is however not the biggest concern - maintaining consistency of the
178 * underlying object store is more important. The same section of the spec also
179 * says that one thread can be in the middle of a search operation while another
180 * thread destroys the object matching the search template which would result in
181 * invalid handle returned from the search operation.
183 * Hence, the following locks are used for both protection of the object stores.
184 * They are also used for active list protection.
186 pthread_mutex_t *find_lock[OP_MAX] = { NULL };
189 * lists of asymmetric key handles which are active (referenced by at least one
190 * PK11_SESSION structure, either held by a thread or present in free_session
191 * list) for given algorithm type
193 PK11_active *active_list[OP_MAX] = { NULL };
196 * Create all secret key objects in a global session so that they are available
197 * to use for other sessions. These other sessions may be opened or closed
198 * without losing the secret key objects.
200 static CK_SESSION_HANDLE global_session = CK_INVALID_HANDLE;
202 /* ENGINE level stuff */
203 static int pk11_init(ENGINE *e);
204 static int pk11_library_init(ENGINE *e);
205 static int pk11_finish(ENGINE *e);
206 static int pk11_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)());
207 static int pk11_destroy(ENGINE *e);
209 /* RAND stuff */
210 static void pk11_rand_seed(const void *buf, int num);
211 static void pk11_rand_add(const void *buf, int num, double add_entropy);
212 static void pk11_rand_cleanup(void);
213 static int pk11_rand_bytes(unsigned char *buf, int num);
214 static int pk11_rand_status(void);
216 /* These functions are also used in other files */
217 PK11_SESSION *pk11_get_session(PK11_OPTYPE optype);
218 void pk11_return_session(PK11_SESSION *sp, PK11_OPTYPE optype);
220 /* active list manipulation functions used in this file */
221 extern int pk11_active_delete(CK_OBJECT_HANDLE h, PK11_OPTYPE type);
222 extern void pk11_free_active_list(PK11_OPTYPE type);
224 #ifndef OPENSSL_NO_RSA
225 int pk11_destroy_rsa_key_objects(PK11_SESSION *session);
226 int pk11_destroy_rsa_object_pub(PK11_SESSION *sp, CK_BBOOL uselock);
227 int pk11_destroy_rsa_object_priv(PK11_SESSION *sp, CK_BBOOL uselock);
228 #endif
229 #ifndef OPENSSL_NO_DSA
230 int pk11_destroy_dsa_key_objects(PK11_SESSION *session);
231 int pk11_destroy_dsa_object_pub(PK11_SESSION *sp, CK_BBOOL uselock);
232 int pk11_destroy_dsa_object_priv(PK11_SESSION *sp, CK_BBOOL uselock);
233 #endif
234 #ifndef OPENSSL_NO_DH
235 int pk11_destroy_dh_key_objects(PK11_SESSION *session);
236 int pk11_destroy_dh_object(PK11_SESSION *session, CK_BBOOL uselock);
237 #endif
239 /* Local helper functions */
240 static int pk11_free_all_sessions(void);
241 static int pk11_free_session_list(PK11_OPTYPE optype);
242 static int pk11_setup_session(PK11_SESSION *sp, PK11_OPTYPE optype);
243 static int pk11_destroy_cipher_key_objects(PK11_SESSION *session);
244 static int pk11_destroy_object(CK_SESSION_HANDLE handle, CK_OBJECT_HANDLE oh,
245 CK_BBOOL persistent);
246 static const char *get_PK11_LIBNAME(void);
247 static void free_PK11_LIBNAME(void);
248 static long set_PK11_LIBNAME(const char *name);
250 /* Symmetric cipher and digest support functions */
251 static int cipher_nid_to_pk11(int nid);
252 #ifdef SOLARIS_AES_CTR
253 static int pk11_add_NID(char *sn, char *ln);
254 static int pk11_add_aes_ctr_NIDs(void);
255 #endif /* SOLARIS_AES_CTR */
256 static int pk11_usable_ciphers(const int **nids);
257 static int pk11_usable_digests(const int **nids);
258 static int pk11_cipher_init(EVP_CIPHER_CTX *ctx, const unsigned char *key,
259 const unsigned char *iv, int enc);
260 static int pk11_cipher_final(PK11_SESSION *sp);
261 static int pk11_cipher_do_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
262 const unsigned char *in, unsigned int inl);
263 static int pk11_cipher_cleanup(EVP_CIPHER_CTX *ctx);
264 static int pk11_engine_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
265 const int **nids, int nid);
266 static int pk11_engine_digests(ENGINE *e, const EVP_MD **digest,
267 const int **nids, int nid);
268 static CK_OBJECT_HANDLE pk11_get_cipher_key(EVP_CIPHER_CTX *ctx,
269 const unsigned char *key, CK_KEY_TYPE key_type, PK11_SESSION *sp);
270 static int check_new_cipher_key(PK11_SESSION *sp, const unsigned char *key,
271 int key_len);
272 static int md_nid_to_pk11(int nid);
273 static int pk11_digest_init(EVP_MD_CTX *ctx);
274 static int pk11_digest_update(EVP_MD_CTX *ctx, const void *data,
275 size_t count);
276 static int pk11_digest_final(EVP_MD_CTX *ctx, unsigned char *md);
277 static int pk11_digest_copy(EVP_MD_CTX *to, const EVP_MD_CTX *from);
278 static int pk11_digest_cleanup(EVP_MD_CTX *ctx);
280 static int pk11_choose_slots(int *any_slot_found);
281 static void pk11_find_symmetric_ciphers(CK_FUNCTION_LIST_PTR pflist,
282 CK_SLOT_ID current_slot, int *current_slot_n_cipher,
283 int *local_cipher_nids);
284 static void pk11_find_digests(CK_FUNCTION_LIST_PTR pflist,
285 CK_SLOT_ID current_slot, int *current_slot_n_digest,
286 int *local_digest_nids);
287 static void pk11_get_symmetric_cipher(CK_FUNCTION_LIST_PTR, int slot_id,
288 CK_MECHANISM_TYPE mech, int *current_slot_n_cipher, int *local_cipher_nids,
289 int id);
290 static void pk11_get_digest(CK_FUNCTION_LIST_PTR pflist, int slot_id,
291 CK_MECHANISM_TYPE mech, int *current_slot_n_digest, int *local_digest_nids,
292 int id);
294 static int pk11_init_all_locks(void);
295 static void pk11_free_all_locks(void);
297 #ifdef SOLARIS_HW_SLOT_SELECTION
298 static int check_hw_mechanisms(void);
299 static int nid_in_table(int nid, int *nid_table);
300 #endif /* SOLARIS_HW_SLOT_SELECTION */
302 /* Index for the supported ciphers */
303 enum pk11_cipher_id {
304 PK11_DES_CBC,
305 PK11_DES3_CBC,
306 PK11_DES_ECB,
307 PK11_DES3_ECB,
308 PK11_RC4,
309 PK11_AES_128_CBC,
310 PK11_AES_192_CBC,
311 PK11_AES_256_CBC,
312 PK11_AES_128_ECB,
313 PK11_AES_192_ECB,
314 PK11_AES_256_ECB,
315 PK11_BLOWFISH_CBC,
316 #ifdef SOLARIS_AES_CTR
317 PK11_AES_128_CTR,
318 PK11_AES_192_CTR,
319 PK11_AES_256_CTR,
320 #endif /* SOLARIS_AES_CTR */
321 PK11_CIPHER_MAX
324 /* Index for the supported digests */
325 enum pk11_digest_id {
326 PK11_MD5,
327 PK11_SHA1,
328 PK11_SHA224,
329 PK11_SHA256,
330 PK11_SHA384,
331 PK11_SHA512,
332 PK11_DIGEST_MAX
335 #define TRY_OBJ_DESTROY(sp, obj_hdl, retval, uselock, alg_type) \
337 if (uselock) \
338 LOCK_OBJSTORE(alg_type); \
339 if (pk11_active_delete(obj_hdl, alg_type) == 1) \
341 retval = pk11_destroy_object(sp->session, obj_hdl, \
342 sp->persistent); \
344 if (uselock) \
345 UNLOCK_OBJSTORE(alg_type); \
348 static int cipher_nids[PK11_CIPHER_MAX];
349 static int digest_nids[PK11_DIGEST_MAX];
350 static int cipher_count = 0;
351 static int digest_count = 0;
352 static CK_BBOOL pk11_have_rsa = CK_FALSE;
353 static CK_BBOOL pk11_have_dsa = CK_FALSE;
354 static CK_BBOOL pk11_have_dh = CK_FALSE;
355 static CK_BBOOL pk11_have_random = CK_FALSE;
357 typedef struct PK11_CIPHER_st
359 enum pk11_cipher_id id;
360 int nid;
361 int iv_len;
362 int min_key_len;
363 int max_key_len;
364 CK_KEY_TYPE key_type;
365 CK_MECHANISM_TYPE mech_type;
366 } PK11_CIPHER;
368 static PK11_CIPHER ciphers[] =
370 { PK11_DES_CBC, NID_des_cbc, 8, 8, 8,
371 CKK_DES, CKM_DES_CBC, },
372 { PK11_DES3_CBC, NID_des_ede3_cbc, 8, 24, 24,
373 CKK_DES3, CKM_DES3_CBC, },
374 { PK11_DES_ECB, NID_des_ecb, 0, 8, 8,
375 CKK_DES, CKM_DES_ECB, },
376 { PK11_DES3_ECB, NID_des_ede3_ecb, 0, 24, 24,
377 CKK_DES3, CKM_DES3_ECB, },
378 { PK11_RC4, NID_rc4, 0, 16, 256,
379 CKK_RC4, CKM_RC4, },
380 { PK11_AES_128_CBC, NID_aes_128_cbc, 16, 16, 16,
381 CKK_AES, CKM_AES_CBC, },
382 { PK11_AES_192_CBC, NID_aes_192_cbc, 16, 24, 24,
383 CKK_AES, CKM_AES_CBC, },
384 { PK11_AES_256_CBC, NID_aes_256_cbc, 16, 32, 32,
385 CKK_AES, CKM_AES_CBC, },
386 { PK11_AES_128_ECB, NID_aes_128_ecb, 0, 16, 16,
387 CKK_AES, CKM_AES_ECB, },
388 { PK11_AES_192_ECB, NID_aes_192_ecb, 0, 24, 24,
389 CKK_AES, CKM_AES_ECB, },
390 { PK11_AES_256_ECB, NID_aes_256_ecb, 0, 32, 32,
391 CKK_AES, CKM_AES_ECB, },
392 { PK11_BLOWFISH_CBC, NID_bf_cbc, 8, 16, 16,
393 CKK_BLOWFISH, CKM_BLOWFISH_CBC, },
394 #ifdef SOLARIS_AES_CTR
395 /* we don't know the correct NIDs until the engine is initialized */
396 { PK11_AES_128_CTR, NID_undef, 16, 16, 16,
397 CKK_AES, CKM_AES_CTR, },
398 { PK11_AES_192_CTR, NID_undef, 16, 24, 24,
399 CKK_AES, CKM_AES_CTR, },
400 { PK11_AES_256_CTR, NID_undef, 16, 32, 32,
401 CKK_AES, CKM_AES_CTR, },
402 #endif /* SOLARIS_AES_CTR */
405 typedef struct PK11_DIGEST_st
407 enum pk11_digest_id id;
408 int nid;
409 CK_MECHANISM_TYPE mech_type;
410 } PK11_DIGEST;
412 static PK11_DIGEST digests[] =
414 {PK11_MD5, NID_md5, CKM_MD5, },
415 {PK11_SHA1, NID_sha1, CKM_SHA_1, },
416 {PK11_SHA224, NID_sha224, CKM_SHA224, },
417 {PK11_SHA256, NID_sha256, CKM_SHA256, },
418 {PK11_SHA384, NID_sha384, CKM_SHA384, },
419 {PK11_SHA512, NID_sha512, CKM_SHA512, },
420 {0, NID_undef, 0xFFFF, },
424 * Structure to be used for the cipher_data/md_data in
425 * EVP_CIPHER_CTX/EVP_MD_CTX structures in order to use the same pk11
426 * session in multiple cipher_update calls
428 typedef struct PK11_CIPHER_STATE_st
430 PK11_SESSION *sp;
431 } PK11_CIPHER_STATE;
435 * libcrypto EVP stuff - this is how we get wired to EVP so the engine gets
436 * called when libcrypto requests a cipher NID.
438 * Note how the PK11_CIPHER_STATE is used here.
441 /* DES CBC EVP */
442 static const EVP_CIPHER pk11_des_cbc =
444 NID_des_cbc,
445 8, 8, 8,
446 EVP_CIPH_CBC_MODE,
447 pk11_cipher_init,
448 pk11_cipher_do_cipher,
449 pk11_cipher_cleanup,
450 sizeof (PK11_CIPHER_STATE),
451 EVP_CIPHER_set_asn1_iv,
452 EVP_CIPHER_get_asn1_iv,
453 NULL
456 /* 3DES CBC EVP */
457 static const EVP_CIPHER pk11_3des_cbc =
459 NID_des_ede3_cbc,
460 8, 24, 8,
461 EVP_CIPH_CBC_MODE,
462 pk11_cipher_init,
463 pk11_cipher_do_cipher,
464 pk11_cipher_cleanup,
465 sizeof (PK11_CIPHER_STATE),
466 EVP_CIPHER_set_asn1_iv,
467 EVP_CIPHER_get_asn1_iv,
468 NULL
472 * ECB modes don't use an Initial Vector so that's why set_asn1_parameters and
473 * get_asn1_parameters fields are set to NULL.
475 static const EVP_CIPHER pk11_des_ecb =
477 NID_des_ecb,
478 8, 8, 8,
479 EVP_CIPH_ECB_MODE,
480 pk11_cipher_init,
481 pk11_cipher_do_cipher,
482 pk11_cipher_cleanup,
483 sizeof (PK11_CIPHER_STATE),
484 NULL,
485 NULL,
486 NULL
489 static const EVP_CIPHER pk11_3des_ecb =
491 NID_des_ede3_ecb,
492 8, 24, 8,
493 EVP_CIPH_ECB_MODE,
494 pk11_cipher_init,
495 pk11_cipher_do_cipher,
496 pk11_cipher_cleanup,
497 sizeof (PK11_CIPHER_STATE),
498 NULL,
499 NULL,
500 NULL
504 static const EVP_CIPHER pk11_aes_128_cbc =
506 NID_aes_128_cbc,
507 16, 16, 16,
508 EVP_CIPH_CBC_MODE,
509 pk11_cipher_init,
510 pk11_cipher_do_cipher,
511 pk11_cipher_cleanup,
512 sizeof (PK11_CIPHER_STATE),
513 EVP_CIPHER_set_asn1_iv,
514 EVP_CIPHER_get_asn1_iv,
515 NULL
518 static const EVP_CIPHER pk11_aes_192_cbc =
520 NID_aes_192_cbc,
521 16, 24, 16,
522 EVP_CIPH_CBC_MODE,
523 pk11_cipher_init,
524 pk11_cipher_do_cipher,
525 pk11_cipher_cleanup,
526 sizeof (PK11_CIPHER_STATE),
527 EVP_CIPHER_set_asn1_iv,
528 EVP_CIPHER_get_asn1_iv,
529 NULL
532 static const EVP_CIPHER pk11_aes_256_cbc =
534 NID_aes_256_cbc,
535 16, 32, 16,
536 EVP_CIPH_CBC_MODE,
537 pk11_cipher_init,
538 pk11_cipher_do_cipher,
539 pk11_cipher_cleanup,
540 sizeof (PK11_CIPHER_STATE),
541 EVP_CIPHER_set_asn1_iv,
542 EVP_CIPHER_get_asn1_iv,
543 NULL
547 * ECB modes don't use IV so that's why set_asn1_parameters and
548 * get_asn1_parameters are set to NULL.
550 static const EVP_CIPHER pk11_aes_128_ecb =
552 NID_aes_128_ecb,
553 16, 16, 0,
554 EVP_CIPH_ECB_MODE,
555 pk11_cipher_init,
556 pk11_cipher_do_cipher,
557 pk11_cipher_cleanup,
558 sizeof (PK11_CIPHER_STATE),
559 NULL,
560 NULL,
561 NULL
564 static const EVP_CIPHER pk11_aes_192_ecb =
566 NID_aes_192_ecb,
567 16, 24, 0,
568 EVP_CIPH_ECB_MODE,
569 pk11_cipher_init,
570 pk11_cipher_do_cipher,
571 pk11_cipher_cleanup,
572 sizeof (PK11_CIPHER_STATE),
573 NULL,
574 NULL,
575 NULL
578 static const EVP_CIPHER pk11_aes_256_ecb =
580 NID_aes_256_ecb,
581 16, 32, 0,
582 EVP_CIPH_ECB_MODE,
583 pk11_cipher_init,
584 pk11_cipher_do_cipher,
585 pk11_cipher_cleanup,
586 sizeof (PK11_CIPHER_STATE),
587 NULL,
588 NULL,
589 NULL
592 #ifdef SOLARIS_AES_CTR
594 * NID_undef's will be changed to the AES counter mode NIDs as soon they are
595 * created in pk11_library_init(). Note that the need to change these structures
596 * is the reason why we don't define them with the const keyword.
598 static EVP_CIPHER pk11_aes_128_ctr =
600 NID_undef,
601 16, 16, 16,
602 EVP_CIPH_CBC_MODE,
603 pk11_cipher_init,
604 pk11_cipher_do_cipher,
605 pk11_cipher_cleanup,
606 sizeof (PK11_CIPHER_STATE),
607 EVP_CIPHER_set_asn1_iv,
608 EVP_CIPHER_get_asn1_iv,
609 NULL
612 static EVP_CIPHER pk11_aes_192_ctr =
614 NID_undef,
615 16, 24, 16,
616 EVP_CIPH_CBC_MODE,
617 pk11_cipher_init,
618 pk11_cipher_do_cipher,
619 pk11_cipher_cleanup,
620 sizeof (PK11_CIPHER_STATE),
621 EVP_CIPHER_set_asn1_iv,
622 EVP_CIPHER_get_asn1_iv,
623 NULL
626 static EVP_CIPHER pk11_aes_256_ctr =
628 NID_undef,
629 16, 32, 16,
630 EVP_CIPH_CBC_MODE,
631 pk11_cipher_init,
632 pk11_cipher_do_cipher,
633 pk11_cipher_cleanup,
634 sizeof (PK11_CIPHER_STATE),
635 EVP_CIPHER_set_asn1_iv,
636 EVP_CIPHER_get_asn1_iv,
637 NULL
639 #endif /* SOLARIS_AES_CTR */
641 static const EVP_CIPHER pk11_bf_cbc =
643 NID_bf_cbc,
644 8, 16, 8,
645 EVP_CIPH_VARIABLE_LENGTH,
646 pk11_cipher_init,
647 pk11_cipher_do_cipher,
648 pk11_cipher_cleanup,
649 sizeof (PK11_CIPHER_STATE),
650 EVP_CIPHER_set_asn1_iv,
651 EVP_CIPHER_get_asn1_iv,
652 NULL
655 static const EVP_CIPHER pk11_rc4 =
657 NID_rc4,
658 1, 16, 0,
659 EVP_CIPH_VARIABLE_LENGTH,
660 pk11_cipher_init,
661 pk11_cipher_do_cipher,
662 pk11_cipher_cleanup,
663 sizeof (PK11_CIPHER_STATE),
664 NULL,
665 NULL,
666 NULL
669 static const EVP_MD pk11_md5 =
671 NID_md5,
672 NID_md5WithRSAEncryption,
673 MD5_DIGEST_LENGTH,
675 pk11_digest_init,
676 pk11_digest_update,
677 pk11_digest_final,
678 pk11_digest_copy,
679 pk11_digest_cleanup,
680 EVP_PKEY_RSA_method,
681 MD5_CBLOCK,
682 sizeof (PK11_CIPHER_STATE),
685 static const EVP_MD pk11_sha1 =
687 NID_sha1,
688 NID_sha1WithRSAEncryption,
689 SHA_DIGEST_LENGTH,
691 pk11_digest_init,
692 pk11_digest_update,
693 pk11_digest_final,
694 pk11_digest_copy,
695 pk11_digest_cleanup,
696 EVP_PKEY_RSA_method,
697 SHA_CBLOCK,
698 sizeof (PK11_CIPHER_STATE),
701 static const EVP_MD pk11_sha224 =
703 NID_sha224,
704 NID_sha224WithRSAEncryption,
705 SHA224_DIGEST_LENGTH,
707 pk11_digest_init,
708 pk11_digest_update,
709 pk11_digest_final,
710 pk11_digest_copy,
711 pk11_digest_cleanup,
712 EVP_PKEY_RSA_method,
713 /* SHA-224 uses the same cblock size as SHA-256 */
714 SHA256_CBLOCK,
715 sizeof (PK11_CIPHER_STATE),
718 static const EVP_MD pk11_sha256 =
720 NID_sha256,
721 NID_sha256WithRSAEncryption,
722 SHA256_DIGEST_LENGTH,
724 pk11_digest_init,
725 pk11_digest_update,
726 pk11_digest_final,
727 pk11_digest_copy,
728 pk11_digest_cleanup,
729 EVP_PKEY_RSA_method,
730 SHA256_CBLOCK,
731 sizeof (PK11_CIPHER_STATE),
734 static const EVP_MD pk11_sha384 =
736 NID_sha384,
737 NID_sha384WithRSAEncryption,
738 SHA384_DIGEST_LENGTH,
740 pk11_digest_init,
741 pk11_digest_update,
742 pk11_digest_final,
743 pk11_digest_copy,
744 pk11_digest_cleanup,
745 EVP_PKEY_RSA_method,
746 /* SHA-384 uses the same cblock size as SHA-512 */
747 SHA512_CBLOCK,
748 sizeof (PK11_CIPHER_STATE),
751 static const EVP_MD pk11_sha512 =
753 NID_sha512,
754 NID_sha512WithRSAEncryption,
755 SHA512_DIGEST_LENGTH,
757 pk11_digest_init,
758 pk11_digest_update,
759 pk11_digest_final,
760 pk11_digest_copy,
761 pk11_digest_cleanup,
762 EVP_PKEY_RSA_method,
763 SHA512_CBLOCK,
764 sizeof (PK11_CIPHER_STATE),
768 * Initialization function. Sets up various PKCS#11 library components.
769 * The definitions for control commands specific to this engine
771 #define PK11_CMD_SO_PATH ENGINE_CMD_BASE
772 static const ENGINE_CMD_DEFN pk11_cmd_defns[] =
775 PK11_CMD_SO_PATH,
776 "SO_PATH",
777 "Specifies the path to the 'pkcs#11' shared library",
778 ENGINE_CMD_FLAG_STRING
780 {0, NULL, NULL, 0}
784 static RAND_METHOD pk11_random =
786 pk11_rand_seed,
787 pk11_rand_bytes,
788 pk11_rand_cleanup,
789 pk11_rand_add,
790 pk11_rand_bytes,
791 pk11_rand_status
795 /* Constants used when creating the ENGINE */
796 static const char *engine_pk11_id = "pkcs11";
797 static const char *engine_pk11_name = "PKCS #11 engine support";
799 CK_FUNCTION_LIST_PTR pFuncList = NULL;
800 static const char PK11_GET_FUNCTION_LIST[] = "C_GetFunctionList";
803 * This is a static string constant for the DSO file name and the function
804 * symbol names to bind to. We set it in the Configure script based on whether
805 * this is 32 or 64 bit build.
807 static const char def_PK11_LIBNAME[] = PK11_LIB_LOCATION;
809 static CK_BBOOL pk11_true = CK_TRUE;
810 static CK_BBOOL pk11_false = CK_FALSE;
811 /* Needed in hw_pk11_pub.c as well so that's why it is not static. */
812 CK_SLOT_ID pubkey_SLOTID = 0;
813 static CK_SLOT_ID rand_SLOTID = 0;
814 static CK_SLOT_ID SLOTID = 0;
815 static CK_BBOOL pk11_library_initialized = CK_FALSE;
816 static CK_BBOOL pk11_atfork_initialized = CK_FALSE;
817 static int pk11_pid = 0;
819 static DSO *pk11_dso = NULL;
821 /* allocate and initialize all locks used by the engine itself */
822 static int pk11_init_all_locks(void)
824 int type;
826 #ifndef OPENSSL_NO_RSA
827 find_lock[OP_RSA] = OPENSSL_malloc(sizeof (pthread_mutex_t));
828 if (find_lock[OP_RSA] == NULL)
829 goto malloc_err;
830 (void) pthread_mutex_init(find_lock[OP_RSA], NULL);
831 #endif /* OPENSSL_NO_RSA */
833 if ((uri_lock = OPENSSL_malloc(sizeof (pthread_mutex_t))) == NULL)
834 goto malloc_err;
835 (void) pthread_mutex_init(uri_lock, NULL);
837 #ifndef OPENSSL_NO_DSA
838 find_lock[OP_DSA] = OPENSSL_malloc(sizeof (pthread_mutex_t));
839 if (find_lock[OP_DSA] == NULL)
840 goto malloc_err;
841 (void) pthread_mutex_init(find_lock[OP_DSA], NULL);
842 #endif /* OPENSSL_NO_DSA */
844 #ifndef OPENSSL_NO_DH
845 find_lock[OP_DH] = OPENSSL_malloc(sizeof (pthread_mutex_t));
846 if (find_lock[OP_DH] == NULL)
847 goto malloc_err;
848 (void) pthread_mutex_init(find_lock[OP_DH], NULL);
849 #endif /* OPENSSL_NO_DH */
851 for (type = 0; type < OP_MAX; type++)
853 session_cache[type].lock =
854 OPENSSL_malloc(sizeof (pthread_mutex_t));
855 if (session_cache[type].lock == NULL)
856 goto malloc_err;
857 (void) pthread_mutex_init(session_cache[type].lock, NULL);
860 return (1);
862 malloc_err:
863 pk11_free_all_locks();
864 PK11err(PK11_F_INIT_ALL_LOCKS, PK11_R_MALLOC_FAILURE);
865 return (0);
868 static void pk11_free_all_locks(void)
870 int type;
872 #ifndef OPENSSL_NO_RSA
873 if (find_lock[OP_RSA] != NULL)
875 (void) pthread_mutex_destroy(find_lock[OP_RSA]);
876 OPENSSL_free(find_lock[OP_RSA]);
877 find_lock[OP_RSA] = NULL;
879 #endif /* OPENSSL_NO_RSA */
880 #ifndef OPENSSL_NO_DSA
881 if (find_lock[OP_DSA] != NULL)
883 (void) pthread_mutex_destroy(find_lock[OP_DSA]);
884 OPENSSL_free(find_lock[OP_DSA]);
885 find_lock[OP_DSA] = NULL;
887 #endif /* OPENSSL_NO_DSA */
888 #ifndef OPENSSL_NO_DH
889 if (find_lock[OP_DH] != NULL)
891 (void) pthread_mutex_destroy(find_lock[OP_DH]);
892 OPENSSL_free(find_lock[OP_DH]);
893 find_lock[OP_DH] = NULL;
895 #endif /* OPENSSL_NO_DH */
897 for (type = 0; type < OP_MAX; type++)
899 if (session_cache[type].lock != NULL)
901 (void) pthread_mutex_destroy(session_cache[type].lock);
902 OPENSSL_free(session_cache[type].lock);
903 session_cache[type].lock = NULL;
909 * This internal function is used by ENGINE_pk11() and "dynamic" ENGINE support.
911 static int bind_pk11(ENGINE *e)
913 #ifndef OPENSSL_NO_RSA
914 const RSA_METHOD *rsa = NULL;
915 RSA_METHOD *pk11_rsa = PK11_RSA();
916 #endif /* OPENSSL_NO_RSA */
917 if (!pk11_library_initialized)
918 if (!pk11_library_init(e))
919 return (0);
921 if (!ENGINE_set_id(e, engine_pk11_id) ||
922 !ENGINE_set_name(e, engine_pk11_name) ||
923 !ENGINE_set_ciphers(e, pk11_engine_ciphers) ||
924 !ENGINE_set_digests(e, pk11_engine_digests))
925 return (0);
926 #ifndef OPENSSL_NO_RSA
927 if (pk11_have_rsa == CK_TRUE)
929 if (!ENGINE_set_RSA(e, PK11_RSA()) ||
930 !ENGINE_set_load_privkey_function(e, pk11_load_privkey) ||
931 !ENGINE_set_load_pubkey_function(e, pk11_load_pubkey))
932 return (0);
933 #ifdef DEBUG_SLOT_SELECTION
934 fprintf(stderr, "%s: registered RSA\n", PK11_DBG);
935 #endif /* DEBUG_SLOT_SELECTION */
937 #endif /* OPENSSL_NO_RSA */
938 #ifndef OPENSSL_NO_DSA
939 if (pk11_have_dsa == CK_TRUE)
941 if (!ENGINE_set_DSA(e, PK11_DSA()))
942 return (0);
943 #ifdef DEBUG_SLOT_SELECTION
944 fprintf(stderr, "%s: registered DSA\n", PK11_DBG);
945 #endif /* DEBUG_SLOT_SELECTION */
947 #endif /* OPENSSL_NO_DSA */
948 #ifndef OPENSSL_NO_DH
949 if (pk11_have_dh == CK_TRUE)
951 if (!ENGINE_set_DH(e, PK11_DH()))
952 return (0);
953 #ifdef DEBUG_SLOT_SELECTION
954 fprintf(stderr, "%s: registered DH\n", PK11_DBG);
955 #endif /* DEBUG_SLOT_SELECTION */
957 #endif /* OPENSSL_NO_DH */
958 if (pk11_have_random)
960 if (!ENGINE_set_RAND(e, &pk11_random))
961 return (0);
962 #ifdef DEBUG_SLOT_SELECTION
963 fprintf(stderr, "%s: registered random\n", PK11_DBG);
964 #endif /* DEBUG_SLOT_SELECTION */
966 if (!ENGINE_set_init_function(e, pk11_init) ||
967 !ENGINE_set_destroy_function(e, pk11_destroy) ||
968 !ENGINE_set_finish_function(e, pk11_finish) ||
969 !ENGINE_set_ctrl_function(e, pk11_ctrl) ||
970 !ENGINE_set_cmd_defns(e, pk11_cmd_defns))
971 return (0);
974 * Apache calls OpenSSL function RSA_blinding_on() once during startup
975 * which in turn calls bn_mod_exp. Since we do not implement bn_mod_exp
976 * here, we wire it back to the OpenSSL software implementation.
977 * Since it is used only once, performance is not a concern.
979 #ifndef OPENSSL_NO_RSA
980 rsa = RSA_PKCS1_SSLeay();
981 pk11_rsa->rsa_mod_exp = rsa->rsa_mod_exp;
982 pk11_rsa->bn_mod_exp = rsa->bn_mod_exp;
983 #endif /* OPENSSL_NO_RSA */
985 /* Ensure the pk11 error handling is set up */
986 ERR_load_pk11_strings();
988 return (1);
991 /* Dynamic engine support is disabled at a higher level for Solaris */
992 #ifdef ENGINE_DYNAMIC_SUPPORT
993 static int bind_helper(ENGINE *e, const char *id)
995 if (id && (strcmp(id, engine_pk11_id) != 0))
996 return (0);
998 if (!bind_pk11(e))
999 return (0);
1001 return (1);
1004 IMPLEMENT_DYNAMIC_CHECK_FN()
1005 IMPLEMENT_DYNAMIC_BIND_FN(bind_helper)
1007 #else
1008 static ENGINE *engine_pk11(void)
1010 ENGINE *ret = ENGINE_new();
1012 if (!ret)
1013 return (NULL);
1015 if (!bind_pk11(ret))
1017 ENGINE_free(ret);
1018 return (NULL);
1021 return (ret);
1024 void
1025 ENGINE_load_pk11(void)
1027 ENGINE *e_pk11 = NULL;
1030 * Do not use dynamic PKCS#11 library on Solaris due to
1031 * security reasons. We will link it in statically.
1033 /* Attempt to load PKCS#11 library */
1034 if (!pk11_dso)
1035 pk11_dso = DSO_load(NULL, get_PK11_LIBNAME(), NULL, 0);
1037 if (pk11_dso == NULL)
1039 PK11err(PK11_F_LOAD, PK11_R_DSO_FAILURE);
1040 return;
1043 e_pk11 = engine_pk11();
1044 if (!e_pk11)
1046 DSO_free(pk11_dso);
1047 pk11_dso = NULL;
1048 return;
1052 * At this point, the pk11 shared library is either dynamically
1053 * loaded or statically linked in. So, initialize the pk11
1054 * library before calling ENGINE_set_default since the latter
1055 * needs cipher and digest algorithm information
1057 if (!pk11_library_init(e_pk11))
1059 DSO_free(pk11_dso);
1060 pk11_dso = NULL;
1061 ENGINE_free(e_pk11);
1062 return;
1065 ENGINE_add(e_pk11);
1067 ENGINE_free(e_pk11);
1068 ERR_clear_error();
1070 #endif /* ENGINE_DYNAMIC_SUPPORT */
1073 * These are the static string constants for the DSO file name and
1074 * the function symbol names to bind to.
1076 static const char *PK11_LIBNAME = NULL;
1078 static const char *get_PK11_LIBNAME(void)
1080 if (PK11_LIBNAME)
1081 return (PK11_LIBNAME);
1083 return (def_PK11_LIBNAME);
1086 static void free_PK11_LIBNAME(void)
1088 if (PK11_LIBNAME)
1089 OPENSSL_free((void*)PK11_LIBNAME);
1091 PK11_LIBNAME = NULL;
1094 static long set_PK11_LIBNAME(const char *name)
1096 free_PK11_LIBNAME();
1098 return ((PK11_LIBNAME = BUF_strdup(name)) != NULL ? 1 : 0);
1101 /* acquire all engine specific mutexes before fork */
1102 static void pk11_fork_prepare(void)
1104 int i;
1106 if (!pk11_library_initialized)
1107 return;
1109 LOCK_OBJSTORE(OP_RSA);
1110 LOCK_OBJSTORE(OP_DSA);
1111 LOCK_OBJSTORE(OP_DH);
1112 (void) pthread_mutex_lock(uri_lock);
1113 for (i = 0; i < OP_MAX; i++)
1115 (void) pthread_mutex_lock(session_cache[i].lock);
1119 /* release all engine specific mutexes */
1120 static void pk11_fork_parent(void)
1122 int i;
1124 if (!pk11_library_initialized)
1125 return;
1127 for (i = OP_MAX - 1; i >= 0; i--)
1129 (void) pthread_mutex_unlock(session_cache[i].lock);
1131 UNLOCK_OBJSTORE(OP_DH);
1132 UNLOCK_OBJSTORE(OP_DSA);
1133 UNLOCK_OBJSTORE(OP_RSA);
1134 (void) pthread_mutex_unlock(uri_lock);
1138 * same situation as in parent - we need to unlock all locks to make them
1139 * accessible to all threads.
1141 static void pk11_fork_child(void)
1143 int i;
1145 if (!pk11_library_initialized)
1146 return;
1148 for (i = OP_MAX - 1; i >= 0; i--)
1150 (void) pthread_mutex_unlock(session_cache[i].lock);
1152 UNLOCK_OBJSTORE(OP_DH);
1153 UNLOCK_OBJSTORE(OP_DSA);
1154 UNLOCK_OBJSTORE(OP_RSA);
1155 (void) pthread_mutex_unlock(uri_lock);
1158 /* Initialization function for the pk11 engine */
1159 static int pk11_init(ENGINE *e)
1161 return (pk11_library_init(e));
1165 * Initialization function. Sets up various PKCS#11 library components.
1166 * It selects a slot based on predefined critiera. In the process, it also
1167 * count how many ciphers and digests to support. Since the cipher and
1168 * digest information is needed when setting default engine, this function
1169 * needs to be called before calling ENGINE_set_default.
1171 /* ARGSUSED */
1172 static int pk11_library_init(ENGINE *e)
1174 CK_C_GetFunctionList p;
1175 CK_RV rv = CKR_OK;
1176 CK_INFO info;
1177 CK_ULONG ul_state_len;
1178 int any_slot_found;
1179 int i;
1182 * pk11_library_initialized is set to 0 in pk11_finish() which is called
1183 * from ENGINE_finish(). However, if there is still at least one
1184 * existing functional reference to the engine (see engine(3) for more
1185 * information), pk11_finish() is skipped. For example, this can happen
1186 * if an application forgets to clear one cipher context. In case of a
1187 * fork() when the application is finishing the engine so that it can be
1188 * reinitialized in the child, forgotten functional reference causes
1189 * pk11_library_initialized to stay 1. In that case we need the PID
1190 * check so that we properly initialize the engine again.
1192 if (pk11_library_initialized)
1194 if (pk11_pid == getpid())
1196 return (1);
1198 else
1200 global_session = CK_INVALID_HANDLE;
1202 * free the locks first to prevent memory leak in case
1203 * the application calls fork() without finishing the
1204 * engine first.
1206 pk11_free_all_locks();
1210 if (pk11_dso == NULL)
1212 PK11err(PK11_F_LIBRARY_INIT, PK11_R_DSO_FAILURE);
1213 goto err;
1216 #ifdef SOLARIS_AES_CTR
1218 * We must do this before we start working with slots since we need all
1219 * NIDs there.
1221 if (pk11_add_aes_ctr_NIDs() == 0)
1222 goto err;
1223 #endif /* SOLARIS_AES_CTR */
1225 #ifdef SOLARIS_HW_SLOT_SELECTION
1226 if (check_hw_mechanisms() == 0)
1227 goto err;
1228 #endif /* SOLARIS_HW_SLOT_SELECTION */
1230 /* get the C_GetFunctionList function from the loaded library */
1231 p = (CK_C_GetFunctionList)DSO_bind_func(pk11_dso,
1232 PK11_GET_FUNCTION_LIST);
1233 if (!p)
1235 PK11err(PK11_F_LIBRARY_INIT, PK11_R_DSO_FAILURE);
1236 goto err;
1239 /* get the full function list from the loaded library */
1240 rv = p(&pFuncList);
1241 if (rv != CKR_OK)
1243 PK11err_add_data(PK11_F_LIBRARY_INIT, PK11_R_DSO_FAILURE, rv);
1244 goto err;
1247 rv = pFuncList->C_Initialize(NULL_PTR);
1248 if ((rv != CKR_OK) && (rv != CKR_CRYPTOKI_ALREADY_INITIALIZED))
1250 PK11err_add_data(PK11_F_LIBRARY_INIT, PK11_R_INITIALIZE, rv);
1251 goto err;
1254 rv = pFuncList->C_GetInfo(&info);
1255 if (rv != CKR_OK)
1257 PK11err_add_data(PK11_F_LIBRARY_INIT, PK11_R_GETINFO, rv);
1258 goto err;
1261 if (pk11_choose_slots(&any_slot_found) == 0)
1262 goto err;
1265 * The library we use, set in def_PK11_LIBNAME, may not offer any
1266 * slot(s). In that case, we must not proceed but we must not return an
1267 * error. The reason is that applications that try to set up the PKCS#11
1268 * engine don't exit on error during the engine initialization just
1269 * because no slot was present.
1271 if (any_slot_found == 0)
1272 return (1);
1274 if (global_session == CK_INVALID_HANDLE)
1276 /* Open the global_session for the new process */
1277 rv = pFuncList->C_OpenSession(SLOTID, CKF_SERIAL_SESSION,
1278 NULL_PTR, NULL_PTR, &global_session);
1279 if (rv != CKR_OK)
1281 PK11err_add_data(PK11_F_LIBRARY_INIT,
1282 PK11_R_OPENSESSION, rv);
1283 goto err;
1288 * Disable digest if C_GetOperationState is not supported since
1289 * this function is required by OpenSSL digest copy function
1291 if (pFuncList->C_GetOperationState(global_session, NULL, &ul_state_len)
1292 == CKR_FUNCTION_NOT_SUPPORTED) {
1293 #ifdef DEBUG_SLOT_SELECTION
1294 fprintf(stderr, "%s: C_GetOperationState() not supported, "
1295 "setting digest_count to 0\n", PK11_DBG);
1296 #endif /* DEBUG_SLOT_SELECTION */
1297 digest_count = 0;
1300 pk11_library_initialized = CK_TRUE;
1301 pk11_pid = getpid();
1303 * if initialization of the locks fails pk11_init_all_locks()
1304 * will do the cleanup.
1306 if (!pk11_init_all_locks())
1307 goto err;
1308 for (i = 0; i < OP_MAX; i++)
1309 session_cache[i].head = NULL;
1311 * initialize active lists. We only use active lists
1312 * for asymmetric ciphers.
1314 for (i = 0; i < OP_MAX; i++)
1315 active_list[i] = NULL;
1317 if (!pk11_atfork_initialized)
1319 if (pthread_atfork(pk11_fork_prepare, pk11_fork_parent,
1320 pk11_fork_child) != 0)
1322 PK11err(PK11_F_LIBRARY_INIT, PK11_R_ATFORK_FAILED);
1323 goto err;
1325 pk11_atfork_initialized = CK_TRUE;
1328 return (1);
1330 err:
1331 return (0);
1334 /* Destructor (complements the "ENGINE_pk11()" constructor) */
1335 /* ARGSUSED */
1336 static int pk11_destroy(ENGINE *e)
1338 free_PK11_LIBNAME();
1339 ERR_unload_pk11_strings();
1340 return (1);
1344 * Termination function to clean up the session, the token, and the pk11
1345 * library.
1347 /* ARGSUSED */
1348 static int pk11_finish(ENGINE *e)
1350 int i;
1352 if (pk11_dso == NULL)
1354 PK11err(PK11_F_FINISH, PK11_R_NOT_LOADED);
1355 goto err;
1358 OPENSSL_assert(pFuncList != NULL);
1360 if (pk11_free_all_sessions() == 0)
1361 goto err;
1363 /* free all active lists */
1364 for (i = 0; i < OP_MAX; i++)
1365 pk11_free_active_list(i);
1367 pFuncList->C_CloseSession(global_session);
1368 global_session = CK_INVALID_HANDLE;
1371 * Since we are part of a library (libcrypto.so), calling this function
1372 * may have side-effects.
1374 #if 0
1375 pFuncList->C_Finalize(NULL);
1376 #endif
1377 #ifdef SOLARIS_AES_CTR
1379 ASN1_OBJECT *ob = NULL;
1380 if (NID_aes_128_ctr != NID_undef) {
1381 ob = OBJ_nid2obj(NID_aes_128_ctr);
1382 if (ob != NULL)
1383 ASN1_OBJECT_free(ob);
1385 if (NID_aes_192_ctr != NID_undef) {
1386 ob = OBJ_nid2obj(NID_aes_192_ctr);
1387 if (ob != NULL)
1388 ASN1_OBJECT_free(ob);
1390 if (NID_aes_256_ctr != NID_undef) {
1391 ob = OBJ_nid2obj(NID_aes_256_ctr);
1392 if (ob != NULL)
1393 ASN1_OBJECT_free(ob);
1396 #endif
1398 if (!DSO_free(pk11_dso))
1400 PK11err(PK11_F_FINISH, PK11_R_DSO_FAILURE);
1401 goto err;
1403 pk11_dso = NULL;
1404 pFuncList = NULL;
1405 pk11_library_initialized = CK_FALSE;
1406 pk11_pid = 0;
1408 * There is no way how to unregister atfork handlers (other than
1409 * unloading the library) so we just free the locks. For this reason
1410 * the atfork handlers check if the engine is initialized and bail out
1411 * immediately if not. This is necessary in case a process finishes
1412 * the engine before calling fork().
1414 pk11_free_all_locks();
1416 return (1);
1418 err:
1419 return (0);
1422 /* Standard engine interface function to set the dynamic library path */
1423 /* ARGSUSED */
1424 static int pk11_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)())
1426 int initialized = ((pk11_dso == NULL) ? 0 : 1);
1428 switch (cmd)
1430 case PK11_CMD_SO_PATH:
1431 if (p == NULL)
1433 PK11err(PK11_F_CTRL, ERR_R_PASSED_NULL_PARAMETER);
1434 return (0);
1437 if (initialized)
1439 PK11err(PK11_F_CTRL, PK11_R_ALREADY_LOADED);
1440 return (0);
1443 return (set_PK11_LIBNAME((const char *)p));
1444 default:
1445 break;
1448 PK11err(PK11_F_CTRL, PK11_R_CTRL_COMMAND_NOT_IMPLEMENTED);
1450 return (0);
1454 /* Required function by the engine random interface. It does nothing here */
1455 static void pk11_rand_cleanup(void)
1457 return;
1460 /* ARGSUSED */
1461 static void pk11_rand_add(const void *buf, int num, double add)
1463 PK11_SESSION *sp;
1465 if ((sp = pk11_get_session(OP_RAND)) == NULL)
1466 return;
1469 * Ignore any errors (e.g. CKR_RANDOM_SEED_NOT_SUPPORTED) since
1470 * the calling functions do not care anyway
1472 pFuncList->C_SeedRandom(sp->session, (unsigned char *) buf, num);
1473 pk11_return_session(sp, OP_RAND);
1475 return;
1478 static void pk11_rand_seed(const void *buf, int num)
1480 pk11_rand_add(buf, num, 0);
1483 static int pk11_rand_bytes(unsigned char *buf, int num)
1485 CK_RV rv;
1486 PK11_SESSION *sp;
1488 if ((sp = pk11_get_session(OP_RAND)) == NULL)
1489 return (0);
1491 rv = pFuncList->C_GenerateRandom(sp->session, buf, num);
1492 if (rv != CKR_OK)
1494 PK11err_add_data(PK11_F_RAND_BYTES, PK11_R_GENERATERANDOM, rv);
1495 pk11_return_session(sp, OP_RAND);
1496 return (0);
1499 pk11_return_session(sp, OP_RAND);
1500 return (1);
1503 /* Required function by the engine random interface. It does nothing here */
1504 static int pk11_rand_status(void)
1506 return (1);
1509 /* Free all BIGNUM structures from PK11_SESSION. */
1510 static void pk11_free_nums(PK11_SESSION *sp, PK11_OPTYPE optype)
1512 switch (optype)
1514 #ifndef OPENSSL_NO_RSA
1515 case OP_RSA:
1516 if (sp->opdata_rsa_n_num != NULL)
1518 BN_free(sp->opdata_rsa_n_num);
1519 sp->opdata_rsa_n_num = NULL;
1521 if (sp->opdata_rsa_e_num != NULL)
1523 BN_free(sp->opdata_rsa_e_num);
1524 sp->opdata_rsa_e_num = NULL;
1526 if (sp->opdata_rsa_d_num != NULL)
1528 BN_free(sp->opdata_rsa_d_num);
1529 sp->opdata_rsa_d_num = NULL;
1531 break;
1532 #endif
1533 #ifndef OPENSSL_NO_DSA
1534 case OP_DSA:
1535 if (sp->opdata_dsa_pub_num != NULL)
1537 BN_free(sp->opdata_dsa_pub_num);
1538 sp->opdata_dsa_pub_num = NULL;
1540 if (sp->opdata_dsa_priv_num != NULL)
1542 BN_free(sp->opdata_dsa_priv_num);
1543 sp->opdata_dsa_priv_num = NULL;
1545 break;
1546 #endif
1547 #ifndef OPENSSL_NO_DH
1548 case OP_DH:
1549 if (sp->opdata_dh_priv_num != NULL)
1551 BN_free(sp->opdata_dh_priv_num);
1552 sp->opdata_dh_priv_num = NULL;
1554 break;
1555 #endif
1556 default:
1557 break;
1562 * Get new PK11_SESSION structure ready for use. Every process must have
1563 * its own freelist of PK11_SESSION structures so handle fork() here
1564 * by destroying the old and creating new freelist.
1565 * The returned PK11_SESSION structure is disconnected from the freelist.
1567 PK11_SESSION *
1568 pk11_get_session(PK11_OPTYPE optype)
1570 PK11_SESSION *sp = NULL, *sp1, *freelist;
1571 pthread_mutex_t *freelist_lock;
1572 static pid_t pid = 0;
1573 pid_t new_pid;
1574 CK_RV rv;
1576 switch (optype)
1578 case OP_RSA:
1579 case OP_DSA:
1580 case OP_DH:
1581 case OP_RAND:
1582 case OP_DIGEST:
1583 case OP_CIPHER:
1584 freelist_lock = session_cache[optype].lock;
1585 break;
1586 default:
1587 PK11err(PK11_F_GET_SESSION,
1588 PK11_R_INVALID_OPERATION_TYPE);
1589 return (NULL);
1591 (void) pthread_mutex_lock(freelist_lock);
1594 * Will use it to find out if we forked. We cannot use the PID field in
1595 * the session structure because we could get a newly allocated session
1596 * here, with no PID information.
1598 if (pid == 0)
1599 pid = getpid();
1601 freelist = session_cache[optype].head;
1602 sp = freelist;
1605 * If the free list is empty, allocate new unitialized (filled
1606 * with zeroes) PK11_SESSION structure otherwise return first
1607 * structure from the freelist.
1609 if (sp == NULL)
1611 if ((sp = OPENSSL_malloc(sizeof (PK11_SESSION))) == NULL)
1613 PK11err(PK11_F_GET_SESSION,
1614 PK11_R_MALLOC_FAILURE);
1615 goto err;
1617 (void) memset(sp, 0, sizeof (PK11_SESSION));
1620 * It is a new session so it will look like a cache miss to the
1621 * code below. So, we must not try to to destroy its members so
1622 * mark them as unused.
1624 sp->opdata_rsa_priv_key = CK_INVALID_HANDLE;
1625 sp->opdata_rsa_pub_key = CK_INVALID_HANDLE;
1627 else
1628 freelist = sp->next;
1631 * Check whether we have forked. In that case, we must get rid of all
1632 * inherited sessions and start allocating new ones.
1634 if (pid != (new_pid = getpid()))
1636 pid = new_pid;
1639 * We are a new process and thus need to free any inherited
1640 * PK11_SESSION objects aside from the first session (sp) which
1641 * is the only PK11_SESSION structure we will reuse (for the
1642 * head of the list).
1644 while ((sp1 = freelist) != NULL)
1646 freelist = sp1->next;
1648 * NOTE: we do not want to call pk11_free_all_sessions()
1649 * here because it would close underlying PKCS#11
1650 * sessions and destroy all objects.
1652 pk11_free_nums(sp1, optype);
1653 OPENSSL_free(sp1);
1656 /* we have to free the active list as well. */
1657 pk11_free_active_list(optype);
1659 /* Initialize the process */
1660 rv = pFuncList->C_Initialize(NULL_PTR);
1661 if ((rv != CKR_OK) && (rv != CKR_CRYPTOKI_ALREADY_INITIALIZED))
1663 PK11err_add_data(PK11_F_GET_SESSION, PK11_R_INITIALIZE,
1664 rv);
1665 OPENSSL_free(sp);
1666 sp = NULL;
1667 goto err;
1671 * Choose slot here since the slot table is different on this
1672 * process. If we are here then we must have found at least one
1673 * usable slot before so we don't need to check any_slot_found.
1674 * See pk11_library_init()'s usage of this function for more
1675 * information.
1677 #ifdef SOLARIS_HW_SLOT_SELECTION
1678 if (check_hw_mechanisms() == 0)
1679 goto err;
1680 #endif /* SOLARIS_HW_SLOT_SELECTION */
1681 if (pk11_choose_slots(NULL) == 0)
1682 goto err;
1684 /* Open the global_session for the new process */
1685 rv = pFuncList->C_OpenSession(SLOTID, CKF_SERIAL_SESSION,
1686 NULL_PTR, NULL_PTR, &global_session);
1687 if (rv != CKR_OK)
1689 PK11err_add_data(PK11_F_GET_SESSION, PK11_R_OPENSESSION,
1690 rv);
1691 OPENSSL_free(sp);
1692 sp = NULL;
1693 goto err;
1697 * It is an inherited session from our parent so it needs
1698 * re-initialization.
1700 if (pk11_setup_session(sp, optype) == 0)
1702 OPENSSL_free(sp);
1703 sp = NULL;
1704 goto err;
1706 if (pk11_token_relogin(sp->session) == 0)
1709 * We will keep the session in the cache list and let
1710 * the caller cope with the situation.
1712 freelist = sp;
1713 sp = NULL;
1714 goto err;
1718 if (sp->pid == 0)
1720 /* It is a new session and needs initialization. */
1721 if (pk11_setup_session(sp, optype) == 0)
1723 OPENSSL_free(sp);
1724 sp = NULL;
1728 /* set new head for the list of PK11_SESSION objects */
1729 session_cache[optype].head = freelist;
1731 err:
1732 if (sp != NULL)
1733 sp->next = NULL;
1735 (void) pthread_mutex_unlock(freelist_lock);
1737 return (sp);
1741 void
1742 pk11_return_session(PK11_SESSION *sp, PK11_OPTYPE optype)
1744 pthread_mutex_t *freelist_lock;
1745 PK11_SESSION *freelist;
1748 * If this is a session from the parent it will be taken care of and
1749 * freed in pk11_get_session() as part of the post-fork clean up the
1750 * next time we will ask for a new session.
1752 if (sp == NULL || sp->pid != getpid())
1753 return;
1755 switch (optype)
1757 case OP_RSA:
1758 case OP_DSA:
1759 case OP_DH:
1760 case OP_RAND:
1761 case OP_DIGEST:
1762 case OP_CIPHER:
1763 freelist_lock = session_cache[optype].lock;
1764 break;
1765 default:
1766 PK11err(PK11_F_RETURN_SESSION,
1767 PK11_R_INVALID_OPERATION_TYPE);
1768 return;
1771 (void) pthread_mutex_lock(freelist_lock);
1772 freelist = session_cache[optype].head;
1773 sp->next = freelist;
1774 session_cache[optype].head = sp;
1775 (void) pthread_mutex_unlock(freelist_lock);
1779 /* Destroy all objects. This function is called when the engine is finished */
1780 static int pk11_free_all_sessions()
1782 int ret = 1;
1783 int type;
1785 #ifndef OPENSSL_NO_RSA
1786 (void) pk11_destroy_rsa_key_objects(NULL);
1787 #endif /* OPENSSL_NO_RSA */
1788 #ifndef OPENSSL_NO_DSA
1789 (void) pk11_destroy_dsa_key_objects(NULL);
1790 #endif /* OPENSSL_NO_DSA */
1791 #ifndef OPENSSL_NO_DH
1792 (void) pk11_destroy_dh_key_objects(NULL);
1793 #endif /* OPENSSL_NO_DH */
1794 (void) pk11_destroy_cipher_key_objects(NULL);
1797 * We try to release as much as we can but any error means that we will
1798 * return 0 on exit.
1800 for (type = 0; type < OP_MAX; type++)
1802 if (pk11_free_session_list(type) == 0)
1803 ret = 0;
1806 return (ret);
1810 * Destroy session structures from the linked list specified. Free as many
1811 * sessions as possible but any failure in C_CloseSession() means that we
1812 * return an error on return.
1814 static int pk11_free_session_list(PK11_OPTYPE optype)
1816 CK_RV rv;
1817 PK11_SESSION *sp = NULL;
1818 PK11_SESSION *freelist = NULL;
1819 pid_t mypid = getpid();
1820 pthread_mutex_t *freelist_lock;
1821 int ret = 1;
1823 switch (optype)
1825 case OP_RSA:
1826 case OP_DSA:
1827 case OP_DH:
1828 case OP_RAND:
1829 case OP_DIGEST:
1830 case OP_CIPHER:
1831 freelist_lock = session_cache[optype].lock;
1832 break;
1833 default:
1834 PK11err(PK11_F_FREE_ALL_SESSIONS,
1835 PK11_R_INVALID_OPERATION_TYPE);
1836 return (0);
1839 (void) pthread_mutex_lock(freelist_lock);
1840 freelist = session_cache[optype].head;
1841 while ((sp = freelist) != NULL)
1843 if (sp->session != CK_INVALID_HANDLE && sp->pid == mypid)
1845 rv = pFuncList->C_CloseSession(sp->session);
1846 if (rv != CKR_OK)
1848 PK11err_add_data(PK11_F_FREE_ALL_SESSIONS,
1849 PK11_R_CLOSESESSION, rv);
1850 ret = 0;
1853 freelist = sp->next;
1854 pk11_free_nums(sp, optype);
1855 OPENSSL_free(sp);
1858 (void) pthread_mutex_unlock(freelist_lock);
1859 return (ret);
1863 static int
1864 pk11_setup_session(PK11_SESSION *sp, PK11_OPTYPE optype)
1866 CK_RV rv;
1867 CK_SLOT_ID myslot;
1869 switch (optype)
1871 case OP_RSA:
1872 case OP_DSA:
1873 case OP_DH:
1874 myslot = pubkey_SLOTID;
1875 break;
1876 case OP_RAND:
1877 myslot = rand_SLOTID;
1878 break;
1879 case OP_DIGEST:
1880 case OP_CIPHER:
1881 myslot = SLOTID;
1882 break;
1883 default:
1884 PK11err(PK11_F_SETUP_SESSION,
1885 PK11_R_INVALID_OPERATION_TYPE);
1886 return (0);
1889 sp->session = CK_INVALID_HANDLE;
1890 #ifdef DEBUG_SLOT_SELECTION
1891 fprintf(stderr, "%s: myslot=%d optype=%d\n", PK11_DBG, myslot, optype);
1892 #endif /* DEBUG_SLOT_SELECTION */
1893 rv = pFuncList->C_OpenSession(myslot, CKF_SERIAL_SESSION,
1894 NULL_PTR, NULL_PTR, &sp->session);
1895 if (rv == CKR_CRYPTOKI_NOT_INITIALIZED)
1898 * We are probably a child process so force the
1899 * reinitialize of the session
1901 pk11_library_initialized = CK_FALSE;
1902 if (!pk11_library_init(NULL))
1903 return (0);
1904 rv = pFuncList->C_OpenSession(myslot, CKF_SERIAL_SESSION,
1905 NULL_PTR, NULL_PTR, &sp->session);
1907 if (rv != CKR_OK)
1909 PK11err_add_data(PK11_F_SETUP_SESSION, PK11_R_OPENSESSION, rv);
1910 return (0);
1913 sp->pid = getpid();
1915 switch (optype)
1917 #ifndef OPENSSL_NO_RSA
1918 case OP_RSA:
1919 sp->opdata_rsa_pub_key = CK_INVALID_HANDLE;
1920 sp->opdata_rsa_priv_key = CK_INVALID_HANDLE;
1921 sp->opdata_rsa_pub = NULL;
1922 sp->opdata_rsa_n_num = NULL;
1923 sp->opdata_rsa_e_num = NULL;
1924 sp->opdata_rsa_priv = NULL;
1925 sp->opdata_rsa_d_num = NULL;
1926 break;
1927 #endif /* OPENSSL_NO_RSA */
1928 #ifndef OPENSSL_NO_DSA
1929 case OP_DSA:
1930 sp->opdata_dsa_pub_key = CK_INVALID_HANDLE;
1931 sp->opdata_dsa_priv_key = CK_INVALID_HANDLE;
1932 sp->opdata_dsa_pub = NULL;
1933 sp->opdata_dsa_pub_num = NULL;
1934 sp->opdata_dsa_priv = NULL;
1935 sp->opdata_dsa_priv_num = NULL;
1936 break;
1937 #endif /* OPENSSL_NO_DSA */
1938 #ifndef OPENSSL_NO_DH
1939 case OP_DH:
1940 sp->opdata_dh_key = CK_INVALID_HANDLE;
1941 sp->opdata_dh = NULL;
1942 sp->opdata_dh_priv_num = NULL;
1943 break;
1944 #endif /* OPENSSL_NO_DH */
1945 case OP_CIPHER:
1946 sp->opdata_cipher_key = CK_INVALID_HANDLE;
1947 sp->opdata_encrypt = -1;
1948 break;
1952 * We always initialize the session as containing a non-persistent
1953 * object. The key load functions set it to persistent if that is so.
1955 sp->persistent = CK_FALSE;
1956 return (1);
1959 #ifndef OPENSSL_NO_RSA
1961 * Destroy all non-NULL RSA parameters. For the RSA keys by reference code,
1962 * public components 'n'/'e' are the key components we use to check for the
1963 * cache hit even for the private keys. So, no matter whether we are destroying
1964 * a public or a private key, we always free what we can.
1966 static void
1967 destroy_all_rsa_params(PK11_SESSION *sp)
1969 if (sp->opdata_rsa_n_num != NULL)
1971 BN_free(sp->opdata_rsa_n_num);
1972 sp->opdata_rsa_n_num = NULL;
1974 if (sp->opdata_rsa_e_num != NULL)
1976 BN_free(sp->opdata_rsa_e_num);
1977 sp->opdata_rsa_e_num = NULL;
1979 if (sp->opdata_rsa_d_num != NULL)
1981 BN_free(sp->opdata_rsa_d_num);
1982 sp->opdata_rsa_d_num = NULL;
1986 /* Destroy RSA public key from single session. */
1988 pk11_destroy_rsa_object_pub(PK11_SESSION *sp, CK_BBOOL uselock)
1990 int ret = 0;
1992 if (sp->opdata_rsa_pub_key != CK_INVALID_HANDLE)
1994 TRY_OBJ_DESTROY(sp, sp->opdata_rsa_pub_key,
1995 ret, uselock, OP_RSA);
1996 sp->opdata_rsa_pub_key = CK_INVALID_HANDLE;
1997 sp->opdata_rsa_pub = NULL;
1998 destroy_all_rsa_params(sp);
2001 return (ret);
2004 /* Destroy RSA private key from single session. */
2006 pk11_destroy_rsa_object_priv(PK11_SESSION *sp, CK_BBOOL uselock)
2008 int ret = 0;
2010 if (sp->opdata_rsa_priv_key != CK_INVALID_HANDLE)
2012 TRY_OBJ_DESTROY(sp, sp->opdata_rsa_priv_key,
2013 ret, uselock, OP_RSA);
2014 sp->opdata_rsa_priv_key = CK_INVALID_HANDLE;
2015 sp->opdata_rsa_priv = NULL;
2016 destroy_all_rsa_params(sp);
2019 return (ret);
2023 * Destroy RSA key object wrapper. If session is NULL, try to destroy all
2024 * objects in the free list.
2027 pk11_destroy_rsa_key_objects(PK11_SESSION *session)
2029 int ret = 1;
2030 PK11_SESSION *sp = NULL;
2031 PK11_SESSION *local_free_session;
2032 CK_BBOOL uselock = CK_TRUE;
2034 if (session != NULL)
2035 local_free_session = session;
2036 else
2038 (void) pthread_mutex_lock(session_cache[OP_RSA].lock);
2039 local_free_session = session_cache[OP_RSA].head;
2040 uselock = CK_FALSE;
2044 * go through the list of sessions and delete key objects
2046 while ((sp = local_free_session) != NULL)
2048 local_free_session = sp->next;
2051 * Do not terminate list traversal if one of the
2052 * destroy operations fails.
2054 if (pk11_destroy_rsa_object_pub(sp, uselock) == 0)
2056 ret = 0;
2057 continue;
2059 if (pk11_destroy_rsa_object_priv(sp, uselock) == 0)
2061 ret = 0;
2062 continue;
2066 if (session == NULL)
2067 (void) pthread_mutex_unlock(session_cache[OP_RSA].lock);
2069 return (ret);
2071 #endif /* OPENSSL_NO_RSA */
2073 #ifndef OPENSSL_NO_DSA
2074 /* Destroy DSA public key from single session. */
2076 pk11_destroy_dsa_object_pub(PK11_SESSION *sp, CK_BBOOL uselock)
2078 int ret = 0;
2080 if (sp->opdata_dsa_pub_key != CK_INVALID_HANDLE)
2082 TRY_OBJ_DESTROY(sp, sp->opdata_dsa_pub_key,
2083 ret, uselock, OP_DSA);
2084 sp->opdata_dsa_pub_key = CK_INVALID_HANDLE;
2085 sp->opdata_dsa_pub = NULL;
2086 if (sp->opdata_dsa_pub_num != NULL)
2088 BN_free(sp->opdata_dsa_pub_num);
2089 sp->opdata_dsa_pub_num = NULL;
2093 return (ret);
2096 /* Destroy DSA private key from single session. */
2098 pk11_destroy_dsa_object_priv(PK11_SESSION *sp, CK_BBOOL uselock)
2100 int ret = 0;
2102 if (sp->opdata_dsa_priv_key != CK_INVALID_HANDLE)
2104 TRY_OBJ_DESTROY(sp, sp->opdata_dsa_priv_key,
2105 ret, uselock, OP_DSA);
2106 sp->opdata_dsa_priv_key = CK_INVALID_HANDLE;
2107 sp->opdata_dsa_priv = NULL;
2108 if (sp->opdata_dsa_priv_num != NULL)
2110 BN_free(sp->opdata_dsa_priv_num);
2111 sp->opdata_dsa_priv_num = NULL;
2115 return (ret);
2119 * Destroy DSA key object wrapper. If session is NULL, try to destroy all
2120 * objects in the free list.
2123 pk11_destroy_dsa_key_objects(PK11_SESSION *session)
2125 int ret = 1;
2126 PK11_SESSION *sp = NULL;
2127 PK11_SESSION *local_free_session;
2128 CK_BBOOL uselock = CK_TRUE;
2130 if (session != NULL)
2131 local_free_session = session;
2132 else
2134 (void) pthread_mutex_lock(session_cache[OP_DSA].lock);
2135 local_free_session = session_cache[OP_DSA].head;
2136 uselock = CK_FALSE;
2140 * go through the list of sessions and delete key objects
2142 while ((sp = local_free_session) != NULL)
2144 local_free_session = sp->next;
2147 * Do not terminate list traversal if one of the
2148 * destroy operations fails.
2150 if (pk11_destroy_dsa_object_pub(sp, uselock) == 0)
2152 ret = 0;
2153 continue;
2155 if (pk11_destroy_dsa_object_priv(sp, uselock) == 0)
2157 ret = 0;
2158 continue;
2162 if (session == NULL)
2163 (void) pthread_mutex_unlock(session_cache[OP_DSA].lock);
2165 return (ret);
2167 #endif /* OPENSSL_NO_DSA */
2169 #ifndef OPENSSL_NO_DH
2170 /* Destroy DH key from single session. */
2172 pk11_destroy_dh_object(PK11_SESSION *sp, CK_BBOOL uselock)
2174 int ret = 0;
2176 if (sp->opdata_dh_key != CK_INVALID_HANDLE)
2178 TRY_OBJ_DESTROY(sp, sp->opdata_dh_key,
2179 ret, uselock, OP_DH);
2180 sp->opdata_dh_key = CK_INVALID_HANDLE;
2181 sp->opdata_dh = NULL;
2182 if (sp->opdata_dh_priv_num != NULL)
2184 BN_free(sp->opdata_dh_priv_num);
2185 sp->opdata_dh_priv_num = NULL;
2189 return (ret);
2193 * Destroy DH key object wrapper.
2195 * arg0: pointer to PKCS#11 engine session structure
2196 * if session is NULL, try to destroy all objects in the free list
2199 pk11_destroy_dh_key_objects(PK11_SESSION *session)
2201 int ret = 1;
2202 PK11_SESSION *sp = NULL;
2203 PK11_SESSION *local_free_session;
2204 CK_BBOOL uselock = CK_TRUE;
2206 if (session != NULL)
2207 local_free_session = session;
2208 else
2210 (void) pthread_mutex_lock(session_cache[OP_DH].lock);
2211 local_free_session = session_cache[OP_DH].head;
2212 uselock = CK_FALSE;
2215 while ((sp = local_free_session) != NULL)
2217 local_free_session = sp->next;
2220 * Do not terminate list traversal if one of the
2221 * destroy operations fails.
2223 if (pk11_destroy_dh_object(sp, uselock) == 0)
2225 ret = 0;
2226 continue;
2229 err:
2230 if (session == NULL)
2231 (void) pthread_mutex_unlock(session_cache[OP_DH].lock);
2233 return (ret);
2235 #endif /* OPENSSL_NO_DH */
2237 static int
2238 pk11_destroy_object(CK_SESSION_HANDLE session, CK_OBJECT_HANDLE oh,
2239 CK_BBOOL persistent)
2241 CK_RV rv;
2244 * We never try to destroy persistent objects which are the objects
2245 * stored in the keystore. Also, we always use read-only sessions so
2246 * C_DestroyObject() would be returning CKR_SESSION_READ_ONLY here.
2248 if (persistent == CK_TRUE)
2249 return (1);
2251 rv = pFuncList->C_DestroyObject(session, oh);
2252 if (rv != CKR_OK)
2254 PK11err_add_data(PK11_F_DESTROY_OBJECT, PK11_R_DESTROYOBJECT,
2255 rv);
2256 return (0);
2259 return (1);
2263 /* Symmetric ciphers and digests support functions */
2265 static int
2266 cipher_nid_to_pk11(int nid)
2268 int i;
2270 for (i = 0; i < PK11_CIPHER_MAX; i++)
2271 if (ciphers[i].nid == nid)
2272 return (ciphers[i].id);
2273 return (-1);
2276 static int
2277 pk11_usable_ciphers(const int **nids)
2279 if (cipher_count > 0)
2280 *nids = cipher_nids;
2281 else
2282 *nids = NULL;
2283 return (cipher_count);
2286 static int
2287 pk11_usable_digests(const int **nids)
2289 if (digest_count > 0)
2290 *nids = digest_nids;
2291 else
2292 *nids = NULL;
2293 return (digest_count);
2297 * Init context for encryption or decryption using a symmetric key.
2299 static int pk11_init_symmetric(EVP_CIPHER_CTX *ctx, PK11_CIPHER *pcipher,
2300 PK11_SESSION *sp, CK_MECHANISM_PTR pmech)
2302 CK_RV rv;
2303 #ifdef SOLARIS_AES_CTR
2304 CK_AES_CTR_PARAMS ctr_params;
2305 #endif /* SOLARIS_AES_CTR */
2308 * We expect pmech->mechanism to be already set and
2309 * pParameter/ulParameterLen initialized to NULL/0 before
2310 * pk11_init_symetric() is called.
2312 OPENSSL_assert(pmech->mechanism != NULL);
2313 OPENSSL_assert(pmech->pParameter == NULL);
2314 OPENSSL_assert(pmech->ulParameterLen == 0);
2316 #ifdef SOLARIS_AES_CTR
2317 if (ctx->cipher->nid == NID_aes_128_ctr ||
2318 ctx->cipher->nid == NID_aes_192_ctr ||
2319 ctx->cipher->nid == NID_aes_256_ctr)
2321 pmech->pParameter = (void *)(&ctr_params);
2322 pmech->ulParameterLen = sizeof (ctr_params);
2324 * For now, we are limited to the fixed length of the counter,
2325 * it covers the whole counter block. That's what RFC 4344
2326 * needs. For more information on internal structure of the
2327 * counter block, see RFC 3686. If needed in the future, we can
2328 * add code so that the counter length can be set via
2329 * ENGINE_ctrl() function.
2331 ctr_params.ulCounterBits = AES_BLOCK_SIZE * 8;
2332 OPENSSL_assert(pcipher->iv_len == AES_BLOCK_SIZE);
2333 (void) memcpy(ctr_params.cb, ctx->iv, AES_BLOCK_SIZE);
2335 else
2336 #endif /* SOLARIS_AES_CTR */
2338 if (pcipher->iv_len > 0)
2340 pmech->pParameter = (void *)ctx->iv;
2341 pmech->ulParameterLen = pcipher->iv_len;
2345 /* if we get here, the encryption needs to be reinitialized */
2346 if (ctx->encrypt)
2347 rv = pFuncList->C_EncryptInit(sp->session, pmech,
2348 sp->opdata_cipher_key);
2349 else
2350 rv = pFuncList->C_DecryptInit(sp->session, pmech,
2351 sp->opdata_cipher_key);
2353 if (rv != CKR_OK)
2355 PK11err_add_data(PK11_F_CIPHER_INIT, ctx->encrypt ?
2356 PK11_R_ENCRYPTINIT : PK11_R_DECRYPTINIT, rv);
2357 pk11_return_session(sp, OP_CIPHER);
2358 return (0);
2361 return (1);
2364 /* ARGSUSED */
2365 static int
2366 pk11_cipher_init(EVP_CIPHER_CTX *ctx, const unsigned char *key,
2367 const unsigned char *iv, int enc)
2369 CK_MECHANISM mech;
2370 int index;
2371 PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->cipher_data;
2372 PK11_SESSION *sp;
2373 PK11_CIPHER *p_ciph_table_row;
2375 state->sp = NULL;
2377 index = cipher_nid_to_pk11(ctx->cipher->nid);
2378 if (index < 0 || index >= PK11_CIPHER_MAX)
2379 return (0);
2381 p_ciph_table_row = &ciphers[index];
2383 * iv_len in the ctx->cipher structure is the maximum IV length for the
2384 * current cipher and it must be less or equal to the IV length in our
2385 * ciphers table. The key length must be in the allowed interval. From
2386 * all cipher modes that the PKCS#11 engine supports only RC4 allows a
2387 * key length to be in some range, all other NIDs have a precise key
2388 * length. Every application can define its own EVP functions so this
2389 * code serves as a sanity check.
2391 * Note that the reason why the IV length in ctx->cipher might be
2392 * greater than the actual length is that OpenSSL uses BLOCK_CIPHER_defs
2393 * macro to define functions that return EVP structures for all DES
2394 * modes. So, even ECB modes get 8 byte IV.
2396 if (ctx->cipher->iv_len < p_ciph_table_row->iv_len ||
2397 ctx->key_len < p_ciph_table_row->min_key_len ||
2398 ctx->key_len > p_ciph_table_row->max_key_len) {
2399 PK11err(PK11_F_CIPHER_INIT, PK11_R_KEY_OR_IV_LEN_PROBLEM);
2400 return (0);
2403 if ((sp = pk11_get_session(OP_CIPHER)) == NULL)
2404 return (0);
2406 /* if applicable, the mechanism parameter is used for IV */
2407 mech.mechanism = p_ciph_table_row->mech_type;
2408 mech.pParameter = NULL;
2409 mech.ulParameterLen = 0;
2411 /* The key object is destroyed here if it is not the current key. */
2412 (void) check_new_cipher_key(sp, key, ctx->key_len);
2415 * If the key is the same and the encryption is also the same, then
2416 * just reuse it. However, we must not forget to reinitialize the
2417 * context that was finalized in pk11_cipher_cleanup().
2419 if (sp->opdata_cipher_key != CK_INVALID_HANDLE &&
2420 sp->opdata_encrypt == ctx->encrypt)
2422 state->sp = sp;
2423 if (pk11_init_symmetric(ctx, p_ciph_table_row, sp, &mech) == 0)
2424 return (0);
2426 return (1);
2430 * Check if the key has been invalidated. If so, a new key object
2431 * needs to be created.
2433 if (sp->opdata_cipher_key == CK_INVALID_HANDLE)
2435 sp->opdata_cipher_key = pk11_get_cipher_key(
2436 ctx, key, p_ciph_table_row->key_type, sp);
2439 if (sp->opdata_encrypt != ctx->encrypt && sp->opdata_encrypt != -1)
2442 * The previous encryption/decryption is different. Need to
2443 * terminate the previous * active encryption/decryption here.
2445 if (!pk11_cipher_final(sp))
2447 pk11_return_session(sp, OP_CIPHER);
2448 return (0);
2452 if (sp->opdata_cipher_key == CK_INVALID_HANDLE)
2454 pk11_return_session(sp, OP_CIPHER);
2455 return (0);
2458 /* now initialize the context with a new key */
2459 if (pk11_init_symmetric(ctx, p_ciph_table_row, sp, &mech) == 0)
2460 return (0);
2462 sp->opdata_encrypt = ctx->encrypt;
2463 state->sp = sp;
2465 return (1);
2469 * When reusing the same key in an encryption/decryption session for a
2470 * decryption/encryption session, we need to close the active session
2471 * and recreate a new one. Note that the key is in the global session so
2472 * that it needs not be recreated.
2474 * It is more appropriate to use C_En/DecryptFinish here. At the time of this
2475 * development, these two functions in the PKCS#11 libraries used return
2476 * unexpected errors when passing in 0 length output. It may be a good
2477 * idea to try them again if performance is a problem here and fix
2478 * C_En/DecryptFinial if there are bugs there causing the problem.
2480 static int
2481 pk11_cipher_final(PK11_SESSION *sp)
2483 CK_RV rv;
2485 rv = pFuncList->C_CloseSession(sp->session);
2486 if (rv != CKR_OK)
2488 PK11err_add_data(PK11_F_CIPHER_FINAL, PK11_R_CLOSESESSION, rv);
2489 return (0);
2492 rv = pFuncList->C_OpenSession(SLOTID, CKF_SERIAL_SESSION,
2493 NULL_PTR, NULL_PTR, &sp->session);
2494 if (rv != CKR_OK)
2496 PK11err_add_data(PK11_F_CIPHER_FINAL, PK11_R_OPENSESSION, rv);
2497 return (0);
2500 return (1);
2504 * An engine interface function. The calling function allocates sufficient
2505 * memory for the output buffer "out" to hold the results.
2507 static int
2508 pk11_cipher_do_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
2509 const unsigned char *in, unsigned int inl)
2511 PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->cipher_data;
2512 PK11_SESSION *sp;
2513 CK_RV rv;
2514 unsigned long outl = inl;
2516 if (state == NULL || state->sp == NULL)
2517 return (0);
2519 sp = (PK11_SESSION *) state->sp;
2521 if (!inl)
2522 return (1);
2524 /* RC4 is the only stream cipher we support */
2525 if (ctx->cipher->nid != NID_rc4 && (inl % ctx->cipher->block_size) != 0)
2526 return (0);
2528 if (ctx->encrypt)
2530 rv = pFuncList->C_EncryptUpdate(sp->session,
2531 (unsigned char *)in, inl, out, &outl);
2533 if (rv != CKR_OK)
2535 PK11err_add_data(PK11_F_CIPHER_DO_CIPHER,
2536 PK11_R_ENCRYPTUPDATE, rv);
2537 return (0);
2540 else
2542 rv = pFuncList->C_DecryptUpdate(sp->session,
2543 (unsigned char *)in, inl, out, &outl);
2545 if (rv != CKR_OK)
2547 PK11err_add_data(PK11_F_CIPHER_DO_CIPHER,
2548 PK11_R_DECRYPTUPDATE, rv);
2549 return (0);
2554 * For DES_CBC, DES3_CBC, AES_CBC, and RC4, the output size is always
2555 * the same size of input.
2556 * The application has guaranteed to call the block ciphers with
2557 * correctly aligned buffers.
2559 if (inl != outl)
2560 return (0);
2562 return (1);
2566 * Return the session to the pool. Calling C_EncryptFinal() and C_DecryptFinal()
2567 * here is the right thing because in EVP_DecryptFinal_ex(), engine's
2568 * do_cipher() is not even called, and in EVP_EncryptFinal_ex() it is called but
2569 * the engine can't find out that it's the finalizing call. We wouldn't
2570 * necessarily have to finalize the context here since reinitializing it with
2571 * C_(Encrypt|Decrypt)Init() should be fine but for the sake of correctness,
2572 * let's do it. Some implementations might leak memory if the previously used
2573 * context is initialized without finalizing it first.
2575 static int
2576 pk11_cipher_cleanup(EVP_CIPHER_CTX *ctx)
2578 CK_RV rv;
2579 CK_ULONG len = EVP_MAX_BLOCK_LENGTH;
2580 CK_BYTE buf[EVP_MAX_BLOCK_LENGTH];
2581 PK11_CIPHER_STATE *state = ctx->cipher_data;
2583 if (state != NULL && state->sp != NULL)
2586 * We are not interested in the data here, we just need to get
2587 * rid of the context.
2589 if (ctx->encrypt)
2590 rv = pFuncList->C_EncryptFinal(
2591 state->sp->session, buf, &len);
2592 else
2593 rv = pFuncList->C_DecryptFinal(
2594 state->sp->session, buf, &len);
2596 if (rv != CKR_OK)
2598 PK11err_add_data(PK11_F_CIPHER_CLEANUP, ctx->encrypt ?
2599 PK11_R_ENCRYPTFINAL : PK11_R_DECRYPTFINAL, rv);
2600 pk11_return_session(state->sp, OP_CIPHER);
2601 return (0);
2604 pk11_return_session(state->sp, OP_CIPHER);
2605 state->sp = NULL;
2608 return (1);
2612 * Registered by the ENGINE when used to find out how to deal with
2613 * a particular NID in the ENGINE. This says what we'll do at the
2614 * top level - note, that list is restricted by what we answer with
2616 /* ARGSUSED */
2617 static int
2618 pk11_engine_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
2619 const int **nids, int nid)
2621 if (!cipher)
2622 return (pk11_usable_ciphers(nids));
2624 switch (nid)
2626 case NID_des_ede3_cbc:
2627 *cipher = &pk11_3des_cbc;
2628 break;
2629 case NID_des_cbc:
2630 *cipher = &pk11_des_cbc;
2631 break;
2632 case NID_des_ede3_ecb:
2633 *cipher = &pk11_3des_ecb;
2634 break;
2635 case NID_des_ecb:
2636 *cipher = &pk11_des_ecb;
2637 break;
2638 case NID_aes_128_cbc:
2639 *cipher = &pk11_aes_128_cbc;
2640 break;
2641 case NID_aes_192_cbc:
2642 *cipher = &pk11_aes_192_cbc;
2643 break;
2644 case NID_aes_256_cbc:
2645 *cipher = &pk11_aes_256_cbc;
2646 break;
2647 case NID_aes_128_ecb:
2648 *cipher = &pk11_aes_128_ecb;
2649 break;
2650 case NID_aes_192_ecb:
2651 *cipher = &pk11_aes_192_ecb;
2652 break;
2653 case NID_aes_256_ecb:
2654 *cipher = &pk11_aes_256_ecb;
2655 break;
2656 case NID_bf_cbc:
2657 *cipher = &pk11_bf_cbc;
2658 break;
2659 case NID_rc4:
2660 *cipher = &pk11_rc4;
2661 break;
2662 default:
2663 #ifdef SOLARIS_AES_CTR
2665 * These can't be in separated cases because the NIDs
2666 * here are not constants.
2668 if (nid == NID_aes_128_ctr)
2669 *cipher = &pk11_aes_128_ctr;
2670 else if (nid == NID_aes_192_ctr)
2671 *cipher = &pk11_aes_192_ctr;
2672 else if (nid == NID_aes_256_ctr)
2673 *cipher = &pk11_aes_256_ctr;
2674 else
2675 #endif /* SOLARIS_AES_CTR */
2676 *cipher = NULL;
2677 break;
2679 return (*cipher != NULL);
2682 /* ARGSUSED */
2683 static int
2684 pk11_engine_digests(ENGINE *e, const EVP_MD **digest,
2685 const int **nids, int nid)
2687 if (!digest)
2688 return (pk11_usable_digests(nids));
2690 switch (nid)
2692 case NID_md5:
2693 *digest = &pk11_md5;
2694 break;
2695 case NID_sha1:
2696 *digest = &pk11_sha1;
2697 break;
2698 case NID_sha224:
2699 *digest = &pk11_sha224;
2700 break;
2701 case NID_sha256:
2702 *digest = &pk11_sha256;
2703 break;
2704 case NID_sha384:
2705 *digest = &pk11_sha384;
2706 break;
2707 case NID_sha512:
2708 *digest = &pk11_sha512;
2709 break;
2710 default:
2711 *digest = NULL;
2712 break;
2714 return (*digest != NULL);
2718 /* Create a secret key object in a PKCS#11 session */
2719 static CK_OBJECT_HANDLE pk11_get_cipher_key(EVP_CIPHER_CTX *ctx,
2720 const unsigned char *key, CK_KEY_TYPE key_type, PK11_SESSION *sp)
2722 CK_RV rv;
2723 CK_OBJECT_HANDLE h_key = CK_INVALID_HANDLE;
2724 CK_OBJECT_CLASS obj_key = CKO_SECRET_KEY;
2725 CK_ULONG ul_key_attr_count = 6;
2727 CK_ATTRIBUTE a_key_template[] =
2729 {CKA_CLASS, (void*) NULL, sizeof (CK_OBJECT_CLASS)},
2730 {CKA_KEY_TYPE, (void*) NULL, sizeof (CK_KEY_TYPE)},
2731 {CKA_TOKEN, &pk11_false, sizeof (pk11_false)},
2732 {CKA_ENCRYPT, &pk11_true, sizeof (pk11_true)},
2733 {CKA_DECRYPT, &pk11_true, sizeof (pk11_true)},
2734 {CKA_VALUE, (void*) NULL, 0},
2738 * Create secret key object in global_session. All other sessions
2739 * can use the key handles. Here is why:
2740 * OpenSSL will call EncryptInit and EncryptUpdate using a secret key.
2741 * It may then call DecryptInit and DecryptUpdate using the same key.
2742 * To use the same key object, we need to call EncryptFinal with
2743 * a 0 length message. Currently, this does not work for 3DES
2744 * mechanism. To get around this problem, we close the session and
2745 * then create a new session to use the same key object. When a session
2746 * is closed, all the object handles will be invalid. Thus, create key
2747 * objects in a global session, an individual session may be closed to
2748 * terminate the active operation.
2750 CK_SESSION_HANDLE session = global_session;
2751 a_key_template[0].pValue = &obj_key;
2752 a_key_template[1].pValue = &key_type;
2753 a_key_template[5].pValue = (void *) key;
2754 a_key_template[5].ulValueLen = (unsigned long) ctx->key_len;
2756 rv = pFuncList->C_CreateObject(session,
2757 a_key_template, ul_key_attr_count, &h_key);
2758 if (rv != CKR_OK)
2760 PK11err_add_data(PK11_F_GET_CIPHER_KEY, PK11_R_CREATEOBJECT,
2761 rv);
2762 goto err;
2766 * Save the key information used in this session.
2767 * The max can be saved is PK11_KEY_LEN_MAX.
2769 sp->opdata_key_len = ctx->key_len > PK11_KEY_LEN_MAX ?
2770 PK11_KEY_LEN_MAX : ctx->key_len;
2771 (void) memcpy(sp->opdata_key, key, sp->opdata_key_len);
2772 err:
2774 return (h_key);
2777 static int
2778 md_nid_to_pk11(int nid)
2780 int i;
2782 for (i = 0; i < PK11_DIGEST_MAX; i++)
2783 if (digests[i].nid == nid)
2784 return (digests[i].id);
2785 return (-1);
2788 static int
2789 pk11_digest_init(EVP_MD_CTX *ctx)
2791 CK_RV rv;
2792 CK_MECHANISM mech;
2793 int index;
2794 PK11_SESSION *sp;
2795 PK11_DIGEST *pdp;
2796 PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->md_data;
2798 state->sp = NULL;
2800 index = md_nid_to_pk11(ctx->digest->type);
2801 if (index < 0 || index >= PK11_DIGEST_MAX)
2802 return (0);
2804 pdp = &digests[index];
2805 if ((sp = pk11_get_session(OP_DIGEST)) == NULL)
2806 return (0);
2808 /* at present, no parameter is needed for supported digests */
2809 mech.mechanism = pdp->mech_type;
2810 mech.pParameter = NULL;
2811 mech.ulParameterLen = 0;
2813 rv = pFuncList->C_DigestInit(sp->session, &mech);
2815 if (rv != CKR_OK)
2817 PK11err_add_data(PK11_F_DIGEST_INIT, PK11_R_DIGESTINIT, rv);
2818 pk11_return_session(sp, OP_DIGEST);
2819 return (0);
2822 state->sp = sp;
2824 return (1);
2827 static int
2828 pk11_digest_update(EVP_MD_CTX *ctx, const void *data, size_t count)
2830 CK_RV rv;
2831 PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->md_data;
2833 /* 0 length message will cause a failure in C_DigestFinal */
2834 if (count == 0)
2835 return (1);
2837 if (state == NULL || state->sp == NULL)
2838 return (0);
2840 rv = pFuncList->C_DigestUpdate(state->sp->session, (CK_BYTE *) data,
2841 count);
2843 if (rv != CKR_OK)
2845 PK11err_add_data(PK11_F_DIGEST_UPDATE, PK11_R_DIGESTUPDATE, rv);
2846 pk11_return_session(state->sp, OP_DIGEST);
2847 state->sp = NULL;
2848 return (0);
2851 return (1);
2854 static int
2855 pk11_digest_final(EVP_MD_CTX *ctx, unsigned char *md)
2857 CK_RV rv;
2858 unsigned long len;
2859 PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->md_data;
2860 len = ctx->digest->md_size;
2862 if (state == NULL || state->sp == NULL)
2863 return (0);
2865 rv = pFuncList->C_DigestFinal(state->sp->session, md, &len);
2867 if (rv != CKR_OK)
2869 PK11err_add_data(PK11_F_DIGEST_FINAL, PK11_R_DIGESTFINAL, rv);
2870 pk11_return_session(state->sp, OP_DIGEST);
2871 state->sp = NULL;
2872 return (0);
2875 if (ctx->digest->md_size != len)
2876 return (0);
2879 * Final is called and digest is returned, so return the session
2880 * to the pool
2882 pk11_return_session(state->sp, OP_DIGEST);
2883 state->sp = NULL;
2885 return (1);
2888 static int
2889 pk11_digest_copy(EVP_MD_CTX *to, const EVP_MD_CTX *from)
2891 CK_RV rv;
2892 int ret = 0;
2893 PK11_CIPHER_STATE *state, *state_to;
2894 CK_BYTE_PTR pstate = NULL;
2895 CK_ULONG ul_state_len;
2897 /* The copy-from state */
2898 state = (PK11_CIPHER_STATE *) from->md_data;
2899 if (state == NULL || state->sp == NULL)
2900 goto err;
2902 /* Initialize the copy-to state */
2903 if (!pk11_digest_init(to))
2904 goto err;
2905 state_to = (PK11_CIPHER_STATE *) to->md_data;
2907 /* Get the size of the operation state of the copy-from session */
2908 rv = pFuncList->C_GetOperationState(state->sp->session, NULL,
2909 &ul_state_len);
2911 if (rv != CKR_OK)
2913 PK11err_add_data(PK11_F_DIGEST_COPY, PK11_R_GET_OPERATION_STATE,
2914 rv);
2915 goto err;
2917 if (ul_state_len == 0)
2919 goto err;
2922 pstate = OPENSSL_malloc(ul_state_len);
2923 if (pstate == NULL)
2925 PK11err(PK11_F_DIGEST_COPY, PK11_R_MALLOC_FAILURE);
2926 goto err;
2929 /* Get the operation state of the copy-from session */
2930 rv = pFuncList->C_GetOperationState(state->sp->session, pstate,
2931 &ul_state_len);
2933 if (rv != CKR_OK)
2935 PK11err_add_data(PK11_F_DIGEST_COPY, PK11_R_GET_OPERATION_STATE,
2936 rv);
2937 goto err;
2940 /* Set the operation state of the copy-to session */
2941 rv = pFuncList->C_SetOperationState(state_to->sp->session, pstate,
2942 ul_state_len, 0, 0);
2944 if (rv != CKR_OK)
2946 PK11err_add_data(PK11_F_DIGEST_COPY,
2947 PK11_R_SET_OPERATION_STATE, rv);
2948 goto err;
2951 ret = 1;
2952 err:
2953 if (pstate != NULL)
2954 OPENSSL_free(pstate);
2956 return (ret);
2959 /* Return any pending session state to the pool */
2960 static int
2961 pk11_digest_cleanup(EVP_MD_CTX *ctx)
2963 PK11_CIPHER_STATE *state = ctx->md_data;
2964 unsigned char buf[EVP_MAX_MD_SIZE];
2966 if (state != NULL && state->sp != NULL)
2969 * If state->sp is not NULL then pk11_digest_final() has not
2970 * been called yet. We must call it now to free any memory
2971 * that might have been allocated in the token when
2972 * pk11_digest_init() was called. pk11_digest_final()
2973 * will return the session to the cache.
2975 if (!pk11_digest_final(ctx, buf))
2976 return (0);
2979 return (1);
2983 * Check if the new key is the same as the key object in the session. If the key
2984 * is the same, no need to create a new key object. Otherwise, the old key
2985 * object needs to be destroyed and a new one will be created. Return 1 for
2986 * cache hit, 0 for cache miss. Note that we must check the key length first
2987 * otherwise we could end up reusing a different, longer key with the same
2988 * prefix.
2990 static int check_new_cipher_key(PK11_SESSION *sp, const unsigned char *key,
2991 int key_len)
2993 if (sp->opdata_key_len != key_len ||
2994 memcmp(sp->opdata_key, key, key_len) != 0)
2996 (void) pk11_destroy_cipher_key_objects(sp);
2997 return (0);
2999 return (1);
3002 /* Destroy one or more secret key objects. */
3003 static int pk11_destroy_cipher_key_objects(PK11_SESSION *session)
3005 int ret = 0;
3006 PK11_SESSION *sp = NULL;
3007 PK11_SESSION *local_free_session;
3009 if (session != NULL)
3010 local_free_session = session;
3011 else
3013 (void) pthread_mutex_lock(session_cache[OP_CIPHER].lock);
3014 local_free_session = session_cache[OP_CIPHER].head;
3017 while ((sp = local_free_session) != NULL)
3019 local_free_session = sp->next;
3021 if (sp->opdata_cipher_key != CK_INVALID_HANDLE)
3024 * The secret key object is created in the
3025 * global_session. See pk11_get_cipher_key().
3027 if (pk11_destroy_object(global_session,
3028 sp->opdata_cipher_key, CK_FALSE) == 0)
3029 goto err;
3030 sp->opdata_cipher_key = CK_INVALID_HANDLE;
3033 ret = 1;
3034 err:
3036 if (session == NULL)
3037 (void) pthread_mutex_unlock(session_cache[OP_CIPHER].lock);
3039 return (ret);
3044 * Public key mechanisms optionally supported
3046 * CKM_RSA_X_509
3047 * CKM_RSA_PKCS
3048 * CKM_DSA
3050 * The first slot that supports at least one of those mechanisms is chosen as a
3051 * public key slot.
3053 * Symmetric ciphers optionally supported
3055 * CKM_DES3_CBC
3056 * CKM_DES_CBC
3057 * CKM_AES_CBC
3058 * CKM_DES3_ECB
3059 * CKM_DES_ECB
3060 * CKM_AES_ECB
3061 * CKM_AES_CTR
3062 * CKM_RC4
3063 * CKM_BLOWFISH_CBC
3065 * Digests optionally supported
3067 * CKM_MD5
3068 * CKM_SHA_1
3069 * CKM_SHA224
3070 * CKM_SHA256
3071 * CKM_SHA384
3072 * CKM_SHA512
3074 * The output of this function is a set of global variables indicating which
3075 * mechanisms from RSA, DSA, DH and RAND are present, and also two arrays of
3076 * mechanisms, one for symmetric ciphers and one for digests. Also, 3 global
3077 * variables carry information about which slot was chosen for (a) public key
3078 * mechanisms, (b) random operations, and (c) symmetric ciphers and digests.
3080 static int
3081 pk11_choose_slots(int *any_slot_found)
3083 CK_SLOT_ID_PTR pSlotList = NULL_PTR;
3084 CK_ULONG ulSlotCount = 0;
3085 CK_MECHANISM_INFO mech_info;
3086 CK_TOKEN_INFO token_info;
3087 int i;
3088 CK_RV rv;
3089 CK_SLOT_ID best_slot_sofar;
3090 CK_BBOOL found_candidate_slot = CK_FALSE;
3091 int slot_n_cipher = 0;
3092 int slot_n_digest = 0;
3093 CK_SLOT_ID current_slot = 0;
3094 int current_slot_n_cipher = 0;
3095 int current_slot_n_digest = 0;
3097 int local_cipher_nids[PK11_CIPHER_MAX];
3098 int local_digest_nids[PK11_DIGEST_MAX];
3100 /* let's initialize the output parameter */
3101 if (any_slot_found != NULL)
3102 *any_slot_found = 0;
3104 /* Get slot list for memory allocation */
3105 rv = pFuncList->C_GetSlotList(CK_FALSE, NULL_PTR, &ulSlotCount);
3107 if (rv != CKR_OK)
3109 PK11err_add_data(PK11_F_CHOOSE_SLOT, PK11_R_GETSLOTLIST, rv);
3110 return (0);
3113 /* it's not an error if we didn't find any providers */
3114 if (ulSlotCount == 0)
3116 #ifdef DEBUG_SLOT_SELECTION
3117 fprintf(stderr, "%s: no crypto providers found\n", PK11_DBG);
3118 #endif /* DEBUG_SLOT_SELECTION */
3119 return (1);
3122 pSlotList = OPENSSL_malloc(ulSlotCount * sizeof (CK_SLOT_ID));
3124 if (pSlotList == NULL)
3126 PK11err(PK11_F_CHOOSE_SLOT, PK11_R_MALLOC_FAILURE);
3127 return (0);
3130 /* Get the slot list for processing */
3131 rv = pFuncList->C_GetSlotList(CK_FALSE, pSlotList, &ulSlotCount);
3132 if (rv != CKR_OK)
3134 PK11err_add_data(PK11_F_CHOOSE_SLOT, PK11_R_GETSLOTLIST, rv);
3135 OPENSSL_free(pSlotList);
3136 return (0);
3139 #ifdef DEBUG_SLOT_SELECTION
3140 fprintf(stderr, "%s: provider: %s\n", PK11_DBG, def_PK11_LIBNAME);
3141 fprintf(stderr, "%s: number of slots: %d\n", PK11_DBG, ulSlotCount);
3143 fprintf(stderr, "%s: == checking rand slots ==\n", PK11_DBG);
3144 #endif /* DEBUG_SLOT_SELECTION */
3145 for (i = 0; i < ulSlotCount; i++)
3147 current_slot = pSlotList[i];
3149 #ifdef DEBUG_SLOT_SELECTION
3150 fprintf(stderr, "%s: checking slot: %d\n", PK11_DBG, i);
3151 #endif /* DEBUG_SLOT_SELECTION */
3152 /* Check if slot has random support. */
3153 rv = pFuncList->C_GetTokenInfo(current_slot, &token_info);
3154 if (rv != CKR_OK)
3155 continue;
3157 #ifdef DEBUG_SLOT_SELECTION
3158 fprintf(stderr, "%s: token label: %.32s\n", PK11_DBG, token_info.label);
3159 #endif /* DEBUG_SLOT_SELECTION */
3161 if (token_info.flags & CKF_RNG)
3163 #ifdef DEBUG_SLOT_SELECTION
3164 fprintf(stderr, "%s: this token has CKF_RNG flag\n", PK11_DBG);
3165 #endif /* DEBUG_SLOT_SELECTION */
3166 pk11_have_random = CK_TRUE;
3167 rand_SLOTID = current_slot;
3168 break;
3172 #ifdef DEBUG_SLOT_SELECTION
3173 fprintf(stderr, "%s: == checking pubkey slots ==\n", PK11_DBG);
3174 #endif /* DEBUG_SLOT_SELECTION */
3176 pubkey_SLOTID = pSlotList[0];
3177 for (i = 0; i < ulSlotCount; i++)
3179 CK_BBOOL slot_has_rsa = CK_FALSE;
3180 CK_BBOOL slot_has_dsa = CK_FALSE;
3181 CK_BBOOL slot_has_dh = CK_FALSE;
3182 current_slot = pSlotList[i];
3184 #ifdef DEBUG_SLOT_SELECTION
3185 fprintf(stderr, "%s: checking slot: %d\n", PK11_DBG, i);
3186 #endif /* DEBUG_SLOT_SELECTION */
3187 rv = pFuncList->C_GetTokenInfo(current_slot, &token_info);
3188 if (rv != CKR_OK)
3189 continue;
3191 #ifdef DEBUG_SLOT_SELECTION
3192 fprintf(stderr, "%s: token label: %.32s\n", PK11_DBG, token_info.label);
3193 #endif /* DEBUG_SLOT_SELECTION */
3195 #ifndef OPENSSL_NO_RSA
3197 * Check if this slot is capable of signing and
3198 * verifying with CKM_RSA_PKCS.
3200 rv = pFuncList->C_GetMechanismInfo(current_slot, CKM_RSA_PKCS,
3201 &mech_info);
3203 if (rv == CKR_OK && ((mech_info.flags & CKF_SIGN) &&
3204 (mech_info.flags & CKF_VERIFY)))
3207 * Check if this slot is capable of encryption,
3208 * decryption, sign, and verify with CKM_RSA_X_509.
3210 rv = pFuncList->C_GetMechanismInfo(current_slot,
3211 CKM_RSA_X_509, &mech_info);
3213 if (rv == CKR_OK && ((mech_info.flags & CKF_SIGN) &&
3214 (mech_info.flags & CKF_VERIFY) &&
3215 (mech_info.flags & CKF_ENCRYPT) &&
3216 (mech_info.flags & CKF_VERIFY_RECOVER) &&
3217 (mech_info.flags & CKF_DECRYPT)))
3219 slot_has_rsa = CK_TRUE;
3222 #endif /* OPENSSL_NO_RSA */
3224 #ifndef OPENSSL_NO_DSA
3226 * Check if this slot is capable of signing and
3227 * verifying with CKM_DSA.
3229 rv = pFuncList->C_GetMechanismInfo(current_slot, CKM_DSA,
3230 &mech_info);
3231 if (rv == CKR_OK && ((mech_info.flags & CKF_SIGN) &&
3232 (mech_info.flags & CKF_VERIFY)))
3234 slot_has_dsa = CK_TRUE;
3237 #endif /* OPENSSL_NO_DSA */
3239 #ifndef OPENSSL_NO_DH
3241 * Check if this slot is capable of DH key generataion and
3242 * derivation.
3244 rv = pFuncList->C_GetMechanismInfo(current_slot,
3245 CKM_DH_PKCS_KEY_PAIR_GEN, &mech_info);
3247 if (rv == CKR_OK && (mech_info.flags & CKF_GENERATE_KEY_PAIR))
3249 rv = pFuncList->C_GetMechanismInfo(current_slot,
3250 CKM_DH_PKCS_DERIVE, &mech_info);
3251 if (rv == CKR_OK && (mech_info.flags & CKF_DERIVE))
3253 slot_has_dh = CK_TRUE;
3256 #endif /* OPENSSL_NO_DH */
3258 if (!found_candidate_slot &&
3259 (slot_has_rsa || slot_has_dsa || slot_has_dh))
3261 #ifdef DEBUG_SLOT_SELECTION
3262 fprintf(stderr,
3263 "%s: potential slot: %d\n", PK11_DBG, current_slot);
3264 #endif /* DEBUG_SLOT_SELECTION */
3265 best_slot_sofar = current_slot;
3266 pk11_have_rsa = slot_has_rsa;
3267 pk11_have_dsa = slot_has_dsa;
3268 pk11_have_dh = slot_has_dh;
3269 found_candidate_slot = CK_TRUE;
3271 * Cache the flags for later use. We might need those if
3272 * RSA keys by reference feature is used.
3274 pubkey_token_flags = token_info.flags;
3275 #ifdef DEBUG_SLOT_SELECTION
3276 fprintf(stderr,
3277 "%s: setting found_candidate_slot to CK_TRUE\n",
3278 PK11_DBG);
3279 fprintf(stderr,
3280 "%s: best so far slot: %d\n", PK11_DBG,
3281 best_slot_sofar);
3282 fprintf(stderr, "%s: pubkey flags changed to "
3283 "%lu.\n", PK11_DBG, pubkey_token_flags);
3285 else
3287 fprintf(stderr,
3288 "%s: no rsa/dsa/dh\n", PK11_DBG);
3290 #else
3291 } /* if */
3292 #endif /* DEBUG_SLOT_SELECTION */
3293 } /* for */
3295 if (found_candidate_slot == CK_TRUE)
3297 pubkey_SLOTID = best_slot_sofar;
3300 found_candidate_slot = CK_FALSE;
3301 best_slot_sofar = 0;
3303 #ifdef DEBUG_SLOT_SELECTION
3304 fprintf(stderr, "%s: == checking cipher/digest ==\n", PK11_DBG);
3305 #endif /* DEBUG_SLOT_SELECTION */
3307 SLOTID = pSlotList[0];
3308 for (i = 0; i < ulSlotCount; i++)
3310 #ifdef DEBUG_SLOT_SELECTION
3311 fprintf(stderr, "%s: checking slot: %d\n", PK11_DBG, i);
3312 #endif /* DEBUG_SLOT_SELECTION */
3314 current_slot = pSlotList[i];
3315 current_slot_n_cipher = 0;
3316 current_slot_n_digest = 0;
3317 (void) memset(local_cipher_nids, 0, sizeof (local_cipher_nids));
3318 (void) memset(local_digest_nids, 0, sizeof (local_digest_nids));
3320 pk11_find_symmetric_ciphers(pFuncList, current_slot,
3321 &current_slot_n_cipher, local_cipher_nids);
3323 pk11_find_digests(pFuncList, current_slot,
3324 &current_slot_n_digest, local_digest_nids);
3326 #ifdef DEBUG_SLOT_SELECTION
3327 fprintf(stderr, "%s: current_slot_n_cipher %d\n", PK11_DBG,
3328 current_slot_n_cipher);
3329 fprintf(stderr, "%s: current_slot_n_digest %d\n", PK11_DBG,
3330 current_slot_n_digest);
3331 fprintf(stderr, "%s: best so far cipher/digest slot: %d\n",
3332 PK11_DBG, best_slot_sofar);
3333 #endif /* DEBUG_SLOT_SELECTION */
3336 * If the current slot supports more ciphers/digests than
3337 * the previous best one we change the current best to this one,
3338 * otherwise leave it where it is.
3340 if ((current_slot_n_cipher + current_slot_n_digest) >
3341 (slot_n_cipher + slot_n_digest))
3343 #ifdef DEBUG_SLOT_SELECTION
3344 fprintf(stderr,
3345 "%s: changing best so far slot to %d\n",
3346 PK11_DBG, current_slot);
3347 #endif /* DEBUG_SLOT_SELECTION */
3348 best_slot_sofar = SLOTID = current_slot;
3349 cipher_count = slot_n_cipher = current_slot_n_cipher;
3350 digest_count = slot_n_digest = current_slot_n_digest;
3351 (void) memcpy(cipher_nids, local_cipher_nids,
3352 sizeof (local_cipher_nids));
3353 (void) memcpy(digest_nids, local_digest_nids,
3354 sizeof (local_digest_nids));
3358 #ifdef DEBUG_SLOT_SELECTION
3359 fprintf(stderr,
3360 "%s: chosen pubkey slot: %d\n", PK11_DBG, pubkey_SLOTID);
3361 fprintf(stderr,
3362 "%s: chosen rand slot: %d\n", PK11_DBG, rand_SLOTID);
3363 fprintf(stderr,
3364 "%s: chosen cipher/digest slot: %d\n", PK11_DBG, SLOTID);
3365 fprintf(stderr,
3366 "%s: pk11_have_rsa %d\n", PK11_DBG, pk11_have_rsa);
3367 fprintf(stderr,
3368 "%s: pk11_have_dsa %d\n", PK11_DBG, pk11_have_dsa);
3369 fprintf(stderr,
3370 "%s: pk11_have_dh %d\n", PK11_DBG, pk11_have_dh);
3371 fprintf(stderr,
3372 "%s: pk11_have_random %d\n", PK11_DBG, pk11_have_random);
3373 fprintf(stderr,
3374 "%s: cipher_count %d\n", PK11_DBG, cipher_count);
3375 fprintf(stderr,
3376 "%s: digest_count %d\n", PK11_DBG, digest_count);
3377 #endif /* DEBUG_SLOT_SELECTION */
3379 if (pSlotList != NULL)
3380 OPENSSL_free(pSlotList);
3382 #ifdef SOLARIS_HW_SLOT_SELECTION
3383 OPENSSL_free(hw_cnids);
3384 OPENSSL_free(hw_dnids);
3385 #endif /* SOLARIS_HW_SLOT_SELECTION */
3387 if (any_slot_found != NULL)
3388 *any_slot_found = 1;
3389 return (1);
3392 static void pk11_get_symmetric_cipher(CK_FUNCTION_LIST_PTR pflist,
3393 int slot_id, CK_MECHANISM_TYPE mech, int *current_slot_n_cipher,
3394 int *local_cipher_nids, int id)
3396 CK_MECHANISM_INFO mech_info;
3397 CK_RV rv;
3399 #ifdef DEBUG_SLOT_SELECTION
3400 fprintf(stderr, "%s: checking mech: %x", PK11_DBG, mech);
3401 #endif /* DEBUG_SLOT_SELECTION */
3402 rv = pflist->C_GetMechanismInfo(slot_id, mech, &mech_info);
3404 if (rv != CKR_OK)
3406 #ifdef DEBUG_SLOT_SELECTION
3407 fprintf(stderr, " not found\n");
3408 #endif /* DEBUG_SLOT_SELECTION */
3409 return;
3412 if ((mech_info.flags & CKF_ENCRYPT) &&
3413 (mech_info.flags & CKF_DECRYPT))
3415 #ifdef SOLARIS_HW_SLOT_SELECTION
3416 if (nid_in_table(ciphers[id].nid, hw_cnids))
3417 #endif /* SOLARIS_HW_SLOT_SELECTION */
3419 #ifdef DEBUG_SLOT_SELECTION
3420 fprintf(stderr, " usable\n");
3421 #endif /* DEBUG_SLOT_SELECTION */
3422 local_cipher_nids[(*current_slot_n_cipher)++] =
3423 ciphers[id].nid;
3425 #ifdef SOLARIS_HW_SLOT_SELECTION
3426 #ifdef DEBUG_SLOT_SELECTION
3427 else
3429 fprintf(stderr, " rejected, software implementation only\n");
3431 #endif /* DEBUG_SLOT_SELECTION */
3432 #endif /* SOLARIS_HW_SLOT_SELECTION */
3434 #ifdef DEBUG_SLOT_SELECTION
3435 else
3437 fprintf(stderr, " unusable\n");
3439 #endif /* DEBUG_SLOT_SELECTION */
3441 return;
3444 static void pk11_get_digest(CK_FUNCTION_LIST_PTR pflist, int slot_id,
3445 CK_MECHANISM_TYPE mech, int *current_slot_n_digest, int *local_digest_nids,
3446 int id)
3448 CK_MECHANISM_INFO mech_info;
3449 CK_RV rv;
3451 #ifdef DEBUG_SLOT_SELECTION
3452 fprintf(stderr, "%s: checking mech: %x", PK11_DBG, mech);
3453 #endif /* DEBUG_SLOT_SELECTION */
3454 rv = pflist->C_GetMechanismInfo(slot_id, mech, &mech_info);
3456 if (rv != CKR_OK)
3458 #ifdef DEBUG_SLOT_SELECTION
3459 fprintf(stderr, " not found\n");
3460 #endif /* DEBUG_SLOT_SELECTION */
3461 return;
3464 if (mech_info.flags & CKF_DIGEST)
3466 #ifdef SOLARIS_HW_SLOT_SELECTION
3467 if (nid_in_table(digests[id].nid, hw_dnids))
3468 #endif /* SOLARIS_HW_SLOT_SELECTION */
3470 #ifdef DEBUG_SLOT_SELECTION
3471 fprintf(stderr, " usable\n");
3472 #endif /* DEBUG_SLOT_SELECTION */
3473 local_digest_nids[(*current_slot_n_digest)++] =
3474 digests[id].nid;
3476 #ifdef SOLARIS_HW_SLOT_SELECTION
3477 #ifdef DEBUG_SLOT_SELECTION
3478 else
3480 fprintf(stderr, " rejected, software implementation only\n");
3482 #endif /* DEBUG_SLOT_SELECTION */
3483 #endif /* SOLARIS_HW_SLOT_SELECTION */
3485 #ifdef DEBUG_SLOT_SELECTION
3486 else
3488 fprintf(stderr, " unusable\n");
3490 #endif /* DEBUG_SLOT_SELECTION */
3492 return;
3495 #ifdef SOLARIS_AES_CTR
3496 /* create a new NID when we have no OID for that mechanism */
3497 static int pk11_add_NID(char *sn, char *ln)
3499 ASN1_OBJECT *o;
3500 int nid;
3502 if ((o = ASN1_OBJECT_create(OBJ_new_nid(1), (unsigned char *)"",
3503 1, sn, ln)) == NULL)
3505 return (0);
3508 /* will return NID_undef on error */
3509 nid = OBJ_add_object(o);
3510 ASN1_OBJECT_free(o);
3512 return (nid);
3516 * Create new NIDs for AES counter mode. OpenSSL doesn't support them now so we
3517 * have to help ourselves here.
3519 static int pk11_add_aes_ctr_NIDs(void)
3521 /* are we already set? */
3522 if (NID_aes_256_ctr != NID_undef)
3523 return (1);
3526 * There are no official names for AES counter modes yet so we just
3527 * follow the format of those that exist.
3529 if ((NID_aes_128_ctr = pk11_add_NID("AES-128-CTR", "aes-128-ctr")) ==
3530 NID_undef)
3531 goto err;
3532 ciphers[PK11_AES_128_CTR].nid = pk11_aes_128_ctr.nid = NID_aes_128_ctr;
3533 if ((NID_aes_192_ctr = pk11_add_NID("AES-192-CTR", "aes-192-ctr")) ==
3534 NID_undef)
3535 goto err;
3536 ciphers[PK11_AES_192_CTR].nid = pk11_aes_192_ctr.nid = NID_aes_192_ctr;
3537 if ((NID_aes_256_ctr = pk11_add_NID("AES-256-CTR", "aes-256-ctr")) ==
3538 NID_undef)
3539 goto err;
3540 ciphers[PK11_AES_256_CTR].nid = pk11_aes_256_ctr.nid = NID_aes_256_ctr;
3541 return (1);
3543 err:
3544 PK11err(PK11_F_ADD_AES_CTR_NIDS, PK11_R_ADD_NID_FAILED);
3545 return (0);
3547 #endif /* SOLARIS_AES_CTR */
3549 /* Find what symmetric ciphers this slot supports. */
3550 static void pk11_find_symmetric_ciphers(CK_FUNCTION_LIST_PTR pflist,
3551 CK_SLOT_ID current_slot, int *current_slot_n_cipher, int *local_cipher_nids)
3553 int i;
3555 for (i = 0; i < PK11_CIPHER_MAX; ++i)
3557 pk11_get_symmetric_cipher(pflist, current_slot,
3558 ciphers[i].mech_type, current_slot_n_cipher,
3559 local_cipher_nids, ciphers[i].id);
3563 /* Find what digest algorithms this slot supports. */
3564 static void pk11_find_digests(CK_FUNCTION_LIST_PTR pflist,
3565 CK_SLOT_ID current_slot, int *current_slot_n_digest, int *local_digest_nids)
3567 int i;
3569 for (i = 0; i < PK11_DIGEST_MAX; ++i)
3571 pk11_get_digest(pflist, current_slot, digests[i].mech_type,
3572 current_slot_n_digest, local_digest_nids, digests[i].id);
3576 #ifdef SOLARIS_HW_SLOT_SELECTION
3578 * It would be great if we could use pkcs11_kernel directly since this library
3579 * offers hardware slots only. That's the easiest way to achieve the situation
3580 * where we use the hardware accelerators when present and OpenSSL native code
3581 * otherwise. That presumes the fact that OpenSSL native code is faster than the
3582 * code in the soft token. It's a logical assumption - Crypto Framework has some
3583 * inherent overhead so going there for the software implementation of a
3584 * mechanism should be logically slower in contrast to the OpenSSL native code,
3585 * presuming that both implementations are of similar speed. For example, the
3586 * soft token for AES is roughly three times slower than OpenSSL for 64 byte
3587 * blocks and still 20% slower for 8KB blocks. So, if we want to ship products
3588 * that use the PKCS#11 engine by default, we must somehow avoid that regression
3589 * on machines without hardware acceleration. That's why switching to the
3590 * pkcs11_kernel library seems like a very good idea.
3592 * The problem is that OpenSSL built with SunStudio is roughly 2x slower for
3593 * asymmetric operations (RSA/DSA/DH) than the soft token built with the same
3594 * compiler. That means that if we switched to pkcs11_kernel from the libpkcs11
3595 * library, we would have had a performance regression on machines without
3596 * hardware acceleration for asymmetric operations for all applications that use
3597 * the PKCS#11 engine. There is one such application - Apache web server since
3598 * it's shipped configured to use the PKCS#11 engine by default. Having said
3599 * that, we can't switch to the pkcs11_kernel library now and have to come with
3600 * a solution that, on non-accelerated machines, uses the OpenSSL native code
3601 * for all symmetric ciphers and digests while it uses the soft token for
3602 * asymmetric operations.
3604 * This is the idea: dlopen() pkcs11_kernel directly and find out what
3605 * mechanisms are there. We don't care about duplications (more slots can
3606 * support the same mechanism), we just want to know what mechanisms can be
3607 * possibly supported in hardware on that particular machine. As said before,
3608 * pkcs11_kernel will show you hardware providers only.
3610 * Then, we rely on the fact that since we use libpkcs11 library we will find
3611 * the metaslot. When we go through the metaslot's mechanisms for symmetric
3612 * ciphers and digests, we check that any found mechanism is in the table
3613 * created using the pkcs11_kernel library. So, as a result we have two arrays
3614 * of mechanisms that were advertised as supported in hardware which was the
3615 * goal of that whole excercise. Thus, we can use libpkcs11 but avoid soft token
3616 * code for symmetric ciphers and digests. See pk11_choose_slots() for more
3617 * information.
3619 * This is Solaris specific code, if SOLARIS_HW_SLOT_SELECTION is not defined
3620 * the code won't be used.
3622 #if defined(__sparcv9) || defined(__x86_64) || defined(__amd64)
3623 static const char pkcs11_kernel[] = "/usr/lib/security/64/pkcs11_kernel.so.1";
3624 #else
3625 static const char pkcs11_kernel[] = "/usr/lib/security/pkcs11_kernel.so.1";
3626 #endif
3629 * Check hardware capabilities of the machines. The output are two lists,
3630 * hw_cnids and hw_dnids, that contain hardware mechanisms found in all hardware
3631 * providers together. They are not sorted and may contain duplicate mechanisms.
3633 static int check_hw_mechanisms(void)
3635 int i;
3636 CK_RV rv;
3637 void *handle;
3638 CK_C_GetFunctionList p;
3639 CK_TOKEN_INFO token_info;
3640 CK_ULONG ulSlotCount = 0;
3641 int n_cipher = 0, n_digest = 0;
3642 CK_FUNCTION_LIST_PTR pflist = NULL;
3643 CK_SLOT_ID_PTR pSlotList = NULL_PTR;
3644 int *tmp_hw_cnids = NULL, *tmp_hw_dnids = NULL;
3645 int hw_ctable_size, hw_dtable_size;
3647 #ifdef DEBUG_SLOT_SELECTION
3648 fprintf(stderr, "%s: SOLARIS_HW_SLOT_SELECTION code running\n",
3649 PK11_DBG);
3650 #endif
3652 * Use RTLD_GROUP to limit the pkcs11_kernel provider to its own
3653 * symbols, which prevents it from mistakenly accessing C_* functions
3654 * from the top-level PKCS#11 library.
3656 if ((handle = dlopen(pkcs11_kernel, RTLD_LAZY | RTLD_GROUP)) == NULL)
3658 PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_DSO_FAILURE);
3659 goto err;
3662 if ((p = (CK_C_GetFunctionList)dlsym(handle,
3663 PK11_GET_FUNCTION_LIST)) == NULL)
3665 PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_DSO_FAILURE);
3666 goto err;
3669 /* get the full function list from the loaded library */
3670 if (p(&pflist) != CKR_OK)
3672 PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_DSO_FAILURE);
3673 goto err;
3676 rv = pflist->C_Initialize(NULL_PTR);
3677 if ((rv != CKR_OK) && (rv != CKR_CRYPTOKI_ALREADY_INITIALIZED))
3679 PK11err_add_data(PK11_F_CHECK_HW_MECHANISMS,
3680 PK11_R_INITIALIZE, rv);
3681 goto err;
3684 if (pflist->C_GetSlotList(0, NULL_PTR, &ulSlotCount) != CKR_OK)
3686 PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_GETSLOTLIST);
3687 goto err;
3690 /* no slots, set the hw mechanism tables as empty */
3691 if (ulSlotCount == 0)
3693 #ifdef DEBUG_SLOT_SELECTION
3694 fprintf(stderr, "%s: no hardware mechanisms found\n", PK11_DBG);
3695 #endif
3696 hw_cnids = OPENSSL_malloc(sizeof (int));
3697 hw_dnids = OPENSSL_malloc(sizeof (int));
3698 if (hw_cnids == NULL || hw_dnids == NULL)
3700 PK11err(PK11_F_CHECK_HW_MECHANISMS,
3701 PK11_R_MALLOC_FAILURE);
3702 return (0);
3704 /* this means empty tables */
3705 hw_cnids[0] = NID_undef;
3706 hw_dnids[0] = NID_undef;
3707 return (1);
3710 pSlotList = OPENSSL_malloc(ulSlotCount * sizeof (CK_SLOT_ID));
3711 if (pSlotList == NULL)
3713 PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_MALLOC_FAILURE);
3714 goto err;
3717 /* Get the slot list for processing */
3718 if (pflist->C_GetSlotList(0, pSlotList, &ulSlotCount) != CKR_OK)
3720 PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_GETSLOTLIST);
3721 goto err;
3725 * We don't care about duplicit mechanisms in multiple slots and also
3726 * reserve one slot for the terminal NID_undef which we use to stop the
3727 * search.
3729 hw_ctable_size = ulSlotCount * PK11_CIPHER_MAX + 1;
3730 hw_dtable_size = ulSlotCount * PK11_DIGEST_MAX + 1;
3731 tmp_hw_cnids = OPENSSL_malloc(hw_ctable_size * sizeof (int));
3732 tmp_hw_dnids = OPENSSL_malloc(hw_dtable_size * sizeof (int));
3733 if (tmp_hw_cnids == NULL || tmp_hw_dnids == NULL)
3735 PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_MALLOC_FAILURE);
3736 goto err;
3740 * Do not use memset since we should not rely on the fact that NID_undef
3741 * is zero now.
3743 for (i = 0; i < hw_ctable_size; ++i)
3744 tmp_hw_cnids[i] = NID_undef;
3745 for (i = 0; i < hw_dtable_size; ++i)
3746 tmp_hw_dnids[i] = NID_undef;
3748 #ifdef DEBUG_SLOT_SELECTION
3749 fprintf(stderr, "%s: provider: %s\n", PK11_DBG, pkcs11_kernel);
3750 fprintf(stderr, "%s: found %d hardware slots\n", PK11_DBG, ulSlotCount);
3751 fprintf(stderr, "%s: now looking for mechs supported in hw\n",
3752 PK11_DBG);
3753 #endif /* DEBUG_SLOT_SELECTION */
3755 for (i = 0; i < ulSlotCount; i++)
3757 if (pflist->C_GetTokenInfo(pSlotList[i], &token_info) != CKR_OK)
3758 continue;
3760 #ifdef DEBUG_SLOT_SELECTION
3761 fprintf(stderr, "%s: token label: %.32s\n", PK11_DBG, token_info.label);
3762 #endif /* DEBUG_SLOT_SELECTION */
3765 * We are filling the hw mech tables here. Global tables are
3766 * still NULL so all mechanisms are put into tmp tables.
3768 pk11_find_symmetric_ciphers(pflist, pSlotList[i],
3769 &n_cipher, tmp_hw_cnids);
3770 pk11_find_digests(pflist, pSlotList[i],
3771 &n_digest, tmp_hw_dnids);
3775 * Since we are part of a library (libcrypto.so), calling this function
3776 * may have side-effects. Also, C_Finalize() is triggered by
3777 * dlclose(3C).
3779 #if 0
3780 pflist->C_Finalize(NULL);
3781 #endif
3782 OPENSSL_free(pSlotList);
3783 (void) dlclose(handle);
3784 hw_cnids = tmp_hw_cnids;
3785 hw_dnids = tmp_hw_dnids;
3787 #ifdef DEBUG_SLOT_SELECTION
3788 fprintf(stderr, "%s: hw mechs check complete\n", PK11_DBG);
3789 #endif /* DEBUG_SLOT_SELECTION */
3790 return (1);
3792 err:
3793 if (pSlotList != NULL)
3794 OPENSSL_free(pSlotList);
3795 if (tmp_hw_cnids != NULL)
3796 OPENSSL_free(tmp_hw_cnids);
3797 if (tmp_hw_dnids != NULL)
3798 OPENSSL_free(tmp_hw_dnids);
3800 return (0);
3804 * Check presence of a NID in the table of NIDs. The table may be NULL (i.e.,
3805 * non-existent).
3807 static int nid_in_table(int nid, int *nid_table)
3809 int i = 0;
3812 * a special case. NULL means that we are initializing a new
3813 * table.
3815 if (nid_table == NULL)
3816 return (1);
3819 * the table is never full, there is always at least one
3820 * NID_undef.
3822 while (nid_table[i] != NID_undef)
3824 if (nid_table[i++] == nid)
3826 #ifdef DEBUG_SLOT_SELECTION
3827 fprintf(stderr, " (NID %d in hw table, idx %d)", nid, i);
3828 #endif /* DEBUG_SLOT_SELECTION */
3829 return (1);
3833 return (0);
3835 #endif /* SOLARIS_HW_SLOT_SELECTION */
3837 #endif /* OPENSSL_NO_HW_PK11 */
3838 #endif /* OPENSSL_NO_HW */