proftpd: update to 1.3.8c
[oi-userland.git] / components / library / openssl / openssl-1.0.2 / patches / 208-CVE-2022-0778.patch
blob3b68d3abba62aea92a13921b70d962ed22e5e0c3
1 From 3118eb64934499d93db3230748a452351d1d9a65 Mon Sep 17 00:00:00 2001
2 From: Tomas Mraz <tomas@openssl.org>
3 Date: Mon, 28 Feb 2022 18:26:21 +0100
4 Subject: [PATCH] Fix possible infinite loop in BN_mod_sqrt()
6 The calculation in some cases does not finish for non-prime p.
8 This fixes CVE-2022-0778.
10 Based on patch by David Benjamin <davidben@google.com>.
12 Reviewed-by: Paul Dale <pauli@openssl.org>
13 Reviewed-by: Matt Caswell <matt@openssl.org>
14 ---
15 crypto/bn/bn_sqrt.c | 30 ++++++++++++++++++------------
16 1 file changed, 18 insertions(+), 12 deletions(-)
18 diff --git a/crypto/bn/bn_sqrt.c b/crypto/bn/bn_sqrt.c
19 index 1723d5ded5a8..53b0f559855c 100644
20 --- a/crypto/bn/bn_sqrt.c
21 +++ b/crypto/bn/bn_sqrt.c
22 @@ -14,7 +14,8 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
24 * Returns 'ret' such that ret^2 == a (mod p), using the Tonelli/Shanks
25 * algorithm (cf. Henri Cohen, "A Course in Algebraic Computational Number
26 - * Theory", algorithm 1.5.1). 'p' must be prime!
27 + * Theory", algorithm 1.5.1). 'p' must be prime, otherwise an error or
28 + * an incorrect "result" will be returned.
31 BIGNUM *ret = in;
32 @@ -301,18 +302,23 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
33 goto vrfy;
36 - /* find smallest i such that b^(2^i) = 1 */
37 - i = 1;
38 - if (!BN_mod_sqr(t, b, p, ctx))
39 - goto end;
40 - while (!BN_is_one(t)) {
41 - i++;
42 - if (i == e) {
43 - BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
44 - goto end;
45 + /* Find the smallest i, 0 < i < e, such that b^(2^i) = 1. */
46 + for (i = 1; i < e; i++) {
47 + if (i == 1) {
48 + if (!BN_mod_sqr(t, b, p, ctx))
49 + goto end;
51 + } else {
52 + if (!BN_mod_mul(t, t, t, p, ctx))
53 + goto end;
55 - if (!BN_mod_mul(t, t, t, p, ctx))
56 - goto end;
57 + if (BN_is_one(t))
58 + break;
59 + }
60 + /* If not found, a is not a square or p is not prime. */
61 + if (i >= e) {
62 + BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
63 + goto end;
66 /* t := y^2^(e - i - 1) */