merge the formfield patch from ooo-build
[ooovba.git] / vcl / source / gdi / print2.cxx
blob88be6e0c0cb9ee1e743da9c795bfd9b8dc48ee23
1 /*************************************************************************
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * Copyright 2008 by Sun Microsystems, Inc.
7 * OpenOffice.org - a multi-platform office productivity suite
9 * $RCSfile: print2.cxx,v $
10 * $Revision: 1.24.86.3 $
12 * This file is part of OpenOffice.org.
14 * OpenOffice.org is free software: you can redistribute it and/or modify
15 * it under the terms of the GNU Lesser General Public License version 3
16 * only, as published by the Free Software Foundation.
18 * OpenOffice.org is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU Lesser General Public License version 3 for more details
22 * (a copy is included in the LICENSE file that accompanied this code).
24 * You should have received a copy of the GNU Lesser General Public License
25 * version 3 along with OpenOffice.org. If not, see
26 * <http://www.openoffice.org/license.html>
27 * for a copy of the LGPLv3 License.
29 ************************************************************************/
31 // MARKER(update_precomp.py): autogen include statement, do not remove
32 #include "precompiled_vcl.hxx"
34 #define _SPOOLPRINTER_EXT
36 #include <functional>
37 #include <algorithm>
38 #include <utility>
39 #include <list>
40 #include <vector>
41 #include <basegfx/polygon/b2dpolygon.hxx>
42 #include <basegfx/polygon/b2dpolygontools.hxx>
43 #include <tools/debug.hxx>
44 #include <vcl/virdev.hxx>
45 #include <vcl/metaact.hxx>
46 #include <vcl/gdimtf.hxx>
47 #include <vcl/print.h>
48 #include <vcl/salbtype.hxx>
49 #include <vcl/print.hxx>
50 #include <vcl/svapp.hxx>
51 #include <vcl/sallayout.hxx>
52 #include <vcl/bmpacc.hxx>
54 #include "pdfwriter_impl.hxx"
56 // -----------
57 // - Defines -
58 // -----------
60 #define MAX_TILE_WIDTH 1024
61 #define MAX_TILE_HEIGHT 1024
63 // ---------
64 // - Types -
65 // ---------
67 typedef ::std::pair< MetaAction*, int > Component; // MetaAction plus index in metafile
69 typedef ::std::list< Component > ComponentList;
71 // List of (intersecting) actions, plus overall bounds
72 struct ConnectedComponents
74 ConnectedComponents() :
75 aComponentList(),
76 aBounds(),
77 aBgColor(COL_WHITE),
78 bIsSpecial(false),
79 bIsFullyTransparent(false)
82 ComponentList aComponentList;
83 Rectangle aBounds;
84 Color aBgColor;
85 bool bIsSpecial;
86 bool bIsFullyTransparent;
89 typedef ::std::list< ConnectedComponents > ConnectedComponentsList;
92 // -----------
93 // - Printer -
94 // -----------
96 /** #i10613# Extracted from Printer::GetPreparedMetaFile. Returns true
97 if given action requires special handling (usually because of
98 transparency)
100 static bool ImplIsActionSpecial( const MetaAction& rAct )
102 switch( rAct.GetType() )
104 case META_TRANSPARENT_ACTION:
105 return true;
107 case META_FLOATTRANSPARENT_ACTION:
108 return true;
110 case META_BMPEX_ACTION:
111 return static_cast<const MetaBmpExAction&>(rAct).GetBitmapEx().IsTransparent();
113 case META_BMPEXSCALE_ACTION:
114 return static_cast<const MetaBmpExScaleAction&>(rAct).GetBitmapEx().IsTransparent();
116 case META_BMPEXSCALEPART_ACTION:
117 return static_cast<const MetaBmpExScalePartAction&>(rAct).GetBitmapEx().IsTransparent();
119 default:
120 return false;
124 /** Check whether rCurrRect rectangle fully covers io_rPrevRect - if
125 yes, return true and update o_rBgColor
127 static bool checkRect( Rectangle& io_rPrevRect,
128 Color& o_rBgColor,
129 const Rectangle& rCurrRect,
130 OutputDevice& rMapModeVDev )
132 // shape needs to fully cover previous content, and have uniform
133 // color
134 const bool bRet(
135 rMapModeVDev.LogicToPixel(rCurrRect).IsInside(io_rPrevRect) &&
136 rMapModeVDev.IsFillColor() );
138 if( bRet )
140 io_rPrevRect = rCurrRect;
141 o_rBgColor = rMapModeVDev.GetFillColor();
144 return bRet;
147 /** #107169# Convert BitmapEx to Bitmap with appropriately blended
148 color. Convert MetaTransparentAction to plain polygon,
149 appropriately colored
151 @param o_rMtf
152 Add converted actions to this metafile
154 static void ImplConvertTransparentAction( GDIMetaFile& o_rMtf,
155 const MetaAction& rAct,
156 const OutputDevice& rStateOutDev,
157 Color aBgColor )
159 if( rAct.GetType() == META_TRANSPARENT_ACTION )
161 const MetaTransparentAction* pTransAct = static_cast<const MetaTransparentAction*>(&rAct);
162 USHORT nTransparency( pTransAct->GetTransparence() );
164 // #i10613# Respect transparency for draw color
165 if( nTransparency )
167 o_rMtf.AddAction( new MetaPushAction( PUSH_LINECOLOR|PUSH_FILLCOLOR ) );
169 // assume white background for alpha blending
170 Color aLineColor( rStateOutDev.GetLineColor() );
171 aLineColor.SetRed( static_cast<UINT8>( (255L*nTransparency + (100L - nTransparency)*aLineColor.GetRed()) / 100L ) );
172 aLineColor.SetGreen( static_cast<UINT8>( (255L*nTransparency + (100L - nTransparency)*aLineColor.GetGreen()) / 100L ) );
173 aLineColor.SetBlue( static_cast<UINT8>( (255L*nTransparency + (100L - nTransparency)*aLineColor.GetBlue()) / 100L ) );
174 o_rMtf.AddAction( new MetaLineColorAction(aLineColor, TRUE) );
176 Color aFillColor( rStateOutDev.GetFillColor() );
177 aFillColor.SetRed( static_cast<UINT8>( (255L*nTransparency + (100L - nTransparency)*aFillColor.GetRed()) / 100L ) );
178 aFillColor.SetGreen( static_cast<UINT8>( (255L*nTransparency + (100L - nTransparency)*aFillColor.GetGreen()) / 100L ) );
179 aFillColor.SetBlue( static_cast<UINT8>( (255L*nTransparency + (100L - nTransparency)*aFillColor.GetBlue()) / 100L ) );
180 o_rMtf.AddAction( new MetaFillColorAction(aFillColor, TRUE) );
183 o_rMtf.AddAction( new MetaPolyPolygonAction(pTransAct->GetPolyPolygon()) );
185 if( nTransparency )
186 o_rMtf.AddAction( new MetaPopAction() );
188 else
190 BitmapEx aBmpEx;
192 switch( rAct.GetType() )
194 case META_BMPEX_ACTION:
195 aBmpEx = static_cast<const MetaBmpExAction&>(rAct).GetBitmapEx();
196 break;
198 case META_BMPEXSCALE_ACTION:
199 aBmpEx = static_cast<const MetaBmpExScaleAction&>(rAct).GetBitmapEx();
200 break;
202 case META_BMPEXSCALEPART_ACTION:
203 aBmpEx = static_cast<const MetaBmpExScaleAction&>(rAct).GetBitmapEx();
204 break;
206 case META_TRANSPARENT_ACTION:
208 default:
209 DBG_ERROR("Printer::GetPreparedMetafile impossible state reached");
210 break;
213 Bitmap aBmp( aBmpEx.GetBitmap() );
214 if( !aBmpEx.IsAlpha() )
216 // blend with mask
217 BitmapReadAccess* pRA = aBmp.AcquireReadAccess();
219 if( !pRA )
220 return; // what else should I do?
222 Color aActualColor( aBgColor );
224 if( pRA->HasPalette() )
225 aActualColor = pRA->GetBestPaletteColor( aBgColor ).operator Color();
227 aBmp.ReleaseAccess(pRA);
229 // did we get true white?
230 if( aActualColor.GetColorError( aBgColor ) )
232 // no, create truecolor bitmap, then
233 aBmp.Convert( BMP_CONVERSION_24BIT );
235 // fill masked out areas white
236 aBmp.Replace( aBmpEx.GetMask(), aBgColor );
238 else
240 // fill masked out areas white
241 aBmp.Replace( aBmpEx.GetMask(), aActualColor );
244 else
246 // blend with alpha channel
247 aBmp.Convert( BMP_CONVERSION_24BIT );
248 aBmp.Blend(aBmpEx.GetAlpha(),aBgColor);
251 // add corresponding action
252 switch( rAct.GetType() )
254 case META_BMPEX_ACTION:
255 o_rMtf.AddAction( new MetaBmpAction(
256 static_cast<const MetaBmpExAction&>(rAct).GetPoint(),
257 aBmp ));
258 break;
259 case META_BMPEXSCALE_ACTION:
260 o_rMtf.AddAction( new MetaBmpScaleAction(
261 static_cast<const MetaBmpExScaleAction&>(rAct).GetPoint(),
262 static_cast<const MetaBmpExScaleAction&>(rAct).GetSize(),
263 aBmp ));
264 break;
265 case META_BMPEXSCALEPART_ACTION:
266 o_rMtf.AddAction( new MetaBmpScalePartAction(
267 static_cast<const MetaBmpExScalePartAction&>(rAct).GetDestPoint(),
268 static_cast<const MetaBmpExScalePartAction&>(rAct).GetDestSize(),
269 static_cast<const MetaBmpExScalePartAction&>(rAct).GetSrcPoint(),
270 static_cast<const MetaBmpExScalePartAction&>(rAct).GetSrcSize(),
271 aBmp ));
272 break;
273 default:
274 DBG_ERROR("Unexpected case");
275 break;
280 // #i10613# Extracted from ImplCheckRect::ImplCreate
281 // Returns true, if given action creates visible (i.e. non-transparent) output
282 static bool ImplIsNotTransparent( const MetaAction& rAct, const OutputDevice& rOut )
284 const bool bLineTransparency( rOut.IsLineColor() ? rOut.GetLineColor().GetTransparency() == 255 : true );
285 const bool bFillTransparency( rOut.IsFillColor() ? rOut.GetFillColor().GetTransparency() == 255 : true );
286 bool bRet( false );
288 switch( rAct.GetType() )
290 case META_POINT_ACTION:
291 if( !bLineTransparency )
292 bRet = true;
293 break;
295 case META_LINE_ACTION:
296 if( !bLineTransparency )
297 bRet = true;
298 break;
300 case META_RECT_ACTION:
301 if( !bLineTransparency || !bFillTransparency )
302 bRet = true;
303 break;
305 case META_ROUNDRECT_ACTION:
306 if( !bLineTransparency || !bFillTransparency )
307 bRet = true;
308 break;
310 case META_ELLIPSE_ACTION:
311 if( !bLineTransparency || !bFillTransparency )
312 bRet = true;
313 break;
315 case META_ARC_ACTION:
316 if( !bLineTransparency || !bFillTransparency )
317 bRet = true;
318 break;
320 case META_PIE_ACTION:
321 if( !bLineTransparency || !bFillTransparency )
322 bRet = true;
323 break;
325 case META_CHORD_ACTION:
326 if( !bLineTransparency || !bFillTransparency )
327 bRet = true;
328 break;
330 case META_POLYLINE_ACTION:
331 if( !bLineTransparency )
332 bRet = true;
333 break;
335 case META_POLYGON_ACTION:
336 if( !bLineTransparency || !bFillTransparency )
337 bRet = true;
338 break;
340 case META_POLYPOLYGON_ACTION:
341 if( !bLineTransparency || !bFillTransparency )
342 bRet = true;
343 break;
345 case META_TEXT_ACTION:
347 const MetaTextAction& rTextAct = static_cast<const MetaTextAction&>(rAct);
348 const XubString aString( rTextAct.GetText(), rTextAct.GetIndex(), rTextAct.GetLen() );
350 if( aString.Len() )
351 bRet = true;
353 break;
355 case META_TEXTARRAY_ACTION:
357 const MetaTextArrayAction& rTextAct = static_cast<const MetaTextArrayAction&>(rAct);
358 const XubString aString( rTextAct.GetText(), rTextAct.GetIndex(), rTextAct.GetLen() );
360 if( aString.Len() )
361 bRet = true;
363 break;
365 case META_PIXEL_ACTION:
366 case META_BMP_ACTION:
367 case META_BMPSCALE_ACTION:
368 case META_BMPSCALEPART_ACTION:
369 case META_BMPEX_ACTION:
370 case META_BMPEXSCALE_ACTION:
371 case META_BMPEXSCALEPART_ACTION:
372 case META_MASK_ACTION:
373 case META_MASKSCALE_ACTION:
374 case META_MASKSCALEPART_ACTION:
375 case META_GRADIENT_ACTION:
376 case META_GRADIENTEX_ACTION:
377 case META_HATCH_ACTION:
378 case META_WALLPAPER_ACTION:
379 case META_TRANSPARENT_ACTION:
380 case META_FLOATTRANSPARENT_ACTION:
381 case META_EPS_ACTION:
382 case META_TEXTRECT_ACTION:
383 case META_STRETCHTEXT_ACTION:
384 case META_TEXTLINE_ACTION:
385 // all other actions: generate non-transparent output
386 bRet = true;
387 break;
389 default:
390 break;
393 return bRet;
396 // #i10613# Extracted from ImplCheckRect::ImplCreate
397 static Rectangle ImplCalcActionBounds( const MetaAction& rAct, const OutputDevice& rOut )
399 Rectangle aActionBounds;
401 switch( rAct.GetType() )
403 case META_PIXEL_ACTION:
404 aActionBounds = Rectangle( static_cast<const MetaPixelAction&>(rAct).GetPoint(), Size( 1, 1 ) );
405 break;
407 case META_POINT_ACTION:
408 aActionBounds = Rectangle( static_cast<const MetaPointAction&>(rAct).GetPoint(), Size( 1, 1 ) );
409 break;
411 case META_LINE_ACTION:
412 aActionBounds = Rectangle( static_cast<const MetaLineAction&>(rAct).GetStartPoint(),
413 static_cast<const MetaLineAction&>(rAct).GetEndPoint() );
414 break;
416 case META_RECT_ACTION:
417 aActionBounds = static_cast<const MetaRectAction&>(rAct).GetRect();
418 break;
420 case META_ROUNDRECT_ACTION:
421 aActionBounds = Polygon( static_cast<const MetaRoundRectAction&>(rAct).GetRect(),
422 static_cast<const MetaRoundRectAction&>(rAct).GetHorzRound(),
423 static_cast<const MetaRoundRectAction&>(rAct).GetVertRound() ).GetBoundRect();
424 break;
426 case META_ELLIPSE_ACTION:
428 const Rectangle& rRect = static_cast<const MetaEllipseAction&>(rAct).GetRect();
429 aActionBounds = Polygon( rRect.Center(),
430 rRect.GetWidth() >> 1,
431 rRect.GetHeight() >> 1 ).GetBoundRect();
432 break;
435 case META_ARC_ACTION:
436 aActionBounds = Polygon( static_cast<const MetaArcAction&>(rAct).GetRect(),
437 static_cast<const MetaArcAction&>(rAct).GetStartPoint(),
438 static_cast<const MetaArcAction&>(rAct).GetEndPoint(), POLY_ARC ).GetBoundRect();
439 break;
441 case META_PIE_ACTION:
442 aActionBounds = Polygon( static_cast<const MetaPieAction&>(rAct).GetRect(),
443 static_cast<const MetaPieAction&>(rAct).GetStartPoint(),
444 static_cast<const MetaPieAction&>(rAct).GetEndPoint(), POLY_PIE ).GetBoundRect();
445 break;
447 case META_CHORD_ACTION:
448 aActionBounds = Polygon( static_cast<const MetaChordAction&>(rAct).GetRect(),
449 static_cast<const MetaChordAction&>(rAct).GetStartPoint(),
450 static_cast<const MetaChordAction&>(rAct).GetEndPoint(), POLY_CHORD ).GetBoundRect();
451 break;
453 case META_POLYLINE_ACTION:
454 aActionBounds = static_cast<const MetaPolyLineAction&>(rAct).GetPolygon().GetBoundRect();
455 break;
457 case META_POLYGON_ACTION:
458 aActionBounds = static_cast<const MetaPolygonAction&>(rAct).GetPolygon().GetBoundRect();
459 break;
461 case META_POLYPOLYGON_ACTION:
462 aActionBounds = static_cast<const MetaPolyPolygonAction&>(rAct).GetPolyPolygon().GetBoundRect();
463 break;
465 case META_BMP_ACTION:
466 aActionBounds = Rectangle( static_cast<const MetaBmpAction&>(rAct).GetPoint(),
467 rOut.PixelToLogic( static_cast<const MetaBmpAction&>(rAct).GetBitmap().GetSizePixel() ) );
468 break;
470 case META_BMPSCALE_ACTION:
471 aActionBounds = Rectangle( static_cast<const MetaBmpScaleAction&>(rAct).GetPoint(),
472 static_cast<const MetaBmpScaleAction&>(rAct).GetSize() );
473 break;
475 case META_BMPSCALEPART_ACTION:
476 aActionBounds = Rectangle( static_cast<const MetaBmpScalePartAction&>(rAct).GetDestPoint(),
477 static_cast<const MetaBmpScalePartAction&>(rAct).GetDestSize() );
478 break;
480 case META_BMPEX_ACTION:
481 aActionBounds = Rectangle( static_cast<const MetaBmpExAction&>(rAct).GetPoint(),
482 rOut.PixelToLogic( static_cast<const MetaBmpExAction&>(rAct).GetBitmapEx().GetSizePixel() ) );
483 break;
485 case META_BMPEXSCALE_ACTION:
486 aActionBounds = Rectangle( static_cast<const MetaBmpExScaleAction&>(rAct).GetPoint(),
487 static_cast<const MetaBmpExScaleAction&>(rAct).GetSize() );
488 break;
490 case META_BMPEXSCALEPART_ACTION:
491 aActionBounds = Rectangle( static_cast<const MetaBmpExScalePartAction&>(rAct).GetDestPoint(),
492 static_cast<const MetaBmpExScalePartAction&>(rAct).GetDestSize() );
493 break;
495 case META_MASK_ACTION:
496 aActionBounds = Rectangle( static_cast<const MetaMaskAction&>(rAct).GetPoint(),
497 rOut.PixelToLogic( static_cast<const MetaMaskAction&>(rAct).GetBitmap().GetSizePixel() ) );
498 break;
500 case META_MASKSCALE_ACTION:
501 aActionBounds = Rectangle( static_cast<const MetaMaskScaleAction&>(rAct).GetPoint(),
502 static_cast<const MetaMaskScaleAction&>(rAct).GetSize() );
503 break;
505 case META_MASKSCALEPART_ACTION:
506 aActionBounds = Rectangle( static_cast<const MetaMaskScalePartAction&>(rAct).GetDestPoint(),
507 static_cast<const MetaMaskScalePartAction&>(rAct).GetDestSize() );
508 break;
510 case META_GRADIENT_ACTION:
511 aActionBounds = static_cast<const MetaGradientAction&>(rAct).GetRect();
512 break;
514 case META_GRADIENTEX_ACTION:
515 aActionBounds = static_cast<const MetaGradientExAction&>(rAct).GetPolyPolygon().GetBoundRect();
516 break;
518 case META_HATCH_ACTION:
519 aActionBounds = static_cast<const MetaHatchAction&>(rAct).GetPolyPolygon().GetBoundRect();
520 break;
522 case META_WALLPAPER_ACTION:
523 aActionBounds = static_cast<const MetaWallpaperAction&>(rAct).GetRect();
524 break;
526 case META_TRANSPARENT_ACTION:
527 aActionBounds = static_cast<const MetaTransparentAction&>(rAct).GetPolyPolygon().GetBoundRect();
528 break;
530 case META_FLOATTRANSPARENT_ACTION:
531 aActionBounds = Rectangle( static_cast<const MetaFloatTransparentAction&>(rAct).GetPoint(),
532 static_cast<const MetaFloatTransparentAction&>(rAct).GetSize() );
533 break;
535 case META_EPS_ACTION:
536 aActionBounds = Rectangle( static_cast<const MetaEPSAction&>(rAct).GetPoint(),
537 static_cast<const MetaEPSAction&>(rAct).GetSize() );
538 break;
540 case META_TEXT_ACTION:
542 const MetaTextAction& rTextAct = static_cast<const MetaTextAction&>(rAct);
543 const XubString aString( rTextAct.GetText(), rTextAct.GetIndex(), rTextAct.GetLen() );
545 if( aString.Len() )
547 const Point aPtLog( rTextAct.GetPoint() );
549 // #105987# Use API method instead of Impl* methods
550 // #107490# Set base parameter equal to index parameter
551 rOut.GetTextBoundRect( aActionBounds, rTextAct.GetText(), rTextAct.GetIndex(),
552 rTextAct.GetIndex(), rTextAct.GetLen() );
553 aActionBounds.Move( aPtLog.X(), aPtLog.Y() );
556 break;
558 case META_TEXTARRAY_ACTION:
560 const MetaTextArrayAction& rTextAct = static_cast<const MetaTextArrayAction&>(rAct);
561 const XubString aString( rTextAct.GetText(), rTextAct.GetIndex(), rTextAct.GetLen() );
562 const long nLen = aString.Len();
564 if( nLen )
566 // #105987# ImplLayout takes everything in logical coordinates
567 SalLayout* pSalLayout = rOut.ImplLayout( rTextAct.GetText(), rTextAct.GetIndex(),
568 rTextAct.GetLen(), rTextAct.GetPoint(),
569 0, rTextAct.GetDXArray() );
570 if( pSalLayout )
572 Rectangle aBoundRect( const_cast<OutputDevice&>(rOut).ImplGetTextBoundRect( *pSalLayout ) );
573 aActionBounds = rOut.PixelToLogic( aBoundRect );
574 pSalLayout->Release();
578 break;
580 case META_TEXTRECT_ACTION:
581 aActionBounds = static_cast<const MetaTextRectAction&>(rAct).GetRect();
582 break;
584 case META_STRETCHTEXT_ACTION:
586 const MetaStretchTextAction& rTextAct = static_cast<const MetaStretchTextAction&>(rAct);
587 const XubString aString( rTextAct.GetText(), rTextAct.GetIndex(), rTextAct.GetLen() );
588 const long nLen = aString.Len();
590 // #i16195# Literate copy from TextArray action, the
591 // semantics for the ImplLayout call are copied from the
592 // OutDev::DrawStretchText() code. Unfortunately, also in
593 // this case, public outdev methods such as GetTextWidth()
594 // don't provide enough info.
595 if( nLen )
597 // #105987# ImplLayout takes everything in logical coordinates
598 SalLayout* pSalLayout = rOut.ImplLayout( rTextAct.GetText(), rTextAct.GetIndex(),
599 rTextAct.GetLen(), rTextAct.GetPoint(),
600 rTextAct.GetWidth() );
601 if( pSalLayout )
603 Rectangle aBoundRect( const_cast<OutputDevice&>(rOut).ImplGetTextBoundRect( *pSalLayout ) );
604 aActionBounds = rOut.PixelToLogic( aBoundRect );
605 pSalLayout->Release();
609 break;
611 case META_TEXTLINE_ACTION:
612 DBG_ERROR("META_TEXTLINE_ACTION not supported");
613 break;
615 default:
616 break;
619 if( !aActionBounds.IsEmpty() )
620 return rOut.LogicToPixel( aActionBounds );
621 else
622 return Rectangle();
625 static bool ImplIsActionHandlingTransparency( const MetaAction& rAct )
627 // META_FLOATTRANSPARENT_ACTION can contain a whole metafile,
628 // which is to be rendered with the given transparent gradient. We
629 // currently cannot emulate transparent painting on a white
630 // background reliably.
632 // the remainder can handle printing itself correctly on a uniform
633 // white background.
634 switch( rAct.GetType() )
636 case META_TRANSPARENT_ACTION:
637 case META_BMPEX_ACTION:
638 case META_BMPEXSCALE_ACTION:
639 case META_BMPEXSCALEPART_ACTION:
640 return true;
642 default:
643 return false;
647 // remove comment to enable highlighting of generated output
648 bool OutputDevice::RemoveTransparenciesFromMetaFile( const GDIMetaFile& rInMtf, GDIMetaFile& rOutMtf,
649 long nMaxBmpDPIX, long nMaxBmpDPIY,
650 bool bReduceTransparency, bool bTransparencyAutoMode,
651 bool bDownsampleBitmaps )
653 MetaAction* pCurrAct;
654 bool bTransparent( false );
656 rOutMtf.Clear();
658 if( ! bReduceTransparency || bTransparencyAutoMode )
660 // watch for transparent drawing actions
661 for( pCurrAct = ( (GDIMetaFile&) rInMtf ).FirstAction();
662 pCurrAct && !bTransparent;
663 pCurrAct = ( (GDIMetaFile&) rInMtf ).NextAction() )
665 // #i10613# Extracted "specialness" predicate into extra method
667 // #107169# Also examine metafiles with masked bitmaps in
668 // detail. Further down, this is optimized in such a way
669 // that there's no unnecessary painting of masked bitmaps
670 // (which are _always_ subdivided into rectangular regions
671 // of uniform opacity): if a masked bitmap is printed over
672 // empty background, we convert to a plain bitmap with
673 // white background.
674 if( ImplIsActionSpecial( *pCurrAct ) )
676 bTransparent = true;
681 // #i10613# Determine set of connected components containing transparent objects. These are
682 // then processed as bitmaps, the original actions are removed from the metafile.
683 if( !bTransparent )
685 // nothing transparent -> just copy
686 rOutMtf = rInMtf;
688 else
690 // #i10613#
691 // This works as follows: we want a number of distinct sets of
692 // connected components, where each set contains metafile
693 // actions that are intersecting (note: there are possibly
694 // more actions contained as are directly intersecting,
695 // because we can only produce rectangular bitmaps later
696 // on. Thus, each set of connected components is the smallest
697 // enclosing, axis-aligned rectangle that completely bounds a
698 // number of intersecting metafile actions, plus any action
699 // that would otherwise be cut in two). Therefore, we
700 // iteratively add metafile actions from the original metafile
701 // to this connected components list (aCCList), by checking
702 // each element's bounding box against intersection with the
703 // metaaction at hand.
704 // All those intersecting elements are removed from aCCList
705 // and collected in a temporary list (aCCMergeList). After all
706 // elements have been checked, the aCCMergeList elements are
707 // merged with the metaaction at hand into one resulting
708 // connected component, with one big bounding box, and
709 // inserted into aCCList again.
710 // The time complexity of this algorithm is O(n^3), where n is
711 // the number of metafile actions, and it finds all distinct
712 // regions of rectangle-bounded connected components. This
713 // algorithm was designed by AF.
717 // STAGE 1: Detect background
718 // ==========================
721 // Receives uniform background content, and is _not_ merged
722 // nor checked for intersection against other aCCList elements
723 ConnectedComponents aBackgroundComponent;
725 // create an OutputDevice to record mapmode changes and the like
726 VirtualDevice aMapModeVDev;
727 aMapModeVDev.mnDPIX = mnDPIX;
728 aMapModeVDev.mnDPIY = mnDPIY;
729 aMapModeVDev.EnableOutput(FALSE);
731 int nLastBgAction, nActionNum;
733 // weed out page-filling background objects (if they are
734 // uniformly coloured). Keeping them outside the other
735 // connected components often prevents whole-page bitmap
736 // generation.
737 bool bStillBackground=true; // true until first non-bg action
738 nActionNum=0; nLastBgAction=-1;
739 pCurrAct=const_cast<GDIMetaFile&>(rInMtf).FirstAction();
740 while( pCurrAct && bStillBackground )
742 switch( pCurrAct->GetType() )
744 case META_RECT_ACTION:
746 if( !checkRect(
747 aBackgroundComponent.aBounds,
748 aBackgroundComponent.aBgColor,
749 static_cast<const MetaRectAction*>(pCurrAct)->GetRect(),
750 aMapModeVDev) )
751 bStillBackground=false; // incomplete occlusion of background
752 else
753 nLastBgAction=nActionNum; // this _is_ background
754 break;
756 case META_POLYGON_ACTION:
758 const Polygon aPoly(
759 static_cast<const MetaPolygonAction*>(pCurrAct)->GetPolygon());
760 if( !basegfx::tools::isRectangle(
761 aPoly.getB2DPolygon()) ||
762 !checkRect(
763 aBackgroundComponent.aBounds,
764 aBackgroundComponent.aBgColor,
765 aPoly.GetBoundRect(),
766 aMapModeVDev) )
767 bStillBackground=false; // incomplete occlusion of background
768 else
769 nLastBgAction=nActionNum; // this _is_ background
770 break;
772 case META_POLYPOLYGON_ACTION:
774 const PolyPolygon aPoly(
775 static_cast<const MetaPolyPolygonAction*>(pCurrAct)->GetPolyPolygon());
776 if( aPoly.Count() != 1 ||
777 !basegfx::tools::isRectangle(
778 aPoly[0].getB2DPolygon()) ||
779 !checkRect(
780 aBackgroundComponent.aBounds,
781 aBackgroundComponent.aBgColor,
782 aPoly.GetBoundRect(),
783 aMapModeVDev) )
784 bStillBackground=false; // incomplete occlusion of background
785 else
786 nLastBgAction=nActionNum; // this _is_ background
787 break;
789 case META_WALLPAPER_ACTION:
791 if( !checkRect(
792 aBackgroundComponent.aBounds,
793 aBackgroundComponent.aBgColor,
794 static_cast<const MetaWallpaperAction*>(pCurrAct)->GetRect(),
795 aMapModeVDev) )
796 bStillBackground=false; // incomplete occlusion of background
797 else
798 nLastBgAction=nActionNum; // this _is_ background
799 break;
801 default:
803 if( ImplIsNotTransparent( *pCurrAct,
804 aMapModeVDev ) )
805 bStillBackground=false; // non-transparent action, possibly
806 // not uniform
807 else
808 // extend current bounds (next uniform action
809 // needs to fully cover this area)
810 aBackgroundComponent.aBounds.Union(
811 ImplCalcActionBounds(*pCurrAct, aMapModeVDev) );
812 break;
816 // execute action to get correct MapModes etc.
817 pCurrAct->Execute( &aMapModeVDev );
819 pCurrAct=const_cast<GDIMetaFile&>(rInMtf).NextAction();
820 ++nActionNum;
823 ConnectedComponentsList aCCList; // list containing distinct sets of connected components as elements.
825 // create an OutputDevice to record mapmode changes and the like
826 VirtualDevice aMapModeVDev2;
827 aMapModeVDev2.mnDPIX = mnDPIX;
828 aMapModeVDev2.mnDPIY = mnDPIY;
829 aMapModeVDev2.EnableOutput(FALSE);
831 // fast-forward until one after the last background action
832 // (need to reconstruct map mode vdev state)
833 nActionNum=0;
834 pCurrAct=const_cast<GDIMetaFile&>(rInMtf).FirstAction();
835 while( pCurrAct && nActionNum<=nLastBgAction )
837 // up to and including last ink-generating background
838 // action go to background component
839 aBackgroundComponent.aComponentList.push_back(
840 ::std::make_pair(
841 pCurrAct, nActionNum) );
843 // execute action to get correct MapModes etc.
844 pCurrAct->Execute( &aMapModeVDev2 );
845 pCurrAct=const_cast<GDIMetaFile&>(rInMtf).NextAction();
846 ++nActionNum;
850 // STAGE 2: Generate connected components list
851 // ===========================================
854 // iterate over all actions (start where background action
855 // search left off)
856 for( ;
857 pCurrAct;
858 pCurrAct=const_cast<GDIMetaFile&>(rInMtf).NextAction(), ++nActionNum )
860 // execute action to get correct MapModes etc.
861 pCurrAct->Execute( &aMapModeVDev2 );
863 // cache bounds of current action
864 const Rectangle aBBCurrAct( ImplCalcActionBounds(*pCurrAct, aMapModeVDev2) );
866 // accumulate collected bounds here, initialize with current action
867 Rectangle aTotalBounds( aBBCurrAct ); // thus,
868 // aTotalComponents.aBounds
869 // is
870 // empty
871 // for
872 // non-output-generating
873 // actions
874 bool bTreatSpecial( false );
875 ConnectedComponents aTotalComponents;
878 // STAGE 2.1: Search for intersecting cc entries
879 // =============================================
882 // if aBBCurrAct is empty, it will intersect with no
883 // aCCList member. Thus, we can safe us the check.
884 // Furthermore, this ensures that non-output-generating
885 // actions get their own aCCList entry, which is necessary
886 // when copying them to the output metafile (see stage 4
887 // below).
889 // #107169# Wholly transparent objects need
890 // not be considered for connected components,
891 // too. Just put each of them into a separate
892 // component.
893 aTotalComponents.bIsFullyTransparent = !ImplIsNotTransparent(*pCurrAct, aMapModeVDev2);
895 if( !aBBCurrAct.IsEmpty() &&
896 !aTotalComponents.bIsFullyTransparent )
898 if( !aBackgroundComponent.aComponentList.empty() &&
899 !aBackgroundComponent.aBounds.IsInside(aTotalBounds) )
901 // it seems the background is not large enough. to
902 // be on the safe side, combine with this component.
903 aTotalBounds.Union( aBackgroundComponent.aBounds );
905 // extract all aCurr actions to aTotalComponents
906 aTotalComponents.aComponentList.splice( aTotalComponents.aComponentList.end(),
907 aBackgroundComponent.aComponentList );
909 if( aBackgroundComponent.bIsSpecial )
910 bTreatSpecial = true;
913 ConnectedComponentsList::iterator aCurrCC;
914 const ConnectedComponentsList::iterator aLastCC( aCCList.end() );
915 bool bSomeComponentsChanged;
917 // now, this is unfortunate: since changing anyone of
918 // the aCCList elements (e.g. by merging or addition
919 // of an action) might generate new intersection with
920 // other aCCList elements, have to repeat the whole
921 // element scanning, until nothing changes anymore.
922 // Thus, this loop here makes us O(n^3) in the worst
923 // case.
926 // only loop here if 'intersects' branch below was hit
927 bSomeComponentsChanged = false;
929 // iterate over all current members of aCCList
930 for( aCurrCC=aCCList.begin(); aCurrCC != aLastCC; )
932 // first check if current element's bounds are
933 // empty. This ensures that empty actions are not
934 // merged into one component, as a matter of fact,
935 // they have no position.
937 // #107169# Wholly transparent objects need
938 // not be considered for connected components,
939 // too. Just put each of them into a separate
940 // component.
941 if( !aCurrCC->aBounds.IsEmpty() &&
942 !aCurrCC->bIsFullyTransparent &&
943 aCurrCC->aBounds.IsOver( aTotalBounds ) )
945 // union the intersecting aCCList element into aTotalComponents
947 // calc union bounding box
948 aTotalBounds.Union( aCurrCC->aBounds );
950 // extract all aCurr actions to aTotalComponents
951 aTotalComponents.aComponentList.splice( aTotalComponents.aComponentList.end(),
952 aCurrCC->aComponentList );
954 if( aCurrCC->bIsSpecial )
955 bTreatSpecial = true;
957 // remove and delete aCurrCC element from list (we've now merged its content)
958 aCurrCC = aCCList.erase( aCurrCC );
960 // at least one component changed, need to rescan everything
961 bSomeComponentsChanged = true;
963 else
965 ++aCurrCC;
969 while( bSomeComponentsChanged );
973 // STAGE 2.2: Determine special state for cc element
974 // =================================================
977 // now test whether the whole connected component must be
978 // treated specially (i.e. rendered as a bitmap): if the
979 // added action is the very first action, or all actions
980 // before it are completely transparent, the connected
981 // component need not be treated specially, not even if
982 // the added action contains transparency. This is because
983 // painting of transparent objects on _white background_
984 // works without alpha compositing (you just calculate the
985 // color). Note that for the test "all objects before me
986 // are transparent" no sorting is necessary, since the
987 // added metaaction pCurrAct is always in the order the
988 // metafile is painted. Generally, the order of the
989 // metaactions in the ConnectedComponents are not
990 // guaranteed to be the same as in the metafile.
991 if( bTreatSpecial )
993 // prev component(s) special -> this one, too
994 aTotalComponents.bIsSpecial = true;
996 else if( !ImplIsActionSpecial( *pCurrAct ) )
998 // added action and none of prev components special ->
999 // this one normal, too
1000 aTotalComponents.bIsSpecial = false;
1002 else
1004 // added action is special and none of prev components
1005 // special -> do the detailed tests
1007 // can the action handle transparency correctly
1008 // (i.e. when painted on white background, does the
1009 // action still look correct)?
1010 if( !ImplIsActionHandlingTransparency( *pCurrAct ) )
1012 // no, action cannot handle its transparency on
1013 // a printer device, render to bitmap
1014 aTotalComponents.bIsSpecial = true;
1016 else
1018 // yes, action can handle its transparency, so
1019 // check whether we're on white background
1020 if( aTotalComponents.aComponentList.empty() )
1022 // nothing between pCurrAct and page
1023 // background -> don't be special
1024 aTotalComponents.bIsSpecial = false;
1026 else
1028 // #107169# Fixes abnove now ensure that _no_
1029 // object in the list is fully transparent. Thus,
1030 // if the component list is not empty above, we
1031 // must assume that we have to treat this
1032 // component special.
1034 // there are non-transparent objects between
1035 // pCurrAct and the empty sheet of paper -> be
1036 // special, then
1037 aTotalComponents.bIsSpecial = true;
1044 // STAGE 2.3: Add newly generated CC list element
1045 // ==============================================
1048 // set new bounds and add action to list
1049 aTotalComponents.aBounds = aTotalBounds;
1050 aTotalComponents.aComponentList.push_back(
1051 ::std::make_pair(
1052 pCurrAct, nActionNum) );
1054 // add aTotalComponents as a new entry to aCCList
1055 aCCList.push_back( aTotalComponents );
1057 DBG_ASSERT( !aTotalComponents.aComponentList.empty(),
1058 "Printer::GetPreparedMetaFile empty component" );
1059 DBG_ASSERT( !aTotalComponents.aBounds.IsEmpty() ||
1060 (aTotalComponents.aBounds.IsEmpty() && aTotalComponents.aComponentList.size() == 1),
1061 "Printer::GetPreparedMetaFile non-output generating actions must be solitary");
1062 DBG_ASSERT( !aTotalComponents.bIsFullyTransparent ||
1063 (aTotalComponents.bIsFullyTransparent && aTotalComponents.aComponentList.size() == 1),
1064 "Printer::GetPreparedMetaFile fully transparent actions must be solitary");
1067 // well now, we've got the list of disjunct connected
1068 // components. Now we've got to create a map, which contains
1069 // the corresponding aCCList element for every
1070 // metaaction. Later on, we always process the complete
1071 // metafile for each bitmap to be generated, but switch on
1072 // output only for actions contained in the then current
1073 // aCCList element. This ensures correct mapmode and attribute
1074 // settings for all cases.
1076 // maps mtf actions to CC list entries
1077 ::std::vector< const ConnectedComponents* > aCCList_MemberMap( rInMtf.GetActionCount() );
1079 // iterate over all aCCList members and their contained metaactions
1080 ConnectedComponentsList::iterator aCurr( aCCList.begin() );
1081 const ConnectedComponentsList::iterator aLast( aCCList.end() );
1082 for( ; aCurr != aLast; ++aCurr )
1084 ComponentList::iterator aCurrentAction( aCurr->aComponentList.begin() );
1085 const ComponentList::iterator aLastAction( aCurr->aComponentList.end() );
1086 for( ; aCurrentAction != aLastAction; ++aCurrentAction )
1088 // set pointer to aCCList element for corresponding index
1089 aCCList_MemberMap[ aCurrentAction->second ] = &(*aCurr);
1094 // STAGE 3.1: Output background mtf actions (if there are any)
1095 // ===========================================================
1098 ComponentList::iterator aCurrAct( aBackgroundComponent.aComponentList.begin() );
1099 const ComponentList::iterator aLastAct( aBackgroundComponent.aComponentList.end() );
1100 for( ; aCurrAct != aLastAct; ++aCurrAct )
1102 // simply add this action (above, we inserted the actions
1103 // starting at index 0 up to and including nLastBgAction)
1104 rOutMtf.AddAction( ( aCurrAct->first->Duplicate(), aCurrAct->first ) );
1109 // STAGE 3.2: Generate banded bitmaps for special regions
1110 // ====================================================
1113 Point aTmpPoint;
1114 Size aTmpSize( GetOutputSizePixel() );
1115 if( mpPDFWriter )
1117 aTmpSize = mpPDFWriter->getCurPageSize();
1118 aTmpSize = LogicToPixel( aTmpSize, MapMode( MAP_POINT ) );
1120 // also add error code to PDFWriter
1121 mpPDFWriter->insertError( vcl::PDFWriter::Warning_Transparency_Converted );
1123 const Rectangle aOutputRect( aTmpPoint, aTmpSize );
1124 bool bTiling = dynamic_cast<Printer*>(this) != NULL;
1126 // iterate over all aCCList members and generate bitmaps for the special ones
1127 for( aCurr = aCCList.begin(); aCurr != aLast; ++aCurr )
1129 if( aCurr->bIsSpecial )
1131 Rectangle aBoundRect( aCurr->aBounds );
1132 aBoundRect.Intersection( aOutputRect );
1134 const double fBmpArea( (double) aBoundRect.GetWidth() * aBoundRect.GetHeight() );
1135 const double fOutArea( (double) aOutputRect.GetWidth() * aOutputRect.GetHeight() );
1137 // check if output doesn't exceed given size
1138 if( bReduceTransparency && bTransparencyAutoMode && ( fBmpArea > ( 0.25 * fOutArea ) ) )
1140 // output normally. Therefore, we simply clear the
1141 // special attribute, as everything non-special is
1142 // copied to rOutMtf further below.
1143 aCurr->bIsSpecial = false;
1145 else
1147 // create new bitmap action first
1148 if( aBoundRect.GetWidth() && aBoundRect.GetHeight() )
1150 Point aDstPtPix( aBoundRect.TopLeft() );
1151 Size aDstSzPix;
1153 VirtualDevice aMapVDev; // here, we record only mapmode information
1154 aMapVDev.EnableOutput(FALSE);
1156 VirtualDevice aPaintVDev; // into this one, we render.
1158 rOutMtf.AddAction( new MetaPushAction( PUSH_MAPMODE ) );
1159 rOutMtf.AddAction( new MetaMapModeAction() );
1161 aPaintVDev.SetDrawMode( GetDrawMode() );
1163 while( aDstPtPix.Y() <= aBoundRect.Bottom() )
1165 aDstPtPix.X() = aBoundRect.Left();
1166 aDstSzPix = bTiling ? Size( MAX_TILE_WIDTH, MAX_TILE_HEIGHT ) : aBoundRect.GetSize();
1168 if( ( aDstPtPix.Y() + aDstSzPix.Height() - 1L ) > aBoundRect.Bottom() )
1169 aDstSzPix.Height() = aBoundRect.Bottom() - aDstPtPix.Y() + 1L;
1171 while( aDstPtPix.X() <= aBoundRect.Right() )
1173 if( ( aDstPtPix.X() + aDstSzPix.Width() - 1L ) > aBoundRect.Right() )
1174 aDstSzPix.Width() = aBoundRect.Right() - aDstPtPix.X() + 1L;
1176 if( !Rectangle( aDstPtPix, aDstSzPix ).Intersection( aBoundRect ).IsEmpty() &&
1177 aPaintVDev.SetOutputSizePixel( aDstSzPix ) )
1179 aPaintVDev.Push();
1180 aMapVDev.Push();
1182 aMapVDev.mnDPIX = aPaintVDev.mnDPIX = mnDPIX;
1183 aMapVDev.mnDPIY = aPaintVDev.mnDPIY = mnDPIY;
1185 aPaintVDev.EnableOutput(FALSE);
1187 // iterate over all actions
1188 for( pCurrAct=const_cast<GDIMetaFile&>(rInMtf).FirstAction(), nActionNum=0;
1189 pCurrAct;
1190 pCurrAct=const_cast<GDIMetaFile&>(rInMtf).NextAction(), ++nActionNum )
1192 // enable output only for
1193 // actions that are members of
1194 // the current aCCList element
1195 // (aCurr)
1196 if( aCCList_MemberMap[nActionNum] == &(*aCurr) )
1197 aPaintVDev.EnableOutput(TRUE);
1199 // but process every action
1200 const USHORT nType( pCurrAct->GetType() );
1202 if( META_MAPMODE_ACTION == nType )
1204 pCurrAct->Execute( &aMapVDev );
1206 MapMode aMtfMap( aMapVDev.GetMapMode() );
1207 const Point aNewOrg( aMapVDev.PixelToLogic( aDstPtPix ) );
1209 aMtfMap.SetOrigin( Point( -aNewOrg.X(), -aNewOrg.Y() ) );
1210 aPaintVDev.SetMapMode( aMtfMap );
1212 else if( ( META_PUSH_ACTION == nType ) || ( META_POP_ACTION ) == nType )
1214 pCurrAct->Execute( &aMapVDev );
1215 pCurrAct->Execute( &aPaintVDev );
1217 else if( META_GRADIENT_ACTION == nType )
1219 MetaGradientAction* pGradientAction = static_cast<MetaGradientAction*>(pCurrAct);
1220 Printer* pPrinter = dynamic_cast< Printer* >(this);
1221 if( pPrinter )
1222 pPrinter->DrawGradientEx( &aPaintVDev, pGradientAction->GetRect(), pGradientAction->GetGradient() );
1223 else
1224 DrawGradient( pGradientAction->GetRect(), pGradientAction->GetGradient() );
1226 else
1228 pCurrAct->Execute( &aPaintVDev );
1231 if( !( nActionNum % 4 ) )
1232 Application::Reschedule();
1235 const BOOL bOldMap = mbMap;
1236 mbMap = aPaintVDev.mbMap = FALSE;
1238 Bitmap aBandBmp( aPaintVDev.GetBitmap( Point(), aDstSzPix ) );
1240 // scale down bitmap, if requested
1241 if( bDownsampleBitmaps )
1243 aBandBmp = GetDownsampledBitmap( aDstSzPix,
1244 Point(), aBandBmp.GetSizePixel(),
1245 aBandBmp, nMaxBmpDPIX, nMaxBmpDPIY );
1248 rOutMtf.AddAction( new MetaCommentAction( "PRNSPOOL_TRANSPARENTBITMAP_BEGIN" ) );
1249 rOutMtf.AddAction( new MetaBmpScaleAction( aDstPtPix, aDstSzPix, aBandBmp ) );
1250 rOutMtf.AddAction( new MetaCommentAction( "PRNSPOOL_TRANSPARENTBITMAP_END" ) );
1252 aPaintVDev.mbMap = TRUE;
1253 mbMap = bOldMap;
1254 aMapVDev.Pop();
1255 aPaintVDev.Pop();
1258 // overlapping bands to avoid missing lines (e.g. PostScript)
1259 aDstPtPix.X() += aDstSzPix.Width();
1262 // overlapping bands to avoid missing lines (e.g. PostScript)
1263 aDstPtPix.Y() += aDstSzPix.Height();
1266 rOutMtf.AddAction( new MetaPopAction() );
1273 // STAGE 4: Copy actions to output metafile
1274 // ========================================
1277 // create an OutputDevice to record color settings, mapmode
1278 // changes and the like
1279 VirtualDevice aMapModeVDev3;
1280 aMapModeVDev3.mnDPIX = mnDPIX;
1281 aMapModeVDev3.mnDPIY = mnDPIY;
1282 aMapModeVDev3.EnableOutput(FALSE);
1284 // iterate over all actions and duplicate the ones not in a
1285 // special aCCList member into rOutMtf
1286 for( pCurrAct=const_cast<GDIMetaFile&>(rInMtf).FirstAction(), nActionNum=0;
1287 pCurrAct;
1288 pCurrAct=const_cast<GDIMetaFile&>(rInMtf).NextAction(), ++nActionNum )
1290 const ConnectedComponents* pCurrAssociatedComponent = aCCList_MemberMap[nActionNum];
1292 // NOTE: This relies on the fact that map-mode or draw
1293 // mode changing actions are solitary aCCList elements and
1294 // have empty bounding boxes, see comment on stage 2.1
1295 // above
1296 if( pCurrAssociatedComponent &&
1297 (pCurrAssociatedComponent->aBounds.IsEmpty() ||
1298 !pCurrAssociatedComponent->bIsSpecial) )
1300 // #107169# Treat transparent bitmaps special, if they
1301 // are the first (or sole) action in their bounds
1302 // list. Note that we previously ensured that no
1303 // fully-transparent objects are before us here.
1304 if( ImplIsActionHandlingTransparency( *pCurrAct ) &&
1305 pCurrAssociatedComponent->aComponentList.begin()->first == pCurrAct )
1307 // convert actions, where masked-out parts are of
1308 // given background color
1309 ImplConvertTransparentAction(rOutMtf,
1310 *pCurrAct,
1311 aMapModeVDev3,
1312 aBackgroundComponent.aBgColor);
1314 else
1316 // simply add this action
1317 rOutMtf.AddAction( ( pCurrAct->Duplicate(), pCurrAct ) );
1320 pCurrAct->Execute(&aMapModeVDev3);
1324 rOutMtf.SetPrefMapMode( rInMtf.GetPrefMapMode() );
1325 rOutMtf.SetPrefSize( rInMtf.GetPrefSize() );
1327 return bTransparent;
1330 // -----------------------------------------------------------------------------
1332 Bitmap OutputDevice::GetDownsampledBitmap( const Size& rDstSz,
1333 const Point& rSrcPt, const Size& rSrcSz,
1334 const Bitmap& rBmp, long nMaxBmpDPIX, long nMaxBmpDPIY )
1336 Bitmap aBmp( rBmp );
1338 if( !aBmp.IsEmpty() )
1340 Point aPoint;
1341 const Rectangle aBmpRect( aPoint, aBmp.GetSizePixel() );
1342 Rectangle aSrcRect( rSrcPt, rSrcSz );
1344 // do cropping if neccessary
1345 if( aSrcRect.Intersection( aBmpRect ) != aBmpRect )
1347 if( !aSrcRect.IsEmpty() )
1348 aBmp.Crop( aSrcRect );
1349 else
1350 aBmp.SetEmpty();
1353 if( !aBmp.IsEmpty() )
1355 // do downsampling if neccessary
1356 Size aDstSizeTwip( PixelToLogic( LogicToPixel( rDstSz ), MAP_TWIP ) );
1358 // #103209# Normalize size (mirroring has to happen outside of this method)
1359 aDstSizeTwip = Size( labs(aDstSizeTwip.Width()), labs(aDstSizeTwip.Height()) );
1361 const Size aBmpSize( aBmp.GetSizePixel() );
1362 const double fBmpPixelX = aBmpSize.Width();
1363 const double fBmpPixelY = aBmpSize.Height();
1364 const double fMaxPixelX = aDstSizeTwip.Width() * nMaxBmpDPIX / 1440.0;
1365 const double fMaxPixelY = aDstSizeTwip.Height() * nMaxBmpDPIY / 1440.0;
1367 // check, if the bitmap DPI exceeds the maximum DPI (allow 4 pixel rounding tolerance)
1368 if( ( ( fBmpPixelX > ( fMaxPixelX + 4 ) ) ||
1369 ( fBmpPixelY > ( fMaxPixelY + 4 ) ) ) &&
1370 ( fBmpPixelY > 0.0 ) && ( fMaxPixelY > 0.0 ) )
1372 // do scaling
1373 Size aNewBmpSize;
1374 const double fBmpWH = fBmpPixelX / fBmpPixelY;
1375 const double fMaxWH = fMaxPixelX / fMaxPixelY;
1377 if( fBmpWH < fMaxWH )
1379 aNewBmpSize.Width() = FRound( fMaxPixelY * fBmpWH );
1380 aNewBmpSize.Height() = FRound( fMaxPixelY );
1382 else if( fBmpWH > 0.0 )
1384 aNewBmpSize.Width() = FRound( fMaxPixelX );
1385 aNewBmpSize.Height() = FRound( fMaxPixelX / fBmpWH);
1388 if( aNewBmpSize.Width() && aNewBmpSize.Height() )
1389 aBmp.Scale( aNewBmpSize );
1390 else
1391 aBmp.SetEmpty();
1396 return aBmp;
1399 // -----------------------------------------------------------------------------
1401 BitmapEx OutputDevice::GetDownsampledBitmapEx( const Size& rDstSz,
1402 const Point& rSrcPt, const Size& rSrcSz,
1403 const BitmapEx& rBmpEx, long nMaxBmpDPIX, long nMaxBmpDPIY )
1405 BitmapEx aBmpEx( rBmpEx );
1407 if( !aBmpEx.IsEmpty() )
1409 Point aPoint;
1410 const Rectangle aBmpRect( aPoint, aBmpEx.GetSizePixel() );
1411 Rectangle aSrcRect( rSrcPt, rSrcSz );
1413 // do cropping if neccessary
1414 if( aSrcRect.Intersection( aBmpRect ) != aBmpRect )
1416 if( !aSrcRect.IsEmpty() )
1417 aBmpEx.Crop( aSrcRect );
1418 else
1419 aBmpEx.SetEmpty();
1422 if( !aBmpEx.IsEmpty() )
1424 // do downsampling if neccessary
1425 Size aDstSizeTwip( PixelToLogic( LogicToPixel( rDstSz ), MAP_TWIP ) );
1427 // #103209# Normalize size (mirroring has to happen outside of this method)
1428 aDstSizeTwip = Size( labs(aDstSizeTwip.Width()), labs(aDstSizeTwip.Height()) );
1430 const Size aBmpSize( aBmpEx.GetSizePixel() );
1431 const double fBmpPixelX = aBmpSize.Width();
1432 const double fBmpPixelY = aBmpSize.Height();
1433 const double fMaxPixelX = aDstSizeTwip.Width() * nMaxBmpDPIX / 1440.0;
1434 const double fMaxPixelY = aDstSizeTwip.Height() * nMaxBmpDPIY / 1440.0;
1436 // check, if the bitmap DPI exceeds the maximum DPI (allow 4 pixel rounding tolerance)
1437 if( ( ( fBmpPixelX > ( fMaxPixelX + 4 ) ) ||
1438 ( fBmpPixelY > ( fMaxPixelY + 4 ) ) ) &&
1439 ( fBmpPixelY > 0.0 ) && ( fMaxPixelY > 0.0 ) )
1441 // do scaling
1442 Size aNewBmpSize;
1443 const double fBmpWH = fBmpPixelX / fBmpPixelY;
1444 const double fMaxWH = fMaxPixelX / fMaxPixelY;
1446 if( fBmpWH < fMaxWH )
1448 aNewBmpSize.Width() = FRound( fMaxPixelY * fBmpWH );
1449 aNewBmpSize.Height() = FRound( fMaxPixelY );
1451 else if( fBmpWH > 0.0 )
1453 aNewBmpSize.Width() = FRound( fMaxPixelX );
1454 aNewBmpSize.Height() = FRound( fMaxPixelX / fBmpWH);
1457 if( aNewBmpSize.Width() && aNewBmpSize.Height() )
1458 aBmpEx.Scale( aNewBmpSize );
1459 else
1460 aBmpEx.SetEmpty();
1465 return aBmpEx;
1468 // -----------------------------------------------------------------------------
1470 void Printer::DrawGradientEx( OutputDevice* pOut, const Rectangle& rRect, const Gradient& rGradient )
1472 const PrinterOptions& rPrinterOptions = GetPrinterOptions();
1474 if( rPrinterOptions.IsReduceGradients() )
1476 if( PRINTER_GRADIENT_STRIPES == rPrinterOptions.GetReducedGradientMode() )
1478 if( !rGradient.GetSteps() || ( rGradient.GetSteps() > rPrinterOptions.GetReducedGradientStepCount() ) )
1480 Gradient aNewGradient( rGradient );
1482 aNewGradient.SetSteps( rPrinterOptions.GetReducedGradientStepCount() );
1483 pOut->DrawGradient( rRect, aNewGradient );
1485 else
1486 pOut->DrawGradient( rRect, rGradient );
1488 else
1490 const Color& rStartColor = rGradient.GetStartColor();
1491 const Color& rEndColor = rGradient.GetEndColor();
1492 const long nR = ( ( (long) rStartColor.GetRed() * rGradient.GetStartIntensity() ) / 100L +
1493 ( (long) rEndColor.GetRed() * rGradient.GetEndIntensity() ) / 100L ) >> 1;
1494 const long nG = ( ( (long) rStartColor.GetGreen() * rGradient.GetStartIntensity() ) / 100L +
1495 ( (long) rEndColor.GetGreen() * rGradient.GetEndIntensity() ) / 100L ) >> 1;
1496 const long nB = ( ( (long) rStartColor.GetBlue() * rGradient.GetStartIntensity() ) / 100L +
1497 ( (long) rEndColor.GetBlue() * rGradient.GetEndIntensity() ) / 100L ) >> 1;
1498 const Color aColor( (BYTE) nR, (BYTE) nG, (BYTE) nB );
1500 pOut->Push( PUSH_LINECOLOR | PUSH_FILLCOLOR );
1501 pOut->SetLineColor( aColor );
1502 pOut->SetFillColor( aColor );
1503 pOut->DrawRect( rRect );
1504 pOut->Pop();
1507 else
1508 pOut->DrawGradient( rRect, rGradient );
1511 // -----------------------------------------------------------------------------
1513 void Printer::DrawGradientEx( OutputDevice* pOut, const PolyPolygon& rPolyPoly, const Gradient& rGradient )
1515 const PrinterOptions& rPrinterOptions = GetPrinterOptions();
1517 if( rPrinterOptions.IsReduceGradients() )
1519 if( PRINTER_GRADIENT_STRIPES == rPrinterOptions.GetReducedGradientMode() )
1521 if( !rGradient.GetSteps() || ( rGradient.GetSteps() > rPrinterOptions.GetReducedGradientStepCount() ) )
1523 Gradient aNewGradient( rGradient );
1525 aNewGradient.SetSteps( rPrinterOptions.GetReducedGradientStepCount() );
1526 pOut->DrawGradient( rPolyPoly, aNewGradient );
1528 else
1529 pOut->DrawGradient( rPolyPoly, rGradient );
1531 else
1533 const Color& rStartColor = rGradient.GetStartColor();
1534 const Color& rEndColor = rGradient.GetEndColor();
1535 const long nR = ( ( (long) rStartColor.GetRed() * rGradient.GetStartIntensity() ) / 100L +
1536 ( (long) rEndColor.GetRed() * rGradient.GetEndIntensity() ) / 100L ) >> 1;
1537 const long nG = ( ( (long) rStartColor.GetGreen() * rGradient.GetStartIntensity() ) / 100L +
1538 ( (long) rEndColor.GetGreen() * rGradient.GetEndIntensity() ) / 100L ) >> 1;
1539 const long nB = ( ( (long) rStartColor.GetBlue() * rGradient.GetStartIntensity() ) / 100L +
1540 ( (long) rEndColor.GetBlue() * rGradient.GetEndIntensity() ) / 100L ) >> 1;
1541 const Color aColor( (BYTE) nR, (BYTE) nG, (BYTE) nB );
1543 pOut->Push( PUSH_LINECOLOR | PUSH_FILLCOLOR );
1544 pOut->SetLineColor( aColor );
1545 pOut->SetFillColor( aColor );
1546 pOut->DrawPolyPolygon( rPolyPoly );
1547 pOut->Pop();
1550 else
1551 pOut->DrawGradient( rPolyPoly, rGradient );