Update ooo320-m1
[ooovba.git] / sc / source / core / tool / interpr6.cxx
blob4e30196c3f5b5538cca7b1a56928f1fb5bef6642
1 /*************************************************************************
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * Copyright 2008 by Sun Microsystems, Inc.
7 * OpenOffice.org - a multi-platform office productivity suite
9 * $RCSfile: interpr6.cxx,v $
10 * $Revision: 1.8 $
12 * This file is part of OpenOffice.org.
14 * OpenOffice.org is free software: you can redistribute it and/or modify
15 * it under the terms of the GNU Lesser General Public License version 3
16 * only, as published by the Free Software Foundation.
18 * OpenOffice.org is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU Lesser General Public License version 3 for more details
22 * (a copy is included in the LICENSE file that accompanied this code).
24 * You should have received a copy of the GNU Lesser General Public License
25 * version 3 along with OpenOffice.org. If not, see
26 * <http://www.openoffice.org/license.html>
27 * for a copy of the LGPLv3 License.
29 ************************************************************************/
31 // MARKER(update_precomp.py): autogen include statement, do not remove
32 #include "precompiled_sc.hxx"
34 // #include <math.h>
36 #include <tools/debug.hxx>
37 #include <rtl/logfile.hxx>
38 #include "interpre.hxx"
40 double const fHalfMachEps = 0.5 * ::std::numeric_limits<double>::epsilon();
42 // The idea how this group of gamma functions is calculated, is
43 // based on the Cephes library
44 // online http://www.moshier.net/#Cephes [called 2008-02]
46 /** You must ensure fA>0.0 && fX>0.0
47 valid results only if fX > fA+1.0
48 uses continued fraction with odd items */
49 double ScInterpreter::GetGammaContFraction( double fA, double fX )
51 RTL_LOGFILE_CONTEXT_AUTHOR( aLogger, "sc", "er", "ScInterpreter::GetGammaContFraction" );
53 double const fBigInv = ::std::numeric_limits<double>::epsilon();
54 double const fBig = 1.0/fBigInv;
55 double fCount = 0.0;
56 double fNum = 0.0; // dummy value
57 double fY = 1.0 - fA;
58 double fDenom = fX + 2.0-fA;
59 double fPk = 0.0; // dummy value
60 double fPkm1 = fX + 1.0;
61 double fPkm2 = 1.0;
62 double fQk = 1.0; // dummy value
63 double fQkm1 = fDenom * fX;
64 double fQkm2 = fX;
65 double fApprox = fPkm1/fQkm1;
66 bool bFinished = false;
67 double fR = 0.0; // dummy value
70 fCount = fCount +1.0;
71 fY = fY+ 1.0;
72 fNum = fY * fCount;
73 fDenom = fDenom +2.0;
74 fPk = fPkm1 * fDenom - fPkm2 * fNum;
75 fQk = fQkm1 * fDenom - fQkm2 * fNum;
76 if (fQk != 0.0)
78 fR = fPk/fQk;
79 bFinished = (fabs( (fApprox - fR)/fR ) <= fHalfMachEps);
80 fApprox = fR;
82 fPkm2 = fPkm1;
83 fPkm1 = fPk;
84 fQkm2 = fQkm1;
85 fQkm1 = fQk;
86 if (fabs(fPk) > fBig)
88 // reduce a fraction does not change the value
89 fPkm2 = fPkm2 * fBigInv;
90 fPkm1 = fPkm1 * fBigInv;
91 fQkm2 = fQkm2 * fBigInv;
92 fQkm1 = fQkm1 * fBigInv;
94 } while (!bFinished && fCount<10000);
95 // most iterations, if fX==fAlpha+1.0; approx sqrt(fAlpha) iterations then
96 if (!bFinished)
98 SetError(errNoConvergence);
100 return fApprox;
103 /** You must ensure fA>0.0 && fX>0.0
104 valid results only if fX <= fA+1.0
105 uses power series */
106 double ScInterpreter::GetGammaSeries( double fA, double fX )
108 RTL_LOGFILE_CONTEXT_AUTHOR( aLogger, "sc", "er", "ScInterpreter::GetGammaSeries" );
109 double fDenomfactor = fA;
110 double fSummand = 1.0/fA;
111 double fSum = fSummand;
112 int nCount=1;
115 fDenomfactor = fDenomfactor + 1.0;
116 fSummand = fSummand * fX/fDenomfactor;
117 fSum = fSum + fSummand;
118 nCount = nCount+1;
119 } while ( fSummand/fSum > fHalfMachEps && nCount<=10000);
120 // large amount of iterations will be carried out for huge fAlpha, even
121 // if fX <= fAlpha+1.0
122 if (nCount>10000)
124 SetError(errNoConvergence);
126 return fSum;
129 /** You must ensure fA>0.0 && fX>0.0) */
130 double ScInterpreter::GetLowRegIGamma( double fA, double fX )
132 RTL_LOGFILE_CONTEXT_AUTHOR( aLogger, "sc", "er", "ScInterpreter::GetLowRegIGamma" );
133 double fLnFactor = fA * log(fX) - fX - GetLogGamma(fA);
134 double fFactor = exp(fLnFactor); // Do we need more accuracy than exp(ln()) has?
135 if (fX>fA+1.0) // includes fX>1.0; 1-GetUpRegIGamma, continued fraction
136 return 1.0 - fFactor * GetGammaContFraction(fA,fX);
137 else // fX<=1.0 || fX<=fA+1.0, series
138 return fFactor * GetGammaSeries(fA,fX);
141 /** You must ensure fA>0.0 && fX>0.0) */
142 double ScInterpreter::GetUpRegIGamma( double fA, double fX )
144 RTL_LOGFILE_CONTEXT_AUTHOR( aLogger, "sc", "er", "ScInterpreter::GetUpRegIGamma" );
146 double fLnFactor= fA*log(fX)-fX-GetLogGamma(fA);
147 double fFactor = exp(fLnFactor); //Do I need more accuracy than exp(ln()) has?;
148 if (fX>fA+1.0) // includes fX>1.0
149 return fFactor * GetGammaContFraction(fA,fX);
150 else //fX<=1 || fX<=fA+1, 1-GetLowRegIGamma, series
151 return 1.0 -fFactor * GetGammaSeries(fA,fX);
154 /** Gamma distribution, probability density function.
155 fLambda is "scale" parameter
156 You must ensure fAlpha>0.0 and fLambda>0.0 */
157 double ScInterpreter::GetGammaDistPDF( double fX, double fAlpha, double fLambda )
159 RTL_LOGFILE_CONTEXT_AUTHOR( aLogger, "sc", "er", "ScInterpreter::GetGammaDistPDF" );
160 if (fX <= 0.0)
161 return 0.0; // see ODFF
162 else
164 double fXr = fX / fLambda;
165 // use exp(ln()) only for large arguments because of less accuracy
166 if (fXr > 1.0)
168 const double fLogDblMax = log( ::std::numeric_limits<double>::max());
169 if (log(fXr) * (fAlpha-1.0) < fLogDblMax && fAlpha < fMaxGammaArgument)
171 return pow( fXr, fAlpha-1.0) * exp(-fXr) / fLambda / GetGamma(fAlpha);
173 else
175 return exp( (fAlpha-1.0) * log(fXr) - fXr - log(fLambda) - GetLogGamma(fAlpha));
178 else // fXr near to zero
180 if (fAlpha<fMaxGammaArgument)
182 return pow( fXr, fAlpha-1.0) * exp(-fXr) / fLambda / GetGamma(fAlpha);
184 else
186 return pow( fXr, fAlpha-1.0) * exp(-fXr) / fLambda / exp( GetLogGamma(fAlpha));
192 /** Gamma distribution, cumulative distribution function.
193 fLambda is "scale" parameter
194 You must ensure fAlpha>0.0 and fLambda>0.0 */
195 double ScInterpreter::GetGammaDist( double fX, double fAlpha, double fLambda )
197 RTL_LOGFILE_CONTEXT_AUTHOR( aLogger, "sc", "er", "ScInterpreter::GetGammaDist" );
198 if (fX <= 0.0)
199 return 0.0;
200 else
201 return GetLowRegIGamma( fAlpha, fX / fLambda);