update dev300-m58
[ooovba.git] / hwpfilter / source / cspline.cpp
blob4423f94f4cb727b38c225e507291bfd62d2e13e9
1 /*************************************************************************
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * Copyright 2008 by Sun Microsystems, Inc.
7 * OpenOffice.org - a multi-platform office productivity suite
9 * $RCSfile: cspline.cpp,v $
10 * $Revision: 1.3 $
12 * This file is part of OpenOffice.org.
14 * OpenOffice.org is free software: you can redistribute it and/or modify
15 * it under the terms of the GNU Lesser General Public License version 3
16 * only, as published by the Free Software Foundation.
18 * OpenOffice.org is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU Lesser General Public License version 3 for more details
22 * (a copy is included in the LICENSE file that accompanied this code).
24 * You should have received a copy of the GNU Lesser General Public License
25 * version 3 along with OpenOffice.org. If not, see
26 * <http://www.openoffice.org/license.html>
27 * for a copy of the LGPLv3 License.
29 ************************************************************************/
31 // Natural, Clamped, or Periodic Cubic Splines
33 // Input: A list of N+1 points (x_i,a_i), 0 <= i <= N, which are sampled
34 // from a function, a_i = f(x_i). The function f is unknown. Boundary
35 // conditions are
36 // (1) Natural splines: f"(x_0) = f"(x_N) = 0
37 // (2) Clamped splines: f'(x_0) and f'(x_N) are user-specified.
38 // (3) Periodic splines: f(x_0) = f(x_N) [in which case a_N = a_0 is
39 // required in the input], f'(x_0) = f'(x_N), and f"(x_0) = f"(x_N).
41 // Output: b_i, c_i, d_i, 0 <= i <= N-1, which are coefficients for the cubic
42 // spline S_i(x) = a_i + b_i(x-x_i) + c_i(x-x_i)^2 + d_i(x-x_i)^3 for
43 // x_i <= x < x_{i+1}.
45 // The natural and clamped algorithms were implemented from
47 // Numerical Analysis, 3rd edition
48 // Richard L. Burden and J. Douglas Faires
49 // Prindle, Weber & Schmidt
50 // Boston, 1985, pp. 122-124.
52 // The algorithm sets up a tridiagonal linear system of equations in the
53 // c_i values. This can be solved in O(N) time.
55 // The periodic spline algorithm was implemented from my own derivation. The
56 // linear system of equations is not tridiagonal. For now I use a standard
57 // linear solver that does not take advantage of the sparseness of the
58 // matrix. Therefore for very large N, you may have to worry about memory
59 // usage.
61 #include "solver.h"
62 //-----------------------------------------------------------------------------
63 void NaturalSpline (int N, double* x, double* a, double*& b, double*& c,
64 double*& d)
66 const double oneThird = 1.0/3.0;
68 int i;
69 double* h = new double[N];
70 double* hdiff = new double[N];
71 double* alpha = new double[N];
73 for (i = 0; i < N; i++){
74 h[i] = x[i+1]-x[i];
77 for (i = 1; i < N; i++)
78 hdiff[i] = x[i+1]-x[i-1];
80 for (i = 1; i < N; i++)
82 double numer = 3.0*(a[i+1]*h[i-1]-a[i]*hdiff[i]+a[i-1]*h[i]);
83 double denom = h[i-1]*h[i];
84 alpha[i] = numer/denom;
87 double* ell = new double[N+1];
88 double* mu = new double[N];
89 double* z = new double[N+1];
90 double recip;
92 ell[0] = 1.0;
93 mu[0] = 0.0;
94 z[0] = 0.0;
96 for (i = 1; i < N; i++)
98 ell[i] = 2.0*hdiff[i]-h[i-1]*mu[i-1];
99 recip = 1.0/ell[i];
100 mu[i] = recip*h[i];
101 z[i] = recip*(alpha[i]-h[i-1]*z[i-1]);
103 ell[N] = 1.0;
104 z[N] = 0.0;
106 b = new double[N];
107 c = new double[N+1];
108 d = new double[N];
110 c[N] = 0.0;
112 for (i = N-1; i >= 0; i--)
114 c[i] = z[i]-mu[i]*c[i+1];
115 recip = 1.0/h[i];
116 b[i] = recip*(a[i+1]-a[i])-h[i]*(c[i+1]+2.0*c[i])*oneThird;
117 d[i] = oneThird*recip*(c[i+1]-c[i]);
120 delete[] h;
121 delete[] hdiff;
122 delete[] alpha;
123 delete[] ell;
124 delete[] mu;
125 delete[] z;
128 void PeriodicSpline (int N, double* x, double* a, double*& b, double*& c,
129 double*& d)
131 double* h = new double[N];
132 int i;
133 for (i = 0; i < N; i++)
134 h[i] = x[i+1]-x[i];
136 mgcLinearSystemD sys;
137 double** mat = sys.NewMatrix(N+1); // guaranteed to be zeroed memory
138 c = sys.NewVector(N+1); // guaranteed to be zeroed memory
140 // c[0] - c[N] = 0
141 mat[0][0] = +1.0f;
142 mat[0][N] = -1.0f;
144 // h[i-1]*c[i-1]+2*(h[i-1]+h[i])*c[i]+h[i]*c[i+1] =
145 // 3*{(a[i+1]-a[i])/h[i] - (a[i]-a[i-1])/h[i-1]}
146 for (i = 1; i <= N-1; i++)
148 mat[i][i-1] = h[i-1];
149 mat[i][i ] = 2.0f*(h[i-1]+h[i]);
150 mat[i][i+1] = h[i];
151 c[i] = 3.0f*((a[i+1]-a[i])/h[i] - (a[i]-a[i-1])/h[i-1]);
154 // "wrap around equation" for periodicity
155 // h[N-1]*c[N-1]+2*(h[N-1]+h[0])*c[0]+h[0]*c[1] =
156 // 3*{(a[1]-a[0])/h[0] - (a[0]-a[N-1])/h[N-1]}
157 mat[N][N-1] = h[N-1];
158 mat[N][0 ] = 2.0f*(h[N-1]+h[0]);
159 mat[N][1 ] = h[0];
160 c[N] = 3.0f*((a[1]-a[0])/h[0] - (a[0]-a[N-1])/h[N-1]);
162 // solve for c[0] through c[N]
163 sys.Solve(N+1,mat,c);
165 const double oneThird = 1.0/3.0;
166 b = new double[N];
167 d = new double[N];
168 for (i = 0; i < N; i++)
170 b[i] = (a[i+1]-a[i])/h[i] - oneThird*(c[i+1]+2.0f*c[i])*h[i];
171 d[i] = oneThird*(c[i+1]-c[i])/h[i];
174 sys.DeleteMatrix(N+1,mat);