update dev300-m58
[ooovba.git] / sal / rtl / source / math.cxx
blob4d8be2b01780102a1ec8262a45f0e807a8936858
1 /*************************************************************************
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * Copyright 2008 by Sun Microsystems, Inc.
7 * OpenOffice.org - a multi-platform office productivity suite
9 * $RCSfile: math.cxx,v $
10 * $Revision: 1.14 $
12 * This file is part of OpenOffice.org.
14 * OpenOffice.org is free software: you can redistribute it and/or modify
15 * it under the terms of the GNU Lesser General Public License version 3
16 * only, as published by the Free Software Foundation.
18 * OpenOffice.org is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU Lesser General Public License version 3 for more details
22 * (a copy is included in the LICENSE file that accompanied this code).
24 * You should have received a copy of the GNU Lesser General Public License
25 * version 3 along with OpenOffice.org. If not, see
26 * <http://www.openoffice.org/license.html>
27 * for a copy of the LGPLv3 License.
29 ************************************************************************/
31 // MARKER(update_precomp.py): autogen include statement, do not remove
32 #include "precompiled_sal.hxx"
34 #include "rtl/math.h"
36 #include "osl/diagnose.h"
37 #include "rtl/alloc.h"
38 #include "rtl/math.hxx"
39 #include "rtl/strbuf.h"
40 #include "rtl/string.h"
41 #include "rtl/ustrbuf.h"
42 #include "rtl/ustring.h"
43 #include "sal/mathconf.h"
44 #include "sal/types.h"
46 #include <algorithm>
47 #include <float.h>
48 #include <limits.h>
49 #include <math.h>
50 #include <stdlib.h>
53 static int const n10Count = 16;
54 static double const n10s[2][n10Count] = {
55 { 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8,
56 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16 },
57 { 1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8,
58 1e-9, 1e-10, 1e-11, 1e-12, 1e-13, 1e-14, 1e-15, 1e-16 }
61 // return pow(10.0,nExp) optimized for exponents in the interval [-16,16]
62 static double getN10Exp( int nExp )
64 if ( nExp < 0 )
66 if ( -nExp <= n10Count )
67 return n10s[1][-nExp-1];
68 else
69 return pow( 10.0, static_cast<double>( nExp ) );
71 else if ( nExp > 0 )
73 if ( nExp <= n10Count )
74 return n10s[0][nExp-1];
75 else
76 return pow( 10.0, static_cast<double>( nExp ) );
78 else // ( nExp == 0 )
79 return 1.0;
83 namespace {
85 double const nKorrVal[] = {
86 0, 9e-1, 9e-2, 9e-3, 9e-4, 9e-5, 9e-6, 9e-7, 9e-8,
87 9e-9, 9e-10, 9e-11, 9e-12, 9e-13, 9e-14, 9e-15
90 struct StringTraits
92 typedef sal_Char Char;
94 typedef rtl_String String;
96 static inline void createString(rtl_String ** pString,
97 sal_Char const * pChars, sal_Int32 nLen)
99 rtl_string_newFromStr_WithLength(pString, pChars, nLen);
102 static inline void createBuffer(rtl_String ** pBuffer,
103 sal_Int32 * pCapacity)
105 rtl_string_new_WithLength(pBuffer, *pCapacity);
108 static inline void appendChar(rtl_String ** pBuffer, sal_Int32 * pCapacity,
109 sal_Int32 * pOffset, sal_Char cChar)
111 rtl_stringbuffer_insert(pBuffer, pCapacity, *pOffset, &cChar, 1);
112 ++*pOffset;
115 static inline void appendChars(rtl_String ** pBuffer, sal_Int32 * pCapacity,
116 sal_Int32 * pOffset, sal_Char const * pChars,
117 sal_Int32 nLen)
119 rtl_stringbuffer_insert(pBuffer, pCapacity, *pOffset, pChars, nLen);
120 *pOffset += nLen;
123 static inline void appendAscii(rtl_String ** pBuffer, sal_Int32 * pCapacity,
124 sal_Int32 * pOffset, sal_Char const * pStr,
125 sal_Int32 nLen)
127 rtl_stringbuffer_insert(pBuffer, pCapacity, *pOffset, pStr, nLen);
128 *pOffset += nLen;
132 struct UStringTraits
134 typedef sal_Unicode Char;
136 typedef rtl_uString String;
138 static inline void createString(rtl_uString ** pString,
139 sal_Unicode const * pChars, sal_Int32 nLen)
141 rtl_uString_newFromStr_WithLength(pString, pChars, nLen);
144 static inline void createBuffer(rtl_uString ** pBuffer,
145 sal_Int32 * pCapacity)
147 rtl_uString_new_WithLength(pBuffer, *pCapacity);
150 static inline void appendChar(rtl_uString ** pBuffer, sal_Int32 * pCapacity,
151 sal_Int32 * pOffset, sal_Unicode cChar)
153 rtl_uStringbuffer_insert(pBuffer, pCapacity, *pOffset, &cChar, 1);
154 ++*pOffset;
157 static inline void appendChars(rtl_uString ** pBuffer,
158 sal_Int32 * pCapacity, sal_Int32 * pOffset,
159 sal_Unicode const * pChars, sal_Int32 nLen)
161 rtl_uStringbuffer_insert(pBuffer, pCapacity, *pOffset, pChars, nLen);
162 *pOffset += nLen;
165 static inline void appendAscii(rtl_uString ** pBuffer,
166 sal_Int32 * pCapacity, sal_Int32 * pOffset,
167 sal_Char const * pStr, sal_Int32 nLen)
169 rtl_uStringbuffer_insert_ascii(pBuffer, pCapacity, *pOffset, pStr,
170 nLen);
171 *pOffset += nLen;
176 // Solaris C++ 5.2 compiler has problems when "StringT ** pResult" is
177 // "typename T::String ** pResult" instead:
178 template< typename T, typename StringT >
179 inline void doubleToString(StringT ** pResult,
180 sal_Int32 * pResultCapacity, sal_Int32 nResultOffset,
181 double fValue, rtl_math_StringFormat eFormat,
182 sal_Int32 nDecPlaces, typename T::Char cDecSeparator,
183 sal_Int32 const * pGroups,
184 typename T::Char cGroupSeparator,
185 bool bEraseTrailingDecZeros)
187 static double const nRoundVal[] = {
188 5.0e+0, 0.5e+0, 0.5e-1, 0.5e-2, 0.5e-3, 0.5e-4, 0.5e-5, 0.5e-6,
189 0.5e-7, 0.5e-8, 0.5e-9, 0.5e-10,0.5e-11,0.5e-12,0.5e-13,0.5e-14
192 // sign adjustment, instead of testing for fValue<0.0 this will also fetch
193 // -0.0
194 bool bSign = rtl::math::isSignBitSet( fValue );
195 if( bSign )
196 fValue = -fValue;
198 if ( rtl::math::isNan( fValue ) )
200 sal_Int32 nCapacity = RTL_CONSTASCII_LENGTH("-1.#NAN");
201 if (pResultCapacity == 0)
203 pResultCapacity = &nCapacity;
204 T::createBuffer(pResult, pResultCapacity);
205 nResultOffset = 0;
208 if ( bSign )
209 T::appendAscii(pResult, pResultCapacity, &nResultOffset,
210 RTL_CONSTASCII_STRINGPARAM("-"));
211 T::appendAscii(pResult, pResultCapacity, &nResultOffset,
212 RTL_CONSTASCII_STRINGPARAM("1"));
213 T::appendChar(pResult, pResultCapacity, &nResultOffset, cDecSeparator);
214 T::appendAscii(pResult, pResultCapacity, &nResultOffset,
215 RTL_CONSTASCII_STRINGPARAM("#NAN"));
216 return;
219 bool bHuge = fValue == HUGE_VAL; // g++ 3.0.1 requires it this way...
220 if ( bHuge || rtl::math::isInf( fValue ) )
222 sal_Int32 nCapacity = RTL_CONSTASCII_LENGTH("-1.#INF");
223 if (pResultCapacity == 0)
225 pResultCapacity = &nCapacity;
226 T::createBuffer(pResult, pResultCapacity);
227 nResultOffset = 0;
230 if ( bSign )
231 T::appendAscii(pResult, pResultCapacity, &nResultOffset,
232 RTL_CONSTASCII_STRINGPARAM("-"));
233 T::appendAscii(pResult, pResultCapacity, &nResultOffset,
234 RTL_CONSTASCII_STRINGPARAM("1"));
235 T::appendChar(pResult, pResultCapacity, &nResultOffset, cDecSeparator);
236 T::appendAscii(pResult, pResultCapacity, &nResultOffset,
237 RTL_CONSTASCII_STRINGPARAM("#INF"));
238 return;
241 // find the exponent
242 int nExp = 0;
243 if ( fValue > 0.0 )
245 nExp = static_cast< int >( floor( log10( fValue ) ) );
246 fValue /= getN10Exp( nExp );
249 switch ( eFormat )
251 case rtl_math_StringFormat_Automatic :
252 { // E or F depending on exponent magnitude
253 int nPrec;
254 if ( nExp <= -15 || nExp >= 15 ) // #58531# was <-16, >16
256 nPrec = 14;
257 eFormat = rtl_math_StringFormat_E;
259 else
261 if ( nExp < 14 )
263 nPrec = 15 - nExp - 1;
264 eFormat = rtl_math_StringFormat_F;
266 else
268 nPrec = 15;
269 eFormat = rtl_math_StringFormat_F;
272 if ( nDecPlaces == rtl_math_DecimalPlaces_Max )
273 nDecPlaces = nPrec;
275 break;
276 case rtl_math_StringFormat_G :
277 { // G-Point, similar to sprintf %G
278 if ( nDecPlaces == rtl_math_DecimalPlaces_DefaultSignificance )
279 nDecPlaces = 6;
280 if ( nExp < -4 || nExp >= nDecPlaces )
282 nDecPlaces = std::max< sal_Int32 >( 1, nDecPlaces - 1 );
283 eFormat = rtl_math_StringFormat_E;
285 else
287 nDecPlaces = std::max< sal_Int32 >( 0, nDecPlaces - nExp - 1 );
288 eFormat = rtl_math_StringFormat_F;
291 break;
292 default:
293 break;
296 sal_Int32 nDigits = nDecPlaces + 1;
298 if( eFormat == rtl_math_StringFormat_F )
299 nDigits += nExp;
301 // Round the number
302 if( nDigits >= 0 )
304 if( ( fValue += nRoundVal[ nDigits > 15 ? 15 : nDigits ] ) >= 10 )
306 fValue = 1.0;
307 nExp++;
308 if( eFormat == rtl_math_StringFormat_F )
309 nDigits++;
313 static sal_Int32 const nBufMax = 256;
314 typename T::Char aBuf[nBufMax];
315 typename T::Char * pBuf;
316 sal_Int32 nBuf = static_cast< sal_Int32 >
317 ( nDigits <= 0 ? std::max< sal_Int32 >( nDecPlaces, abs(nExp) )
318 : nDigits + nDecPlaces ) + 10 + (pGroups ? abs(nDigits) * 2 : 0);
319 if ( nBuf > nBufMax )
321 pBuf = reinterpret_cast< typename T::Char * >(
322 rtl_allocateMemory(nBuf * sizeof (typename T::Char)));
323 OSL_ENSURE(pBuf != 0, "Out of memory");
325 else
326 pBuf = aBuf;
327 typename T::Char * p = pBuf;
328 if ( bSign )
329 *p++ = static_cast< typename T::Char >('-');
331 bool bHasDec = false;
333 int nDecPos;
334 // Check for F format and number < 1
335 if( eFormat == rtl_math_StringFormat_F )
337 if( nExp < 0 )
339 *p++ = static_cast< typename T::Char >('0');
340 if ( nDecPlaces > 0 )
342 *p++ = cDecSeparator;
343 bHasDec = true;
345 sal_Int32 i = ( nDigits <= 0 ? nDecPlaces : -nExp - 1 );
346 while( (i--) > 0 )
347 *p++ = static_cast< typename T::Char >('0');
348 nDecPos = 0;
350 else
351 nDecPos = nExp + 1;
353 else
354 nDecPos = 1;
356 int nGrouping = 0, nGroupSelector = 0, nGroupExceed = 0;
357 if ( nDecPos > 1 && pGroups && pGroups[0] && cGroupSeparator )
359 while ( nGrouping + pGroups[nGroupSelector] < nDecPos )
361 nGrouping += pGroups[ nGroupSelector ];
362 if ( pGroups[nGroupSelector+1] )
364 if ( nGrouping + pGroups[nGroupSelector+1] >= nDecPos )
365 break; // while
366 ++nGroupSelector;
368 else if ( !nGroupExceed )
369 nGroupExceed = nGrouping;
373 // print the number
374 if( nDigits > 0 )
376 for ( int i = 0; ; i++ )
378 if( i < 15 )
380 int nDigit;
381 if (nDigits-1 == 0 && i > 0 && i < 14)
382 nDigit = static_cast< int >( floor( fValue
383 + nKorrVal[15-i] ) );
384 else
385 nDigit = static_cast< int >( fValue + 1E-15 );
386 if (nDigit >= 10)
387 { // after-treatment of up-rounding to the next decade
388 sal_Int32 sLen = static_cast< long >(p-pBuf)-1;
389 if (sLen == -1)
391 p = pBuf;
392 if ( eFormat == rtl_math_StringFormat_F )
394 *p++ = static_cast< typename T::Char >('1');
395 *p++ = static_cast< typename T::Char >('0');
397 else
399 *p++ = static_cast< typename T::Char >('1');
400 *p++ = cDecSeparator;
401 *p++ = static_cast< typename T::Char >('0');
402 nExp++;
403 bHasDec = true;
406 else
408 for (sal_Int32 j = sLen; j >= 0; j--)
410 typename T::Char cS = pBuf[j];
411 if (cS != cDecSeparator)
413 if ( cS != static_cast< typename T::Char >('9'))
415 pBuf[j] = ++cS;
416 j = -1; // break loop
418 else
420 pBuf[j]
421 = static_cast< typename T::Char >('0');
422 if (j == 0)
424 if ( eFormat == rtl_math_StringFormat_F)
425 { // insert '1'
426 typename T::Char * px = p++;
427 while ( pBuf < px )
429 *px = *(px-1);
430 px--;
432 pBuf[0] = static_cast<
433 typename T::Char >('1');
435 else
437 pBuf[j] = static_cast<
438 typename T::Char >('1');
439 nExp++;
445 *p++ = static_cast< typename T::Char >('0');
447 fValue = 0.0;
449 else
451 *p++ = static_cast< typename T::Char >(
452 nDigit + static_cast< typename T::Char >('0') );
453 fValue = ( fValue - nDigit ) * 10.0;
456 else
457 *p++ = static_cast< typename T::Char >('0');
458 if( !--nDigits )
459 break; // for
460 if( nDecPos )
462 if( !--nDecPos )
464 *p++ = cDecSeparator;
465 bHasDec = true;
467 else if ( nDecPos == nGrouping )
469 *p++ = cGroupSeparator;
470 nGrouping -= pGroups[ nGroupSelector ];
471 if ( nGroupSelector && nGrouping < nGroupExceed )
472 --nGroupSelector;
478 if ( !bHasDec && eFormat == rtl_math_StringFormat_F )
479 { // nDecPlaces < 0 did round the value
480 while ( --nDecPos > 0 )
481 { // fill before decimal point
482 if ( nDecPos == nGrouping )
484 *p++ = cGroupSeparator;
485 nGrouping -= pGroups[ nGroupSelector ];
486 if ( nGroupSelector && nGrouping < nGroupExceed )
487 --nGroupSelector;
489 *p++ = static_cast< typename T::Char >('0');
493 if ( bEraseTrailingDecZeros && bHasDec && p > pBuf )
495 while ( *(p-1) == static_cast< typename T::Char >('0') )
496 p--;
497 if ( *(p-1) == cDecSeparator )
498 p--;
501 // Print the exponent ('E', followed by '+' or '-', followed by exactly
502 // three digits). The code in rtl_[u]str_valueOf{Float|Double} relies on
503 // this format.
504 if( eFormat == rtl_math_StringFormat_E )
506 if ( p == pBuf )
507 *p++ = static_cast< typename T::Char >('1');
508 // maybe no nDigits if nDecPlaces < 0
509 *p++ = static_cast< typename T::Char >('E');
510 if( nExp < 0 )
512 nExp = -nExp;
513 *p++ = static_cast< typename T::Char >('-');
515 else
516 *p++ = static_cast< typename T::Char >('+');
517 // if (nExp >= 100 )
518 *p++ = static_cast< typename T::Char >(
519 nExp / 100 + static_cast< typename T::Char >('0') );
520 nExp %= 100;
521 *p++ = static_cast< typename T::Char >(
522 nExp / 10 + static_cast< typename T::Char >('0') );
523 *p++ = static_cast< typename T::Char >(
524 nExp % 10 + static_cast< typename T::Char >('0') );
527 if (pResultCapacity == 0)
528 T::createString(pResult, pBuf, p - pBuf);
529 else
530 T::appendChars(pResult, pResultCapacity, &nResultOffset, pBuf,
531 p - pBuf);
533 if ( pBuf != &aBuf[0] )
534 rtl_freeMemory(pBuf);
539 void SAL_CALL rtl_math_doubleToString(rtl_String ** pResult,
540 sal_Int32 * pResultCapacity,
541 sal_Int32 nResultOffset, double fValue,
542 rtl_math_StringFormat eFormat,
543 sal_Int32 nDecPlaces,
544 sal_Char cDecSeparator,
545 sal_Int32 const * pGroups,
546 sal_Char cGroupSeparator,
547 sal_Bool bEraseTrailingDecZeros)
548 SAL_THROW_EXTERN_C()
550 doubleToString< StringTraits, StringTraits::String >(
551 pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces,
552 cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros);
555 void SAL_CALL rtl_math_doubleToUString(rtl_uString ** pResult,
556 sal_Int32 * pResultCapacity,
557 sal_Int32 nResultOffset, double fValue,
558 rtl_math_StringFormat eFormat,
559 sal_Int32 nDecPlaces,
560 sal_Unicode cDecSeparator,
561 sal_Int32 const * pGroups,
562 sal_Unicode cGroupSeparator,
563 sal_Bool bEraseTrailingDecZeros)
564 SAL_THROW_EXTERN_C()
566 doubleToString< UStringTraits, UStringTraits::String >(
567 pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces,
568 cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros);
572 namespace {
574 // if nExp * 10 + nAdd would result in overflow
575 inline bool long10Overflow( long& nExp, int nAdd )
577 if ( nExp > (LONG_MAX/10)
578 || (nExp == (LONG_MAX/10) && nAdd > (LONG_MAX%10)) )
580 nExp = LONG_MAX;
581 return true;
583 return false;
586 // We are only concerned about ASCII arabic numerical digits here
587 template< typename CharT >
588 inline bool isDigit( CharT c )
590 return 0x30 <= c && c <= 0x39;
593 template< typename CharT >
594 inline double stringToDouble(CharT const * pBegin, CharT const * pEnd,
595 CharT cDecSeparator, CharT cGroupSeparator,
596 rtl_math_ConversionStatus * pStatus,
597 CharT const ** pParsedEnd)
599 double fVal = 0.0;
600 rtl_math_ConversionStatus eStatus = rtl_math_ConversionStatus_Ok;
602 CharT const * p0 = pBegin;
603 while (p0 != pEnd && (*p0 == CharT(' ') || *p0 == CharT('\t')))
604 ++p0;
605 bool bSign;
606 if (p0 != pEnd && *p0 == CharT('-'))
608 bSign = true;
609 ++p0;
611 else
613 bSign = false;
614 if (p0 != pEnd && *p0 == CharT('+'))
615 ++p0;
617 CharT const * p = p0;
619 // leading zeros and group separators may be safely ignored
620 while (p != pEnd && (*p == CharT('0') || *p == cGroupSeparator))
621 ++p;
623 long nValExp = 0; // carry along exponent of mantissa
625 // integer part of mantissa
626 for (; p != pEnd; ++p)
628 CharT c = *p;
629 if (isDigit(c))
631 fVal = fVal * 10.0 + static_cast< double >( c - CharT('0') );
632 ++nValExp;
634 else if (c != cGroupSeparator)
635 break;
638 // fraction part of mantissa
639 if (p != pEnd && *p == cDecSeparator)
641 ++p;
642 double fFrac = 0.0;
643 long nFracExp = 0;
644 while (p != pEnd && *p == CharT('0'))
646 --nFracExp;
647 ++p;
649 if ( nValExp == 0 )
650 nValExp = nFracExp - 1; // no integer part => fraction exponent
651 // one decimal digit needs ld(10) ~= 3.32 bits
652 static const int nSigs = (DBL_MANT_DIG / 3) + 1;
653 int nDigs = 0;
654 for (; p != pEnd; ++p)
656 CharT c = *p;
657 if (!isDigit(c))
658 break;
659 if ( nDigs < nSigs )
660 { // further digits (more than nSigs) don't have any significance
661 fFrac = fFrac * 10.0 + static_cast< double >( c - CharT('0') );
662 --nFracExp;
663 ++nDigs;
666 if ( fFrac != 0.0 )
667 fVal += rtl::math::pow10Exp( fFrac, nFracExp );
668 else if ( nValExp < 0 )
669 nValExp = 0; // no digit other than 0 after decimal point
672 if ( nValExp > 0 )
673 --nValExp; // started with offset +1 at the first mantissa digit
675 // Exponent
676 if (p != p0 && p != pEnd && (*p == CharT('E') || *p == CharT('e')))
678 ++p;
679 bool bExpSign;
680 if (p != pEnd && *p == CharT('-'))
682 bExpSign = true;
683 ++p;
685 else
687 bExpSign = false;
688 if (p != pEnd && *p == CharT('+'))
689 ++p;
691 if ( fVal == 0.0 )
692 { // no matter what follows, zero stays zero, but carry on the offset
693 while (p != pEnd && isDigit(*p))
694 ++p;
696 else
698 bool bOverFlow = false;
699 long nExp = 0;
700 for (; p != pEnd; ++p)
702 CharT c = *p;
703 if (!isDigit(c))
704 break;
705 int i = c - CharT('0');
706 if ( long10Overflow( nExp, i ) )
707 bOverFlow = true;
708 else
709 nExp = nExp * 10 + i;
711 if ( nExp )
713 if ( bExpSign )
714 nExp = -nExp;
715 long nAllExp = ( bOverFlow ? 0 : nExp + nValExp );
716 if ( nAllExp > DBL_MAX_10_EXP || (bOverFlow && !bExpSign) )
717 { // overflow
718 fVal = HUGE_VAL;
719 eStatus = rtl_math_ConversionStatus_OutOfRange;
721 else if ( nAllExp < DBL_MIN_10_EXP || (bOverFlow && bExpSign) )
722 { // underflow
723 fVal = 0.0;
724 eStatus = rtl_math_ConversionStatus_OutOfRange;
726 else if ( nExp > DBL_MAX_10_EXP || nExp < DBL_MIN_10_EXP )
727 { // compensate exponents
728 fVal = rtl::math::pow10Exp( fVal, -nValExp );
729 fVal = rtl::math::pow10Exp( fVal, nAllExp );
731 else
732 fVal = rtl::math::pow10Exp( fVal, nExp ); // normal
736 else if (p - p0 == 2 && p != pEnd && p[0] == CharT('#')
737 && p[-1] == cDecSeparator && p[-2] == CharT('1'))
739 if (pEnd - p >= 4 && p[1] == CharT('I') && p[2] == CharT('N')
740 && p[3] == CharT('F'))
742 // "1.#INF", "+1.#INF", "-1.#INF"
743 p += 4;
744 fVal = HUGE_VAL;
745 eStatus = rtl_math_ConversionStatus_OutOfRange;
746 // Eat any further digits:
747 while (p != pEnd && isDigit(*p))
748 ++p;
750 else if (pEnd - p >= 4 && p[1] == CharT('N') && p[2] == CharT('A')
751 && p[3] == CharT('N'))
753 // "1.#NAN", "+1.#NAN", "-1.#NAN"
754 p += 4;
755 rtl::math::setNan( &fVal );
756 if (bSign)
758 reinterpret_cast< sal_math_Double * >(&fVal)->w32_parts.msw
759 |= 0x80000000; // create negative NaN
760 bSign = false; // don't negate again
762 // Eat any further digits:
763 while (p != pEnd && isDigit(*p))
764 ++p;
768 // overflow also if more than DBL_MAX_10_EXP digits without decimal
769 // separator, or 0. and more than DBL_MIN_10_EXP digits, ...
770 bool bHuge = fVal == HUGE_VAL; // g++ 3.0.1 requires it this way...
771 if ( bHuge )
772 eStatus = rtl_math_ConversionStatus_OutOfRange;
774 if ( bSign )
775 fVal = -fVal;
777 if (pStatus != 0)
778 *pStatus = eStatus;
779 if (pParsedEnd != 0)
780 *pParsedEnd = p;
782 return fVal;
787 double SAL_CALL rtl_math_stringToDouble(sal_Char const * pBegin,
788 sal_Char const * pEnd,
789 sal_Char cDecSeparator,
790 sal_Char cGroupSeparator,
791 rtl_math_ConversionStatus * pStatus,
792 sal_Char const ** pParsedEnd)
793 SAL_THROW_EXTERN_C()
795 return stringToDouble(pBegin, pEnd, cDecSeparator, cGroupSeparator, pStatus,
796 pParsedEnd);
799 double SAL_CALL rtl_math_uStringToDouble(sal_Unicode const * pBegin,
800 sal_Unicode const * pEnd,
801 sal_Unicode cDecSeparator,
802 sal_Unicode cGroupSeparator,
803 rtl_math_ConversionStatus * pStatus,
804 sal_Unicode const ** pParsedEnd)
805 SAL_THROW_EXTERN_C()
807 return stringToDouble(pBegin, pEnd, cDecSeparator, cGroupSeparator, pStatus,
808 pParsedEnd);
811 double SAL_CALL rtl_math_round(double fValue, int nDecPlaces,
812 enum rtl_math_RoundingMode eMode)
813 SAL_THROW_EXTERN_C()
815 OSL_ASSERT(nDecPlaces >= -20 && nDecPlaces <= 20);
817 if ( fValue == 0.0 )
818 return fValue;
820 // sign adjustment
821 bool bSign = rtl::math::isSignBitSet( fValue );
822 if ( bSign )
823 fValue = -fValue;
825 double fFac = 0;
826 if ( nDecPlaces != 0 )
828 // max 20 decimals, we don't have unlimited precision
829 // #38810# and no overflow on fValue*=fFac
830 if ( nDecPlaces < -20 || 20 < nDecPlaces || fValue > (DBL_MAX / 1e20) )
831 return bSign ? -fValue : fValue;
833 fFac = getN10Exp( nDecPlaces );
834 fValue *= fFac;
836 //else //! uninitialized fFac, not needed
838 switch ( eMode )
840 case rtl_math_RoundingMode_Corrected :
842 int nExp; // exponent for correction
843 if ( fValue > 0.0 )
844 nExp = static_cast<int>( floor( log10( fValue ) ) );
845 else
846 nExp = 0;
847 int nIndex = 15 - nExp;
848 if ( nIndex > 15 )
849 nIndex = 15;
850 else if ( nIndex <= 1 )
851 nIndex = 0;
852 fValue = floor( fValue + 0.5 + nKorrVal[nIndex] );
854 break;
855 case rtl_math_RoundingMode_Down :
856 fValue = rtl::math::approxFloor( fValue );
857 break;
858 case rtl_math_RoundingMode_Up :
859 fValue = rtl::math::approxCeil( fValue );
860 break;
861 case rtl_math_RoundingMode_Floor :
862 fValue = bSign ? rtl::math::approxCeil( fValue )
863 : rtl::math::approxFloor( fValue );
864 break;
865 case rtl_math_RoundingMode_Ceiling :
866 fValue = bSign ? rtl::math::approxFloor( fValue )
867 : rtl::math::approxCeil( fValue );
868 break;
869 case rtl_math_RoundingMode_HalfDown :
871 double f = floor( fValue );
872 fValue = ((fValue - f) <= 0.5) ? f : ceil( fValue );
874 break;
875 case rtl_math_RoundingMode_HalfUp :
877 double f = floor( fValue );
878 fValue = ((fValue - f) < 0.5) ? f : ceil( fValue );
880 break;
881 case rtl_math_RoundingMode_HalfEven :
882 #if defined FLT_ROUNDS
884 Use fast version. FLT_ROUNDS may be defined to a function by some compilers!
886 DBL_EPSILON is the smallest fractional number which can be represented,
887 its reciprocal is therefore the smallest number that cannot have a
888 fractional part. Once you add this reciprocal to `x', its fractional part
889 is stripped off. Simply subtracting the reciprocal back out returns `x'
890 without its fractional component.
891 Simple, clever, and elegant - thanks to Ross Cottrell, the original author,
892 who placed it into public domain.
894 volatile: prevent compiler from being too smart
896 if ( FLT_ROUNDS == 1 )
898 volatile double x = fValue + 1.0 / DBL_EPSILON;
899 fValue = x - 1.0 / DBL_EPSILON;
901 else
902 #endif // FLT_ROUNDS
904 double f = floor( fValue );
905 if ( (fValue - f) != 0.5 )
906 fValue = floor( fValue + 0.5 );
907 else
909 double g = f / 2.0;
910 fValue = (g == floor( g )) ? f : (f + 1.0);
913 break;
914 default:
915 OSL_ASSERT(false);
916 break;
919 if ( nDecPlaces != 0 )
920 fValue /= fFac;
922 return bSign ? -fValue : fValue;
926 double SAL_CALL rtl_math_pow10Exp(double fValue, int nExp) SAL_THROW_EXTERN_C()
928 return fValue * getN10Exp( nExp );
932 double SAL_CALL rtl_math_approxValue( double fValue ) SAL_THROW_EXTERN_C()
934 if (fValue == 0.0 || fValue == HUGE_VAL || !::rtl::math::isFinite( fValue))
935 // We don't handle these conditions. Bail out.
936 return fValue;
938 double fOrigValue = fValue;
940 bool bSign = ::rtl::math::isSignBitSet( fValue);
941 if (bSign)
942 fValue = -fValue;
944 int nExp = static_cast<int>( floor( log10( fValue)));
945 nExp = 14 - nExp;
946 double fExpValue = getN10Exp( nExp);
948 fValue *= fExpValue;
949 // If the original value was near DBL_MIN we got an overflow. Restore and
950 // bail out.
951 if (!rtl::math::isFinite( fValue))
952 return fOrigValue;
953 fValue = rtl_math_round( fValue, 0, rtl_math_RoundingMode_Corrected);
954 fValue /= fExpValue;
955 // If the original value was near DBL_MAX we got an overflow. Restore and
956 // bail out.
957 if (!rtl::math::isFinite( fValue))
958 return fOrigValue;
960 return bSign ? -fValue : fValue;
964 double SAL_CALL rtl_math_expm1( double fValue ) SAL_THROW_EXTERN_C()
966 double fe = exp( fValue );
967 if (fe == 1.0)
968 return fValue;
969 if (fe-1.0 == -1.0)
970 return -1.0;
971 return (fe-1.0) * fValue / log(fe);
975 double SAL_CALL rtl_math_log1p( double fValue ) SAL_THROW_EXTERN_C()
977 // Use volatile because a compiler may be too smart "optimizing" the
978 // condition such that in certain cases the else path was called even if
979 // (fp==1.0) was true, where the term (fp-1.0) then resulted in 0.0 and
980 // hence the entire expression resulted in NaN.
981 // Happened with g++ 3.4.1 and an input value of 9.87E-18
982 volatile double fp = 1.0 + fValue;
983 if (fp == 1.0)
984 return fValue;
985 else
986 return log(fp) * fValue / (fp-1.0);
990 double SAL_CALL rtl_math_atanh( double fValue ) SAL_THROW_EXTERN_C()
992 return 0.5 * rtl_math_log1p( 2.0 * fValue / (1.0-fValue) );