1 /***************************************************************************/
5 /* FreeType bbox computation (body). */
7 /* Copyright 1996-2001, 2002, 2004, 2006, 2010 by */
8 /* David Turner, Robert Wilhelm, and Werner Lemberg. */
10 /* This file is part of the FreeType project, and may only be used */
11 /* modified and distributed under the terms of the FreeType project */
12 /* license, LICENSE.TXT. By continuing to use, modify, or distribute */
13 /* this file you indicate that you have read the license and */
14 /* understand and accept it fully. */
16 /***************************************************************************/
19 /*************************************************************************/
21 /* This component has a _single_ role: to compute exact outline bounding */
24 /*************************************************************************/
31 #include FT_INTERNAL_CALC_H
32 #include FT_INTERNAL_OBJECTS_H
35 typedef struct TBBox_Rec_
43 /*************************************************************************/
49 /* This function is used as a `move_to' and `line_to' emitter during */
50 /* FT_Outline_Decompose(). It simply records the destination point */
51 /* in `user->last'; no further computations are necessary since we */
52 /* use the cbox as the starting bbox which must be refined. */
55 /* to :: A pointer to the destination vector. */
58 /* user :: A pointer to the current walk context. */
61 /* Always 0. Needed for the interface only. */
64 BBox_Move_To( FT_Vector
* to
,
73 #define CHECK_X( p, bbox ) \
74 ( p->x < bbox.xMin || p->x > bbox.xMax )
76 #define CHECK_Y( p, bbox ) \
77 ( p->y < bbox.yMin || p->y > bbox.yMax )
80 /*************************************************************************/
83 /* BBox_Conic_Check */
86 /* Finds the extrema of a 1-dimensional conic Bezier curve and update */
87 /* a bounding range. This version uses direct computation, as it */
88 /* doesn't need square roots. */
91 /* y1 :: The start coordinate. */
93 /* y2 :: The coordinate of the control point. */
95 /* y3 :: The end coordinate. */
98 /* min :: The address of the current minimum. */
100 /* max :: The address of the current maximum. */
103 BBox_Conic_Check( FT_Pos y1
,
109 if ( y1
<= y3
&& y2
== y1
) /* flat arc */
114 if ( y2
>= y1
&& y2
<= y3
) /* ascending arc */
119 if ( y2
>= y3
&& y2
<= y1
) /* descending arc */
128 y1
= y3
= y1
- FT_MulDiv( y2
- y1
, y2
- y1
, y1
- 2*y2
+ y3
);
131 if ( y1
< *min
) *min
= y1
;
132 if ( y3
> *max
) *max
= y3
;
136 /*************************************************************************/
142 /* This function is used as a `conic_to' emitter during */
143 /* FT_Outline_Decompose(). It checks a conic Bezier curve with the */
144 /* current bounding box, and computes its extrema if necessary to */
148 /* control :: A pointer to a control point. */
150 /* to :: A pointer to the destination vector. */
153 /* user :: The address of the current walk context. */
156 /* Always 0. Needed for the interface only. */
159 /* In the case of a non-monotonous arc, we compute directly the */
160 /* extremum coordinates, as it is sufficiently fast. */
163 BBox_Conic_To( FT_Vector
* control
,
167 /* we don't need to check `to' since it is always an `on' point, thus */
168 /* within the bbox */
170 if ( CHECK_X( control
, user
->bbox
) )
171 BBox_Conic_Check( user
->last
.x
,
177 if ( CHECK_Y( control
, user
->bbox
) )
178 BBox_Conic_Check( user
->last
.y
,
190 /*************************************************************************/
193 /* BBox_Cubic_Check */
196 /* Finds the extrema of a 1-dimensional cubic Bezier curve and */
197 /* updates a bounding range. This version uses splitting because we */
198 /* don't want to use square roots and extra accuracy. */
201 /* p1 :: The start coordinate. */
203 /* p2 :: The coordinate of the first control point. */
205 /* p3 :: The coordinate of the second control point. */
207 /* p4 :: The end coordinate. */
210 /* min :: The address of the current minimum. */
212 /* max :: The address of the current maximum. */
218 BBox_Cubic_Check( FT_Pos p1
,
225 FT_Pos stack
[32*3 + 1], *arc
;
245 if ( y1
== y2
&& y1
== y3
) /* flat */
250 if ( y2
>= y1
&& y2
<= y4
&& y3
>= y1
&& y3
<= y4
) /* ascending */
255 if ( y2
>= y4
&& y2
<= y1
&& y3
>= y4
&& y3
<= y1
) /* descending */
264 /* unknown direction -- split the arc in two */
266 arc
[1] = y1
= ( y1
+ y2
) / 2;
267 arc
[5] = y4
= ( y4
+ y3
) / 2;
268 y2
= ( y2
+ y3
) / 2;
269 arc
[2] = y1
= ( y1
+ y2
) / 2;
270 arc
[4] = y4
= ( y4
+ y2
) / 2;
271 arc
[3] = ( y1
+ y4
) / 2;
277 if ( y1
< *min
) *min
= y1
;
278 if ( y4
> *max
) *max
= y4
;
283 } while ( arc
>= stack
);
289 test_cubic_extrema( FT_Pos y1
,
297 /* FT_Pos a = y4 - 3*y3 + 3*y2 - y1; */
298 FT_Pos b
= y3
- 2*y2
+ y1
;
307 /* The polynomial is */
309 /* P(x) = a*x^3 + 3b*x^2 + 3c*x + d , */
311 /* dP/dx = 3a*x^2 + 6b*x + 3c . */
313 /* However, we also have */
317 /* which implies by subtraction that */
319 /* P(u) = b*u^2 + 2c*u + d . */
321 if ( u
> 0 && u
< 0x10000L
)
323 uu
= FT_MulFix( u
, u
);
324 y
= d
+ FT_MulFix( c
, 2*u
) + FT_MulFix( b
, uu
);
326 if ( y
< *min
) *min
= y
;
327 if ( y
> *max
) *max
= y
;
333 BBox_Cubic_Check( FT_Pos y1
,
340 /* always compare first and last points */
341 if ( y1
< *min
) *min
= y1
;
342 else if ( y1
> *max
) *max
= y1
;
344 if ( y4
< *min
) *min
= y4
;
345 else if ( y4
> *max
) *max
= y4
;
347 /* now, try to see if there are split points here */
350 /* flat or ascending arc test */
351 if ( y1
<= y2
&& y2
<= y4
&& y1
<= y3
&& y3
<= y4
)
356 /* descending arc test */
357 if ( y1
>= y2
&& y2
>= y4
&& y1
>= y3
&& y3
>= y4
)
361 /* There are some split points. Find them. */
363 FT_Pos a
= y4
- 3*y3
+ 3*y2
- y1
;
364 FT_Pos b
= y3
- 2*y2
+ y1
;
370 /* We need to solve `ax^2+2bx+c' here, without floating points! */
371 /* The trick is to normalize to a different representation in order */
372 /* to use our 16.16 fixed point routines. */
374 /* We compute FT_MulFix(b,b) and FT_MulFix(a,c) after normalization. */
375 /* These values must fit into a single 16.16 value. */
377 /* We normalize a, b, and c to `8.16' fixed float values to ensure */
378 /* that its product is held in a `16.16' value. */
385 /* The following computation is based on the fact that for */
386 /* any value `y', if `n' is the position of the most */
387 /* significant bit of `abs(y)' (starting from 0 for the */
388 /* least significant bit), then `y' is in the range */
392 /* We want to shift `a', `b', and `c' concurrently in order */
393 /* to ensure that they all fit in 8.16 values, which maps */
394 /* to the integer range `-2^23..2^23-1'. */
396 /* Necessarily, we need to shift `a', `b', and `c' so that */
397 /* the most significant bit of its absolute values is at */
398 /* _most_ at position 23. */
400 /* We begin by computing `t1' as the bitwise `OR' of the */
401 /* absolute values of `a', `b', `c'. */
403 t1
= (FT_ULong
)( ( a
>= 0 ) ? a
: -a
);
404 t2
= (FT_ULong
)( ( b
>= 0 ) ? b
: -b
);
406 t2
= (FT_ULong
)( ( c
>= 0 ) ? c
: -c
);
409 /* Now we can be sure that the most significant bit of `t1' */
410 /* is the most significant bit of either `a', `b', or `c', */
411 /* depending on the greatest integer range of the particular */
414 /* Next, we compute the `shift', by shifting `t1' as many */
415 /* times as necessary to move its MSB to position 23. This */
416 /* corresponds to a value of `t1' that is in the range */
417 /* 0x40_0000..0x7F_FFFF. */
419 /* Finally, we shift `a', `b', and `c' by the same amount. */
420 /* This ensures that all values are now in the range */
421 /* -2^23..2^23, i.e., they are now expressed as 8.16 */
422 /* fixed-float numbers. This also means that we are using */
423 /* 24 bits of precision to compute the zeros, independently */
424 /* of the range of the original polynomial coefficients. */
426 /* This algorithm should ensure reasonably accurate values */
427 /* for the zeros. Note that they are only expressed with */
428 /* 16 bits when computing the extrema (the zeros need to */
429 /* be in 0..1 exclusive to be considered part of the arc). */
431 if ( t1
== 0 ) /* all coefficients are 0! */
434 if ( t1
> 0x7FFFFFUL
)
441 } while ( t1
> 0x7FFFFFUL
);
443 /* this loses some bits of precision, but we use 24 of them */
444 /* for the computation anyway */
449 else if ( t1
< 0x400000UL
)
456 } while ( t1
< 0x400000UL
);
469 t
= - FT_DivFix( c
, b
) / 2;
470 test_cubic_extrema( y1
, y2
, y3
, y4
, t
, min
, max
);
475 /* solve the equation now */
476 d
= FT_MulFix( b
, b
) - FT_MulFix( a
, c
);
482 /* there is a single split point at -b/a */
483 t
= - FT_DivFix( b
, a
);
484 test_cubic_extrema( y1
, y2
, y3
, y4
, t
, min
, max
);
488 /* there are two solutions; we need to filter them */
489 d
= FT_SqrtFixed( (FT_Int32
)d
);
490 t
= - FT_DivFix( b
- d
, a
);
491 test_cubic_extrema( y1
, y2
, y3
, y4
, t
, min
, max
);
493 t
= - FT_DivFix( b
+ d
, a
);
494 test_cubic_extrema( y1
, y2
, y3
, y4
, t
, min
, max
);
503 /*************************************************************************/
509 /* This function is used as a `cubic_to' emitter during */
510 /* FT_Outline_Decompose(). It checks a cubic Bezier curve with the */
511 /* current bounding box, and computes its extrema if necessary to */
515 /* control1 :: A pointer to the first control point. */
517 /* control2 :: A pointer to the second control point. */
519 /* to :: A pointer to the destination vector. */
522 /* user :: The address of the current walk context. */
525 /* Always 0. Needed for the interface only. */
528 /* In the case of a non-monotonous arc, we don't compute directly */
529 /* extremum coordinates, we subdivide instead. */
532 BBox_Cubic_To( FT_Vector
* control1
,
537 /* we don't need to check `to' since it is always an `on' point, thus */
538 /* within the bbox */
540 if ( CHECK_X( control1
, user
->bbox
) ||
541 CHECK_X( control2
, user
->bbox
) )
542 BBox_Cubic_Check( user
->last
.x
,
549 if ( CHECK_Y( control1
, user
->bbox
) ||
550 CHECK_Y( control2
, user
->bbox
) )
551 BBox_Cubic_Check( user
->last
.y
,
563 FT_DEFINE_OUTLINE_FUNCS(bbox_interface
,
564 (FT_Outline_MoveTo_Func
) BBox_Move_To
,
565 (FT_Outline_LineTo_Func
) BBox_Move_To
,
566 (FT_Outline_ConicTo_Func
)BBox_Conic_To
,
567 (FT_Outline_CubicTo_Func
)BBox_Cubic_To
,
571 /* documentation is in ftbbox.h */
573 FT_EXPORT_DEF( FT_Error
)
574 FT_Outline_Get_BBox( FT_Outline
* outline
,
584 return FT_Err_Invalid_Argument
;
587 return FT_Err_Invalid_Outline
;
589 /* if outline is empty, return (0,0,0,0) */
590 if ( outline
->n_points
== 0 || outline
->n_contours
<= 0 )
592 abbox
->xMin
= abbox
->xMax
= 0;
593 abbox
->yMin
= abbox
->yMax
= 0;
597 /* We compute the control box as well as the bounding box of */
598 /* all `on' points in the outline. Then, if the two boxes */
599 /* coincide, we exit immediately. */
601 vec
= outline
->points
;
602 bbox
.xMin
= bbox
.xMax
= cbox
.xMin
= cbox
.xMax
= vec
->x
;
603 bbox
.yMin
= bbox
.yMax
= cbox
.yMin
= cbox
.yMax
= vec
->y
;
606 for ( n
= 1; n
< outline
->n_points
; n
++ )
612 /* update control box */
613 if ( x
< cbox
.xMin
) cbox
.xMin
= x
;
614 if ( x
> cbox
.xMax
) cbox
.xMax
= x
;
616 if ( y
< cbox
.yMin
) cbox
.yMin
= y
;
617 if ( y
> cbox
.yMax
) cbox
.yMax
= y
;
619 if ( FT_CURVE_TAG( outline
->tags
[n
] ) == FT_CURVE_TAG_ON
)
621 /* update bbox for `on' points only */
622 if ( x
< bbox
.xMin
) bbox
.xMin
= x
;
623 if ( x
> bbox
.xMax
) bbox
.xMax
= x
;
625 if ( y
< bbox
.yMin
) bbox
.yMin
= y
;
626 if ( y
> bbox
.yMax
) bbox
.yMax
= y
;
632 /* test two boxes for equality */
633 if ( cbox
.xMin
< bbox
.xMin
|| cbox
.xMax
> bbox
.xMax
||
634 cbox
.yMin
< bbox
.yMin
|| cbox
.yMax
> bbox
.yMax
)
636 /* the two boxes are different, now walk over the outline to */
637 /* get the Bezier arc extrema. */
642 #ifdef FT_CONFIG_OPTION_PIC
643 FT_Outline_Funcs bbox_interface
;
644 Init_Class_bbox_interface(&bbox_interface
);
649 error
= FT_Outline_Decompose( outline
, &bbox_interface
, &user
);