1 #include "oXs_bmp280.h"
3 #if defined(SENSOR_IS_BMP280)
6 //#define DEBUGI2CBMP280
8 //#define DEBUGVARIOI2C
11 extern unsigned long micros( void ) ;
12 extern unsigned long millis( void ) ;
13 extern void delay(unsigned long ms
) ;
15 static BMP280_CALIB_DATA _bmp280_coeffs
; // Last read calibration data will be available here
16 //static uint8_t _bmp085Mode;
20 OXS_BMP280::OXS_BMP280( HardwareSerial
&print
)
22 OXS_BMP280::OXS_BMP280(void)
28 varioData
.SensorState
= 0 ;
30 printer
= &print
; //operate on the address of print
31 printer
->begin(115200);
32 printer
->print("Vario Sensor:BMP280 I2C Addr=");
33 printer
->println(_addr
,HEX
);
38 // **************** Setup the BMP280 sensor *********************
39 void OXS_BMP280::setup() {
40 unsigned int _calibrationData
[13]; // The factory calibration data of the BMP280
41 varioData
.absoluteAlt
.available
= false ;
42 varioData
.relativeAlt
.available
= false ;
43 varioData
.climbRate
.available
= false ;
44 varioData
.sensitivity
.available
= false ;
45 // varioData.vSpeed10SecAvailable = false ;
46 sensitivityMin
= SENSITIVITY_MIN
; // set the min smoothing to the default value
47 varioData
.delaySmooth
= 20000 ; // delay between 2 altitude calculation = 20msec = 20000 usec
48 nextAltMillis
= 5000 ; // in msec; save when Altitude has to be calculated; altitude is available only after some delay in order to get a stable value (less temperature drift)
49 // nextAverageAltMillis = nextAltMillis ; // in msec ; save when AverageAltitude has to be calculated
50 // nextAverageAltMillis = nextAltMillis ;
52 //#ifdef ALT_TEMP_COMPENSATION
53 // alt_temp_compensation = ALT_TEMP_COMPENSATION ;
58 printer
->print(F("Vario Sensor:BMP280 "));
59 printer
->println(" ");
60 printer
->print(F(" milli="));
61 printer
->println(millis());
66 I2c
.timeOut( 80); //initialise the time out in order to avoid infinite loop
69 printer
->print(F("last I2C scan adr: "));
70 printer
->println( I2c
.scanAdr
, HEX
);
73 // write in register 0xF4 value 0x33 (it means oversampling temperature 1 X , oversampling pressure 8 X and normal mode = continue )
74 errorI2C
= I2c
.write( _addr
, (uint8_t) 0xF4 , (uint8_t) 0x33 ) ;
75 // write in register 0xF5 value 0x00 (it means 0.5msec between sampling, no filter, I2C protocol )
76 errorI2C
= I2c
.write( _addr
, (uint8_t) 0xF5 , (uint8_t) 0x00 ) ;
78 errorCalibration
= false ;
79 for (byte i
= 1; i
<=12; i
++) {
80 errorI2C
= I2c
.read( _addr
, 0x86 + i
*2, 2 ) ; //read 2 bytes from the device after sending the register to be read (first register = 0x86 (=register AC1)
83 printer
->print(F("error code in setup I2CRead: "));
84 printer
->println( errorI2C
);
86 errorCalibration
= true ;
89 high
= I2c
.receive() ;
90 _calibrationData
[i
] = high
<<8 | low
;
93 printer
->print(F("calibration data #"));
95 printer
->print(F(" = "));
96 printer
->print( _calibrationData
[i
] );
97 printer
->print(F(" error= "));
98 printer
->println( errorI2C
);
102 _bmp280_coeffs
.dig_T1
= _calibrationData
[1];
103 _bmp280_coeffs
.dig_T2
= _calibrationData
[2];
104 _bmp280_coeffs
.dig_T3
= _calibrationData
[3];
105 _bmp280_coeffs
.dig_P1
= _calibrationData
[4];
106 _bmp280_coeffs
.dig_P2
= _calibrationData
[5];
107 _bmp280_coeffs
.dig_P3
= _calibrationData
[6];
108 _bmp280_coeffs
.dig_P4
= _calibrationData
[7];
109 _bmp280_coeffs
.dig_P5
= _calibrationData
[8];
110 _bmp280_coeffs
.dig_P6
= _calibrationData
[9];
111 _bmp280_coeffs
.dig_P7
= _calibrationData
[10];
112 _bmp280_coeffs
.dig_P8
= _calibrationData
[11];
113 _bmp280_coeffs
.dig_P9
= _calibrationData
[12];
114 // _bmp280Mode = 1; // perform an average of 2 pressure reads
120 printer
->println(F("setup vario done."));
126 //********************************************************************************************
127 //*** read the sensor ***
128 //********************************************************************************************
129 bool OXS_BMP280::readSensor() {
130 //static uint32_t lastBMP280ReadMicro ;
131 bool newVSpeedCalculated
= false ;
132 if ( ( micros() - varioData
.lastCommandMicros
) > 20000) {
135 int32_t t_fine
; // t_fine carries fine temperature as global value
138 int32_t T
; // Returns temperature in DegC, resolution is 0.01 DegC. Output value of “5123” equals 51.23 DegC.
139 uint32_t p
; // pressure in pascal
141 errorI2C
= I2c
.read( _addr
, (uint8_t) 0xF7 , (uint8_t) 6) ; // read 6 bytes starting from register F7
142 adc_P
= I2c
.receive() ;
144 adc_P
|= I2c
.receive() ;
146 adc_P
|= I2c
.receive();
148 adc_T
= I2c
.receive();
150 adc_T
|= I2c
.receive();
152 adc_T
|= I2c
.receive();
154 varioData
.lastCommandMicros
= micros() ;
156 var1
= ((((adc_T
>>3) - ((int32_t)_bmp280_coeffs
.dig_T1
<<1))) * ((int32_t)_bmp280_coeffs
.dig_T2
)) >> 11;
157 var2
= (((((adc_T
>>4) - ((int32_t)_bmp280_coeffs
.dig_T1
)) * ((adc_T
>>4) - ((int32_t)_bmp280_coeffs
.dig_T1
))) >> 12) * ((int32_t)_bmp280_coeffs
.dig_T3
)) >> 14;
158 t_fine
= var1
+ var2
;
159 varioData
.temperature
= (t_fine
* 5 + 128) >> 8;
161 var1
= (((int32_t)t_fine
)>>1) - (int32_t)64000;
162 var2
= (((var1
>>2) * (var1
>>2)) >> 11 ) * ((int32_t)_bmp280_coeffs
.dig_P6
);
163 var2
= var2
+ ((var1
*((int32_t)_bmp280_coeffs
.dig_P5
))<<1);
164 var2
= (var2
>>2)+(((int32_t)_bmp280_coeffs
.dig_P4
)<<16);
165 var1
= (((_bmp280_coeffs
.dig_P3
* (((var1
>>2) * (var1
>>2)) >> 13 )) >> 3) + ((((int32_t)_bmp280_coeffs
.dig_P2
) * var1
)>>1))>>18;
166 var1
=((((32768+var1
))*((int32_t)_bmp280_coeffs
.dig_P1
))>>15);
168 varioData
.rawPressure
= 0 ;
170 p
= (((uint32_t)(((int32_t)1048576) - adc_P
)-(var2
>>12)))*3125;
171 if (p
< 0x80000000) {
172 p
= (p
<< 1) / ((uint32_t)var1
);
174 p
= (p
/ (uint32_t)var1
) * 2;
176 var1
= (((int32_t)_bmp280_coeffs
.dig_P9
) * ((int32_t)(((p
>>3) * (p
>>3))>>13)))>>12;
177 var2
= (((int32_t)(p
>>2)) * ((int32_t)_bmp280_coeffs
.dig_P8
))>>13;
178 varioData
.rawPressure
= (uint32_t)((int32_t)p
+ ((var1
+ var2
+ _bmp280_coeffs
.dig_P7
) >> 4))* 10000 ;
180 if ( (errorI2C
== 0 ) & (millis() > 1000) ) { // If no I2c error and if sensor is started since more than 1 sec, then calculate pressure etc...
182 newVSpeedCalculated
= true ;
184 } // end check on 20 msec
185 return newVSpeedCalculated
; // return true if a new Vspeed is available
190 void OXS_BMP280::calculateVario() {
192 // altitude = 44330 * (1.0 - pow(pressure /sealevelPressure,0.1903));
193 // other alternative (faster) = 1013.25 = 0 m , 954.61 = 500m , etc...
194 // Pressure Alt (m) Ratio
195 // 101325 0 0.08526603
196 // 95461 500 0.089525515
197 // 89876 1000 0.094732853
198 // 84598 1500 0.098039216
199 // 79498 2000 0.103906899
200 // 74686 2500 0.109313511
201 // 70112 3000 0.115101289
202 // 65768 3500 0.121270919
203 // 61645 4000 0.127811861
204 // 57733 4500 0.134843581
207 if ( varioData
.rawPressure
> 954610000) {
208 varioData
.rawAltitude
= ( 1013250000 - varioData
.rawPressure
) * 0.08526603 ; // = 500 / (101325 - 95461) // returned value 1234567 means 123,4567 m (temp is fixed to 15 degree celcius)
209 } else if ( varioData
.rawPressure
> 898760000) {
210 varioData
.rawAltitude
= 5000000 + ( 954610000 - varioData
.rawPressure
) * 0.089525515 ;
211 } else if ( varioData
.rawPressure
> 845980000) {
212 varioData
.rawAltitude
= 10000000 + ( 898760000 - varioData
.rawPressure
) * 0.094732853 ;
213 } else if ( varioData
.rawPressure
> 794980000) {
214 varioData
.rawAltitude
= 15000000 + ( 845980000 - varioData
.rawPressure
) * 0.098039216 ;
215 } else if ( varioData
.rawPressure
> 746860000) {
216 varioData
.rawAltitude
= 20000000 + ( 794980000 - varioData
.rawPressure
) * 0.103906899 ;
217 } else if ( varioData
.rawPressure
> 701120000) {
218 varioData
.rawAltitude
= 25000000 + ( 746860000 - varioData
.rawPressure
) * 0.109313511 ;
219 } else if ( varioData
.rawPressure
> 657680000) {
220 varioData
.rawAltitude
= 30000000 + ( 701120000 - varioData
.rawPressure
) * 0.115101289 ;
221 } else if ( varioData
.rawPressure
> 616450000) {
222 varioData
.rawAltitude
= 35000000 + ( 657680000 - varioData
.rawPressure
) * 0.121270919 ;
223 } else if ( varioData
.rawPressure
> 577330000) {
224 varioData
.rawAltitude
= 40000000 + ( 616450000 - varioData
.rawPressure
) * 0.127811861 ;
226 varioData
.rawAltitude
= 45000000 + ( 577330000 - varioData
.rawPressure
) * 0.134843581 ;
229 // here the classical way to calculate Vspeed with high and low pass filter
231 altitudeLowPass
= altitudeHighPass
= altitude
= varioData
.rawAltitude
;
232 // pressureMicrosPrev2 = pressureMicrosPrev1 - 20000 ;
234 altitude
+= 0.04 * (varioData
.rawAltitude
- altitude
) ;
235 // varioData.altitudeAt20MsecAvailable = true ; // inform openxsens.ino that calculation of dTE can be performed
237 altitudeLowPass
+= 0.085 * ( varioData
.rawAltitude
- altitudeLowPass
) ;
238 altitudeHighPass
+= 0.1 * ( varioData
.rawAltitude
- altitudeHighPass
) ;
239 // if (pressureMicrosPrev1 > pressureMicrosPrev2 ) varioData.delaySmooth += 0.1 * ( pressureMicrosPrev1 - pressureMicrosPrev2 - varioData.delaySmooth ) ; //delay between 2 measures only if there is no overflow of pressureMicos
240 climbRate2AltFloat
= ((altitudeHighPass
- altitudeLowPass
) * 5666.685 ) / 20000;
242 abs_deltaClimbRate
= abs(climbRate2AltFloat
- varioData
.climbRateFloat
) ;
243 if ( varioData
.sensitivityPpm
> 0) {
244 sensitivityMin
= varioData
.sensitivityPpm
;
246 if ( (abs_deltaClimbRate
<= SENSITIVITY_MIN_AT
) || (sensitivityMin
>= SENSITIVITY_MAX
) ) {
247 varioData
.sensitivity
.value
= sensitivityMin
;
248 } else if (abs_deltaClimbRate
>= SENSITIVITY_MAX_AT
) {
249 varioData
.sensitivity
.value
= SENSITIVITY_MAX
;
251 varioData
.sensitivity
.value
= sensitivityMin
+ ( SENSITIVITY_MAX
- sensitivityMin
) * (abs_deltaClimbRate
- SENSITIVITY_MIN_AT
) / (SENSITIVITY_MAX_AT
- SENSITIVITY_MIN_AT
) ;
253 varioData
.climbRateFloat
+= varioData
.sensitivity
.value
* (climbRate2AltFloat
- varioData
.climbRateFloat
) * 0.001 ; // sensitivity is an integer and must be divided by 1000
255 if ( abs((int32_t) varioData
.climbRateFloat
- varioData
.climbRate
.value
) > VARIOHYSTERESIS
) {
256 varioData
.climbRate
.value
= (int32_t) varioData
.climbRateFloat
;
258 varioData
.climbRate
.available
=true; // allows SPORT protocol to transmit the value
259 // varioData.switchClimbRateAvailable = true ; // inform readsensors() that a switchable vspeed is available
260 // varioData.averageClimbRateAvailable = true ; // inform readsensors() that a vspeed is available to calculate the average
261 // AltitudeAvailable is set to true only once every 100 msec in order to give priority to climb rate on SPORT
262 altMillis
= millis() ;
263 if (altMillis
> nextAltMillis
){
264 nextAltMillis
= altMillis
+ 100 ;
265 varioData
.absoluteAlt
.value
= altitude
/ 100 ; // altitude is in m *10000 and AbsoluteAlt must be in m * 100
266 varioData
.absoluteAlt
.available
=true ; // Altitude is considered as available only after several loop in order to reduce number of transmission on Sport.
267 varioData
.sensitivity
.available
= true ;
268 if (varioData
.altOffset
== 0) {
269 varioData
.altOffset
= varioData
.absoluteAlt
.value
;
271 varioData
.relativeAlt
.value
= varioData
.absoluteAlt
.value
- varioData
.altOffset
;
272 varioData
.relativeAlt
.available
= true ;
273 if ( varioData
.relativeAlt
.value
> varioData
.relativeAltMax
) {
274 varioData
.relativeAltMax
= varioData
.relativeAlt
.value
;
276 varioData
.relativeAltMaxAvailable
= true ;
277 // if ( altMillis > nextAverageAltMillis ){ // calculation of the difference of altitude (in m) between the 10 last sec
278 // nextAverageAltMillis = altMillis + 500 ; // calculate only once every 500 msec
279 // varioData.vSpeed10Sec = (varioData.absoluteAlt.value - varioData.prevAlt[varioData.idxPrevAlt]) /100 ;
280 // varioData.prevAlt[varioData.idxPrevAlt] = varioData.absoluteAlt.value ;
281 // varioData.idxPrevAlt++ ;
282 // if ( varioData.idxPrevAlt >= 20 ) varioData.idxPrevAlt = 0 ;
283 // if ( altMillis > 15000) { // make the data avalaible only after 15 sec)
284 // varioData.vSpeed10SecAvailable = true ;
288 } // end If (altMillis > nextAltMillis)
290 static bool firstPrintAlt
= true ;
291 if (firstPrintAlt
== true) {
292 firstPrintAlt
= false ;
293 // printer->println(F( "T,Ra,Sm,A,NC,DS,AHP,ALP,CR2, Temp" )) ;
294 printer
->println(F( "T,Ra,Alt,vpsd, Alt2, rawVspd, vspd2 , smoothAlt, smoothVspd" )) ;
296 printer
->print( pressureMicrosPrev1
) ;
298 printer
->print( (float) varioData
.rawAltitude
) ; printer
->print(","); // alt is displayed in CM with 2 decimal
299 // printer->print( expoSmooth ) ;
300 // printer->print(" ,");
301 printer
->print( (float) altitude
) ;
302 printer
->print(" ,");
303 printer
->print( varioData
.climbRate
) ;
304 printer
->print(" ,");
305 // printer->print( delaySmooth );
306 // printer->print(" ,");
307 // printer->print( altitudeHighPass );
308 // printer->print(" ,");
309 // printer->print( altitudeLowPass );
310 // printer->print(" ,");
311 // printer->print( climbRate2AltFloat );
312 // printer->print(" ,");
313 // printer->print( varioData.temperature );
314 // printer->print( smoothAltitude );
315 // printer->print(" ,");
316 // printer->print( rawRateVSpeed );
317 // printer->print(" ,");
318 // printer->print( smoothRateVSpeed );
319 // printer->print(" ,");
320 // printer->print( expoSmooth5611_alt_auto * 1000 );
321 // printer->print(" ,");
322 // printer->print( expoSmooth5611_vSpeed_auto * 1000 ) ;
323 // printer->print(" ,");
324 printer
->println( ) ;
328 pressureMicrosPrev2
= pressureMicrosPrev1
;
329 } // End of calculate Vario
331 #endif // end of #if defined(SENSOR_IS_BMP280)