1 #include "oXs_bmp180.h"
3 #if defined(SENSOR_IS_BMP180)
6 //#define DEBUGI2CMS5611
8 //#define DEBUGVARIOI2C
11 extern unsigned long micros( void ) ;
12 extern unsigned long millis( void ) ;
13 extern void delay(unsigned long ms
) ;
15 static bmp085_calib_data _bmp085_coeffs
; // Last read accelerometer data will be available here
16 static uint8_t _bmp085Mode
;
23 OXS_BMP180::OXS_BMP180( HardwareSerial
&print
)
25 OXS_BMP180::OXS_BMP180(void)
30 varioData
.SensorState
= 0 ;
32 printer
= &print
; //operate on the address of print
33 // printer->begin(115200);
34 // printer->print("Vario Sensor:MS5611 I2C Addr=");
35 // printer->println(addr,HEX);
40 // **************** Setup the BMP180 sensor *********************
41 void OXS_BMP180::setup() {
42 unsigned int _calibrationData
[12]; // The factory calibration data of the BMP180
43 varioData
.absoluteAlt
.available
= false ;
44 varioData
.relativeAlt
.available
= false ;
45 varioData
.climbRate
.available
= false ;
46 varioData
.sensitivity
.available
= false ;
47 // varioData.vSpeed10SecAvailable = false ;
48 sensitivityMin
= SENSITIVITY_MIN
; // set the min smoothing to the default value
49 varioData
.delaySmooth
= 20000 ; // delay between 2 altitude calculation = 20msec = 20000 usec
50 nextAltMillis
= 5000 ; // in msec; save when Altitude has to be calculated; altitude is available only after some delay in order to get a stable value (less temperature drift)
51 // nextAverageAltMillis = nextAltMillis ; // in msec ; save when AverageAltitude has to be calculated
52 // nextAverageAltMillis = nextAltMillis ;
54 #ifdef ALT_TEMP_COMPENSATION
55 alt_temp_compensation
= ALT_TEMP_COMPENSATION
;
60 printer
->print(F("Vario Sensor:BMP180 "));
61 printer
->println(" ");
62 printer
->print(F(" milli="));
63 printer
->println(millis());
68 I2c
.timeOut( 80); //initialise the time out in order to avoid infinite loop
71 printer
->print(F("last I2C scan adr: "));
72 printer
->println( I2c
.scanAdr
, HEX
);
74 errorCalibration
= false ;
75 for (byte i
= 1; i
<=11; i
++) {
76 errorI2C
= I2c
.read( BMP180_ADR
, 0xA8 + i
*2, 2 ) ; //read 2 bytes from the device after sending the register to be read (first register = 0xAA (=register AC1)
79 printer
->print(F("error code in setup I2CRead: "));
80 printer
->println( errorI2C
);
82 errorCalibration
= true ;
84 high
= I2c
.receive() ;
86 _calibrationData
[i
] = high
<<8 | low
;
89 printer
->print(F("calibration data #"));
91 printer
->print(F(" = "));
92 printer
->print( _calibrationData
[i
] );
93 printer
->print(F(" error= "));
94 printer
->println( errorI2C
);
98 _bmp085_coeffs
.ac1
= _calibrationData
[1];
99 _bmp085_coeffs
.ac2
= _calibrationData
[2];
100 _bmp085_coeffs
.ac3
= _calibrationData
[3];
101 _bmp085_coeffs
.ac4
= _calibrationData
[4];
102 _bmp085_coeffs
.ac5
= _calibrationData
[5];
103 _bmp085_coeffs
.ac6
= _calibrationData
[6];
104 _bmp085_coeffs
.b1
= _calibrationData
[7];
105 _bmp085_coeffs
.b2
= _calibrationData
[8];
106 _bmp085_coeffs
.mb
= _calibrationData
[9];
107 _bmp085_coeffs
.mc
= _calibrationData
[10];
108 _bmp085_coeffs
.md
= _calibrationData
[11];
109 _bmp085Mode
= 1; // perform an average of 2 pressure reads
114 printer
->println(F("setup vario done."));
116 I2c
.write( BMP180_ADR
, 0xF4 , 0x74) ;// ask a conversion of Pressure sending 74 in register F4; 74 means an average of 2 reads and so a normal wait time of 7.5 msec
117 varioData
.lastCommandMicros
= micros() ;
118 varioData
.SensorState
=0; //
123 //********************************************************************************************
124 //*** read the sensor ***
125 //********************************************************************************************
126 bool OXS_BMP180::readSensor() {
129 printer
->print(F("sensorState= "));
130 printer
->println(varioData
.SensorState
);
132 bool newVSpeedCalculated
= false ;
133 if (varioData
.SensorState
==0) { // ========================= Read the pressure
134 if ( ( micros() - varioData
.lastCommandMicros
) > 9000){ // wait 9 msec at least before asking for reading the pressure
136 if( ! I2c
.read( BMP180_ADR
, 0xF6, 3 )) { ; //read 3 bytes from the device starting from register F6; keep previous value in case of error
137 result
= I2c
.receive() ;
139 result
|= I2c
.receive() ;
141 result
|= I2c
.receive() ;
142 D1
=result
>> 7; // divide by 2* (8- the parameter for number of averages)
144 D1
= 0 ; // D1 value are not processed to calculate Alt.
146 I2c
.write( BMP180_ADR
,0xF4 , 0x2E ) ; // ask a conversion of Temperature sending 2E in register F4
147 varioData
.lastCommandMicros
= micros();
148 varioData
.SensorState
= 1;
149 } // end of delay of 9 ms
150 } // end of SensorState == 1
151 else if (varioData
.SensorState
==1){ // =========================
152 if ( ( micros() - varioData
.lastCommandMicros
) > 9000 ) { // wait 9000 usec to get Temp with high precision
153 if ( ! I2c
.read( BMP180_ADR
, 0xF6, 2 )) { ; //read 2 bytes from the device in register F6 ; keep previous value in case of error
154 result
= I2c
.receive() ;
156 result
|= I2c
.receive() ;
159 I2c
.write( BMP180_ADR
, 0xF4 , 0x74) ;// ask a conversion of Pressure sending 74 in register F4; 74 means an average of 2 reads and so a normal wait time of 7.5 msec
160 varioData
.lastCommandMicros
= micros() ;
161 varioData
.SensorState
=2; //
162 } // End of process if temperature can be read
163 } // End of process if SensorState was 1
164 else if (varioData
.SensorState
==2) { // ========================== new Pressure and (new or old) Temp are known so Request Pressure immediately and calculate altitude
165 varioData
.SensorState
=0;
166 if ((D1
> 0) & (millis() > 3000) ) { // If D1 has been read in a previous loop and if sensor is started since more than 3 sec, then calculate pressure etc...
168 newVSpeedCalculated
= true ;
170 } // end ( varioData.SensorState == 2 )
171 return newVSpeedCalculated
; // return true if a new Vspeed is available
175 void OXS_BMP180::calculateVario() {
176 if (D2Prev
== 0) D2Prev
= D2
;
177 D2Apply
= (D2
+ D2Prev
) / 2 ;
179 #if BMP085_USE_DATASHEET_VALS
180 _bmp085_coeffs
.ac1
= 408;
181 _bmp085_coeffs
.ac2
= -72;
182 _bmp085_coeffs
.ac3
= -14383;
183 _bmp085_coeffs
.ac4
= 32741;
184 _bmp085_coeffs
.ac5
= 32757;
185 _bmp085_coeffs
.ac6
= 23153;
186 _bmp085_coeffs
.b1
= 6190;
187 _bmp085_coeffs
.b2
= 4;
188 _bmp085_coeffs
.mb
= -32768;
189 _bmp085_coeffs
.mc
= -8711;
190 _bmp085_coeffs
.md
= 2868;
195 int32_t X1
= (D2Apply
- (int32_t)_bmp085_coeffs
.ac6
) * ((int32_t)_bmp085_coeffs
.ac5
) >> 15;
196 int32_t X2
= ((int32_t)_bmp085_coeffs
.mc
<< 11) / (X1
+(int32_t)_bmp085_coeffs
.md
);
197 int32_t b5
= X1
+ X2
;
198 varioData
.temperature
= ( b5
+ 8 ) >> 4 ; // = Temperature
200 // calcul of pressure.
202 int32_t b6
= b5
- 4000;
203 int32_t x1
= (_bmp085_coeffs
.b2
* ((b6
* b6
) >> 12)) >> 11;
204 int32_t x2
= (_bmp085_coeffs
.ac2
* b6
) >> 11;
205 int32_t x3
= x1
+ x2
;
206 int32_t b3
= (((((int32_t) _bmp085_coeffs
.ac1
) * 4 + x3
) << _bmp085Mode
) + 2) >> 2;
207 x1
= (_bmp085_coeffs
.ac3
* b6
) >> 13;
208 x2
= (_bmp085_coeffs
.b1
* ((b6
* b6
) >> 12)) >> 16;
209 x3
= ((x1
+ x2
) + 2) >> 2;
210 uint32_t b4
= (_bmp085_coeffs
.ac4
* (uint32_t) (x3
+ 32768)) >> 15;
211 uint32_t b7
= ((uint32_t) (D1
- b3
) * (50000 >> _bmp085Mode
));
220 x1
= (p
>> 8) * (p
>> 8);
221 x1
= (x1
* 3038) >> 16;
222 x2
= (-7357 * p
) >> 16;
223 varioData
.rawPressure
= (p
+ ((x1
+ x2
+ 3791) >> 4)) * 10000;
225 // varioData.temperature= TEMP;
226 // OFF = (((int64_t)_calibrationData[2]) << 16) + ( (_calibrationData[4] * dT) >> 7);
227 // OFF = (((int64_t)_calibrationData[2]) << 16) + ( ( (_calibrationData[4] - alt_temp_compensation ) * dT) >> 7);
228 // SENS = (((int64_t)_calibrationData[1]) << 15) + ((_calibrationData[3] * dT) >> 8);
229 // varioData.rawPressure= (((((((int64_t) D1) * (int64_t) SENS) >> 21) - OFF) * 10000 ) >> 15) ; // 1013.25 mb gives 1013250000 is a factor to keep higher precision (=1/100 cm).
231 // altitude = 44330 * (1.0 - pow(pressure /sealevelPressure,0.1903));
232 // other alternative (faster) = 1013.25 = 0 m , 954.61 = 500m , etc...
233 // Pressure Alt (m) Ratio
234 // 101325 0 0.08526603
235 // 95461 500 0.089525515
236 // 89876 1000 0.094732853
237 // 84598 1500 0.098039216
238 // 79498 2000 0.103906899
239 // 74686 2500 0.109313511
240 // 70112 3000 0.115101289
241 // 65768 3500 0.121270919
242 // 61645 4000 0.127811861
243 // 57733 4500 0.134843581
246 if ( varioData
.rawPressure
> 954610000) {
247 varioData
.rawAltitude
= ( 1013250000 - varioData
.rawPressure
) * 0.08526603 ; // = 500 / (101325 - 95461) // returned value 1234567 means 123,4567 m (temp is fixed to 15 degree celcius)
248 } else if ( varioData
.rawPressure
> 898760000) {
249 varioData
.rawAltitude
= 5000000 + ( 954610000 - varioData
.rawPressure
) * 0.089525515 ;
250 } else if ( varioData
.rawPressure
> 845980000) {
251 varioData
.rawAltitude
= 10000000 + ( 898760000 - varioData
.rawPressure
) * 0.094732853 ;
252 } else if ( varioData
.rawPressure
> 794980000) {
253 varioData
.rawAltitude
= 15000000 + ( 845980000 - varioData
.rawPressure
) * 0.098039216 ;
254 } else if ( varioData
.rawPressure
> 746860000) {
255 varioData
.rawAltitude
= 20000000 + ( 794980000 - varioData
.rawPressure
) * 0.103906899 ;
256 } else if ( varioData
.rawPressure
> 701120000) {
257 varioData
.rawAltitude
= 25000000 + ( 746860000 - varioData
.rawPressure
) * 0.109313511 ;
258 } else if ( varioData
.rawPressure
> 657680000) {
259 varioData
.rawAltitude
= 30000000 + ( 701120000 - varioData
.rawPressure
) * 0.115101289 ;
260 } else if ( varioData
.rawPressure
> 616450000) {
261 varioData
.rawAltitude
= 35000000 + ( 657680000 - varioData
.rawPressure
) * 0.121270919 ;
262 } else if ( varioData
.rawPressure
> 577330000) {
263 varioData
.rawAltitude
= 40000000 + ( 616450000 - varioData
.rawPressure
) * 0.127811861 ;
264 } else { varioData
.rawAltitude
= 45000000 + ( 577330000 - varioData
.rawPressure
) * 0.134843581 ;
267 // here the classical way to calculate Vspeed with high and low pass filter
269 altitudeLowPass
= altitudeHighPass
= altitude
= varioData
.rawAltitude
;
270 // pressureMicrosPrev2 = pressureMicrosPrev1 - 20000 ;
272 altitude
+= 0.04 * (varioData
.rawAltitude
- altitude
) ;
273 // varioData.altitudeAt20MsecAvailable = true ; // inform openxsens.ino that calculation of dTE can be performed
275 altitudeLowPass
+= 0.085 * ( varioData
.rawAltitude
- altitudeLowPass
) ;
276 altitudeHighPass
+= 0.1 * ( varioData
.rawAltitude
- altitudeHighPass
) ;
277 // if (pressureMicrosPrev1 > pressureMicrosPrev2 ) varioData.delaySmooth += 0.1 * ( pressureMicrosPrev1 - pressureMicrosPrev2 - varioData.delaySmooth ) ; //delay between 2 measures only if there is no overflow of pressureMicos
278 climbRate2AltFloat
= ((altitudeHighPass
- altitudeLowPass
) * 5666.685 ) / 20000;
280 abs_deltaClimbRate
= abs(climbRate2AltFloat
- varioData
.climbRateFloat
) ;
281 if ( varioData
.sensitivityPpm
> 0) sensitivityMin
= varioData
.sensitivityPpm
;
282 if ( (abs_deltaClimbRate
<= SENSITIVITY_MIN_AT
) || (sensitivityMin
>= SENSITIVITY_MAX
) ) {
283 varioData
.sensitivity
.value
= sensitivityMin
;
284 } else if (abs_deltaClimbRate
>= SENSITIVITY_MAX_AT
) {
285 varioData
.sensitivity
.value
= SENSITIVITY_MAX
;
287 varioData
.sensitivity
.value
= sensitivityMin
+ ( SENSITIVITY_MAX
- sensitivityMin
) * (abs_deltaClimbRate
- SENSITIVITY_MIN_AT
) / (SENSITIVITY_MAX_AT
- SENSITIVITY_MIN_AT
) ;
289 varioData
.climbRateFloat
+= varioData
.sensitivity
.value
* (climbRate2AltFloat
- varioData
.climbRateFloat
) * 0.001 ; // sensitivity is an integer and must be divided by 1000
291 if ( abs((int32_t) varioData
.climbRateFloat
- varioData
.climbRate
.value
) > VARIOHYSTERESIS
) {
292 varioData
.climbRate
.value
= (int32_t) varioData
.climbRateFloat
;
294 varioData
.climbRate
.available
=true; // allows SPORT protocol to transmit the value
295 // varioData.switchClimbRateAvailable = true ; // inform readsensors() that a switchable vspeed is available
296 // varioData.averageClimbRateAvailable = true ; // inform readsensors() that a vspeed is available to calculate the average
297 // AltitudeAvailable is set to true only once every 100 msec in order to give priority to climb rate on SPORT
298 altMillis
= millis() ;
299 if (altMillis
> nextAltMillis
){
300 nextAltMillis
= altMillis
+ 100 ;
301 varioData
.absoluteAlt
.value
= altitude
/ 100 ; // altitude is in m *10000 and AbsoluteAlt must be in m * 100
302 varioData
.absoluteAlt
.available
=true ; // Altitude is considered as available only after several loop in order to reduce number of transmission on Sport.
303 varioData
.sensitivity
.available
= true ;
304 if (varioData
.altOffset
== 0) varioData
.altOffset
= varioData
.absoluteAlt
.value
;
305 varioData
.relativeAlt
.value
= varioData
.absoluteAlt
.value
- varioData
.altOffset
;
306 varioData
.relativeAlt
.available
= true ;
307 if ( varioData
.relativeAlt
.value
> varioData
.relativeAltMax
) varioData
.relativeAltMax
= varioData
.relativeAlt
.value
;
308 varioData
.relativeAltMaxAvailable
= true ;
309 // if ( altMillis > nextAverageAltMillis ){ // calculation of the difference of altitude (in m) between the 10 last sec
310 // nextAverageAltMillis = altMillis + 500 ; // calculate only once every 500 msec
311 // varioData.vSpeed10Sec = (varioData.absoluteAlt.value - varioData.prevAlt[varioData.idxPrevAlt]) /100 ;
312 // varioData.prevAlt[varioData.idxPrevAlt] = varioData.absoluteAlt.value ;
313 // varioData.idxPrevAlt++ ;
314 // if ( varioData.idxPrevAlt >= 20 ) varioData.idxPrevAlt = 0 ;
315 // if ( altMillis > 15000) { // make the data avalaible only after 15 sec)
316 // varioData.vSpeed10SecAvailable = true ;
320 } // end If (altMillis > nextAltMillis)
322 static bool firstPrintAlt
= true ;
323 if (firstPrintAlt
== true) {
324 firstPrintAlt
= false ;
325 // printer->println(F( "T,Ra,Sm,A,NC,DS,AHP,ALP,CR2, Temp" )) ;
326 printer
->println(F( "T,Ra,Alt,vpsd, Alt2, rawVspd, vspd2 , smoothAlt, smoothVspd" )) ;
328 printer
->print( pressureMicrosPrev1
) ; printer
->print(",");
329 printer
->print( (float) varioData
.rawAltitude
) ; printer
->print(","); // alt is displayed in CM with 2 decimal
330 // printer->print( expoSmooth ) ; printer->print(" ,");
331 printer
->print( (float) altitude
) ; printer
->print(" ,");
332 printer
->print( varioData
.climbRate
) ; printer
->print(" ,");
333 // printer->print( delaySmooth ) ; printer->print(" ,");
334 // printer->print( altitudeHighPass ) ; printer->print(" ,");
335 // printer->print( altitudeLowPass ) ; printer->print(" ,");
336 // printer->print( climbRate2AltFloat ) ; printer->print(" ,");
337 // printer->print( varioData.temperature ) ;
338 // printer->print( smoothAltitude ) ; printer->print(" ,");
339 // printer->print( rawRateVSpeed ) ; printer->print(" ,");
340 // printer->print( smoothRateVSpeed ) ; printer->print(" ,");
341 // printer->print( expoSmooth5611_alt_auto * 1000 ) ; printer->print(" ,");
342 // printer->print( expoSmooth5611_vSpeed_auto * 1000 ) ; printer->print(" ,");
343 printer
->println( ) ;
347 pressureMicrosPrev2
= pressureMicrosPrev1
;
348 } // End of calculate Vario
350 #endif // end of #if defined(SENSOR_IS_BMP180)