Avoid a full wipe and reallocation of wet buffers
[openal-soft.git] / alc / panning.cpp
blob51c13771ee69a927489bc1e4f7bb5705af76bc70
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2010 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <algorithm>
24 #include <array>
25 #include <chrono>
26 #include <cmath>
27 #include <cstdio>
28 #include <cstring>
29 #include <functional>
30 #include <iterator>
31 #include <memory>
32 #include <new>
33 #include <numeric>
34 #include <string>
36 #include "AL/al.h"
37 #include "AL/alc.h"
38 #include "AL/alext.h"
40 #include "al/auxeffectslot.h"
41 #include "alcmain.h"
42 #include "alconfig.h"
43 #include "alcontext.h"
44 #include "almalloc.h"
45 #include "alnumeric.h"
46 #include "aloptional.h"
47 #include "alspan.h"
48 #include "alstring.h"
49 #include "alu.h"
50 #include "ambdec.h"
51 #include "ambidefs.h"
52 #include "bformatdec.h"
53 #include "bs2b.h"
54 #include "devformat.h"
55 #include "front_stablizer.h"
56 #include "hrtf.h"
57 #include "logging.h"
58 #include "math_defs.h"
59 #include "opthelpers.h"
60 #include "uhjfilter.h"
63 constexpr std::array<float,MAX_AMBI_CHANNELS> AmbiScale::FromN3D;
64 constexpr std::array<float,MAX_AMBI_CHANNELS> AmbiScale::FromSN3D;
65 constexpr std::array<float,MAX_AMBI_CHANNELS> AmbiScale::FromFuMa;
66 constexpr std::array<uint8_t,MAX_AMBI_CHANNELS> AmbiIndex::FromFuMa;
67 constexpr std::array<uint8_t,MAX_AMBI2D_CHANNELS> AmbiIndex::FromFuMa2D;
68 constexpr std::array<uint8_t,MAX_AMBI_CHANNELS> AmbiIndex::FromACN;
69 constexpr std::array<uint8_t,MAX_AMBI2D_CHANNELS> AmbiIndex::From2D;
70 constexpr std::array<uint8_t,MAX_AMBI_CHANNELS> AmbiIndex::OrderFromChannel;
71 constexpr std::array<uint8_t,MAX_AMBI2D_CHANNELS> AmbiIndex::OrderFrom2DChannel;
74 namespace {
76 using namespace std::placeholders;
77 using std::chrono::seconds;
78 using std::chrono::nanoseconds;
80 inline const char *GetLabelFromChannel(Channel channel)
82 switch(channel)
84 case FrontLeft: return "front-left";
85 case FrontRight: return "front-right";
86 case FrontCenter: return "front-center";
87 case LFE: return "lfe";
88 case BackLeft: return "back-left";
89 case BackRight: return "back-right";
90 case BackCenter: return "back-center";
91 case SideLeft: return "side-left";
92 case SideRight: return "side-right";
94 case TopFrontLeft: return "top-front-left";
95 case TopFrontCenter: return "top-front-center";
96 case TopFrontRight: return "top-front-right";
97 case TopCenter: return "top-center";
98 case TopBackLeft: return "top-back-left";
99 case TopBackCenter: return "top-back-center";
100 case TopBackRight: return "top-back-right";
102 case MaxChannels: break;
104 return "(unknown)";
108 std::unique_ptr<FrontStablizer> CreateStablizer(const size_t outchans, const ALuint srate)
110 auto stablizer = FrontStablizer::Create(outchans);
111 for(auto &buf : stablizer->DelayBuf)
112 std::fill(buf.begin(), buf.end(), 0.0f);
114 /* Initialize band-splitting filter for the mid signal, with a crossover at
115 * 5khz (could be higher).
117 stablizer->MidFilter.init(5000.0f / static_cast<float>(srate));
119 return stablizer;
122 void AllocChannels(ALCdevice *device, const size_t main_chans, const size_t real_chans)
124 TRACE("Channel config, Main: %zu, Real: %zu\n", main_chans, real_chans);
126 /* Allocate extra channels for any post-filter output. */
127 const size_t num_chans{main_chans + real_chans};
129 TRACE("Allocating %zu channels, %zu bytes\n", num_chans,
130 num_chans*sizeof(device->MixBuffer[0]));
131 device->MixBuffer.resize(num_chans);
132 al::span<FloatBufferLine> buffer{device->MixBuffer};
134 device->Dry.Buffer = buffer.first(main_chans);
135 buffer = buffer.subspan(main_chans);
136 if(real_chans != 0)
138 device->RealOut.Buffer = buffer.first(real_chans);
139 buffer = buffer.subspan(real_chans);
141 else
142 device->RealOut.Buffer = device->Dry.Buffer;
146 struct ChannelMap {
147 Channel ChanName;
148 float Config[MAX_AMBI2D_CHANNELS];
151 bool MakeSpeakerMap(ALCdevice *device, const AmbDecConf *conf, ALuint (&speakermap)[MAX_OUTPUT_CHANNELS])
153 auto map_spkr = [device](const AmbDecConf::SpeakerConf &speaker) -> ALuint
155 /* NOTE: AmbDec does not define any standard speaker names, however
156 * for this to work we have to by able to find the output channel
157 * the speaker definition corresponds to. Therefore, OpenAL Soft
158 * requires these channel labels to be recognized:
160 * LF = Front left
161 * RF = Front right
162 * LS = Side left
163 * RS = Side right
164 * LB = Back left
165 * RB = Back right
166 * CE = Front center
167 * CB = Back center
169 * Additionally, surround51 will acknowledge back speakers for side
170 * channels, and surround51rear will acknowledge side speakers for
171 * back channels, to avoid issues with an ambdec expecting 5.1 to
172 * use the side channels when the device is configured for back,
173 * and vice-versa.
175 Channel ch{};
176 if(speaker.Name == "LF")
177 ch = FrontLeft;
178 else if(speaker.Name == "RF")
179 ch = FrontRight;
180 else if(speaker.Name == "CE")
181 ch = FrontCenter;
182 else if(speaker.Name == "LS")
184 if(device->FmtChans == DevFmtX51Rear)
185 ch = BackLeft;
186 else
187 ch = SideLeft;
189 else if(speaker.Name == "RS")
191 if(device->FmtChans == DevFmtX51Rear)
192 ch = BackRight;
193 else
194 ch = SideRight;
196 else if(speaker.Name == "LB")
198 if(device->FmtChans == DevFmtX51)
199 ch = SideLeft;
200 else
201 ch = BackLeft;
203 else if(speaker.Name == "RB")
205 if(device->FmtChans == DevFmtX51)
206 ch = SideRight;
207 else
208 ch = BackRight;
210 else if(speaker.Name == "CB")
211 ch = BackCenter;
212 else
214 ERR("AmbDec speaker label \"%s\" not recognized\n", speaker.Name.c_str());
215 return INVALID_CHANNEL_INDEX;
217 const ALuint chidx{GetChannelIdxByName(device->RealOut, ch)};
218 if(chidx == INVALID_CHANNEL_INDEX)
219 ERR("Failed to lookup AmbDec speaker label %s\n", speaker.Name.c_str());
220 return chidx;
222 std::transform(conf->Speakers.begin(), conf->Speakers.end(), std::begin(speakermap), map_spkr);
223 /* Return success if no invalid entries are found. */
224 auto spkrmap_end = std::begin(speakermap) + conf->Speakers.size();
225 return std::find(std::begin(speakermap), spkrmap_end, INVALID_CHANNEL_INDEX) == spkrmap_end;
229 void InitNearFieldCtrl(ALCdevice *device, float ctrl_dist, ALuint order, bool is3d)
231 static const ALuint chans_per_order2d[MAX_AMBI_ORDER+1]{ 1, 2, 2, 2 };
232 static const ALuint chans_per_order3d[MAX_AMBI_ORDER+1]{ 1, 3, 5, 7 };
234 /* NFC is only used when AvgSpeakerDist is greater than 0. */
235 const char *devname{device->DeviceName.c_str()};
236 if(!GetConfigValueBool(devname, "decoder", "nfc", 0) || !(ctrl_dist > 0.0f))
237 return;
239 device->AvgSpeakerDist = clampf(ctrl_dist, 0.1f, 10.0f);
240 TRACE("Using near-field reference distance: %.2f meters\n", device->AvgSpeakerDist);
242 auto iter = std::copy_n(is3d ? chans_per_order3d : chans_per_order2d, order+1u,
243 std::begin(device->NumChannelsPerOrder));
244 std::fill(iter, std::end(device->NumChannelsPerOrder), 0u);
247 void InitDistanceComp(ALCdevice *device, const AmbDecConf *conf,
248 const ALuint (&speakermap)[MAX_OUTPUT_CHANNELS])
250 auto get_max = std::bind(maxf, _1,
251 std::bind(std::mem_fn(&AmbDecConf::SpeakerConf::Distance), _2));
252 const float maxdist{std::accumulate(conf->Speakers.begin(), conf->Speakers.end(), 0.0f,
253 get_max)};
255 const char *devname{device->DeviceName.c_str()};
256 if(!GetConfigValueBool(devname, "decoder", "distance-comp", 1) || !(maxdist > 0.0f))
257 return;
259 const auto distSampleScale = static_cast<float>(device->Frequency) / SpeedOfSoundMetersPerSec;
260 const auto ChanDelay = device->ChannelDelay.as_span();
261 size_t total{0u};
262 for(size_t i{0u};i < conf->Speakers.size();i++)
264 const AmbDecConf::SpeakerConf &speaker = conf->Speakers[i];
265 const ALuint chan{speakermap[i]};
267 /* Distance compensation only delays in steps of the sample rate. This
268 * is a bit less accurate since the delay time falls to the nearest
269 * sample time, but it's far simpler as it doesn't have to deal with
270 * phase offsets. This means at 48khz, for instance, the distance delay
271 * will be in steps of about 7 millimeters.
273 float delay{std::floor((maxdist - speaker.Distance)*distSampleScale + 0.5f)};
274 if(delay > float{MAX_DELAY_LENGTH-1})
276 ERR("Delay for speaker \"%s\" exceeds buffer length (%f > %d)\n",
277 speaker.Name.c_str(), delay, MAX_DELAY_LENGTH-1);
278 delay = float{MAX_DELAY_LENGTH-1};
281 ChanDelay[chan].Length = static_cast<ALuint>(delay);
282 ChanDelay[chan].Gain = speaker.Distance / maxdist;
283 TRACE("Channel %u \"%s\" distance compensation: %u samples, %f gain\n", chan,
284 speaker.Name.c_str(), ChanDelay[chan].Length, ChanDelay[chan].Gain);
286 /* Round up to the next 4th sample, so each channel buffer starts
287 * 16-byte aligned.
289 total += RoundUp(ChanDelay[chan].Length, 4);
292 if(total > 0)
294 device->ChannelDelay.setSampleCount(total);
295 ChanDelay[0].Buffer = device->ChannelDelay.getSamples();
296 auto set_bufptr = [](const DistanceComp::DistData &last, const DistanceComp::DistData &cur) -> DistanceComp::DistData
298 DistanceComp::DistData ret{cur};
299 ret.Buffer = last.Buffer + RoundUp(last.Length, 4);
300 return ret;
302 std::partial_sum(ChanDelay.begin(), ChanDelay.end(), ChanDelay.begin(), set_bufptr);
307 auto GetAmbiScales(DevAmbiScaling scaletype) noexcept -> const std::array<float,MAX_AMBI_CHANNELS>&
309 if(scaletype == DevAmbiScaling::FuMa) return AmbiScale::FromFuMa;
310 if(scaletype == DevAmbiScaling::SN3D) return AmbiScale::FromSN3D;
311 return AmbiScale::FromN3D;
314 auto GetAmbiLayout(DevAmbiLayout layouttype) noexcept -> const std::array<uint8_t,MAX_AMBI_CHANNELS>&
316 if(layouttype == DevAmbiLayout::FuMa) return AmbiIndex::FromFuMa;
317 return AmbiIndex::FromACN;
321 using ChannelCoeffs = std::array<float,MAX_AMBI2D_CHANNELS>;
322 enum DecoderMode : bool {
323 SingleBand = false,
324 DualBand = true
327 template<DecoderMode Mode, size_t N>
328 struct DecoderConfig;
330 template<size_t N>
331 struct DecoderConfig<SingleBand, N> {
332 ALuint mOrder;
333 std::array<Channel,N> mChannels;
334 std::array<float,MAX_AMBI_ORDER+1> mOrderGain;
335 std::array<ChannelCoeffs,N> mCoeffs;
338 template<size_t N>
339 struct DecoderConfig<DualBand, N> {
340 ALuint mOrder;
341 std::array<Channel,N> mChannels;
342 std::array<float,MAX_AMBI_ORDER+1> mOrderGain;
343 std::array<ChannelCoeffs,N> mCoeffs;
344 std::array<float,MAX_AMBI_ORDER+1> mOrderGainLF;
345 std::array<ChannelCoeffs,N> mCoeffsLF;
348 template<>
349 struct DecoderConfig<DualBand, 0> {
350 ALuint mOrder;
351 al::span<const Channel> mChannels;
352 al::span<const float> mOrderGain;
353 al::span<const ChannelCoeffs> mCoeffs;
354 al::span<const float> mOrderGainLF;
355 al::span<const ChannelCoeffs> mCoeffsLF;
357 template<size_t N>
358 DecoderConfig& operator=(const DecoderConfig<SingleBand,N> &rhs) noexcept
360 mOrder = rhs.mOrder;
361 mChannels = rhs.mChannels;
362 mOrderGain = rhs.mOrderGain;
363 mCoeffs = rhs.mCoeffs;
364 mOrderGainLF = {};
365 mCoeffsLF = {};
366 return *this;
369 template<size_t N>
370 DecoderConfig& operator=(const DecoderConfig<DualBand,N> &rhs) noexcept
372 mOrder = rhs.mOrder;
373 mChannels = rhs.mChannels;
374 mOrderGain = rhs.mOrderGain;
375 mCoeffs = rhs.mCoeffs;
376 mOrderGainLF = rhs.mOrderGainLF;
377 mCoeffsLF = rhs.mCoeffsLF;
378 return *this;
381 using DecoderView = DecoderConfig<DualBand, 0>;
383 constexpr DecoderConfig<SingleBand, 1> MonoConfig{
384 0, {{FrontCenter}},
385 {{1.0f}},
386 {{ {{1.0f}} }}
388 constexpr DecoderConfig<SingleBand, 2> StereoConfig{
389 1, {{FrontLeft, FrontRight}},
390 {{1.0f, 1.0f}},
392 {{5.00000000e-1f, 2.88675135e-1f, 5.52305643e-2f}},
393 {{5.00000000e-1f, -2.88675135e-1f, 5.52305643e-2f}},
396 constexpr DecoderConfig<DualBand, 4> QuadConfig{
397 2, {{BackLeft, FrontLeft, FrontRight, BackRight}},
398 /*HF*/{{1.15470054e+0f, 1.00000000e+0f, 5.77350269e-1f}},
400 {{2.50000000e-1f, 2.04124145e-1f, -2.04124145e-1f, -1.29099445e-1f, 0.00000000e+0f}},
401 {{2.50000000e-1f, 2.04124145e-1f, 2.04124145e-1f, 1.29099445e-1f, 0.00000000e+0f}},
402 {{2.50000000e-1f, -2.04124145e-1f, 2.04124145e-1f, -1.29099445e-1f, 0.00000000e+0f}},
403 {{2.50000000e-1f, -2.04124145e-1f, -2.04124145e-1f, 1.29099445e-1f, 0.00000000e+0f}},
405 /*LF*/{{1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f}},
407 {{2.50000000e-1f, 2.04124145e-1f, -2.04124145e-1f, -1.29099445e-1f, 0.00000000e+0f}},
408 {{2.50000000e-1f, 2.04124145e-1f, 2.04124145e-1f, 1.29099445e-1f, 0.00000000e+0f}},
409 {{2.50000000e-1f, -2.04124145e-1f, 2.04124145e-1f, -1.29099445e-1f, 0.00000000e+0f}},
410 {{2.50000000e-1f, -2.04124145e-1f, -2.04124145e-1f, 1.29099445e-1f, 0.00000000e+0f}},
413 constexpr DecoderConfig<SingleBand, 4> X51Config{
414 2, {{SideLeft, FrontLeft, FrontRight, SideRight}},
415 {{1.0f, 1.0f, 1.0f}},
417 {{3.33000782e-1f, 1.89084803e-1f, -2.00042375e-1f, -2.12307769e-2f, -1.14579885e-2f}},
418 {{1.88542860e-1f, 1.27709292e-1f, 1.66295695e-1f, 7.30571517e-2f, 2.10901184e-2f}},
419 {{1.88542860e-1f, -1.27709292e-1f, 1.66295695e-1f, -7.30571517e-2f, 2.10901184e-2f}},
420 {{3.33000782e-1f, -1.89084803e-1f, -2.00042375e-1f, 2.12307769e-2f, -1.14579885e-2f}},
423 constexpr DecoderConfig<SingleBand, 4> X51RearConfig{
424 2, {{BackLeft, FrontLeft, FrontRight, BackRight}},
425 {{1.0f, 1.0f, 1.0f}},
427 {{3.33000782e-1f, 1.89084803e-1f, -2.00042375e-1f, -2.12307769e-2f, -1.14579885e-2f}},
428 {{1.88542860e-1f, 1.27709292e-1f, 1.66295695e-1f, 7.30571517e-2f, 2.10901184e-2f}},
429 {{1.88542860e-1f, -1.27709292e-1f, 1.66295695e-1f, -7.30571517e-2f, 2.10901184e-2f}},
430 {{3.33000782e-1f, -1.89084803e-1f, -2.00042375e-1f, 2.12307769e-2f, -1.14579885e-2f}},
433 constexpr DecoderConfig<SingleBand, 5> X61Config{
434 2, {{SideLeft, FrontLeft, FrontRight, SideRight, BackCenter}},
435 {{1.0f, 1.0f, 1.0f}},
437 {{2.04460341e-1f, 2.17177926e-1f, -4.39996780e-2f, -2.60790269e-2f, -6.87239792e-2f}},
438 {{1.58923161e-1f, 9.21772680e-2f, 1.59658796e-1f, 6.66278083e-2f, 3.84686854e-2f}},
439 {{1.58923161e-1f, -9.21772680e-2f, 1.59658796e-1f, -6.66278083e-2f, 3.84686854e-2f}},
440 {{2.04460341e-1f, -2.17177926e-1f, -4.39996780e-2f, 2.60790269e-2f, -6.87239792e-2f}},
441 {{2.50001688e-1f, 0.00000000e+0f, -2.50000094e-1f, 0.00000000e+0f, 6.05133395e-2f}},
444 constexpr DecoderConfig<DualBand, 6> X71Config{
445 3, {{BackLeft, SideLeft, FrontLeft, FrontRight, SideRight, BackRight}},
446 /*HF*/{{1.22474487e+0f, 1.13151672e+0f, 8.66025404e-1f, 4.68689571e-1f}},
448 {{1.66666667e-1f, 9.62250449e-2f, -1.66666667e-1f, -1.49071198e-1f, 8.60662966e-2f, 7.96819073e-2f, 0.00000000e+0f}},
449 {{1.66666667e-1f, 1.92450090e-1f, 0.00000000e+0f, 0.00000000e+0f, -1.72132593e-1f, -7.96819073e-2f, 0.00000000e+0f}},
450 {{1.66666667e-1f, 9.62250449e-2f, 1.66666667e-1f, 1.49071198e-1f, 8.60662966e-2f, 7.96819073e-2f, 0.00000000e+0f}},
451 {{1.66666667e-1f, -9.62250449e-2f, 1.66666667e-1f, -1.49071198e-1f, 8.60662966e-2f, -7.96819073e-2f, 0.00000000e+0f}},
452 {{1.66666667e-1f, -1.92450090e-1f, 0.00000000e+0f, 0.00000000e+0f, -1.72132593e-1f, 7.96819073e-2f, 0.00000000e+0f}},
453 {{1.66666667e-1f, -9.62250449e-2f, -1.66666667e-1f, 1.49071198e-1f, 8.60662966e-2f, -7.96819073e-2f, 0.00000000e+0f}},
455 /*LF*/{{1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f}},
457 {{1.66666667e-1f, 9.62250449e-2f, -1.66666667e-1f, -1.49071198e-1f, 8.60662966e-2f, 7.96819073e-2f, 0.00000000e+0f}},
458 {{1.66666667e-1f, 1.92450090e-1f, 0.00000000e+0f, 0.00000000e+0f, -1.72132593e-1f, -7.96819073e-2f, 0.00000000e+0f}},
459 {{1.66666667e-1f, 9.62250449e-2f, 1.66666667e-1f, 1.49071198e-1f, 8.60662966e-2f, 7.96819073e-2f, 0.00000000e+0f}},
460 {{1.66666667e-1f, -9.62250449e-2f, 1.66666667e-1f, -1.49071198e-1f, 8.60662966e-2f, -7.96819073e-2f, 0.00000000e+0f}},
461 {{1.66666667e-1f, -1.92450090e-1f, 0.00000000e+0f, 0.00000000e+0f, -1.72132593e-1f, 7.96819073e-2f, 0.00000000e+0f}},
462 {{1.66666667e-1f, -9.62250449e-2f, -1.66666667e-1f, 1.49071198e-1f, 8.60662966e-2f, -7.96819073e-2f, 0.00000000e+0f}},
466 void InitPanning(ALCdevice *device, const bool hqdec=false, const bool stablize=false)
468 DecoderView decoder{};
469 switch(device->FmtChans)
471 case DevFmtMono:
472 decoder = MonoConfig;
473 break;
474 case DevFmtStereo:
475 decoder = StereoConfig;
476 break;
477 case DevFmtQuad:
478 decoder = QuadConfig;
479 break;
480 case DevFmtX51:
481 decoder = X51Config;
482 break;
483 case DevFmtX51Rear:
484 decoder = X51RearConfig;
485 break;
486 case DevFmtX61:
487 decoder = X61Config;
488 break;
489 case DevFmtX71:
490 decoder = X71Config;
491 break;
492 case DevFmtAmbi3D:
493 break;
496 if(device->FmtChans == DevFmtAmbi3D)
498 const char *devname{device->DeviceName.c_str()};
499 const std::array<uint8_t,MAX_AMBI_CHANNELS> &acnmap = GetAmbiLayout(device->mAmbiLayout);
500 const std::array<float,MAX_AMBI_CHANNELS> &n3dscale = GetAmbiScales(device->mAmbiScale);
502 /* For DevFmtAmbi3D, the ambisonic order is already set. */
503 const size_t count{AmbiChannelsFromOrder(device->mAmbiOrder)};
504 std::transform(acnmap.begin(), acnmap.begin()+count, std::begin(device->Dry.AmbiMap),
505 [&n3dscale](const uint8_t &acn) noexcept -> BFChannelConfig
506 { return BFChannelConfig{1.0f/n3dscale[acn], acn}; }
508 AllocChannels(device, count, 0);
510 float nfc_delay{ConfigValueFloat(devname, "decoder", "nfc-ref-delay").value_or(0.0f)};
511 if(nfc_delay > 0.0f)
512 InitNearFieldCtrl(device, nfc_delay * SpeedOfSoundMetersPerSec, device->mAmbiOrder,
513 true);
515 else
517 const bool dual_band{hqdec && !decoder.mCoeffsLF.empty()};
518 al::vector<ChannelDec> chancoeffs, chancoeffslf;
519 for(size_t i{0u};i < decoder.mChannels.size();++i)
521 const ALuint idx{GetChannelIdxByName(device->RealOut, decoder.mChannels[i])};
522 if(idx == INVALID_CHANNEL_INDEX)
524 ERR("Failed to find %s channel in device\n",
525 GetLabelFromChannel(decoder.mChannels[i]));
526 continue;
529 chancoeffs.resize(maxz(chancoeffs.size(), idx+1u), ChannelDec{});
530 al::span<float,MAX_AMBI_CHANNELS> coeffs{chancoeffs[idx]};
531 size_t start{0};
532 for(ALuint o{0};o <= decoder.mOrder;++o)
534 size_t count{o ? 2u : 1u};
535 do {
536 coeffs[start] = decoder.mCoeffs[i][start] * decoder.mOrderGain[o];
537 ++start;
538 } while(--count);
540 if(!dual_band)
541 continue;
543 chancoeffslf.resize(maxz(chancoeffslf.size(), idx+1u), ChannelDec{});
544 coeffs = chancoeffslf[idx];
545 start = 0;
546 for(ALuint o{0};o <= decoder.mOrder;++o)
548 size_t count{o ? 2u : 1u};
549 do {
550 coeffs[start] = decoder.mCoeffsLF[i][start] * decoder.mOrderGainLF[o];
551 ++start;
552 } while(--count);
556 /* For non-DevFmtAmbi3D, set the ambisonic order. */
557 device->mAmbiOrder = decoder.mOrder;
559 /* Built-in speaker decoders are always 2D. */
560 const size_t ambicount{Ambi2DChannelsFromOrder(decoder.mOrder)};
561 std::transform(AmbiIndex::From2D.begin(), AmbiIndex::From2D.begin()+ambicount,
562 std::begin(device->Dry.AmbiMap),
563 [](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; }
565 AllocChannels(device, ambicount, device->channelsFromFmt());
567 std::unique_ptr<FrontStablizer> stablizer;
568 if(stablize)
570 /* Only enable the stablizer if the decoder does not output to the
571 * front-center channel.
573 const auto cidx = device->RealOut.ChannelIndex[FrontCenter];
574 bool hasfc{false};
575 if(cidx < chancoeffs.size())
577 for(const auto &coeff : chancoeffs[cidx])
578 hasfc |= coeff != 0.0f;
580 if(!hasfc && cidx < chancoeffslf.size())
582 for(const auto &coeff : chancoeffslf[cidx])
583 hasfc |= coeff != 0.0f;
585 if(!hasfc)
587 stablizer = CreateStablizer(device->channelsFromFmt(), device->Frequency);
588 TRACE("Front stablizer enabled\n");
592 TRACE("Enabling %s-band %s-order%s ambisonic decoder\n",
593 !dual_band ? "single" : "dual",
594 (decoder.mOrder > 2) ? "third" :
595 (decoder.mOrder > 1) ? "second" : "first",
596 "");
597 device->AmbiDecoder = BFormatDec::Create(ambicount, chancoeffs, chancoeffslf,
598 std::move(stablizer));
602 void InitCustomPanning(ALCdevice *device, const bool hqdec, const bool stablize,
603 const AmbDecConf *conf, const ALuint (&speakermap)[MAX_OUTPUT_CHANNELS])
605 if(!hqdec && conf->FreqBands != 1)
606 ERR("Basic renderer uses the high-frequency matrix as single-band (xover_freq = %.0fhz)\n",
607 conf->XOverFreq);
609 const ALuint order{(conf->ChanMask > AMBI_2ORDER_MASK) ? 3u :
610 (conf->ChanMask > AMBI_1ORDER_MASK) ? 2u : 1u};
611 device->mAmbiOrder = order;
613 size_t count;
614 if((conf->ChanMask&AMBI_PERIPHONIC_MASK))
616 count = AmbiChannelsFromOrder(order);
617 std::transform(AmbiIndex::FromACN.begin(), AmbiIndex::FromACN.begin()+count,
618 std::begin(device->Dry.AmbiMap),
619 [](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; }
622 else
624 count = Ambi2DChannelsFromOrder(order);
625 std::transform(AmbiIndex::From2D.begin(), AmbiIndex::From2D.begin()+count,
626 std::begin(device->Dry.AmbiMap),
627 [](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; }
630 AllocChannels(device, count, device->channelsFromFmt());
632 std::unique_ptr<FrontStablizer> stablizer;
633 if(stablize)
635 /* Only enable the stablizer if the decoder does not output to the
636 * front-center channel.
638 size_t cidx{0};
639 for(;cidx < conf->Speakers.size();++cidx)
641 if(speakermap[cidx] == FrontCenter)
642 break;
644 bool hasfc{false};
645 if(cidx < conf->LFMatrix.size())
647 for(const auto &coeff : conf->LFMatrix[cidx])
648 hasfc |= coeff != 0.0f;
650 if(!hasfc && cidx < conf->HFMatrix.size())
652 for(const auto &coeff : conf->HFMatrix[cidx])
653 hasfc |= coeff != 0.0f;
655 if(!hasfc)
657 stablizer = CreateStablizer(device->channelsFromFmt(), device->Frequency);
658 TRACE("Front stablizer enabled\n");
662 TRACE("Enabling %s-band %s-order%s ambisonic decoder\n",
663 (!hqdec || conf->FreqBands == 1) ? "single" : "dual",
664 (conf->ChanMask > AMBI_2ORDER_MASK) ? "third" :
665 (conf->ChanMask > AMBI_1ORDER_MASK) ? "second" : "first",
666 (conf->ChanMask&AMBI_PERIPHONIC_MASK) ? " periphonic" : ""
668 device->AmbiDecoder = BFormatDec::Create(conf, hqdec, count, device->Frequency, speakermap,
669 std::move(stablizer));
671 auto accum_spkr_dist = std::bind(std::plus<float>{}, _1,
672 std::bind(std::mem_fn(&AmbDecConf::SpeakerConf::Distance), _2));
673 const float avg_dist{
674 std::accumulate(conf->Speakers.begin(), conf->Speakers.end(), 0.0f, accum_spkr_dist) /
675 static_cast<float>(conf->Speakers.size())};
676 InitNearFieldCtrl(device, avg_dist, order, !!(conf->ChanMask&AMBI_PERIPHONIC_MASK));
678 InitDistanceComp(device, conf, speakermap);
681 void InitHrtfPanning(ALCdevice *device)
683 constexpr float PI{al::MathDefs<float>::Pi()};
684 constexpr float PI_2{PI / 2.0f};
685 constexpr float PI_4{PI_2 / 2.0f};
686 constexpr float PI3_4{PI_4 * 3.0f};
687 static const float CornerElev{static_cast<float>(std::atan2(1.0, std::sqrt(2.0)))};
688 static const AngularPoint AmbiPoints1O[]{
689 { EvRadians{ CornerElev}, AzRadians{ -PI_4} },
690 { EvRadians{ CornerElev}, AzRadians{-PI3_4} },
691 { EvRadians{ CornerElev}, AzRadians{ PI_4} },
692 { EvRadians{ CornerElev}, AzRadians{ PI3_4} },
693 { EvRadians{-CornerElev}, AzRadians{ -PI_4} },
694 { EvRadians{-CornerElev}, AzRadians{-PI3_4} },
695 { EvRadians{-CornerElev}, AzRadians{ PI_4} },
696 { EvRadians{-CornerElev}, AzRadians{ PI3_4} },
697 }, AmbiPoints2O[]{
698 { EvRadians{ -CornerElev}, AzRadians{ -PI_4} },
699 { EvRadians{ -CornerElev}, AzRadians{ -PI3_4} },
700 { EvRadians{ CornerElev}, AzRadians{ -PI3_4} },
701 { EvRadians{ CornerElev}, AzRadians{ PI3_4} },
702 { EvRadians{ CornerElev}, AzRadians{ PI_4} },
703 { EvRadians{ -CornerElev}, AzRadians{ PI_4} },
704 { EvRadians{ -CornerElev}, AzRadians{ PI3_4} },
705 { EvRadians{ CornerElev}, AzRadians{ -PI_4} },
706 { EvRadians{-1.205932499e+00f}, AzRadians{ -PI_2} },
707 { EvRadians{ 1.205932499e+00f}, AzRadians{ PI_2} },
708 { EvRadians{-1.205932499e+00f}, AzRadians{ PI_2} },
709 { EvRadians{ 1.205932499e+00f}, AzRadians{ -PI_2} },
710 { EvRadians{ 0.0f}, AzRadians{-1.205932499e+00f} },
711 { EvRadians{ 0.0f}, AzRadians{-1.935660155e+00f} },
712 { EvRadians{ 0.0f}, AzRadians{ 1.205932499e+00f} },
713 { EvRadians{ 0.0f}, AzRadians{ 1.935660155e+00f} },
714 { EvRadians{-3.648638281e-01f}, AzRadians{ PI} },
715 { EvRadians{ 3.648638281e-01f}, AzRadians{ PI} },
716 { EvRadians{ 3.648638281e-01f}, AzRadians{ 0.0f} },
717 { EvRadians{-3.648638281e-01f}, AzRadians{ 0.0f} },
719 static const float AmbiMatrix1O[][MAX_AMBI_CHANNELS]{
720 { 1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f },
721 { 1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f },
722 { 1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f },
723 { 1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f },
724 { 1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f },
725 { 1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f },
726 { 1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f },
727 { 1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f },
728 }, AmbiMatrix2O[][MAX_AMBI_CHANNELS]{
729 { 5.000000000e-02f, 5.000000000e-02f, -5.000000000e-02f, 5.000000000e-02f, 6.454972244e-02f, -6.454972244e-02f, 0.000000000e+00f, -6.454972244e-02f, 0.000000000e+00f },
730 { 5.000000000e-02f, 5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, -6.454972244e-02f, -6.454972244e-02f, 0.000000000e+00f, 6.454972244e-02f, 0.000000000e+00f },
731 { 5.000000000e-02f, 5.000000000e-02f, 5.000000000e-02f, -5.000000000e-02f, -6.454972244e-02f, 6.454972244e-02f, 0.000000000e+00f, -6.454972244e-02f, 0.000000000e+00f },
732 { 5.000000000e-02f, -5.000000000e-02f, 5.000000000e-02f, -5.000000000e-02f, 6.454972244e-02f, -6.454972244e-02f, 0.000000000e+00f, -6.454972244e-02f, 0.000000000e+00f },
733 { 5.000000000e-02f, -5.000000000e-02f, 5.000000000e-02f, 5.000000000e-02f, -6.454972244e-02f, -6.454972244e-02f, 0.000000000e+00f, 6.454972244e-02f, 0.000000000e+00f },
734 { 5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, 5.000000000e-02f, -6.454972244e-02f, 6.454972244e-02f, 0.000000000e+00f, -6.454972244e-02f, 0.000000000e+00f },
735 { 5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, 6.454972244e-02f, 6.454972244e-02f, 0.000000000e+00f, 6.454972244e-02f, 0.000000000e+00f },
736 { 5.000000000e-02f, 5.000000000e-02f, 5.000000000e-02f, 5.000000000e-02f, 6.454972244e-02f, 6.454972244e-02f, 0.000000000e+00f, 6.454972244e-02f, 0.000000000e+00f },
737 { 5.000000000e-02f, 3.090169944e-02f, -8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -6.454972244e-02f, 9.045084972e-02f, 0.000000000e+00f, -1.232790000e-02f },
738 { 5.000000000e-02f, -3.090169944e-02f, 8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -6.454972244e-02f, 9.045084972e-02f, 0.000000000e+00f, -1.232790000e-02f },
739 { 5.000000000e-02f, -3.090169944e-02f, -8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, 6.454972244e-02f, 9.045084972e-02f, 0.000000000e+00f, -1.232790000e-02f },
740 { 5.000000000e-02f, 3.090169944e-02f, 8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, 6.454972244e-02f, 9.045084972e-02f, 0.000000000e+00f, -1.232790000e-02f },
741 { 5.000000000e-02f, 8.090169944e-02f, 0.000000000e+00f, 3.090169944e-02f, 6.454972244e-02f, 0.000000000e+00f, -5.590169944e-02f, 0.000000000e+00f, -7.216878365e-02f },
742 { 5.000000000e-02f, 8.090169944e-02f, 0.000000000e+00f, -3.090169944e-02f, -6.454972244e-02f, 0.000000000e+00f, -5.590169944e-02f, 0.000000000e+00f, -7.216878365e-02f },
743 { 5.000000000e-02f, -8.090169944e-02f, 0.000000000e+00f, 3.090169944e-02f, -6.454972244e-02f, 0.000000000e+00f, -5.590169944e-02f, 0.000000000e+00f, -7.216878365e-02f },
744 { 5.000000000e-02f, -8.090169944e-02f, 0.000000000e+00f, -3.090169944e-02f, 6.454972244e-02f, 0.000000000e+00f, -5.590169944e-02f, 0.000000000e+00f, -7.216878365e-02f },
745 { 5.000000000e-02f, 0.000000000e+00f, -3.090169944e-02f, -8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -3.454915028e-02f, 6.454972244e-02f, 8.449668365e-02f },
746 { 5.000000000e-02f, 0.000000000e+00f, 3.090169944e-02f, -8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -3.454915028e-02f, -6.454972244e-02f, 8.449668365e-02f },
747 { 5.000000000e-02f, 0.000000000e+00f, 3.090169944e-02f, 8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -3.454915028e-02f, 6.454972244e-02f, 8.449668365e-02f },
748 { 5.000000000e-02f, 0.000000000e+00f, -3.090169944e-02f, 8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -3.454915028e-02f, -6.454972244e-02f, 8.449668365e-02f },
750 static const float AmbiOrderHFGain1O[MAX_AMBI_ORDER+1]{
751 2.000000000e+00f, 1.154700538e+00f
752 }, AmbiOrderHFGain2O[MAX_AMBI_ORDER+1]{
753 2.357022604e+00f, 1.825741858e+00f, 9.428090416e-01f
756 static_assert(al::size(AmbiPoints1O) == al::size(AmbiMatrix1O), "First-Order Ambisonic HRTF mismatch");
757 static_assert(al::size(AmbiPoints2O) == al::size(AmbiMatrix2O), "Second-Order Ambisonic HRTF mismatch");
759 /* Don't bother with HOA when using full HRTF rendering. Nothing needs it,
760 * and it eases the CPU/memory load.
762 device->mRenderMode = RenderMode::Hrtf;
763 ALuint ambi_order{1};
764 if(auto modeopt = ConfigValueStr(device->DeviceName.c_str(), nullptr, "hrtf-mode"))
766 struct HrtfModeEntry {
767 char name[8];
768 RenderMode mode;
769 ALuint order;
771 static const HrtfModeEntry hrtf_modes[]{
772 { "full", RenderMode::Hrtf, 1 },
773 { "ambi1", RenderMode::Normal, 1 },
774 { "ambi2", RenderMode::Normal, 2 },
777 const char *mode{modeopt->c_str()};
778 if(al::strcasecmp(mode, "basic") == 0 || al::strcasecmp(mode, "ambi3") == 0)
780 ERR("HRTF mode \"%s\" deprecated, substituting \"%s\"\n", mode, "ambi2");
781 mode = "ambi2";
784 auto match_entry = [mode](const HrtfModeEntry &entry) -> bool
785 { return al::strcasecmp(mode, entry.name) == 0; };
786 auto iter = std::find_if(std::begin(hrtf_modes), std::end(hrtf_modes), match_entry);
787 if(iter == std::end(hrtf_modes))
788 ERR("Unexpected hrtf-mode: %s\n", mode);
789 else
791 device->mRenderMode = iter->mode;
792 ambi_order = iter->order;
795 TRACE("%u%s order %sHRTF rendering enabled, using \"%s\"\n", ambi_order,
796 (((ambi_order%100)/10) == 1) ? "th" :
797 ((ambi_order%10) == 1) ? "st" :
798 ((ambi_order%10) == 2) ? "nd" :
799 ((ambi_order%10) == 3) ? "rd" : "th",
800 (device->mRenderMode == RenderMode::Hrtf) ? "+ Full " : "",
801 device->HrtfName.c_str());
803 al::span<const AngularPoint> AmbiPoints{AmbiPoints1O};
804 const float (*AmbiMatrix)[MAX_AMBI_CHANNELS]{AmbiMatrix1O};
805 al::span<const float,MAX_AMBI_ORDER+1> AmbiOrderHFGain{AmbiOrderHFGain1O};
806 if(ambi_order >= 2)
808 AmbiPoints = AmbiPoints2O;
809 AmbiMatrix = AmbiMatrix2O;
810 AmbiOrderHFGain = AmbiOrderHFGain2O;
812 device->mAmbiOrder = ambi_order;
814 const size_t count{AmbiChannelsFromOrder(ambi_order)};
815 std::transform(AmbiIndex::FromACN.begin(), AmbiIndex::FromACN.begin()+count,
816 std::begin(device->Dry.AmbiMap),
817 [](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; }
819 AllocChannels(device, count, device->channelsFromFmt());
821 HrtfStore *Hrtf{device->mHrtf.get()};
822 auto hrtfstate = DirectHrtfState::Create(count);
823 hrtfstate->build(Hrtf, AmbiPoints, AmbiMatrix, AmbiOrderHFGain);
824 device->mHrtfState = std::move(hrtfstate);
826 InitNearFieldCtrl(device, Hrtf->field[0].distance, ambi_order, true);
829 void InitUhjPanning(ALCdevice *device)
831 /* UHJ is always 2D first-order. */
832 constexpr size_t count{Ambi2DChannelsFromOrder(1)};
834 device->mAmbiOrder = 1;
836 auto acnmap_end = AmbiIndex::FromFuMa.begin() + count;
837 std::transform(AmbiIndex::FromFuMa.begin(), acnmap_end, std::begin(device->Dry.AmbiMap),
838 [](const uint8_t &acn) noexcept -> BFChannelConfig
839 { return BFChannelConfig{1.0f/AmbiScale::FromFuMa[acn], acn}; }
841 AllocChannels(device, count, device->channelsFromFmt());
844 } // namespace
846 void aluInitRenderer(ALCdevice *device, int hrtf_id, HrtfRequestMode hrtf_appreq,
847 HrtfRequestMode hrtf_userreq)
849 /* Hold the HRTF the device last used, in case it's used again. */
850 HrtfStorePtr old_hrtf{std::move(device->mHrtf)};
852 device->mHrtfState = nullptr;
853 device->mHrtf = nullptr;
854 device->HrtfName.clear();
855 device->mRenderMode = RenderMode::Normal;
857 if(device->FmtChans != DevFmtStereo)
859 old_hrtf = nullptr;
860 if(hrtf_appreq == Hrtf_Enable)
861 device->HrtfStatus = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT;
863 const char *layout{nullptr};
864 switch(device->FmtChans)
866 case DevFmtQuad: layout = "quad"; break;
867 case DevFmtX51: /* fall-through */
868 case DevFmtX51Rear: layout = "surround51"; break;
869 case DevFmtX61: layout = "surround61"; break;
870 case DevFmtX71: layout = "surround71"; break;
871 /* Mono, Stereo, and Ambisonics output don't use custom decoders. */
872 case DevFmtMono:
873 case DevFmtStereo:
874 case DevFmtAmbi3D:
875 break;
878 const char *devname{device->DeviceName.c_str()};
879 ALuint speakermap[MAX_OUTPUT_CHANNELS];
880 AmbDecConf *pconf{nullptr};
881 AmbDecConf conf{};
882 if(layout)
884 if(auto decopt = ConfigValueStr(devname, "decoder", layout))
886 if(!conf.load(decopt->c_str()))
887 ERR("Failed to load layout file %s\n", decopt->c_str());
888 else if(conf.Speakers.size() > MAX_OUTPUT_CHANNELS)
889 ERR("Unsupported speaker count %zu (max %d)\n", conf.Speakers.size(),
890 MAX_OUTPUT_CHANNELS);
891 else if(conf.ChanMask > AMBI_3ORDER_MASK)
892 ERR("Unsupported channel mask 0x%04x (max 0x%x)\n", conf.ChanMask,
893 AMBI_3ORDER_MASK);
894 else if(MakeSpeakerMap(device, &conf, speakermap))
895 pconf = &conf;
899 /* Enable the stablizer only for formats that have front-left, front-
900 * right, and front-center outputs.
902 const bool stablize{device->RealOut.ChannelIndex[FrontCenter] != INVALID_CHANNEL_INDEX
903 && device->RealOut.ChannelIndex[FrontLeft] != INVALID_CHANNEL_INDEX
904 && device->RealOut.ChannelIndex[FrontRight] != INVALID_CHANNEL_INDEX
905 && GetConfigValueBool(devname, nullptr, "front-stablizer", 0) != 0};
906 const bool hqdec{GetConfigValueBool(devname, "decoder", "hq-mode", 1) != 0};
907 if(!pconf)
908 InitPanning(device, hqdec, stablize);
909 else
910 InitCustomPanning(device, hqdec, stablize, pconf, speakermap);
911 if(auto *ambidec{device->AmbiDecoder.get()})
913 device->PostProcess = ambidec->hasStablizer() ? &ALCdevice::ProcessAmbiDecStablized
914 : &ALCdevice::ProcessAmbiDec;
916 return;
919 bool headphones{device->IsHeadphones};
920 if(device->Type != DeviceType::Loopback)
922 if(auto modeopt = ConfigValueStr(device->DeviceName.c_str(), nullptr, "stereo-mode"))
924 const char *mode{modeopt->c_str()};
925 if(al::strcasecmp(mode, "headphones") == 0)
926 headphones = true;
927 else if(al::strcasecmp(mode, "speakers") == 0)
928 headphones = false;
929 else if(al::strcasecmp(mode, "auto") != 0)
930 ERR("Unexpected stereo-mode: %s\n", mode);
934 if(hrtf_userreq == Hrtf_Default)
936 bool usehrtf = (headphones && hrtf_appreq != Hrtf_Disable) ||
937 (hrtf_appreq == Hrtf_Enable);
938 if(!usehrtf) goto no_hrtf;
940 device->HrtfStatus = ALC_HRTF_ENABLED_SOFT;
941 if(headphones && hrtf_appreq != Hrtf_Disable)
942 device->HrtfStatus = ALC_HRTF_HEADPHONES_DETECTED_SOFT;
944 else
946 if(hrtf_userreq != Hrtf_Enable)
948 if(hrtf_appreq == Hrtf_Enable)
949 device->HrtfStatus = ALC_HRTF_DENIED_SOFT;
950 goto no_hrtf;
952 device->HrtfStatus = ALC_HRTF_REQUIRED_SOFT;
955 if(device->HrtfList.empty())
956 device->HrtfList = EnumerateHrtf(device->DeviceName.c_str());
958 if(hrtf_id >= 0 && static_cast<ALuint>(hrtf_id) < device->HrtfList.size())
960 const char *devname{device->DeviceName.c_str()};
961 const std::string &hrtfname = device->HrtfList[static_cast<ALuint>(hrtf_id)];
962 if(HrtfStorePtr hrtf{GetLoadedHrtf(hrtfname, devname, device->Frequency)})
964 device->mHrtf = std::move(hrtf);
965 device->HrtfName = hrtfname;
969 if(!device->mHrtf)
971 const char *devname{device->DeviceName.c_str()};
972 auto find_hrtf = [device,devname](const std::string &hrtfname) -> bool
974 HrtfStorePtr hrtf{GetLoadedHrtf(hrtfname, devname, device->Frequency)};
975 if(!hrtf) return false;
976 device->mHrtf = std::move(hrtf);
977 device->HrtfName = hrtfname;
978 return true;
980 (void)std::find_if(device->HrtfList.cbegin(), device->HrtfList.cend(), find_hrtf);
983 if(device->mHrtf)
985 old_hrtf = nullptr;
987 InitHrtfPanning(device);
988 device->PostProcess = &ALCdevice::ProcessHrtf;
989 return;
991 device->HrtfStatus = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT;
993 no_hrtf:
994 old_hrtf = nullptr;
996 device->mRenderMode = RenderMode::Pairwise;
998 if(device->Type != DeviceType::Loopback)
1000 if(auto cflevopt = ConfigValueInt(device->DeviceName.c_str(), nullptr, "cf_level"))
1002 if(*cflevopt > 0 && *cflevopt <= 6)
1004 device->Bs2b = std::make_unique<bs2b>();
1005 bs2b_set_params(device->Bs2b.get(), *cflevopt,
1006 static_cast<int>(device->Frequency));
1007 TRACE("BS2B enabled\n");
1008 InitPanning(device);
1009 device->PostProcess = &ALCdevice::ProcessBs2b;
1010 return;
1015 if(auto encopt = ConfigValueStr(device->DeviceName.c_str(), nullptr, "stereo-encoding"))
1017 const char *mode{encopt->c_str()};
1018 if(al::strcasecmp(mode, "uhj") == 0)
1019 device->mRenderMode = RenderMode::Normal;
1020 else if(al::strcasecmp(mode, "panpot") != 0)
1021 ERR("Unexpected stereo-encoding: %s\n", mode);
1023 if(device->mRenderMode == RenderMode::Normal)
1025 device->Uhj_Encoder = std::make_unique<Uhj2Encoder>();
1026 TRACE("UHJ enabled\n");
1027 InitUhjPanning(device);
1028 device->PostProcess = &ALCdevice::ProcessUhj;
1029 return;
1032 TRACE("Stereo rendering\n");
1033 InitPanning(device);
1034 device->PostProcess = &ALCdevice::ProcessAmbiDec;
1038 void aluInitEffectPanning(ALeffectslot *slot, ALCcontext *context)
1040 ALCdevice *device{context->mDevice.get()};
1041 const size_t count{AmbiChannelsFromOrder(device->mAmbiOrder)};
1043 auto wetbuffer_iter = context->mWetBuffers.end();
1044 if(slot->mWetBuffer)
1046 /* If the effect slot already has a wet buffer attached, allocate a new
1047 * one in its place.
1049 wetbuffer_iter = context->mWetBuffers.begin();
1050 for(;wetbuffer_iter != context->mWetBuffers.end();++wetbuffer_iter)
1052 if(wetbuffer_iter->get() == slot->mWetBuffer)
1054 slot->mWetBuffer = nullptr;
1055 slot->Wet.Buffer = {};
1057 *wetbuffer_iter = WetBufferPtr{new(FamCount(count)) WetBuffer{count}};
1059 break;
1063 if(wetbuffer_iter == context->mWetBuffers.end())
1065 /* Otherwise, search for an unused wet buffer. */
1066 wetbuffer_iter = context->mWetBuffers.begin();
1067 for(;wetbuffer_iter != context->mWetBuffers.end();++wetbuffer_iter)
1069 if(!(*wetbuffer_iter)->mInUse)
1070 break;
1072 if(wetbuffer_iter == context->mWetBuffers.end())
1074 /* Otherwise, allocate a new one to use. */
1075 context->mWetBuffers.emplace_back(WetBufferPtr{new(FamCount(count)) WetBuffer{count}});
1076 wetbuffer_iter = context->mWetBuffers.end()-1;
1079 WetBuffer *wetbuffer{slot->mWetBuffer = wetbuffer_iter->get()};
1080 wetbuffer->mInUse = true;
1082 auto acnmap_end = AmbiIndex::FromACN.begin() + count;
1083 auto iter = std::transform(AmbiIndex::FromACN.begin(), acnmap_end, slot->Wet.AmbiMap.begin(),
1084 [](const uint8_t &acn) noexcept -> BFChannelConfig
1085 { return BFChannelConfig{1.0f, acn}; });
1086 std::fill(iter, slot->Wet.AmbiMap.end(), BFChannelConfig{});
1087 slot->Wet.Buffer = wetbuffer->mBuffer;
1091 std::array<float,MAX_AMBI_CHANNELS> CalcAmbiCoeffs(const float y, const float z, const float x,
1092 const float spread)
1094 std::array<float,MAX_AMBI_CHANNELS> coeffs;
1096 /* Zeroth-order */
1097 coeffs[0] = 1.0f; /* ACN 0 = 1 */
1098 /* First-order */
1099 coeffs[1] = 1.732050808f * y; /* ACN 1 = sqrt(3) * Y */
1100 coeffs[2] = 1.732050808f * z; /* ACN 2 = sqrt(3) * Z */
1101 coeffs[3] = 1.732050808f * x; /* ACN 3 = sqrt(3) * X */
1102 /* Second-order */
1103 const float xx{x*x}, yy{y*y}, zz{z*z};
1104 coeffs[4] = 3.872983346f * x * y; /* ACN 4 = sqrt(15) * X * Y */
1105 coeffs[5] = 3.872983346f * y * z; /* ACN 5 = sqrt(15) * Y * Z */
1106 coeffs[6] = 1.118033989f * (3.0f*zz - 1.0f); /* ACN 6 = sqrt(5)/2 * (3*Z*Z - 1) */
1107 coeffs[7] = 3.872983346f * x * z; /* ACN 7 = sqrt(15) * X * Z */
1108 coeffs[8] = 1.936491673f * (xx - yy); /* ACN 8 = sqrt(15)/2 * (X*X - Y*Y) */
1109 /* Third-order */
1110 coeffs[9] = 2.091650066f * y * (3.0f*xx - yy); /* ACN 9 = sqrt(35/8) * Y * (3*X*X - Y*Y) */
1111 coeffs[10] = 10.246950766f * z * x * y; /* ACN 10 = sqrt(105) * Z * X * Y */
1112 coeffs[11] = 1.620185175f * y * (5.0f*zz - 1.0f); /* ACN 11 = sqrt(21/8) * Y * (5*Z*Z - 1) */
1113 coeffs[12] = 1.322875656f * z * (5.0f*zz - 3.0f); /* ACN 12 = sqrt(7)/2 * Z * (5*Z*Z - 3) */
1114 coeffs[13] = 1.620185175f * x * (5.0f*zz - 1.0f); /* ACN 13 = sqrt(21/8) * X * (5*Z*Z - 1) */
1115 coeffs[14] = 5.123475383f * z * (xx - yy); /* ACN 14 = sqrt(105)/2 * Z * (X*X - Y*Y) */
1116 coeffs[15] = 2.091650066f * x * (xx - 3.0f*yy); /* ACN 15 = sqrt(35/8) * X * (X*X - 3*Y*Y) */
1117 /* Fourth-order */
1118 /* ACN 16 = sqrt(35)*3/2 * X * Y * (X*X - Y*Y) */
1119 /* ACN 17 = sqrt(35/2)*3/2 * (3*X*X - Y*Y) * Y * Z */
1120 /* ACN 18 = sqrt(5)*3/2 * X * Y * (7*Z*Z - 1) */
1121 /* ACN 19 = sqrt(5/2)*3/2 * Y * Z * (7*Z*Z - 3) */
1122 /* ACN 20 = 3/8 * (35*Z*Z*Z*Z - 30*Z*Z + 3) */
1123 /* ACN 21 = sqrt(5/2)*3/2 * X * Z * (7*Z*Z - 3) */
1124 /* ACN 22 = sqrt(5)*3/4 * (X*X - Y*Y) * (7*Z*Z - 1) */
1125 /* ACN 23 = sqrt(35/2)*3/2 * (X*X - 3*Y*Y) * X * Z */
1126 /* ACN 24 = sqrt(35)*3/8 * (X*X*X*X - 6*X*X*Y*Y + Y*Y*Y*Y) */
1128 if(spread > 0.0f)
1130 /* Implement the spread by using a spherical source that subtends the
1131 * angle spread. See:
1132 * http://www.ppsloan.org/publications/StupidSH36.pdf - Appendix A3
1134 * When adjusted for N3D normalization instead of SN3D, these
1135 * calculations are:
1137 * ZH0 = -sqrt(pi) * (-1+ca);
1138 * ZH1 = 0.5*sqrt(pi) * sa*sa;
1139 * ZH2 = -0.5*sqrt(pi) * ca*(-1+ca)*(ca+1);
1140 * ZH3 = -0.125*sqrt(pi) * (-1+ca)*(ca+1)*(5*ca*ca - 1);
1141 * ZH4 = -0.125*sqrt(pi) * ca*(-1+ca)*(ca+1)*(7*ca*ca - 3);
1142 * ZH5 = -0.0625*sqrt(pi) * (-1+ca)*(ca+1)*(21*ca*ca*ca*ca - 14*ca*ca + 1);
1144 * The gain of the source is compensated for size, so that the
1145 * loudness doesn't depend on the spread. Thus:
1147 * ZH0 = 1.0f;
1148 * ZH1 = 0.5f * (ca+1.0f);
1149 * ZH2 = 0.5f * (ca+1.0f)*ca;
1150 * ZH3 = 0.125f * (ca+1.0f)*(5.0f*ca*ca - 1.0f);
1151 * ZH4 = 0.125f * (ca+1.0f)*(7.0f*ca*ca - 3.0f)*ca;
1152 * ZH5 = 0.0625f * (ca+1.0f)*(21.0f*ca*ca*ca*ca - 14.0f*ca*ca + 1.0f);
1154 const float ca{std::cos(spread * 0.5f)};
1155 /* Increase the source volume by up to +3dB for a full spread. */
1156 const float scale{std::sqrt(1.0f + spread/al::MathDefs<float>::Tau())};
1158 const float ZH0_norm{scale};
1159 const float ZH1_norm{scale * 0.5f * (ca+1.f)};
1160 const float ZH2_norm{scale * 0.5f * (ca+1.f)*ca};
1161 const float ZH3_norm{scale * 0.125f * (ca+1.f)*(5.f*ca*ca-1.f)};
1163 /* Zeroth-order */
1164 coeffs[0] *= ZH0_norm;
1165 /* First-order */
1166 coeffs[1] *= ZH1_norm;
1167 coeffs[2] *= ZH1_norm;
1168 coeffs[3] *= ZH1_norm;
1169 /* Second-order */
1170 coeffs[4] *= ZH2_norm;
1171 coeffs[5] *= ZH2_norm;
1172 coeffs[6] *= ZH2_norm;
1173 coeffs[7] *= ZH2_norm;
1174 coeffs[8] *= ZH2_norm;
1175 /* Third-order */
1176 coeffs[9] *= ZH3_norm;
1177 coeffs[10] *= ZH3_norm;
1178 coeffs[11] *= ZH3_norm;
1179 coeffs[12] *= ZH3_norm;
1180 coeffs[13] *= ZH3_norm;
1181 coeffs[14] *= ZH3_norm;
1182 coeffs[15] *= ZH3_norm;
1185 return coeffs;
1188 void ComputePanGains(const MixParams *mix, const float*RESTRICT coeffs, const float ingain,
1189 const al::span<float,MAX_OUTPUT_CHANNELS> gains)
1191 auto ambimap = mix->AmbiMap.cbegin();
1193 auto iter = std::transform(ambimap, ambimap+mix->Buffer.size(), gains.begin(),
1194 [coeffs,ingain](const BFChannelConfig &chanmap) noexcept -> float
1195 { return chanmap.Scale * coeffs[chanmap.Index] * ingain; }
1197 std::fill(iter, gains.end(), 0.0f);