clang-tidy cleanups (#800)
[openal-soft.git] / core / mixer / mixer_sse.cpp
blob1b0d1386c2642d7000f3e180fd3e65a9b31c23c2
1 #include "config.h"
3 #include <xmmintrin.h>
5 #include <cmath>
6 #include <limits>
8 #include "alnumeric.h"
9 #include "core/bsinc_defs.h"
10 #include "defs.h"
11 #include "hrtfbase.h"
13 struct SSETag;
14 struct BSincTag;
15 struct FastBSincTag;
18 #if defined(__GNUC__) && !defined(__clang__) && !defined(__SSE__)
19 #pragma GCC target("sse")
20 #endif
22 namespace {
24 constexpr uint FracPhaseBitDiff{MixerFracBits - BSincPhaseBits};
25 constexpr uint FracPhaseDiffOne{1 << FracPhaseBitDiff};
27 #define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z))
29 inline void ApplyCoeffs(float2 *RESTRICT Values, const size_t IrSize, const ConstHrirSpan Coeffs,
30 const float left, const float right)
32 const __m128 lrlr{_mm_setr_ps(left, right, left, right)};
34 ASSUME(IrSize >= MinIrLength);
35 /* This isn't technically correct to test alignment, but it's true for
36 * systems that support SSE, which is the only one that needs to know the
37 * alignment of Values (which alternates between 8- and 16-byte aligned).
39 if(!(reinterpret_cast<uintptr_t>(Values)&15))
41 for(size_t i{0};i < IrSize;i += 2)
43 const __m128 coeffs{_mm_load_ps(Coeffs[i].data())};
44 __m128 vals{_mm_load_ps(Values[i].data())};
45 vals = MLA4(vals, lrlr, coeffs);
46 _mm_store_ps(Values[i].data(), vals);
49 else
51 __m128 imp0, imp1;
52 __m128 coeffs{_mm_load_ps(Coeffs[0].data())};
53 __m128 vals{_mm_loadl_pi(_mm_setzero_ps(), reinterpret_cast<__m64*>(Values[0].data()))};
54 imp0 = _mm_mul_ps(lrlr, coeffs);
55 vals = _mm_add_ps(imp0, vals);
56 _mm_storel_pi(reinterpret_cast<__m64*>(Values[0].data()), vals);
57 size_t td{((IrSize+1)>>1) - 1};
58 size_t i{1};
59 do {
60 coeffs = _mm_load_ps(Coeffs[i+1].data());
61 vals = _mm_load_ps(Values[i].data());
62 imp1 = _mm_mul_ps(lrlr, coeffs);
63 imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2));
64 vals = _mm_add_ps(imp0, vals);
65 _mm_store_ps(Values[i].data(), vals);
66 imp0 = imp1;
67 i += 2;
68 } while(--td);
69 vals = _mm_loadl_pi(vals, reinterpret_cast<__m64*>(Values[i].data()));
70 imp0 = _mm_movehl_ps(imp0, imp0);
71 vals = _mm_add_ps(imp0, vals);
72 _mm_storel_pi(reinterpret_cast<__m64*>(Values[i].data()), vals);
76 force_inline void MixLine(const al::span<const float> InSamples, float *RESTRICT dst,
77 float &CurrentGain, const float TargetGain, const float delta, const size_t min_len,
78 const size_t aligned_len, size_t Counter)
80 float gain{CurrentGain};
81 const float step{(TargetGain-gain) * delta};
83 size_t pos{0};
84 if(!(std::abs(step) > std::numeric_limits<float>::epsilon()))
85 gain = TargetGain;
86 else
88 float step_count{0.0f};
89 /* Mix with applying gain steps in aligned multiples of 4. */
90 if(size_t todo{min_len >> 2})
92 const __m128 four4{_mm_set1_ps(4.0f)};
93 const __m128 step4{_mm_set1_ps(step)};
94 const __m128 gain4{_mm_set1_ps(gain)};
95 __m128 step_count4{_mm_setr_ps(0.0f, 1.0f, 2.0f, 3.0f)};
96 do {
97 const __m128 val4{_mm_load_ps(&InSamples[pos])};
98 __m128 dry4{_mm_load_ps(&dst[pos])};
100 /* dry += val * (gain + step*step_count) */
101 dry4 = MLA4(dry4, val4, MLA4(gain4, step4, step_count4));
103 _mm_store_ps(&dst[pos], dry4);
104 step_count4 = _mm_add_ps(step_count4, four4);
105 pos += 4;
106 } while(--todo);
107 /* NOTE: step_count4 now represents the next four counts after the
108 * last four mixed samples, so the lowest element represents the
109 * next step count to apply.
111 step_count = _mm_cvtss_f32(step_count4);
113 /* Mix with applying left over gain steps that aren't aligned multiples of 4. */
114 for(size_t leftover{min_len&3};leftover;++pos,--leftover)
116 dst[pos] += InSamples[pos] * (gain + step*step_count);
117 step_count += 1.0f;
119 if(pos == Counter)
120 gain = TargetGain;
121 else
122 gain += step*step_count;
124 /* Mix until pos is aligned with 4 or the mix is done. */
125 for(size_t leftover{aligned_len&3};leftover;++pos,--leftover)
126 dst[pos] += InSamples[pos] * gain;
128 CurrentGain = gain;
130 if(!(std::abs(gain) > GainSilenceThreshold))
131 return;
132 if(size_t todo{(InSamples.size()-pos) >> 2})
134 const __m128 gain4{_mm_set1_ps(gain)};
135 do {
136 const __m128 val4{_mm_load_ps(&InSamples[pos])};
137 __m128 dry4{_mm_load_ps(&dst[pos])};
138 dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
139 _mm_store_ps(&dst[pos], dry4);
140 pos += 4;
141 } while(--todo);
143 for(size_t leftover{(InSamples.size()-pos)&3};leftover;++pos,--leftover)
144 dst[pos] += InSamples[pos] * gain;
147 } // namespace
149 template<>
150 float *Resample_<BSincTag,SSETag>(const InterpState *state, float *RESTRICT src, uint frac,
151 uint increment, const al::span<float> dst)
153 const float *const filter{state->bsinc.filter};
154 const __m128 sf4{_mm_set1_ps(state->bsinc.sf)};
155 const size_t m{state->bsinc.m};
156 ASSUME(m > 0);
158 src -= state->bsinc.l;
159 for(float &out_sample : dst)
161 // Calculate the phase index and factor.
162 const uint pi{frac >> FracPhaseBitDiff};
163 const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)};
165 // Apply the scale and phase interpolated filter.
166 __m128 r4{_mm_setzero_ps()};
168 const __m128 pf4{_mm_set1_ps(pf)};
169 const float *RESTRICT fil{filter + m*pi*2};
170 const float *RESTRICT phd{fil + m};
171 const float *RESTRICT scd{fil + BSincPhaseCount*2*m};
172 const float *RESTRICT spd{scd + m};
173 size_t td{m >> 2};
174 size_t j{0u};
176 do {
177 /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
178 const __m128 f4 = MLA4(
179 MLA4(_mm_load_ps(&fil[j]), sf4, _mm_load_ps(&scd[j])),
180 pf4, MLA4(_mm_load_ps(&phd[j]), sf4, _mm_load_ps(&spd[j])));
181 /* r += f*src */
182 r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j]));
183 j += 4;
184 } while(--td);
186 r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
187 r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
188 out_sample = _mm_cvtss_f32(r4);
190 frac += increment;
191 src += frac>>MixerFracBits;
192 frac &= MixerFracMask;
194 return dst.data();
197 template<>
198 float *Resample_<FastBSincTag,SSETag>(const InterpState *state, float *RESTRICT src, uint frac,
199 uint increment, const al::span<float> dst)
201 const float *const filter{state->bsinc.filter};
202 const size_t m{state->bsinc.m};
203 ASSUME(m > 0);
205 src -= state->bsinc.l;
206 for(float &out_sample : dst)
208 // Calculate the phase index and factor.
209 const uint pi{frac >> FracPhaseBitDiff};
210 const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)};
212 // Apply the phase interpolated filter.
213 __m128 r4{_mm_setzero_ps()};
215 const __m128 pf4{_mm_set1_ps(pf)};
216 const float *RESTRICT fil{filter + m*pi*2};
217 const float *RESTRICT phd{fil + m};
218 size_t td{m >> 2};
219 size_t j{0u};
221 do {
222 /* f = fil + pf*phd */
223 const __m128 f4 = MLA4(_mm_load_ps(&fil[j]), pf4, _mm_load_ps(&phd[j]));
224 /* r += f*src */
225 r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j]));
226 j += 4;
227 } while(--td);
229 r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
230 r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
231 out_sample = _mm_cvtss_f32(r4);
233 frac += increment;
234 src += frac>>MixerFracBits;
235 frac &= MixerFracMask;
237 return dst.data();
241 template<>
242 void MixHrtf_<SSETag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
243 const MixHrtfFilter *hrtfparams, const size_t BufferSize)
244 { MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); }
246 template<>
247 void MixHrtfBlend_<SSETag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
248 const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize)
250 MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams,
251 BufferSize);
254 template<>
255 void MixDirectHrtf_<SSETag>(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut,
256 const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples,
257 float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize)
259 MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState,
260 IrSize, BufferSize);
264 template<>
265 void Mix_<SSETag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
266 float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
268 const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f};
269 const auto min_len = minz(Counter, InSamples.size());
270 const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len;
272 for(FloatBufferLine &output : OutBuffer)
273 MixLine(InSamples, al::assume_aligned<16>(output.data()+OutPos), *CurrentGains++,
274 *TargetGains++, delta, min_len, aligned_len, Counter);
277 template<>
278 void Mix_<SSETag>(const al::span<const float> InSamples, float *OutBuffer, float &CurrentGain,
279 const float TargetGain, const size_t Counter)
281 const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f};
282 const auto min_len = minz(Counter, InSamples.size());
283 const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len;
285 MixLine(InSamples, al::assume_aligned<16>(OutBuffer), CurrentGain, TargetGain, delta, min_len,
286 aligned_len, Counter);